THE HARTREE-FOCK EQUATIONS IN MODULATION SPACES
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ABSTRACT. We establish both a local and a global well-posedness theories for the nonlinear
Hartree-Fock equations and its reduced analog in the setting of the modulation spaces on R?.
In addition, we prove similar results when a harmonic potential is added to the equations.
In the process, we prove the boundedeness of certain multilinear operators on products of
the modulation spaces which may be of independent interest.

1. INTRODUCTION AND DESCRIPTION OF THE PROBLEM

1.1. Motivation. The Hartree equation, introduced by Hartree in the 1920s, arises as the
mean-field limit of large systems of identical bosons, e.g., the Gross-Pitaevskii equation for
Bose-Einstein condensates [25, 37], when taking into account the self-interactions of the
bosons. A semirelativistic version of the Hartree equation was considered in [20, 33| for
modeling boson stars. The Hartree-Fock equation, also developed by Fock [22] describes
large systems of identical fermions by taking into account the self-interactions of charged
fermions as well as an exchange term resulting from Pauli’s principle. A semirelativistic
version of the Hartree-Fock equation was developed in [23] for modeling white dwarfs. The
Hartree equation is also used for fermions as an approximation of the Hartree-Fock equation
neglecting the impact of their fermionic nature. Hartree and Hartree-Fock equations are
used for several applications in many-particle physics [36, Section 2.2].

In [10, 32] fractional Laplacians have been applied to model physical phenomena. It was
formulated by Laskin [32] as a result of extending the Feynman path integral from the
Brownian-like to Lévy-like quantum mechanical paths. The harmonic oscillator (Hermite
operator) —A + |z|? is a fundamental operator in quantum physics and in analysis [40].
Hartree-Fock equations with harmonic potential model Bose-Einstein condensates with at-
tractive inter-particle interactions under a magnetic trap . The isotropic harmonic potential
|z|? describes a magnetic field whose role is to confine the movement of particles. A class of
nonlinear Schrodinger equations with a “nonlocal” nonlinearity that we call “Hartree type”
also occurs in the modeling of quantum semiconductor devices (see [11] and the references
therein).

1.2. Hartree-Fock equations. Before giving the exact form of the Hatree-Fock equations,
we set some notations that will be used through the paper. For two functions ¢ and h defined
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on R and R? respectively, we set
S((D))f = Fte" I Ff

where F denotes the Fourier transform.
The Hartree-Fock equation of N particles is given by

@) {im = oD — XLy (2 [01f?) o+ S0 1 (2 + (it )
77b/€|t:0 = 1/}0]{?7

where t € R, : RYx R — C, k = 1,2,..., N,0 < v < d, ~ is constant, and * denotes the
convolution in R?.
The Hartree factor

N K
=Y (10 <1k

describes the self-interaction between charged particles as a repulsive force if x > 0, and an
attractive force if k < 0. The last term on the right side of (1.1) is the so-called “exchange
term (Fock term)”

F(y) = éfﬂz (% * {%lﬁk})

which is a consequence of the Pauli principle and thus applies to fermions. In the mean-field
limit (N — o0), this term is negligible compared to the Hatree factor. In this case, (1.1) is
replaced by the N coupled equations, the so-called reduced Hartree-Fock equations:

o) {iatm = 6D = X, (i # lal?) o,
¢k|t=0 = @Z)Oko

The rigorous time-dependent Hartree-Fock theory has been developed first by Chadam-

Glassey [15] for (1.2) with ¢(h(D)) = —A in dimension d = 3. In this setting, (1.2) is

equivalent to the von Neumann equation

(1.3) iK'(t) = [G(t), K(1)]

for K(t) = SN () (Wr(t)| and G(t) = ¢(h(D)) + H(x,t), see, e.g., [31, 34, 35]. In the
above equation, we use Dirac’s notation |u)(v| for the operator f + (v, f)u. The von Neu-
mann equation (1.3) can also be considered for more general class of density matrices K (t).
For example, one can consider the class of nonnegative self-adjoint trace class operators, for
which K (t) satisfies the following conditions:

K*(t) = K(t),K(t) < 1, K = N

where the condition K(t) < 1 corresponds to the Pauli exclusion principle, and N is the
“number of particles”.

The well-posedness for (1.3) was proved by Bove-Da Parto-Fano [8, 9] for a short-range
paire-wise interaction potential w(z — y) instead of Coulomb potential m in the Hartree

factor. The case of Coulomb potential was resolved by Chadam [14]. Lewin-Sabin [35]
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have established the well-posedness for (1.3) with density matrices of infinite trace for pair-
wise interaction potentials w € L'(R®). However, their investigation did not include the
Coulomb potential case. Moreover, Lewin-Sabin [34] prove the asymptotic stability for the
ground state in dimension d = 2. Frohlich-Lenzmann [23] and Carles-Lucha-Moulay [13]
studied the local and global well-posedness for (1.1) and (1.2) in L?—based Sobolev spaces,
when d = 3. The existence of a global solution in H*(R?) (s > 1/2) to (1.1) and (1.2) was
established in [23, Theorem 2.2] with smallness condition on the initial data in L?—norm.
We note that this smallness condition is necessary. In fact, in [23, Theoem 2.3 and in [27],
it is proved that radially symmetric data with negative energy lead to blow-up solutions
for (1.1) and (1.2) in finite time in H'?—norm. These results naturally raise the following
question. Can we expect similar results in other functions spaces—which are not just based
on L?— integrability?

We investigate this question in the setting of the modulation spaces M?4(R?) (to be defined
below), which have recently been considered as spaces of Cauchy data for certain nonlinear
dispersive equations, see [1, 2, 3, 5, 4, 39, 42, 43, 44]. Generally modulation spaces are
considered as low regularity spaces because they contain rougher functions than functions in
any given fractional Bessel potential space (see Proposition 2.1 below). We refer to excellent
survey [38] and the reference therein for details.

Taking these considerations into account, we initiate the study of (1.1) and (1.2) in mod-
ulation spaces. In particular, the two our main results can be stated as follows.

Theorem 1.1 (Local well-posedness). Let N,d € N, and v € (0,d) be given. Let X be given
by
a(RY) 2d
_ {M”q<R) f1<ps2i<esit
71 d ), 4 x —
MEA(RT) if 1<p<oo,s+3—1=_=
for some € >0 and s > 0. Let ¢ : R — R be such that there exist mq, mo > 0 with

U ()| S rme i > 1
U ()| Srmee if 0<r <1

for all p € Ny. Furthermore, assume that h € C*(R?\ {0}) is either
(a) a positive function of homogeneous type of degree A > 0 with miA < 2, or
(b) poh(&) :==P(&) =D 5<m cs€P is a polynomial with order m < 2.

Given initial data (Yoy, ..., Y0on) € XV, the following statements hold.

(i) There exists T > 0 depending only on ||Yo1||x, -, |Yon|x, d and v such that (1.1)
has a unique local solution
(¢1> ""¢N) < (O([()?T]’X))N
(i1) There exists T > 0 depending only on ||to1|lx, .., [Yon|lx, d and v such that (1.2)

has a unique local solution

(W1, v) € (C([0,7], X)) .
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Our second main result deal with the global well-posedness of these equations. In the
statement, we denote by X,.q, space of radial functions in the Banach space X.

Theorem 1.2 (Global well-posedness). Suppose that ¢ and h are defined on R and R?
respectively such that ¢ o h(§) = |€|* for & € R, and where a > 0. Assume that 0 < v <
min{«a, d/2}, and that one of the following two statements holds:

(a) For « =2 and d € N, let

X:{Mp’q(R% if 1<p<21<q< 2

1 /Tod ; 1,2 1= _1
MPHRT) if 1<p<oo,s+3—1=_—

for some € >0 and s > 0.
(b) For a € (52%,2) and d > 2, let

2d—-17

rad

MPYRY N L2 ,(RY) if 2<p<oov%+%_1:]ﬁ

{MWI(RCI) if 1<p<21<q¢<

for some € >0 and s > 0.
Given initial data (Y1, ..., 0on) € XY, the following statements hold.
(i) There exists a unique global solution of (1.1) such that

(.)€ (CR X) N Lz (R, D40 (R)))

loc

(i) There exists a unique global solution of (1.2) such that
da/y 4d/(2d—~) (Tod N
(1, n) € (CR X) N L7 (R, L4 (RY)) )

loc

In the case N = 1, first author in [5, Theorem 1.1] established the global well-posedness
of (1.2) in MP4(R?) when 1 <p <2 and 1 <g< %. Part (ii) of Theorem 1.2 proves this
result for the end point case for any N > 1. We note that MP4(R?) C LP(R?) (¢ < min{p,p'})
is sharp embedding and up to now we cannot get the global well-posedness of (1.1) in
LP(RY(1 < p < 2) but in MP4(R?) (Theorem 1.2). Noticing for s > /2, we have sharp
embedding H*(RY) c M 285 (RY) C L*(R?) (see Proposition 2.1 below), Theorem 1.2 reveals
that we can solve (1.1) and (1.2) with Cauchy data beyond in H*(R%)(s > ~/2).

Remark 1.1. The sign of k in Hartree and Fock terms determines the defocusing and fo-
cusing character of the nonlinearity, but, as we shall see, this character will play no role in
our analysis on modulation spaces, as we do not use the conservation of energy of (1.1) and
(1.2) to achieve global existence.

Remark 1.2. We have several comments about Theorems 1.1 and 1.2.

(1) Based on the trilinear estimate to be established in Section 3, we can prove some local
well-posedness results for (1.1) in some modulation spaces (see Theorem 1.1) without
any radial assumption of the initial data. In particular, in Theorem 1.1, we can take

¢(r) = r* and h(§) = [§] and s0 ¢ o h(£) = [¢]%, (0 < a < 2).
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(2) To extend this local existence globally in time, that is, to prove Theorem 1.2, in

modulation spaces, we proceed as follows. First, we prove that (1.1) is globally well-
posed (see Proposition 4.2 below) in L2 ,(RHN (d > 2) if 522 < a < 2 and in

rad 2d—1

LARYN (d > 1) if a = 2. To prove this, we employ Strichartz estimates for fractional
Schédinger equation (see Proposition 4.1 below) —where we need the initial data to be
a radial and dimension d > 2 (126, p.26-27]) if a # 2. Finally, we invoke Proposition
4.2 to prove that the modulation space norm of the growth term cannot blow-up in
finite time (see Lemma 4.2 below) leading to the global existence in modulation spaces.
(3) Note that to take advantage of Proposition 5.2, the hypotheses that the initial data
is radial and 0 < v < min{«,d/2} in Theorem 1.2 is necessary. Thus, the global
time behavior of (1.1) with non-radial initial data in modulation spaces remains an

interesting open question.

Remark 1.3. Kato-Naumkin [28, Theorems 1.1 and 1.2] proved some space-time estimates

for the solution of the Dirac equation (free Schrédinger equation associated to Dirac operator)

in modulation spaces. Combining these results with a trilinear estimate of Section 3, it is

natural to expect some local well-posedness results for the Dirac equation with Hartree type

non linearity. We plan to address the global well-posedness theory for the Dirac equation

with Hartree type non linearity in modulation spaces in a future work.

1.3. Hartree-Fock equation with harmonic potential. The Hartree-Fock equation with

the harmonic potential of N particles is given by

(1.4) {z’&:@/)k (A + ) e = N, (ﬁ * |¢ll2> U+ S U (ﬁ % {%W}) 7

¢k|t=0 = @DOk
and the corresponding reduced Hartree-Fock equation with the harmonic potential:
L5) {z’atwk — (A o) o = S (g * Al o
wk|t:0 = ka,

where t € R, ¢, : REx R = C, k=1,2,...,N,0 < v < d, k is constant. In this context we

establish the following result.

Theorem 1.3. Let 0 < v < min{2,d/2},d € N and 1 < p < 2L Given initial data

d+v°
(o1, ---, Yon) € (Mp’p(Rd))N, the following statements hold.

(i) There exists a unique global solution of (1.4) such that
,p (T d 8/ 4d/(2d—~) (o d N
(¥1,s0) € (C(10,00), MPP(RY) 1 L317([0, 00), L4 (R)))

(i1) There exists a unique global solution of (1.5) such that

loc

(1, ..., hN) € (C([o, 00), MPP(RY) N LY7(]0, 00), L4/ 24 (Rd))>N
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In the case N = 1, first author in [6, Theorem 1.1] proved that (1.5) is globally well-posed
in MPP(RY) for 1 < p < %. Part (ii) of Theorem 1.3 establishes this result for the end
point case for any N > 1.

The rest of the paper is organized as follows. In Section 2, we introduce some notations and
preliminary results which will be used in the sequel. In Section 3, we prove the boundedness
for Hartree nonlinearity on modulation spaces. In Section 4 we establish two of our main

results, namely Theorems 1.1, and 1.2. Finally, in Section 5 we prove Theorem 1.3.

2. PRELIMINARIES

2.1. Notations. The notation A < B means A < ¢B for some constant ¢ > 0, whereas
A = B means ¢ A < B < cA for some ¢ > 1. Given a,b € R we let a A b= min{a, b}. The
symbol A; — A, denotes the continuous embedding of the topological linear space A; into
Ay Put Ng =NU{0}. If 8= (B, -+ ,B4) € N¢ is a multi-index, we set

d | d | 5 5 o B1 o Ba
’6|:;6j7 ﬂZH@w 9"=D :(8_x1) (8—%) :

and if z = (1, 24) € RY,

The LP(R?) norm is denoted by

11 = ([ Vo) " sp<co

the L®(RY) norm is || f| = = ess.sup,ega|f(x)|. For 1 < p < oo, p' denotes the Hélder
conjugate of p, that is, 1/p+ 1/p’ = 1. We use L} (I, X) to denote the space-time norm

1/r
il = ( / Huu;dt) |

where I C R is an interval and X is a Banach space. The Schwartz space is denoted
by S(RY), and, its dual, the space of tempered distributions is denoted by S'(R¢). For
r= (11, ,29),y = (Y1, - ,yq) € RY weput z-y = Zle zy;. Let F : S(RY) — S(RY)
be the Fourier transform defined by

~

Ffw)=f(w)= [ f(t)e*™"dt, w e R"

Then F is an isomorphism on S(R?) which uniquely extends to an isomorphism on &'(R9).
The Fourier-Lebesgue spaces FLP(R?) is defined by

FIRY = {f € SR : || fllrir i= flli < 00}

For p € (1,00) and s > 0, W*P(R%) will denote standard Sobolev space. In particular, if s
is an integer, then W*? consists of LP—functions with derivatives in L” up to order s, hence
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coincides with the LZ—Sobolev space, also known as Bessel potential space, defined for s € R
by
LR = {f € SR : [ fllez = | F T FAI 0 < 00}
where (£)* = (1 + [£]*)*/? (¢ € RY). Note that L? (R?) < L? (R?) if s < s1.

2.2. Modulation spaces. Feichtinger [21] introduced the modulation spaces by imposing
integrability conditions on the short-time Fourier transform (STEFT) of functions or distri-
butions defined on R?. To be specific, the STFT of a function f with respect to a window
function g € S(R?) is defined by

Vof(z,w) = » ft)g(t —x)e ™ tdt, (z,w) € R*

whenever the integral exists. For z,w € R? the translation operator T}, and the modulation
operator M, are defined by T, f(t) = f(t —x) and M, f(t) = ™™ f(t). In terms of these
operators the STFT may be expressed as

Vof(z,w) = (f, MuTog)

where (f, g) denotes the inner product for L? functions, or the action of the tempered distri-
bution f on the Schwartz class function g. Thus V' : (f, g) = V,(f) extends to a bilinear form
on §&'(R?) x S(R?) and V,(f) defines a uniformly continuous function on R? x R? whenever
f € S'(RY) and g € S(RY).

Definition 2.1 (Modulation spaces). Let 1 < p,q < 00,5 € R and 0 # g € S(R?). The
weighted modulation space MP(R?) is defined to be the space of all tempered distributions f
for which the following norm is finite:

1/q

a/p
”f”Mf"’:</Rd (Adl%f(x7w)lpdx) (1+|w|2)sq/2dw> ,

for 1 < p,q < oco. If p or q is infinite, ||f||pmpe is defined by replacing the corresponding
integral by the essential supremum. For s =0, we write MJP4(RY) = MP4(R?).

It is standard to show that this definition is independent of the choice of the particular
window function, e.g., see, [24, Proposition 11.3.2(c)].

Using a uniform partition of the frequency domain, one can obtain an equivalent definition
of the modulation spaces [43] as follows. Let @, be the unit cube with the center at k,
s0 {Qp}reza constitutes a decomposition of R?, that is, R? = UpczaQy. Let p € S(RY),
p: R — [0, 1] be a smooth function satisfying p(§) = 1if || < 3 and p(§) = 01if || > 1,
4|&k]- Let pr be a translate of p, that is,

pe(§) = p(§ — k) (k € Z%).

where [€|s = maxg_;

.....

For each 0 # k € Z let

o Pk(f)
)=
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and when k = 0, we simply write 09 = 0. Then {04(&)},cza satisfies the following properties

|01(€)] > ¢, Y€ € Qx,
supp o C {€ 1 [§ — Kl < 1},
Yoz 0k(§) = 1LVE € R?,
|D%1,(€)| < Clop, V€ € RY, a € (NU {0})¢
for some positive constant c.
The frequency-uniform decomposition operators can be defined by

(2.1) O, = F lowF.
For 1 <p,q < oo,s € R, it is known [21] that

1/q
(22) [ f lagze =< (E:I[h(ﬂ”%&1+|kD”> ,

kezd
with natural modifications for p, ¢ = co. As observed in [44], the frequency-uniform decom-
position operators obey an almost orthogonality relation: for each k € Z
(2.3) e =Y Oeee
l[€lloo<1
where ||{||o = max{|(;| : {; € Z,i =1, ...,d}.

We now list some basic properties of the modulation spaces.

Lemma 2.1. Let p,q,pi,q; € [1,00] (i =1,2),s,1,80 € R. Then
(1) Moo (R?) — MP2e (R?) whenever py < ps and q1 < ¢z and sy < 1.
(2) MP9(RY) — LP(RY) — MP4(R?) holds for ¢ < min{p,p’} and gz > maz{p,p'}
with & + 5 = 1.
(8) M@t 2bp(RY) ey FLP(RY) e Mmax{e’2he(RY),
(4) S(RY) is dense in MP4(R?) if p and q < oo.
(5) The Fourier transform F : MPP(RY) — MPP(R?) is an isomorphism.
(6) The space MP4(R?) is a Banach space.
(7) The space MP4(R?) is invariant under complex conjugation.

1 1
lyl=1

Proof. For the proof of parts (1), (2), (3), and (4) see [24, Theorem 12.2.2], [41, Proposition
1.7], [18, Corollary 1.1] and [24, Proposition 11.3.4] respectively. The proof of statement (5)
can be derived from the fundamental identity of time-frequency analysis:

Vo f (z,w) = e~ 2™V fw, —),

which is easy to obtain. The proof of statement (6) is trivial, indeed, we have || f||rmpe =

1Fllaz.a. D

We can obtain examples of functions in the modulation spaces via embedding relations
with certain classical functions spaces. For example the following result can be proved.

Proposition 2.1 (Examples). The following statements hold.
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(1) ( [30], [38, Theorem 3.8]) Let 1 < p,q < o0, s1,52 € R, and

1 1 1 1
T(p7Q) :maX{O,d(— - _> ,d(—+— - 1)}
q D q P
Then L%, (RY) C Mfz;q(]Rd) if and only if one of the following conditions is satisfied:

q>p>1,52>s+7(pq)or
P> q,51> So+T1(p,q),0r
p=1,qg=00,5 > sy+7(l,00),0r
p=1,q# 0,51 > 83+ 7(1,q).

(i1) ([30], [38, Theorem 3.8]) Let 1 < p,q < 00, s1,52 € R, and

L1 1 1
O(p7Q) :maX{O,d(— - _> ,d(l - - — —>}
P q q p
Then Mf{q(Rd) C L%, (RY) if and only if one of the following conditions is satisfied:

qg<p<o0,81>8+0(p,q)or
p<q,s1>ss+0(pq),or
p=00,q=1,5 > s+ (o0, 1),0r
p=00,q# 1,5 > 53+ (00, q).
(i) For 1 < p < 2, MPP(RY) C LP(R?) and there exists f € LP(RY) such that f ¢
MPP(RY).
(iv) For s > 1 > 0, H*(RY) C MQ’%(RCI) and there exists [ € MQ’%(RC[) such that
f ¢ H (RY).
(v) For2 <p<ooands>d (1 — %) , LP(RY) € MPL(RY) and there exists f € MP*(RY)
such that f ¢ LP(RY).

Proof. We only give proofs of the last three parts.
(iii) For 1 < p < 2, by part (2) of Lemma 2.1, we have MP?(RY) C LP(R?). We claim
that MPP(RY) C LP(R?). If possible, suppose that claim is not true, that is, for all
f € LP(RY), we have f € MPP(R?). It follows that LP(R?) = MPP(R?). But then by
part (5) of Lemma 2.1, it follows that LP(R?) invariant under the Fourier transform,
which is a contradiction. Hence, the claim. Similarly, for 2 < p < oo, we have
MPP(RY) C LP(RY).

(iv) Noticing 7 <2, %) = 1, by part (i), we have H*(R?) C M*!'(R?) for s > /2. We

claim that H*(RY) C M 2’%(}1%‘1). If possible, suppose that claim is not true. Then
we have H*(R?) = MZ%(RCI). But then, noticing o <27 %) = —3, part (ii) gives
contradiction. Hence, the claim.

(v) Noticing 7(p,1) = d (1 - %) and o(p,1) = —%, parts (i) and (ii) give LP(RY) €
MPL(RY).

O
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Proposition 2.2. (Algebra property, [41, Theorem 2.4]) Let s > 0, and p,q,p;, q; € [1, 0],
where i = 0,1, 2. ]fpil+pi2:pio andq%Jrq%:lJrin, then

MP1a (Rd) . MP2oaz (Rd) 3 J\fPosd0 (Rd)

with norm inequality || f gl yroe0 S || fll vl gl pgreee. In particular, the space MP9(RY) is a
poinwise F L' (R%)-module, that is, it satisfies

1 gllarra SN FllFLrllgllamma.

2.3. Modulation space estimates for unimodular Fourier multipliers. In this sec-
tion, we consider the boundedness properties of a class of unimodular Fourier multipliers
defined by

Ut)f(x) = ez’td)(h(D))f(x> :/ pimtoh(€) f(f) p2miET de

Rd
for f € S(R?), where ¢ o h : R — R is the composition function of h : R? — R and
é:R—R,

Proposition 2.3. Let s € R and 1 < p,q < oo.
(i) (119, Theorem 1.1]) Assume that there exist my,mg > 0 such that ¢ satisfies

‘¢(u)(r)| <pmkgf or>1
6@ ()| S rmr if 0<r<1

for all u € Ny and h € C®(R4\ {0}) is positive homogeneous function with degree
A > 0. Then we have

e POV e S NS

where y(mqy, A) = d(ma\ — 2)|1/2 — 1/p|.
(i) ([16, Theorems 1 and 2|) Let h(&) = |£| and ¢(r) = r®, with 1/2 < a < 2. Then

d|i-1
e el 1 PO,

1_1
NU®) Fllazma < (1 + [EDD5 72| £l ago

(111) ([43, Proposition 4.1]) Let 2 < p < 00,1 < g < o0, h(§) = |£] and ¢(r) = r* (a > 2).
Then
_2d(1_1
WU Fllama < (1 ()72 G2 £l o
Another important class of unimodular Fourier multipliers that is not covered by Propo-
sition 2.3, are the so-called Fourier multiplier with polynomial symbol. Specifically, for

f € S(R?) let
U(t)f(x) — eitP(D)f(x) _ / oIt (€) f(§) p2miw de,
Rd

where P(§) = - 54 cs€P is a polynomial with order m > 1. In this setting the following
result was proved in [19].
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Proposition 2.4. ([19, Theorem 4.3]) Let s € R, 1 < p,q < o0 and m > 2. Then

) 1_1
1P Flasna S 1 gz + 1722 Al

s+y(m)

where y(m) = d(m — 2)|1/2 — 1/p|.

To make the paper self content, we outline the proof of Proposition 2.4 in the particular
case when P(&,n) = |£]* — |n|?, and note that the general case can be proved similarly. But
first, we state a result that provides a criteria for the Fourier multiplier to be bounded on
modulation spaces. In particular, it provides an application of the uniform decomposition
operators given in (2.1).

Proposition 2.5. Let Oy be defined as in (2.1) and t € R. Suppose that there is an integer
M > 0 such that

e s (o <00
TN e i (R = M

where by > by >0 for all f € Ll(Rd). Then we have

1 1_1

167 Fllagpa 5 (11215730 215730 ) £l e
whenever f € MPI(R?).
Proof. By (2.1) and Plancherel theorem, we obtain
10 P f 12 = llowe™ flliz S 111 1
for all k € Z%. By the Riesz-Thorin interpolation theorem, and for any 1 < p < 2, we have

253 f ) if 1K) < M

10ke™ fllzr <
S el e if (R >

Using a duality argument, we obtain the above two inequality for all 1 < p < oo. Using
(2.3), for f € S(R?) and |k| < M, we obtain

. . 1_1
TP fll < S e Ol S 252D f ) o
€)oo <1

Similarly, for f € S(R?) and |k| > M, we obtain

1Dk P fll <[22l 2 0 O £ o

~
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In view of (2.2), and the above two inequalities, we obtain

1/q

7P flazs = 3 32 (L EDTIOE ),

k|<M+1
1/q

9 Do RO L,

|k|>M+1
1/q
11 s
< P ST @ kT
|k|<M+1
1/q
Pl ST @ kT,
|k|>M+1
S (B B 1 e
This completes the proof. 0

Now to apply Proposition 2.5, we must have control on the L!'—norm of the projection

operator ||Ox(e™ PP f)| 1 (gay. Since Oy (e"PP)f) = F~1(o4e™) * f, in view of Young’s in-

equality, it suffices to control the norm || F~!(o4e?)| 11, which we shall do in next two

lemmas.

Lemma 2.2. ([19, Lemmas 4.1 and 4.2]) Let t € R, P(z) = P(&,n) = |£> —|nl%, 2 = (&,n) €
R24 k€ 7%, and M > 0. Then we have

1F = (ore™ PN || L1 2ay S max{[t]4, 1},
Proof. Assume that |k| > M + 1. We introduce an auxiliary function defined by
Ap(2) = P(z+k)— P(k) = VP(k) -z
for all k € Z??. Since L'—norm is invariant under translation and modulation, we have
IF )P Do, = [F 7 (0(2)e ) 1 a
|F L (o (2) et An(@HPERILVP(E)-2))

= |lg¥(xz+ VP(k) |l L1 (m2ey

= ”gvHLl(R?d)a

HLl(R2d)

where g(z) = o(z)e****), Thus, to prove Lemma 2.2, it suffices to prove

lg" 12 < max{t?, 1}

dr + /
|| >t

for t > 0. We consider

e = [ | [ oo
|z[<t [JR24

/ o(z)et Bz dz | dy
R2d
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) 1/2
dx)

By Cauchy-Schwarz inequality and Plancherel’s Theorem, we have

1/2 ' ‘
L < (/ 1d:c) / / o(z)etM )iz gy
|z|<t |z|<t |JR2d

(2.5) S thgVHLQ(Rm) St
Now we concentrate on I. For j € {1,2,---,2d}, let

E, ={x ¢ R*: |z| > t},
E;; ={x € E; : |xj| > |z for all | # j}.

2d 2d
Z/ / o(2)et B | dy = Z ;.
=1 Ej,t R2d =1

Since o is compactly supported and Ay is a smooth function, performing integration by parts
and using Plancherel’s theorem, we obtain that for each j € {1, 2, ..., 2d}

1 ixz 7 z
L S / I / e D]L(a(z)em’“( Ndz
E; ‘IJ| R2d

g5t

) 1/2
< / L) Do ) g
Ej+ |$]|

1 1/2
</|x>t—|f|2de) ||D]L( itAy (2 )||L2(R2d)

= U DE o) aqean

We note that

dx

where we choose L > d as an integer. Where we have used the fact that since |z]* =

Z§d1 a3 < 2d|x;|* for x € Ejy, we have |z;|72" < || 72", Consequently, we have
(2.6) L <ttt Z | DE (g™ )| 12 gaay.

Next, we claim that

ZHDL M) || pagaay S

Once this claim is established, the proof of the lemma will follow from (2.4), (2.5), and (2.6).
We now give a proof of this claim. To this end, we note that by Taylor’s and Leibniz
formula, we have

(2.7) =2 Z / (1 —s)DPP(k + s2)ds,
e P
and

1
28) DA = 33 Cpa D / (1= $)DPF2 P(k 4 s2)ds.
0

Y1t+72=" |B|=2
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Since P(z) is a polynomial of order 2, there exists C, such that
(2.9) [DP(2)] < Oz

for all v € N24. We note that for z € supp o, and s € [0, 1], we have |k + sz| < |k|, and in
view of (2.7)-(2.9), we have that for all |k| > M + 1

DAGIS G 3 S0 [ s £, e

Y1+72=" |B]=2

which implies that

Il
‘D'yeitAk(z)l _ Z Z CtAm Ul
=1 Jui|=|v]
]
(2.10) < Y s
=1
for all v € N?¢ where for each [ € {1,--- ||}, v; = (v1,- -+ ,v;) € N\ For fixed j, by Leibniz

formula, we have
D ztAk ZDTL itAg (2 D]L_n(O'(Z))

Using this and (2.10), we obtain

2d
> D} (o™ ) || aany S ZZt”\DL "o || L2 m2e)
j=1

7j=1 n=0

L 2d

>t (Z \|D§—"a||L2(R2d)> Sth

n=0 j=1
This proves the claim when |k| > M + 1. The case |k| < M + 1 can be consider similarly
(see e.g. [19, Lemma 4.2]). O

Sketch Proof of Proposition 2.4. Taking Proposition 2.5 and Lemma 2.2 into account, the
proof follows when P(&,n) = [£]? —|n|?, (€,1) € R*. The general case can be done similarly.
O

3. TRILINEAR MPY ESTIMATES

One of the main technical results needed to prove our main result is establishing a trilinear
estimate for the following Hartree type trilinear operator. For 0 < v < d, let

H.(f.g.h) = (|- [77=(fg)) h
where f,g,h € S(R?).

Proposition 3.1. Let 0 <y <d, 1 <p <2, and1 < q< %. Given f,g,h € MP4(R?),
then H.(f,g,h) € MPYR?), and the following estimate holds

IH(f, 9, M) llava S N1 fllaevallgllama || Al arpa
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Proof. By Proposition 2.2, we have

VL (F, g M) s S U117 % (F8) g [l g
S 1 5 D) e bl
We note that
e Ta0)| = i | [ e - witnan
€147 | Jra
< g [ el

and integrating with respect to &, we get

11177 % (f9) || 7o /R /R H’;fl Qg;ild&d& = <|I”f|,!§!>L2(Rd)

where I7 denotes the Riesz potential of order ~:
; /()
I =C dy.
fle) =& /Rd o — gl

By Holder and Hardy-Littlewood Sobolev inequalities and Lemma 2.1, we have
177 (Dl = IFI pa I3l o

||f||Lm||g||Ld+

<
~
< I/ gl

~Y f mln 2‘1 2} de g mm d2d 2}

mal nggH

M2 d+y
f, ||f||Mqu||g||Mp,q.

This completes the proof. 0

We next prove a related result for weighted modulation spaces MP4.

Proposition 3.2. Assume that 0 < v < d. The following statements hold
(i) If 1 < pp < pg < oowithp%—k%—l = p% and 1 < g < oo,s > 0. For any

£ & MPa(®a), we have || - |7 % fllyzmo S | Tarve
(ii) Let 1 < p < oo and % +I-1= zﬁ for some € > 0. For any f,g,h € MP*(R?), we
have
||H”/(fugu h)

Proof. We may rewrite the STFT as V,(z,w) = e 2™ ( f x M,g*)(x) where g*(y) = g(—y).
(i) Using Hardy-Littlewood-Sobolev inequality, we obtain

17 Fllagzza = I 177 (F  Mag™)] o (w0}l
S Mgl (w)?ll g,
S I e

This completes the proof of part (i).
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(ii) By Proposition 2.2 and part (1) of Lemma 2.1, we have

IH (g W)llager S M- 177 (Fg)lggo [l gp
ST (Fgllaprer Al ages
for some e > 0. By part (i) and Proposition 2.2, we have || T, (fg) |l yp+e1r S 19l ypr S
iy s |
O
The following result immediately follows.
Proposition 3.3. Let 1 < p < oo and % +3-1= ﬁ for some € > 0. For any f,g,h €
MPYRY) N LA(RY), we have
I 177 (Fa)) Pl veanre S N fllamanrzllgllveancz Rl veane.
Proof. By part (2) of Lemma 2.1, we have
1017 % f@hllapanrz = (177 % (Fg)hllaes + (- 177 % (fg))hl 22
S s llglama l[Bllams + 1177 % (f )] Lo 1]l 22
S M aeeallgllaze [l ages + - 1775 () agoen || 2
S W e llgllameal[fllazen + N 177 % (FG) I azpsen[|B] 22
S W s lgllarea 12l oz 4 1| f laze (gl age 1] 22
S I laraczllgllaeanczl| 2l sz
This completes the proof. 0

We will also need the following result.
Lemma 3.1. Let 0 < v < d.
(i) Let 1 <p<2,1<qg< %. For any f,g € MP(R?), we have
-7 P = (-7 gl gl S LR + 1L aaallglama + Iglzea) I = gllazea.
(i) Let 1 <p < oo and ;+3—1= 1= for some e > 0. For any f,g € MP'(R)NL*(R?),
we have
1177 P = (7 Mg gllmmanre S (W eanze + 1 laerazzlgllamane

+Hlglmane) I = gllamanee.

1
pte

Proof. Notice that
(- 177+ P = Dllwmanzz S 11 manzzlf = gllamane,
and
-7 (P = NaPDgllamance S (1 lamallglams + glizen) I = gllares
HI- 77 (P = 1g*)gll e
S (I

azinzz gl + 19lmanz2) 1f = gllamine.
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This together with the following identity

([l = (-7 gP)g = (- 7= 1P =) + (177 (1 = 1g1)g,
gives the desired inequality. OJ

4. PROOFS OF MAIN RESULTS

4.1. Local well-posedness for Hartree-Fock equations. We can now prove our main
results, beginning with Theorem 1.1.

Proof of Theorem 1.1. By Duhamel’s principle, we rewrite the Cauchy problem (1.1) in an
integral form: for k =1, ..., N,

Uy (1, ey ) i= Yp(t) = U(t)thor — i/o U(t — s)(Hy)(s)ds + i/o Ut — s)(Fr(vr))(s)ds.

We shall show that ¥ has a unique fixed point in an appropriate function space, for small
t. For this, we consider Banach space (C([0,7], X))" , with the norm

1l oy, x0) ™ = 12}%%232] [Jue ()] x

where u = (uq, ...,un) € (C([0,T], X))N. By Propositions 2.3 and 2.4, we have
U () Yokl x S Crllthorllx

where Cp = CO(1 + |t])* il By Minkowski’s inequality for integrals, Propositions 2.3 and
2.4 and Propositions 3.1, and 3.2, we obtain

N

< TCr)

X =1

/0 U(t — s)(Huy)(s)ds

(# * |W|2> (78

N
S TCr Z [l llell %
=1

X

Similarly,

/0 Ut — )(Fux) (s)ds

N
Willeqorx) S Cr <||¢0k||x+CTZ||¢kllx||¢eH§<)
(=1

X

N
S TCr Z [l el % -
=1

Thus, we have

for some universal constant c.
For M > 0, put

Bryv = {(¥1,...,0n) € ([0, T), X)N : el e o) < M for k=1, .. N}
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which is the closed ball of radius M and centered at the origin in (C([0,7], X))". Next, we
show that the mapping W, takes Br s into itself for suitable choice of M and small T > 0.
Indeed, if we take M = 207 max{||Yoxllx : 7 = 1,..., N} and ¥ = (¢1,...,%n) € Bra, we
obtain

- M
1% (Y)[leom,x) < -+ cCrM?
forall k = 1, ..., N. We choose a T such that cC7M? < 1/2, thatis, T' < T(||¢o1||x, o Ibon || x, dy )
and as a consequence we have
H‘Ifk(@ﬂc([o,ﬂ,x) < M forall k=1,...,N.

So By is invariant under the action of ¥ provided that 7" > 0 is sufficiently small. Up to
diminishing 7', contraction follows readily, since H., is a trilinear operator. So there exist a
unique (in By ) fixed point for W, that is, a solution to (1.1). This completes the proof of
Theorem 1.1 part (i). Similarly, we can produce the proof of Theorem 1.1 part (ii) of which
we omit the details. O

4.2. Global Well-posedness for Hartree-Fock Equations. In this section we prove
Theorem 1.2.

Definition 4.1. A pair (q,r) is a—fractional admissible if ¢ > 2,7 > 2 and

1 1
)
q 2 r
We recall the following results. For details, see [29, 26].

Proposition 4.1 (Strichartz estimates). Denote
DF(t,z) == e "2 () +/ Ut —7)F(r,z)dr.
0

(i) Let ¢ € L*(RY), d € N and o = 2. Then for any time slab I and admissible pairs
(piyqi), © = 1,2, there exists a constant C = C(|I|,q1) such that for all intervals
I>0,

ID(F)igyn < Clollzz +CIFN 0 VF € (I, 1)

where pl; and ¢, are Holder conjugates of p; and q; respectively [29].

(ii) Let d > 2 and % < «a < 2. Assume that ¢ and F are radial. Then for any time

slab I and admissible pairs (p;,q;), © = 1,2, there exists a constant C = C(|I],q)
such that for all intervals I > 0,

ID(E) |z < Cligllze + CIF| oy, VF € LP2(1,L%)
where p, and q; are Holder conjugates of p; and ¢; [26, Corollary 3.4].
We first establish the following preliminary results.

Proposition 4.2. Let ¢ o h(€) = [£|* where £ € RY, a > 0 and 0 < v < min{a, d}.
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(i) Let d € N and o = 2. If (o1, ..., %on) € (L2(Rd))N then (1.1) has a unique global
solution

N
(Y1, 0w) € (C(R, LARY) N Ll (R, L4 (RY)) )
In addition, its L>—norm is conserved,

Nkl 22 = Yol 2, Yt ERE=1,2,....N

and for all a— fractional admissible pairs (p,q), and (Y1, ..., ¥n) € (L} (R, Lq(Rd)))
(i) Let d > 2 and 3% < o < 2. If (Yo1, ..., Yon) € (L md(Rd))N then (1.1) has a unique
global solution

(W1, tow) € (O(R, L2,0(RY) 0 L (R, L4 (RY))
In addition, its L>—norm is conserved,
e @)z = [[Yrollz2, vVt € Rk =1,2,..., N
and for all a— fractional admissible pairs (p,q), and (Y1, ..., ¥n) € (LF (R, Lq(Rd)))

Proof. We first establish part (ii). By Duhamel’s formula, we write (1.1) as
(1, ..., ¥n) = Yi(t) = U(t)vor — ’l/ U(t — s)(Hyr)(s)ds + Z/ U(t — s)(Fi(vx))(s)ds
0 0

where Hartree factor H = Zfil (IIIV U] ) and Fock term F'(¢y,) = Z;L Uy <ﬁ * {Ewk})
Put s = . We introduce the space

Y(T) = {1, t0n) € (C([0,T] 2a(®D)™ 1l o 22y < 200kl z2,
k]l ss ) S okl 22}

5 (0.1), L7

and the distance

d(¢17¢2> - maX{HfZ ng 85(0T]L(2d 'y)) Z: 1,...,N}’

where ¢1 = (f1, ..., fv) and ¢2 = (g1, ..., gn). Then (Y, d) is a complete metric space. Now
we show that ® takes Y (T') to Y(T') for some T > 0. We put

_ 8s B 4d

Note that (g, r) is a—fractional admissible and

1 4s— 1
Aoy

¢ 45 | q

1 1
=T
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Let (g,7) € {(¢,7), (00,2)}. By part (ii) of Proposition 4.1 and Hélder’s inequality, we have

I = ||<D(¢1,--->¢N)||Lf;j
S Worllee + 1EHYl e + I Pl

N
< ||w0k||Lz+le 7 ) el e ([ 177 @) il

S ||¢0k||L2+ZIII [ [l N 2 [[Wkllzgr + 11177 (Do) N 2 [l g

=1

Since 0 < v < min{a, d}, by the Hardy-Littlewood-Sobolev lemma, we have

4s
s—
Lt

I G e = 177 Gl
L L,

t,x

.
S [y H
S Il ol o

< TV

4s'y

gzl H
Lt,z k Lt,z

Observe that in the last inequality we use the inclusion relation for the finite measure space
LP(]0,T7]). Thus, we have

N
NP1 ) lgr S [Worllze + T2 Y el o lnll o
=1

This shows that ® maps Y (T') to Y(T). Next, we show ® is a contraction. To this end, we
notice the following identity: for fixed j € {1,..., N} and K(x) = |z|™7, we have

) DU Py — (B ooy = S O(K )ty = 03) - (K (il = o)
and
(4.2)
Z(K * (wpug))u; — (K * (005))v; = Z(K * (wpug)) (ui — vi) + (K (u; — (0307)))vs.

It follows that

_ _ 0
(4.3) [ (5 (i) (ui — Uz‘)||Lg';' S T2 wil por [l || o Nl — vill o
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Put 6 = 4881/. Notice that & = % + %, % = % + é, and thus by Holder’sinequality, we obtain

IO (sl = [Pl - S I (sl = [oif?) HLi,%HUjHLg;;

x

L

T

S (us(as = 3) || 5,20

I (s = vi))l| a2 sl

t,x

AN

(ol zgaltoslzg + ol ol g ) Mo = vl

(4.4)

AN

.
T3 (Jlullaz logll ey + Noillaz o lzay ) s = vill g

Similarly,

_ _ X

I(K s (@ = @vg)ill e S T3 all gz il gzl = vslg
X

+T 2 (ol gl gl — vl ags-

Let u = (uy, ...,uy) and v = (vq, ....,vy). Now in view of (4.1), (4.3), and (4.4), we have

N
d(®(u), ®(v)) < Z (K Juwi|*) () — vj)HLg/g,Cw + [ (K * (Jus]? = ’Ui|2>)vj||Lg’g’
i=1 ’ |

I (K * (i) (wi = vi) || v + 1K * (@iuy — (030)))vil| o -
t,x t,x
N
_ 0
T Z[Huiﬂigg +lluill g sl gz + il Zgr ol Zar
=1
Fllvillporllvjll e + llvill e l[vill e ld(u, v).

AN

Thus & is a contraction from Y (7T') to Y (T') provided that T is sufficiently small. Then there
exists a unique (¢, ...,¢n) € Y/(T') solving (1.1). The global existence of the solution (1.1)
follows from the conservation of the L?—norm of v,. The last property of the proposition
then follows from the Strichartz estimates applied with an arbitrary a—fractional admissible
pair on the left hand side and the same pairs as above on the right hand side. This completes
the proof of part (ii).
The proof of part (i) follows by setting o = 2 and using Proposition 4.1 part (i). O
Proposition 4.3. Let ¢ o h(€) = [€]* for € € RY a0 > 0 and 0 < v < min{a, d}.
(i) Let d € N and o = 2. If (o1, ..., Yon) € (LQ(Rd))N then (1.2) has a unique global
solution
N
(Y1, 0w) € (C(R, LARY) N Ll (R, L4 (RY)) )
In addition, its L>—norm is conserved,

|Uk()|2 = 1Yol 2, VE€RE=1,2,...,N

and for all a— fractional admissible pairs (p, q), and (1, ..., ¥N) € (L?OC(R, Lq(Rd)))N )
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(it) Let d > 2 and 324 < o < 2. If (Yot ..., on) € (L md(Rd))N then (1.2) has a unique
global solutzon
2 d dor/y 4d/(2d—~) (mpd N
(V1,sn) € (CR, L2g(RY) N Lt (R, L4 (RY) )
In addition, its L>—norm is conserved,
H%(ﬂ“p = HkaHLQ, Vt € R, k= 1,2, ..., N

and for all a— fractional admissible pairs (p, q), and (1, ..., ¥N) € ( (R, Lq(Rd)))

Proof. Since the proof is similar to that of Proposition 4.2, we omit its details. ([l

Let U = (¢1,....,¢n) : (R x RY)Y — C be a global L?— solution given by Proposition 4.2.
Let 7'y denotes the maximal time of existence:

T, (W) = sup {T >0 W(E) | gorpereyy € (C([O,T],X))N} .

Theorem 1.1 tells us that T, (¥) > 0 if initial data (¢, ..., Yon) € (C([0,T], X N L2(R)))"

Lemma 4.1. Assume that 0 < T, < co. Then

N
i D (@l = o0

Proof. We proceed by contradiction and assume that there exist M > 0 and {¢,}>°; such
that

tn — T, as n — oo and ank Mx < M.
k=1
Recall that the life span of the local solution in Theorem 1.1 depends on the norm of the
initial data. Therefore, there is 7' = T(M) > 0 such that for each n € N, the solution
U(t) = (1(t),...,¢n(t)) of (1.1) can be established on the time interval [t,,t, + T (M)]. By
uniqueness, 1y () coincides with standard global L?—solution on this interval, which implies

Ur(t) ljo.1, +qxra€ C([0, Ty + €], X)
for some € € (0, T(M)) and for k = 1,2..., N but this is a contradiction. ]

Now we shall see that the solution constructed before is global in time. In fact, in view of
Proposition 4.2, to prove Theorem 1.2, it suffices to prove that the modulation space norm
of 9y, that is, ||¢k||sr.e cannot become unbounded in finite time for all £ = 1,..., N. To this
end, let Ty > 0 and v, : [0, Ty] x R? — C be a local solution to (1.1) such that

vi(t) € C([0,T], X N L*(RY))
for any T' € (0,7Tp) and for k =1,..., N.
Lemma 4.2. Assume that 0 < v < min{a d/2}. Then

sup ZH% )lx < oo.

tE[O To
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Proof. There exists C' = C(d, ) such that the Fourier transform of K(z) = k|z|™7 is

~ kC
R(€) = .
&)= 1=
We can decompose the Fourier transform of Hartree potential into Lebesgue spaces: indeed,
we have
(4.5) K = ki + ky € LP(RY) 4 LY(R?),
where k; := X{\§|§1}IA( € LP(RY) for all p € [1,%) and ky = X{‘§|>1}}A( € LY(RY) for all
q € (3%, 9.
In view of (4.5) and to use the Hausdorff-Young inequality we let 1 < ﬁ < q <2, and
we obtain
Iy = @)l x

S Or (II%kIIX + Z/O (s [ (7)) ebw ()] x + [[ (K (wz%))@/n(f)llxdT)

N t
S COrlldor]lx + CTZ/O K s ()P e 10w () x + I * (i) | e 1o (7) || xdr
l]:vl t -
S COrlldor]lx + CTZ/O <||/€1||L1||1/1l(7)||%2 + ||’<?2||Lq||\¢l(7)|2”m'> [ (7)[[ xdr
=1
N t ——
+CTZ/O <Hk1\|L1HW(T)%(T)HU + ||/<72||Lq||¢z(7)¢k(7)||m'> [¢u(7) | xdT
=1 N t
S Crl[dor]lx + CTZ/O (el lldorllze + 1Rl ol ()Pl o) oo (7) | xdr
=1
N t B
+CTZ/0 (el ol 2 190wl 22 + kol pall e (T)ow(7) | a) ([ (7) || x
=
1 t N t
S CTW%HXJFCT(N)/ H%(T)HXdTJFCTZ/ [ ()1 Zallon (7) | x
0 =1 0

N t N t
+0r 3 [ ulxdr + e 3 [l lonllln(o)l dr
1=1 70 =170

where we have used Proposition 2.2, Holder’s inequality, and the conservation of the L?—norm
of Yy (k =1,...,N) and Cr is defined as in the proof of Theorem 1.1. We note that the
requirement on ¢ can be fulfilled if and only if 0 < v < d/2. To apply Proposition 4.3,

we let f > 1 and (20,2q) is a—fractional admissible, that is, % =d <% — %}) such that

% = g (1 — %) < 1. This is possible provided % < % : this condition is compatible with
the requirement ¢ > % if and only if v < a. Using Holder’s inequality for the last integral,
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we obtain

t N
Iy S CTW%HXJFCT(N)/O 1k (P)lxdr + Cr Y il 28 o 020 10kl Lo 0.7,
=1

N t N
+Cr Z/ﬂ ()| xdr + Cr > bl s oz, 220) 10k | 250,71, 220) 190 Lo 0.7,
=1 =1

where ' is the Holder conjugate exponent of (3. Let

= sup ZH% )lx-

s€[0,t] k 1

For a given T > 0, h satisfies an estimate of the form,

ﬁ/

ho) < ci sl + o) [ ey + e ) ([ niyar)

provided that 0 < ¢t < T, and where we have used the fact that 5’ is finite. Using Holder’s
inequality we infer that,

1
B

N t ) 3
b S 3 s + ) ([ nryar)
k=1 0
Raising the above estimate to the power ', we find that

h(t)? < Co(T, N) (1 + /O t h(r)ﬂ’df) .

In view of Gronwall inequality, one may conclude that h € L*([0,7]). Since T > 0 is
arbitrary, h € L7°.(R). This completes the proof. O

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Taking Theorem 1.1 into account and combining Lemmas 4.2
and 4.1, the proof of Theorem 1.2 part (i) follows. Similarly, we can produced the proof of
Theorem 1.2 part (ii), we shall omit the details. O

5. WELL-POSEDNESS FOR HARTREE-FOCK EQUATIONS WITH HARMONIC POTENTIAL

In this final section we consider the Hatree-Fock and reduced Hartree-Fock equations with
a harmonic potential as given by (1.4) and (1.5).

5.1. Schrodinger propagator associated to harmonic oscillator. We start by recalling
the spectral decomposition of H = —A + |z|* by the Hermite expansion. Let ®,(x), o €
N? be the normalized Hermite functions which are products of one dimensional Hermite
functions. More precisely, @y (x) = II7_, hq, (x;) where
1,2 dk 2
hi(x) = (VA2 V2 (= 1) ke e

dxk
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The Hermite functions @, are eigenfunctions of H with eigenvalues (2|a| + d) where |a| =
ay1+...+ag. Moreover, they form an orthonormal basis for L?(R?). The spectral decomposition
of H is then written as

H = i(% +d)Py with Pof(x) = > (f, ®a)®q

k=0 la|=k

where (-, -) is the inner product in L?*(R?). Given a function m defined and bounded on the
set of all natural numbers we can use the spectral theorem to define m(H). The action of
m(H) on a function f is given by

H)f =Y m(2lo] +d)(f,® = m(2k + d)Pf.
k=0

a€Nd

This operator m(H) is bounded on L?(R¢). This follows immediately from the Plancherel
theorem for the Hermite expansions as m is bounded. On the other hand, the mere bound-
edness of m is not sufficient to imply the L” boundedness of m(H) for p # 2 (see [40]). We
define Schrodinger propagator associated to harmonic oscillator

m(H) _ eit(fA+|x|2)f _ Zeit(2k+d)Pkf
k=0

with m(n) = e for n € N,t € R. The next result proves that (=A%) is uniformly
bounded on MP?(R%). More specifically, we have.

Theorem 5.1. ([7, Theorem 5], cf. [17]) The Schrédinger propagator associated to harmonic
oscillator e A1) s bounded on MPP(RY) for each t € R, and all 1 < p < co. Moreover,
we have

A = | s

5.2. Proof of Theorem 1.3. In this section we give a proof of Theorem 1.3. But first, we
state the following definition and some preliminary results.

Definition 5.1. A pair (q,7) is admissible if 2 < r < d% with2 <r < oo ifd=1, and
2<r<ooifd=2, whenever

Proposition 5.1. ([12, Proposition 2.2]) Let ¢ € L*(R?) and

DF(t,x) :=U(t)p(x) + /Ot Ut —7)F(r,z)dr.

Then for any time slab I and admissible pairs (p;,q;), @ = 1,2, there exists a constant
C = C(|I],q1) such that for all intervals I > 0,

ID(E) o < Clllne + ClF| o, YF € LP(1, L%)

where p}; and g, are Hélder conjugates of p; and q; respectively.
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Proposition 5.2. Let 0 < v < min{2,d},d € N. Assume that (¢o1, ..., Yon) € (Lz(Rd))N.
Then

(i) There exists a unique global solution of (1.4) such that

(1, hx) € (C(10, ), 2(RY) 1 L1/ ([0,00), L4240 (1))

loc
In addition, its L>—norm is conserved,
Hwk(t)HLz = ’WkOHL% vVt € Ra k= 17 2a 7N

and for all admissible pairs (p,q), and (1, ...,¥N) € (LfOC(R, Lq(]Rd)))N.
(ii) There exists a unique global solution of (1.5) such that

loc

(1, -y YN) € <C([O, 00), LA (RY)) N L;2/7([0, 00), L4d/(2d7)(Rd))>N
In addition, its L>—norm is conserved,
[oe@)llz2 = [|¥kollz2, VEE€ERkE=1,2,..,N
and for all admissible pairs (p,q), and (Y1, ...,¥N) € (LfOC(R, Lq(Rd)))N.

Proof. The proof follows from Proposition 5.1 and using ideas similar to the proof of Propo-
sition 4.2. U

We can now establish local well-posedness results for (1.4) and (1.5).

Theorem 5.2 (Local well-posedness). Let 1 < p < % and 0 < v < d. Assume that
N
(o1, .., on) € (MPP(RY))™. Then

(1) There exists T > 0 depending only on ||vo1|| e, ..., [|[Yon||pew, d and v such that
(1.4) has a unique local solution

(1, ., 0n) € (C(0,T], MPP(RA) ™.

(ii) There exists T > 0 depending only on ||Yo1||aewes s |Yon || aew, d and v such that
(1.5) has a unique local solution

(W1, -y ) € (C([0, T], MPP(RE)))™.

Proof. The results are established by applying a standard contraction mapping argument
and using Theorem 5.1 and Proposition 3.1. U

Sketch proof of Theorem 1.3. The proof is similar to that of Theorem 1.2 using Propo-
sition 5.1 and Theorem 5.2. 0
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