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A B S T R A C T

We develop a thermodynamically consistent phase-field finite strain theory for problems in
solids mechanics that couple transport of species into a host material, sharp interface reactions
of the species with the host, mechanical deformation and stress. The theory distinguishes
between diffusion-limited and reaction-limited kinetics, resolving the manner in which a sharp
reaction front can be developed in either case. The phase field formulation has the added benefit
of enabling the application of wetting (surface energy) boundary conditions which are critical
in reproducing experimentally relevant reaction front morphologies. The theory is fully coupled
with diffusion and reaction phenomena impacting mechanical deformation and subsequent
stress generation, and conversely these phenomena are coupled to mechanical stress. We derive
thermodynamically consistent driving forces for diffusion and reaction through a continuum
treatment of these phenomena. Importantly, the resulting formulation makes precise the nature
of the material properties driving these thermodynamic forces and in turn makes it amenable
to being specialized and calibrated for application.

While the framework is quite general, we apply it to modeling conversion electrodes for
energy storage using a three-dimensional finite element implementation. We demonstrate the
manner in which the theory can be specialized and calibrated in straightforward fashion.
Simulations are performed of chemical reactions of FeS2 crystals with lithium and sodium
ions, both of which proceed through the formation and propagation of a sharp interface,
and are compared to experimental observations of the same system. Our simulations show
good qualitative agreement with experimental observations, and elucidate the critical role
mechanics plays in determining the morphology of the sharp reaction interface and subsequent
stress generation which can lead to mechanical deterioration of these materials. Beyond this
application, the theoretical framework should serve useful in a number of engineering problems
of relevance in which diffusion and sharp interface reactions occur.

1. Introduction

The development of theoretical frameworks in continuum mechanics which couple chemical stimuli and mechanical deformation
in particular those involving coupling of species diffusion with deformation of the host material – have received significant
ttention in the recent literature. This drive is largely attributed to the need for understanding the interplay of chemistry and
echanics in a number of engineering problems of relevance where mechanics plays a non-negligible role in the performance of
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the material. These include energy storage devices (Christensen and Newman, 2006; Zhang et al., 2007; Cheng and Verbrugge,
2008; Cui et al., 2012), chemically active polymers (Bosnjak et al., 2020; Okumura et al., 2020; Mao and Anand, 2018), oxides and
corrosion phenomena (Loeffel and Anand, 2011; Konica and Sain, 2020; Cui et al., 2020), as it has become clear that mechanics
plays an important role on the chemo-mechanical performance of these systems. Specifically, the design and analysis of energy
storage devices required new models that addressed the coupling between transport phenomena and mechanics, and from this need
came a group of theories specifically devoted to modeling these problems. The review papers by Zhao et al. (2019b) and Bistri et al.
(2020) provide a recent summary of modeling efforts in this area. Among these, the thermodynamics based finite strain models of
Bower et al. (2011), Zhao et al. (2011a), Anand and co-workers (Anand, 2012; Di Leo et al., 2014), Levitas and Attariani (2014),
Brassart and Suo (2013), and Ganser et al. (2019) are notable for their rigorous treatment of the coupling between diffusion and
mechanics. These frameworks have been successfully applied to capturing experimentally observed electrochemical phenomena in
energy storage devices (cf. Bucci et al., 2014; Di Leo et al., 2015). While rigorous, current theoretical frameworks are largely limited
to the class of problems in which the concentration of diffusing species is conserved, i.e. there is no chemical reaction within the
solid to convert mass from one compound to another.

There are a number of technologically important applications requiring an understanding of the coupling between chemistry
and mechanics including the manner in which reactions occur within the solid. These applications range from oxidation and
polymerization (cf. Tolpygo et al., 1998; Minervino et al., 2014; El Kadiri et al., 2008; Gigliotti et al., 2011) to reaction based
electrodes for energy storage (cf. Lin et al., 2014; Li et al., 2012). Notable works in thermodynamics based models for modeling
reaction–diffusion phenomena including mechanical deformation are the works of Loeffel et al. (2013) for modeling thermal barrier
coating oxidation, Zhao et al. (2019a) for SiC fiber oxidation, Xu et al. (2019) for thermal coating corrosion, the general formulation
of Svendsen et al. (2018) for phase-field based modeling, and Salvadori et al. (2018) for trapping reactions. The aforementioned
theoretical frameworks have made significant progress towards modeling diffusion–reaction problems in solids; however, they lack
in a few key areas which we seek to address in this work.

The purpose of this work is to report on a novel, thermodynamically consistent, gradient, theoretical framework for modeling
concurrent diffusion, reactions, and deformations in solids with a particular emphasis on problems in which sharp reaction interfaces
occur. The framework is general and should be applicable to a number of engineering problems. In particular, our framework
includes the following unique features distinguishing it from previous work in this area:

• The theoretical framework allows for both kinetically and thermodynamically driven sharp interface formation. Kinetically
driven interfaces occur in systems in which the reaction kinetics are significantly faster than the diffusion kinetics. Thermo-
dynamically driven sharp interfaces can occur in any system – including those in which the reaction kinetics are sluggish –
and are driven by the existence of a thermodynamic energy barrier between reacting phases.

• The theoretical framework develops a thermodynamically consistent, physically motivated, driving force for chemical reactions
that distinguishes the role of various chemical and mechanical driving forces. Particularly useful then is the fact that material
properties driving the reaction kinetics can be easily identified from the literature or experiments.

• The gradient based phase-field formulation allows us to capture surface energy phenomena which significantly affect the
morphology of the reaction front. In particular, surfaces with lower energy for being fully reacted will become fully
‘‘wetted’’ (i.e. fully reacted) and this is consistently captured using our gradient formulation (cf. the work of Bazant and
co-workers Bazant, 2013; Cogswell and Bazant, 2013; Nadkarni et al., 2018).

To demonstrate the relevance and use of this theoretical framework we specialize it to model the particular engineering
roblem of reaction electrodes (i.e. conversion electrodes) for energy storage. An accompanying three-dimensional finite element
mplementation is used to compare numerical simulations using our novel theoretical framework with experimental results. Current
tate of the art lithium-ion batteries make use of active particles, such as graphite, whose primary mechanism of lithium storage is
ntercalation. Alternatively, next generation electrode materials made of transition metal oxides which store charge carrying ions via
hemical conversion mechanism have recently been given attention as their theoretical capacity dwarfs that of intercalation based
lectrodes. This superior capacity has been linked to the high number of ions per structural unit that can be stored via conversion
s the lower number that can be intercalated into layered structure of intercalation based electrodes (Poizot et al., 2000; Yu et al.,
016; Li et al., 2012). The conversion reaction, however, is accompanied by structural and chemical phase transformation of the
ost material (cf. Wang et al., 2012), resulting in a rich chemo-mechanics problem. The exact energy density and the crystalline or
morphous structural phase transformation incurred by the electrode during electrochemical cycling depend on the specific transition
etal oxide used (cf. Yu et al., 2016 for a detailed comparison between different compounds). However, nearly all compounds and

their nano-structured variations incur very large volumetric expansion and structural changes on the order of ≈100% strain during
cycling (cf. Zhang et al., 2008; Larcher et al., 2002; Ren et al., 2014; Hu et al., 2006). These large reaction-induced deformations can
lead to mechanical and electrochemical battery degradation, necessitating the development of a theory that accounts for diffusion
of species, chemical reaction and subsequent phase transformation, mechanical deformation and stress, and how these fields are
coupled.

We specialize our theoretical framework to modeling the reaction of FeS2 crystals with different ions as experimentally
investigated by Boebinger et al. (2018). In doing so, we demonstrate the manner in which mechanics affects the chemical reaction
kinetics and morphology of the sharp interface. We further elucidate the role of wetting (surface energy) chemical boundary
condition in reproducing reaction morphologies which are consistent with experimental observations. Finally, using our theoretical
framework and numerical implementation we provide insight as to how mechanical coupling can explain the counterintuitive
2
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experimental observation made by Boebinger et al. (2018), where reactions with larger sodium ions resulted in a more mechanically
reliable structure when compared to reactions with lithium ions.

We begin with the conceptual depiction of a generic diffusion–reaction–deformation process as shown in Fig. 1. The figure depicts
the reaction

𝐴 + 𝐶 → 𝐵 (1.1)

hich describes the physical phenomena of diffusing species 𝐶 reacting with the host lattice 𝐴 to form the new compound 𝐵. The
eaction itself is treated in a phase-field sense and taken to occur over a diffuse boundary (light gray region) and is tracked through
he normalized phase-field parameter 𝜉 which is formally introduced in Section 2. A value of 𝜉 = 0 represents the original material
, and a value of 𝜉 = 1 represents the fully reacted and newly formed compound 𝐵, while naturally intermediate values of 0 < 𝜉 < 1
epresent the reaction zone. The inset in Fig. 1 shows a conceptual illustration of the reaction zone where the phase 𝛼 is associated
ith the unreacted material 𝐴, while the phase 𝛽 is associated with the reacted compound 𝐵. We note that the reacted phase 𝛽 may
lso act as a host for the diffusing species as shown schematically.
The paper is organized as follows. In Section 2 we introduce mass conservation and formally define our physically motivated

hase-field parameter 𝜉 governing the extent of reaction. In Section 3 we describe the kinematics of the problem. We introduce a
novel decomposition of the velocity gradient to account for chemically induced deformations. Governing balance laws are developed
in Section 4 through the use of the principle of virtual power, and the first and second laws of thermodynamics. The constitutive
theory is presented in Section 5 and summarized in its general form in Section 6. In Sections 7 and 8 we present a specialization of
our theoretical framework to modeling conversion electrodes for energy storage.

Numerical simulations are presented in Section 9. First, in Section 9.1 we present diffusion–deformation (without mechanics)
simulations to elucidate the kinetically driven and thermodynamically driven regimes of sharp interface formation. In Section 9.2
we simulate the reaction of FeS2 crystals with either lithium or sodium ions and compare to experimental results form the literature.
Finally, in Section 9.3 we present a series of simulations aimed at elucidating the important role of surface wetting (surface
energy) boundary conditions in capturing experimentally relevant reaction front morphologies. We close with concluding remarks
in Section 10.

2. Mass conservation

Considering the diffusion–reaction problem shown schematically in Fig. 1, we wish to write mass conservation for the generic
reaction

𝐴 + 𝐶 → 𝐵. (2.1)

Let 𝑐(𝐗, 𝑡) denote the number of moles of diffusing species per unit reference volume. In addition, let 𝜉 denote the number of moles
of reacted species per unit reference volume with 𝜉̇ the reaction rate. We may then define the quantity 𝜉 = 𝜉∕𝑐Rmax ∈ [0, 1] as the
extent of reaction such that at 𝜉 = 1 the reaction has led to consumption of 𝑐Rmax moles of species. The physical property 𝑐Rmax is
the maximum amount of diffusing species that can be reacted and is determined by the stoichiometry of the specific reaction under
consideration. Conservation of mass may then be written as a diffusion–reaction equation of the form

𝑐̇ = −Div 𝐣R − 𝜉̇ (2.2)

where 𝐣R(𝐗, 𝑡) is the referential flux of the diffusing species which must be constitutively prescribed. In (2.2), the reaction rate 𝜉̇
ust also be constitutively defined and will be discussed in detail in the development of this framework.

Fig. 1. Schematic representation of the diffusion–reaction problem of a diffusing species 𝐶 reacting with host 𝐴 to form the new compound 𝐵. 𝜉 = 0 and 𝜉 = 1
denote unreacted and fully reacted material points respectively. 0 < 𝜉 < 1 denotes the reaction zone.
3
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Note that the reaction quantity 𝜉 is independent from the concentration of the diffusing species in either the original or reacted
material. This distinction is critical since the newly formed phase may still host the diffusing species. In other words, the reacted
phase is still a host, but with a new compound. This field treatment is different from the traditional formulation applied to modeling
intercalation based active materials where only one parameter, the concentration of diffusing species, is sufficient to describe the
state of the system. Further, we note that the quantity 𝑐Rmax, denoting the maximum amount of a diffusing species which may react
to form the new compound, is different and independent from the maximum amount of diffusing species 𝑐Dmax, which can be hosted
in either the pristine or reacted material.

3. Kinematics

We introduce here the kinematic formulation for the description of a deformation resulting from coupled chemical diffusion,
reactions and mechanics. Starting from a traditional finite deformation framework, consider a body B with an arbitrary material
point in B denoted by 𝐗. The motion of B is then a smooth one-to-one mapping 𝐱 = 𝝌(𝐗, 𝑡) with deformation gradient, velocity, and
velocity gradient given by1

𝐅 = ∇𝝌 , 𝐯 = 𝝌̇ , 𝐋 = grad 𝐯 = 𝐅̇𝐅−1. (3.1)

The theory is built on two kinematic decompositions: (i) a multiplicative decomposition of the deformation gradient, and (ii) an
additive decomposition of the velocity gradient for the chemical distortion. First, we decompose the deformation gradient as

𝐅 = 𝐅mechanical𝐅chemical = 𝐅m𝐅c. (3.2)

Here

(i) 𝐅c(𝐗) represents the combined local distortion of the material neighborhood of 𝐗 due to chemical phenomena including: (a)
diffusion of species, and (b) structural phase transformations resulting from the chemical reaction;

(ii) 𝐅m(𝐗) represents the distortion due to macroscopic stresses. These may include distortions due to classical plasticity mechanisms
such as dislocation motion, and the subsequent elastic stretching and rotation of this inelastically deformed material
neighborhood.

We refer to 𝐅m and 𝐅c as the mechanical and chemical distortions, respectively. Importantly, we note here that 𝐅c is assumed to
account for inelastic mechanisms associated with diffusion–reaction, and hence does not include classical plasticity that is due to
applied external forces which may be included in the mechanical distortion 𝐅m.

The volume ratio is given by

𝐽
def
= det𝐅 > 0, (3.3)

nd using (3.2),

𝐽 = 𝐽m𝐽 c, with 𝐽m
def
= det𝐅m > 0, and 𝐽 c

def
= det𝐅c > 0, (3.4)

uch that 𝐅m and 𝐅c are invertible. The right and left polar decomposition of 𝐅m is given by

𝐅m = 𝐑m𝐔m = 𝐕m𝐑m, (3.5)

here 𝐑m is a rotation, while 𝐔m and 𝐕m are symmetric, positive-definite right and left stretch tensors. The right Cauchy–Green
eformation tensor is given by

𝐂m = (𝐔m2
) = 𝐅m⊤𝐅m. (3.6)

sing (3.1) and (3.2), the velocity gradient may be written as

𝐋 = 𝐋m + 𝐅m𝐋c𝐅m−1 (3.7)

ith

𝐋m = 𝐅̇m𝐅m−1, 𝐋c = 𝐅̇c𝐅c−1. (3.8)

s is standard, we define mechanical and chemical stretching and spin tensors through

𝐃m = sym𝐋m,
𝐃c = sym𝐋c,

𝐖mech = skw𝐋m,
𝐖chem = skw𝐋c,

}

(3.9)

uch that 𝐋m = 𝐃m +𝐖m and 𝐋c = 𝐃c +𝐖c.

1 Notation: We use standard notation of modern continuum mechanics used by Gurtin et al. (2010). Particularly: ∇ and Div denote the gradient and divergence
perators with respect to the material point 𝐗 in reference configuration; while grad and div operate with respect to the point 𝐱 = 𝝌(𝐗, 𝑡) in the deformed body;
a superposed dot denotes the material time-derivative. Throughout, we write 𝐅𝑒−1 = (𝐅𝑒)−1, 𝐅𝑒−⊤ = (𝐅𝑒)−⊤, etc. We also write tr𝐀, sym𝐀, skw𝐀, 𝐀0, and sym0𝐀
espectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor 𝐀. Finally, the inner product of tensors 𝐀 and 𝐁 is denoted

√

𝐀∶𝐀.
4

y 𝐀∶𝐁, and the magnitude of 𝐀 by |𝐀| =
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Our second kinematic assumption is made with regards to the chemical velocity gradient. Motivated by the conceptual image of
he reaction zone shown in Fig. 1, we take the chemical velocity gradient as the additive decomposition of diffusion and reaction
induced deformations weighted by the phase-field parameter 𝜉. The chemical velocity gradient is taken to be given as

𝐋c = (1 − 𝜉)𝐋𝛼,𝐷 + 𝜉(𝐋𝛽,𝐷 + 𝐋𝛽,𝑅). (3.10)

ere:

(i) 𝐋𝛼,𝐷 captures the deformation of the material point due to the diffusion of species in the unreacted phase;
(ii) 𝐋𝛽,𝐷 captures the deformation of the material point due to the diffusion of species in the reacted phase; and
(iii) 𝐋𝛽,𝑅 captures the deformation associated with phase transformation due to the chemical reaction.

The three terms in (3.10) are physically understood as the deformations induced by diffusion in either the unreacted or reacted
aterials and by the phase-transformation due to the ongoing chemical reaction. The scaling by the phase-field parameter 𝜉 ensures
hat in the pristine state (𝜉 = 0) chemical distortion is due to only diffusion, while in the fully-reacted state (𝜉 = 1) material points
re distorted both by the reaction induced phase-transformation and any concurrent and ongoing diffusion.
We further make the pragmatic assumption that chemical deformation is irrotational, ignoring inelastic spins and yielding

𝐃c = (1 − 𝜉)𝐃𝛼,𝐷 + 𝜉(𝐃𝛽,𝐷 + 𝐃𝛽,𝑅). (3.11)

e now specify the diffusion induced stretching to be of the form

𝐃𝛼,𝐷 = 𝑐̇𝐍𝛼,𝐷 and 𝐃𝛽,𝐷 = 𝑐̇𝐍𝛽,𝐷 (3.12)

here 𝑐̇ is the rate of change of the diffusing species and 𝐍𝛼,𝐷 and 𝐍𝛽,𝐷 are the directions of diffusion induced stretching in the
pristine and reacted material, respectively. Similarly, we assume the reaction induced stretching to be based on the extent of the
reaction and given by

𝐃𝛽,𝑅 = 𝜉̇𝐍𝛽,𝑅 (3.13)

with 𝜉̇ the reaction rate and 𝐍𝛽,𝑅 the direction of reaction induced deformations.
Finally, the formulation presented so far makes no assumption regarding the nature of 𝐅m; we are free to pick any decomposition

egarding the mechanical part of the deformation. We present here for completeness a mechanical distortion which consists of both
lastic and plastic components. Hence, we employ a decomposition of the form

𝐅m = 𝐅e𝐅p (3.14)

ith 𝐅e the elastic mechanical distortion and 𝐅p the plastic mechanical distortion. We further assume plasticity to be irrotational
nd volume conserving, that is

𝐋p = 𝐅̇p𝐅p−1 = 𝐃p +𝐖p, with 𝐖p = 𝟎, and
𝐽 𝑝 = det 𝐅p = 1,

(3.15)

here 𝐃p = sym𝐋p and 𝐖p = skw𝐋p. We introduce an equivalent plastic shear strain rate

𝜈p =
√

2|𝐃p| ≥ 0, (3.16)

nd whenever |𝐍p| ≠ 0, introduce the plastic flow direction

𝐍p = 𝐃p
|𝐃p|

. (3.17)

Use of (3.14) through (3.17) along with (3.12) and (3.13) in (3.11) leads to

(∇𝝌̇)𝐅−1 = 𝐅̇e𝐅e−1 + 1
√

2
𝜈p𝐅e𝐍p𝐅e−1 + (1 − 𝜉)𝐅e𝐅p

(

𝑐̇𝐍𝛼,𝐷
)

𝐅p−1𝐅e−1

+ 𝜉𝐅e𝐅p
(

𝑐̇𝐍𝛽,𝐷 + 𝜉̇𝐍𝛽,𝑅
)

𝐅p−1𝐅e−1,
(3.18)

which will be of use subsequently.
Before continuing the kinematical description, it is useful to visualize the proposed kinematics as shown schematically in Fig. 2,

where (a) shows the kinematic decomposition of 𝐅 following (3.2), and (b) shows the decomposition of 𝐋c following (3.10). Note
that for visual simplification, in Fig. 2 we ignore the diffusion induced deformation 𝐋𝛽,𝐷 in the reacted phase.

.1. Frame-indifference

We define a change in frame at a fixed time 𝑡 as the following transformation of spatial points 𝐱 to new spatial points

𝐱∗ = 𝐲(𝑡) +𝐐(𝑡)(𝐱 − 𝐨), (3.19)

ith 𝐐 defined as a rotation, 𝐲 as a translation, and 𝐨 a fixed spatial origin. Based on Eq. (3.19), the deformation gradient transforms
ccording to

𝐅∗ = 𝐐𝐅. (3.20)
5
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Fig. 2. Schematic representation of the kinematic decompositions assumed. (a) Decomposition 𝐅 = 𝐅c𝐅m = 𝐅c𝐅e𝐅p of the deformation gradient into chemical
nd mechanical distortions. (b) Decomposition of the chemical velocity gradient 𝐋c = 𝐅̇c𝐅c−1 into diffusion and reaction induced components.

Since the reference configuration and the intermediate structural space do not depend on this change in frame, we have that 𝐅c and
𝐅p are invariant under such a change. This leads to

(𝐅e)∗ = 𝐐𝐅e. (3.21)

n a similar fashion, 𝐋c is invariant and

(𝐋e)∗ = 𝐐𝐋e𝐐⊤ +𝐐𝐐̇, (3.22)

hich yields

(𝐃e)∗ = 𝐐𝐃e𝐐⊤, (𝐖e)∗ = 𝐐𝐖e𝐐⊤ +𝐐𝐐̇. (3.23)

urther, using the polar decomposition we have

(𝐅e)∗ = 𝐐𝐑e𝐔e, (3.24)

hich based on the uniqueness of polar decomposition yields

(𝐑e)∗ = 𝐐𝐑e, (3.25)

nd the tensor 𝐔e is invariant. Hence, 𝐂e is also invariant. In addition and for completeness, scalar fields 𝑐 and 𝜉, and the referential
ector field 𝐣R are also invariant.

. Governing balance laws

In this section, we develop the governing equations for our theoretical framework including macroscopic and microscopic force
alance and thermodynamic laws.

.1. Principle of virtual power. Macro and micro force balances

To develop the remaining balance laws in our theoretical framework, we follow the virtual-power approach (cf. Germain, 1973;
urtin, 2002). This will result in a ‘‘macroforce’’ balance and ‘‘microforce’’ balances for the rate-like kinematical descriptors in our
heory. We consider a list of generalized virtual velocity fields to be given by

 = (𝛿𝝌 , 𝛿𝐅e, 𝛿𝜈p, 𝛿𝑐, 𝛿𝜉,∇𝛿𝜉). (4.1)

urther, through (3.18), these virtual velocities are constrained by

(∇𝛿𝝌)𝐅−1 = 𝛿𝐅e𝐅e−1 + 1
√

2
𝛿𝜈p𝐅e𝐍p𝐅e−1 + (1 − 𝜉)𝐅e𝐅p

(

𝛿𝑐𝐍𝛼,𝐷
)

𝐅p−1𝐅e−1

e p ( 𝛽,𝐷 𝛽,𝑅) p−1 e−1
(4.2)
6

+ 𝜉𝐅 𝐅 𝛿𝑐𝐍 + 𝛿𝜉𝐍 𝐅 𝐅 .
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For any part 𝑃 of the body 𝐵 the internal and external powers are given by

𝛿𝑊ext(𝑃 ,) = ∫𝜕P
𝐭(𝐧R) ⋅ 𝛿𝝌𝑑𝑎R + ∫P

𝐛R ⋅ 𝛿𝝌𝑑𝑣R + ∫𝜕P
𝜂𝛿𝜉𝑑𝑎R,

𝛿𝑊int(𝑃 ,) = ∫P
(𝐒e ∶ 𝛿𝐅e + 𝜋𝛿𝜈p + 𝐸𝛿𝑐 + 𝐹𝛿𝜉 +𝐆 ⋅ ∇𝛿𝜉)𝑑𝑣R,

(4.3)

here we have defined the following macroscopic and microscopic force systems conjugate to the kinematical variables:

(a) A stress 𝐒e that expends power over the elastic distortion rate 𝐅̇e;
(b) A scalar microstress 𝜋 that expends power over the plastic shearing rate 𝜈p;
(c) A traction 𝐭R(𝐧R) (for each unit vector 𝐧R) that expends power over the velocity 𝝌̇ ;
(d) A scalar microscopic stress 𝐸 that expends power over the rate 𝑐̇;
(e) A scalar microscopic stress 𝐹 that expends power over the rate 𝜉̇;
(f) A vector microscopic stress 𝐆 that expends power over the gradient ∇𝜉̇; and
(g) A scalar microscopic traction 𝜂 that expends power over 𝜉̇ on the boundary of the part.

he principle of virtual power then consistent of: (1) Power balance which requires that 𝛿𝑊ext(𝑃 ,) = 𝛿𝑊int(𝑃 ,) for all generalized
irtual velocities  and; (2) Frame-indifference which requires that 𝛿𝑊int(𝑃 ,) is invariant under all changes in frame.

emark 1. In this work we aim to address problems involving sharp interface reactions occurring in solids. Our strategy here is
o do this through a phase-field model with the physically motivated extent of reaction 𝜉 as our phase-field variable. In order to
mplement a diffuse-interface model, we introduce the gradient ∇𝜉 of the phase-field parameter as part of the theoretical formulation.
irst, it allows one to implement wetting (surface energy) boundary conditions through the presence of the traction 𝜂 expending
ower over 𝜉̇ on the boundary. Second, the gradient theory will set a finite length scale for our interface and make this theoretical
ramework amenable to numerical implementation by finite elements. □

We begin by using the power balance requirement. First, let 𝛿𝜈p = 0, 𝛿𝑐 = 0, 𝛿𝜉 = 0,∇𝛿𝜉 = 𝟎 such that (4.2) yields the relation
𝛿𝐅e = ∇𝛿𝝌𝐅−1𝐅e. For this choice, the principle of virtual power yields

∫𝜕P
𝐭(𝐧R) ⋅ 𝛿𝝌𝑑𝑎R + ∫P

𝐛R ⋅ 𝛿𝝌𝑑𝑣R = ∫P
𝐒e ∶ 𝛿𝐅e𝑑𝑣R = ∫P

𝐒e𝐅p−⊤𝐅c−⊤ ∶∇𝛿𝝌𝑑𝑣R, (4.4)

which by defining

𝐓R
def
= 𝐒e𝐅p−⊤𝐅c−⊤, (4.5)

and using the divergence theorem on (4.4) leads to the macroscopic force balance

Div𝐓R + 𝐛R = 0, and the traction condition 𝐭R(𝐧R) = 𝐓R𝐧R. (4.6)

As is standard, the Piola stress 𝐓R is related to the symmetric Cauchy stress 𝐓 through

𝐓R = 𝐽𝐓𝐅−⊤, (4.7)

and for future use we may write 𝐒e = 𝐽𝐓𝐅e−⊤.
Now, we let ∇𝛿𝝌 = 𝟎, 𝛿𝑐 = 0, 𝛿𝜉 = 0,∇𝛿𝜉 = 𝟎 such that (4.2) yields the relation 𝛿𝐅e = −(1∕

√

2)𝛿𝜈p𝐅e𝐍p. Using this relation, along
ith 𝐽p = 1 from (3.15)2, we may write the stress power 𝐒e ∶ 𝛿𝐅e as

𝐒e ∶ 𝛿𝐅e = −(1∕
√

2)𝛿𝜈p(𝐅e⊤𝐒e)∶𝐍p = −(1∕
√

2)𝛿𝜈p𝐽 c(𝐽 e𝐅e⊤𝐓𝐅e−⊤)∶𝐍p

= −(1∕
√

2)𝛿𝜈p𝐽 c𝐌e
0 ∶𝐍

p,
(4.8)

here we have used the fact that 𝐍p is deviatoric, and have defined the elastic Mandel stress as

𝐌e def= 𝐽 e𝐅e⊤𝐓𝐅e−⊤, (4.9)

here 𝐌e
0 denotes the deviatoric part of 𝐌

e. Use of (4.8) and (4.3) yields

∫P
(−(1∕

√

2)𝛿𝐽 c𝐌e
0 ∶𝐍

p𝜈p + 𝜋𝛿𝜈p)𝑑𝑣R = 0, (4.10)

hich must hold for all values of 𝛿𝜈p, yielding the plastic microforce balance

𝜋 = 1
√

2
𝐽 c𝐌e

0 ∶𝐍
p. (4.11)

The first chemical micro force balance, associated with diffusion, is obtained by letting ∇𝛿𝝌 = 𝟎, 𝛿𝜈p = 0, 𝛿𝜉 = 0 and ∇𝛿𝜉 = 0
uch that (4.2) yields

𝐒e ∶ 𝛿𝐅e = 𝐒e ∶
(

𝐅e𝐅p
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

)

𝐅p−1𝛿𝑐

= −(𝐅e𝐅p)⊤𝐒e𝐅p−⊤ ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

𝛿𝑐
c p⊤ e p−⊤ ( 𝛼,𝐷 𝛽,𝐷)

(4.12)
7

= −(𝐽 𝐅 𝐌 𝐅 )∶ (1 − 𝜉)𝐍 + 𝜉𝐍 𝛿𝑐
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use of which, along with the power balance statement and (4.3) yields

𝐸 = 𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

, (4.13)

where we have defined the mechanical Mandel stress as

𝐌m def
= 𝐅p⊤𝐌e𝐅p−⊤ = 𝐽m𝐅m⊤𝐓𝐅m−⊤. (4.14)

Remark 2. The definition of elastic Mandel stress 𝐌e in (4.9) is identical to that of Anand (2012), written as a pullback operation
from the deformed body to the intermediate plastically distorted space. Now, due to the decomposition 𝐅 = 𝐅e𝐅p𝐅c, we define
an additional mechanical Mandel stress 𝐌m given in (4.14) which is defined through an additional pullback operation from the
plastically distorted intermediate space to the chemically distorted intermediate space. This stress is absent in the work of Anand
(2012) as it is assumed, from the onset, that chemical expansion is isotropic, making 𝐌e and 𝐌m equal. In our theory, however,
chemical expansion is kept general at this point, distinguishing the two stresses. This subtle distinction is important since in
Eqs. (4.13) and (4.17) it is the mechanical Mandel stress that is coupled to the chemical driving forces. □

The second micro force balance, associated with the reaction, is obtained by letting 𝛿𝝌 = 𝟎, 𝛿𝜈p = 0, 𝛿𝑐 = 0. The virtual power
balance statement and (4.3) yields

∫𝜕P
𝜂𝛿𝜉𝑑𝑎R = ∫P

(

𝐒e ∶ 𝛿𝐅e + 𝐹𝛿𝜉 +𝐆 ⋅ ∇𝛿𝜉
)

𝑑𝑣R,

∫𝜕P
𝜂𝛿𝜉𝑑𝑎R = ∫P

(

−𝐽 c𝜉𝐌m ∶𝐍𝛽,𝑅𝛿𝜉 + 𝐹𝛿𝜉 +𝐆 ⋅ ∇𝛿𝜉
)

𝑑𝑣R.
(4.15)

Applying the divergence theorem

∫P

(

−𝐽 c𝜉𝐌m ∶𝐍𝛽,𝑅𝛿𝜉 + 𝐹𝛿𝜉 − Div𝐆 𝛿𝜉
)

𝑑𝑣R = ∫𝜕P
(𝜂 −𝐆 ⋅ 𝐧R)𝛿𝜉𝑑𝑎R, (4.16)

which must hold for all values of 𝛿𝜉 and yields the second micro force balance

𝐹 − 𝐽 c𝜉𝐌m ∶𝐍𝛽,𝑅 − Div𝐆 = 0, (4.17)

along with the corresponding boundary condition

𝜂 = 𝐆 ⋅ 𝐧R. (4.18)

To summarize, using the principle of virtual work we have derived one macroscopic force balance for the Piola stress 𝐓R as well
as three microscopic force balances for the stresses 𝜋, 𝐸, 𝐹 , and 𝐆. The balances are summarized as follows

Div𝐓R + 𝐛R = 0, with boundary condition 𝐭R(𝐧R) = 𝐓R𝐧R,

𝜋 = 1
√

2
𝐽 c𝐌e

0 ∶𝐍
p,

𝐸 = 𝐽 𝑐𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

,

𝐹 − 𝐽 c𝜉𝐌m ∶𝐍𝛽,𝑅 − Div𝐆 = 0, with boundary condition 𝜂 = 𝐆 ⋅ 𝐧R.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.19)

Finally, we discuss the requirement that the internal virtual work 𝛿𝑊int(𝑃 ,) be frame indifferent for all virtual velocities. Given
a change of frame, we should have:

𝛿𝑊int(𝑃 ,) = 𝛿𝑊 ∗
int(𝑃 ,

∗) (4.20)

here ∗ denote quantities in the new frame. Scalar quantities in (4.3) remain invariant, while 𝛿𝐅e transforms according to

(𝛿𝐅e)∗ = 𝐐𝛿𝐅e + 𝐐̇𝐅e (4.21)

under a rotation 𝐐. Following Anand (2012), we also have

(∇𝛿𝜉)∗ = (∇𝛿𝜉) (4.22)

as the gradient operator is in the reference body. We can then write 𝛿𝑊 ∗
int(𝑃 ,

∗) as

𝛿𝑊 ∗
int(𝑃 ,

∗) = ∫P
(𝐒e∗ ∶ (𝐐𝛿𝐅e + 𝐐̇𝐅e) + 𝜋𝛿𝜈p + 𝐸𝛿𝑐 + 𝐹𝛿𝜉 +𝐆∗ ⋅ (∇𝛿𝜉))𝑑𝑣R

= ∫P
(𝐐⊤𝐒e∗ ∶ (𝛿𝐅e +𝐐⊤𝐐̇𝐅e) + 𝐸𝛿𝑐 + 𝐹𝛿𝜉 +𝐆∗ ⋅ (∇𝛿𝜉))𝑑𝑣R.

(4.23)

Since this should be equal to 𝛿𝑊int(𝑃 ,) by virtue of (4.20), and P is arbitrary, we have

𝐐⊤𝐒e∗ ∶ (𝛿𝐅e +𝐐⊤𝐐̇𝐅e) +𝐆∗ ⋅ (∇𝛿𝜉) = 𝐒e ∶ 𝛿𝐅e +𝐆 ⋅ (∇𝛿𝜉) (4.24)

and since 𝐐 is arbitrary, we pick a time independent rotation which yields
e ⊤ e∗ e ∗
8

(𝐒 − (𝐐 𝐒 ))∶ 𝛿𝐅 + (𝐆 −𝐆 ) ⋅ (∇𝛿𝜉) = 0. (4.25)
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On account of 𝛿𝐅e and ∇𝛿𝜉 being arbitrary we arrive at

𝐒e∗ = 𝐐𝐒e,
𝐆∗ = 𝐆.

(4.26)

lternatively, we may assume another rotation of the from 𝐐 = 𝟏 with arbitrary skew 𝐐̇, which by virtue of (4.24) leads to

(𝐒e𝐅e⊤)∶ 𝐐̇ = 0 (4.27)

r equivalently that the stress 𝐒e𝐅e⊤ must be symmetric. Finally, on account of the discussion above, the Piola stress 𝐓R and Cauchy
tress 𝐓 obey the following transformation rules under a change in frame

𝐓∗
R = 𝐐𝐓R, and 𝐓∗ = 𝐐𝐓𝐐⊤. (4.28)

he elastic Mandel stress 𝐌e, and mechanical Mandel stress 𝐌m are invariant under a change in frame.

.2. Balance of energy. Entropy imbalance. Free energy imbalance

Our discussion of thermodynamics involves the following fields:

𝜀R the internal energy density per unit reference volume,

𝜂R the entropy density per unit reference volume,

𝐪R the heat flux per unit reference area,

𝑞R the external heat supply per unit reference volume,

𝜗 the absolute temperature (𝜗 > 0),

𝜇 the macroscopic chemical potential.

onsidering a material region P, we take the balance law for energy as
̇

∫P
𝜀R 𝑑𝑣R = −∫𝜕P

𝐪R ⋅ 𝐧R 𝑑𝑎R + ∫P
𝑞R 𝑑𝑣R +ext(P) − ∫𝜕P

𝜇𝐣R ⋅ 𝐧R𝑑𝑎R, (4.29)

here the last term in (4.29) represents the flux of energy carried into P by the flux of diffusing species. We define the elastic second
iola stress as

𝐓e
def
= 𝐽 e𝐅e−1𝐓𝐅e−⊤ = 𝐂e−1𝐌e, (4.30)

ith 𝐂e = 𝐅e⊤𝐅e the elastic right Cauchy–Green tensor. We note that the stress power 𝐒e ∶ 𝐅̇e may be written as 𝐒e ∶ 𝐅̇e = (1∕2)𝐽 c𝐓e ∶
̇ e. Next, equating the external power with the internal power, we may write the energy balance as

̇

∫P
𝜀R 𝑑𝑣R = − ∫𝜕P

𝐪R ⋅𝐧R 𝑑𝑎R + ∫P
𝑞R 𝑑𝑣R

+ ∫P

(1
2
𝐽 c𝐓e ∶ 𝐂̇e + 𝜋𝜈p + 𝐸𝑐̇ + 𝐹 𝜉̇ +𝐆 ⋅ ∇𝜉̇

)

𝑑𝑣R − ∫𝜕P
𝜇𝐣R ⋅ 𝐧R𝑑𝑎R,

(4.31)

hich applying the divergence theorem to the boundary integral terms may be written as

∫P

(

𝜀̇R − 𝑞R + Div𝐪R − 1
2
𝐽 c𝐓e ∶ 𝐂̇e − 𝜋𝜈p − 𝐸𝑐̇ − 𝐹 𝜉̇ −𝐆 ⋅ ∇𝜉̇ + 𝜇Div (𝐣R) + 𝐣R ⋅ ∇𝜇

)

𝑑𝑣R = 0. (4.32)

Finally, using the balance law (2.2) and the fact that (4.32) must hold for all parts P, we obtain the local form of energy balance
s

𝜀̇R = 𝑞R − Div𝐪R + 1
2
𝐽 c𝐓e ∶ 𝐂̇e + 𝜋𝜈p + 𝐸𝑐̇ + 𝐹 𝜉̇ +𝐆 ⋅ ∇𝜉̇ + 𝜇(𝑐̇ + 𝜉̇) − 𝐣R ⋅ ∇𝜇. (4.33)

The local form of the second law takes the form of an entropy imbalance

−𝜗𝜂̇R ≤ 0 (4.34)

which by introducing the Helmholtz free energy, 𝜓R = 𝜖R − 𝜗𝜂R, may be written as

𝜓̇R − 𝜀̇R + 𝜂R𝜗̇ ≤ 0. (4.35)

enceforth in this development we restrict ourselves to isothermal conditions, such that

𝜗 ≡ constant, 𝑞R = 0, and 𝐪R = 0. (4.36)

inally, combining the local energy balance (4.33) with the entropy imbalance (4.35) under isothermal conditions yields the local
orm of the free energy imbalance as

𝜓̇ − 1𝐽 c𝐓e ∶ 𝐂̇e − 𝜋𝜈p − 𝐸𝑐̇ − 𝐹 𝜉̇ −𝐆 ⋅ ∇𝜉̇ − 𝜇(𝑐̇ + 𝜉̇) + 𝐣 ⋅ ∇𝜇 ≤ 0. (4.37)
9

R 2 R
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For later use we define the dissipation density per unit time as

 = 1
2
𝐽 c𝐓e ∶ 𝐂̇e + 𝜋𝜈p + 𝐸𝑐̇ + 𝐹 𝜉̇ +𝐆 ⋅ ∇𝜉̇ + 𝜇(𝑐̇ + 𝜉̇) − 𝐣R ⋅ ∇𝜇 ≤ 0. (4.38)

Note that all quantities in (4.37) and (4.38) are invariant under a change in frame based on the invariance properties discussed
previously.

5. Constitutive theory

We divide the section into energetic and dissipative constitutive equations, along with a discussion on isotropy.

5.1. Energetic constitutive equations

We first consider the following set of constitutive equations for the free energy 𝜓R, the stress 𝐓e, and the chemical potential 𝜇:

𝜓R = 𝜓̂R(𝛬)

𝐓e = 𝐓̂e(𝛬)
𝜇 = 𝜇̂(𝛬)

⎫

⎪

⎬

⎪

⎭

(5.1)

where 𝛬 denotes the list

𝛬 = (𝐂e, 𝑐, 𝜉,∇𝜉). (5.2)

Using the constitutive Eqs. (5.1), the free-energy imbalance (4.37) may be written as
(

𝜕𝜓̂R
𝜕𝐂e

− 1
2
𝐽 c𝐓e

)

∶ 𝐂̇e +
(

𝜕𝜓̂R
𝜕𝑐

− 𝐸 − 𝜇
)

𝑐̇ +
(

𝜕𝜓̂R
𝜕𝜉

− 𝐹 − 𝜇
)

𝜉̇

+
(

𝜕𝜓̂R
𝜕∇𝜉

−𝐆
)

⋅ ∇𝜉̇ − 𝜋𝜈p + 𝐣R ⋅ ∇𝜇 ≤ 0.
(5.3)

In writing (5.3), we make assumptions regarding the dissipative and energetic terms. We make the distinction that processes
associated with diffusion (governed by 𝑐̇) are energetic, while the ones associated with reaction induced phase change (governed
y 𝜉̇) are dissipative. An exception to this is the power conjugate to ∇𝜉̇, which is taken to be entirely energetic, i.e all reaction
issipative processes are already accounted for in the 𝜉̇ term.
As the inequality shown in (5.3) is to hold for all values of 𝐂̇e, 𝑐̇, and ∇𝜉̇ their ‘‘coefficients’’ must vanish, for otherwise they
ay be chosen to violate (5.3). We are therefore led to the thermodynamic restriction that the free energy determines the stress 𝐓e,
hemical potential 𝜇, and the vector microstress 𝐆 through the ‘‘state relations’’

𝐓e = 2𝐽 c−1
𝜕𝜓̂R(𝛬)
𝜕𝐂e

,

𝜇 =
𝜕𝜓̂R(𝛬)
𝜕𝑐

− 𝐸,

𝐆 =
𝜕𝜓̂R(𝛬)
𝜕∇𝜉

.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(5.4)

5.2. Dissipative constitutive equations

We are now left with the following reduced dissipation inequality

 = −
(

𝜕𝜓̂R(𝛬)
𝜕𝜉

− 𝐹 − 𝜇
)

𝜉̇ + 𝜋𝜈p − 𝐣R ⋅ ∇𝜇 ≥ 0. (5.5)

e define the chemical potential of the species of interest in the reacted compound as

𝜇𝜉
def
=
𝜕𝜓̂R(𝛬)
𝜕𝜉

− 𝐹 , (5.6)

which leads to the definition of the thermodynamic driving force for the reaction as


def
= 𝜇𝜉 − 𝜇, (5.7)

and the dissipation inequality (5.5) may now be written as

 = − 𝜉̇ + 𝜋𝜈p − 𝐣R ⋅ ∇𝜇 ≥ 0. (5.8)

The thermodynamic driving force  drives the chemical reaction and its specific form and properties will be discussed in detail in
ubsequent sections. It is worth noting that on one hand, 𝜇 controls the diffusion part of the problem from one point to another. On
he other hand,  , which is the difference of 𝜇𝜉 and 𝜇, controls the reaction part of the problem in a single point. This formulation
10
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encompasses the intuitive understanding that diffusion and reaction processes depend on differences in chemical potentials of the
participating species.

Guided by the dissipation inequality (5.8), we first append to the equations in (5.1) a constitutive equation for the flux of diffusion
species of the form

𝐣R = −𝐌mob∇𝜇 (5.9)

where the flux 𝐣R is linearly proportional to ∇𝜇 through the mobility tensor 𝐌mob. Using (5.9) the dissipation inequality may be
written as

 = − 𝜉̇ + 𝜋𝜈p + ∇𝜇 ⋅𝐌mob∇𝜇 ≥ 0. (5.10)

mportant to note in Eq. (5.10) is the presence of the first term, denoting reaction induced dissipation. This is consistent with
he expectation that even in the absence of plasticity and chemical potential gradients, there can be dissipation due to chemical
eactions. Moreover, as a simple constitutive equation for the microforce 𝜋 we assume

𝜋 = 𝜋̂(𝛾̄𝑝) (5.11)

ith 𝛾̄𝑝 the equivalent plastic shear strain.
We further assume that all terms in (5.10) individually satisfy

− 𝜉̇ ≥ 0,

𝜋𝜈p ≥ 0,

∇𝜇 ⋅𝐌mob∇𝜇 ≥ 0,

(5.12)

hich leads to the restriction that the mobility tensor 𝐌mob is positive semi-definite. With respect to the chemical reaction
issipation, we assume that 𝜉̇ > 0 if and only if  < 0, and vice versa 𝜉̇ < 0 if and only if  > 0. Finally, we assume that plastic flow
s strongly dissipative and hence that 𝜋̂(𝛾̄𝑝) > 0. These restrictions ensure that the dissipation inequality (5.10) is not violated.

.3. Material isotropy

We restrict our theory to isotropic mechanical deformations.2 The free energy function 𝜓̂R(𝛬) is hence an isotropic function of
ts arguments:

𝜓̂R(𝐂e, 𝑐, 𝜉,∇𝜉) = 𝜓̃R(𝐂e , 𝑐, 𝜉, |∇𝜉|), (5.13)

ith the list of principal invariants of 𝐂e given by

𝐂e = (𝐼1(𝐂e), 𝐼2(𝐂e), 𝐼3(𝐂e)). (5.14)

herefore, 𝐓e is an isotropic function of 𝐂e by virtue of (5.4)1, which in turn leads to symmetry of the elastic Mandel stress due to
4.30).
Now we represent 𝐂e in principal coordinates

𝐂e =
3
∑

𝑖=1
(𝜆e𝑖 )

2𝐫𝑖 ⊗ 𝐫𝑖, (5.15)

here 𝜆e𝑖 and 𝐫𝑖 are eigenvalues and eigenvectors of 𝐔e, respectively. We may define the elastic logarithmic strain 𝐄e as

𝐄e = ln𝐔e =
3
∑

𝑖=1
𝐸e𝑖 𝐫𝑖 ⊗ 𝐫𝑖 =

3
∑

𝑖=1
ln𝜆e𝑖 𝐫𝑖 ⊗ 𝐫𝑖, (5.16)

ith 𝐸e𝑖 the principal values of the logarithmic strain. The elastic Mandel stress may then be equivalently calculated as (cf. Anand,
012)

𝐌e = 𝐽 c−1
3
∑

𝑖=1

𝜕𝜓̆R(𝐸e1 , 𝐸
e
2 , 𝐸

e
3 , 𝑐, 𝜉, |∇𝜉|)

𝜕𝐸e𝑖
𝐫𝑖 ⊗ 𝐫𝑖. (5.17)

inally, with 𝐄e the list of principal invariants of 𝐄e, we consider the free-energy a function of 𝜓̌R(𝐄e , 𝑐, 𝜉, |∇𝜉|) and the elastic
andel stress is given by

𝐌e = 𝐽 c−1
𝜕𝜓̌R(𝐄e , 𝑐, 𝜉, |∇𝜉|)

𝜕𝐄e
. (5.18)

he Cauchy and mechanical Mandel stresses are now related to 𝐌e through

𝐓 = 𝐽 e−1𝐑e𝐌e𝐑e⊤,
𝐌m = 𝐅p⊤𝐌e𝐅p−1.

(5.19)

2 Note that other components of the theory, such as diffusion and reaction rate need not be isotropic.
11
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For later use, we also define 𝐄eH as the spatial push of the elastic logarithmic strain

𝐄eH = 𝐑e𝐄e𝐑e⊤. (5.20)

6. Summary of the general constitutive theory

In this section we summarize our general diffusion–reaction chemo-mechanical theory. The theory relates the following fields:

𝐱 = 𝝌(𝐗, 𝑡), motion;
𝐅 = ∇𝝌 , 𝐽 = det 𝐅 > 0, deformation gradient;
𝐅 = 𝐅m𝐅c, multiplicative decomposition of 𝐅;
𝐅c, 𝐽 c = det 𝐅c > 0, chemical distortion;
𝐅m, 𝐽m = det 𝐅m > 0, mechanical distortion;
𝐅m = 𝐅e𝐅p, elastic–plastic multiplicative

decomposition of 𝐅m;
𝐅e, 𝐽 𝑒 = det 𝐅e > 0, elastic distortion;
𝐅p, 𝐽 𝑝 = det 𝐅p = 1, elastic distortion;
𝐋 = 𝐅̇𝐅−1 = 𝐋m + 𝐅m𝐋c𝐅m−1 velocity gradient;
𝐋c = 𝐅̇c𝐅c−1 = 𝐃c +𝐖c with
𝐖c = 0

chemical velocity gradient;

𝐃c = (1 − 𝜉)𝐃𝛼,𝐷 + 𝜉(𝐃𝛽,𝐷 + 𝐃𝛽,𝑅) additive decomposition of the chemical
stretching;

𝐃𝛼,𝐷 = 𝑐̇𝐍𝛼,𝐷, diffusion induced chemical stretching of
the unreacted phase;

𝐃𝛽,𝐷 = 𝑐̇𝐍𝛽,𝐷, diffusion induced chemical stretching of
the reacted phase;

𝐃𝛽,𝑅 = 𝜉̇𝐍𝛽,𝑅, reaction induced chemical stretching;
𝐅e = 𝐑e𝐔e = 𝐕e𝐑e, polar decompositions of 𝐅e;
𝐂e = (𝐅e)⊤𝐅e = (𝐔e)2, right Cauchy–Green tensor;
𝐄e = ln𝐔e = ∑3

𝑖=1 ln𝜆
e
𝑖 𝐫𝑖 ⊗ 𝐫𝑖, logarithmic elastic strain ;

𝐄eH = 𝐑e𝐄e(𝐑e)⊤., spatial logarithmic elastic strain ;
𝐓 = 𝐓⊤, Cauchy stress;
𝐌e = 𝐽 e𝐅e⊤𝐓𝐅e−⊤, elastic Mandel stress;
𝐌m = 𝐽m𝐅m⊤𝐓𝐅m−⊤, mechanical Mandel stress;
𝐓R = 𝐽𝐓𝐅−⊤, Piola stress;
𝐓e = 𝐽 e𝐅e−1𝐓𝐅e−⊤, elastic second Piola stress;
𝜓R, free energy density per unit reference

volume;
𝑐, number of moles of diffusing species per

unit reference volume;
𝜉, number of moles of reacted species per

unit reference volume;
𝜉 = 𝜉∕𝑐Rmax ∈ [0, 1], extent of the reaction;
∇𝜉, gradient of reacted species concentration;
𝜇, chemical potential of the diffusing

species;
𝐣R, referential species flux vector.

.1. Kinematics

The deformation gradient is decomposed as

𝐅 = 𝐅m𝐅c = 𝐅e𝐅p𝐅c, (6.1)

ith 𝐅m = 𝐅e𝐅p the mechanical distortion, which is further decomposed into elastic and plastic parts. 𝐅c is the chemical distortion.
urther, the chemical velocity gradient is 𝐋c = 𝐅̇c𝐅c−1 = 𝐃c, with the chemical stretching 𝐃c additively decomposed as

𝐃c = (1 − 𝜉)𝐃𝛼,𝐷 + 𝜉(𝐃𝛽,𝐷 + 𝐃𝛽,𝑅), (6.2)

here

𝐃𝛼,𝐷 = 𝑐̇𝐍𝛼,𝐷, 𝐃𝛽,𝐷 = 𝑐̇𝐍𝛽,𝐷, and 𝐃𝛽,𝑅 = 𝜉̇𝐍𝛽,𝑅. (6.3)

n (6.3) the terms 𝐍𝛼,𝐷 and 𝐍𝛽,𝐷 respectively are the directions of diffusion induced deformations in the unreacted and reacted
𝛽,𝑅
12

aterial. The terms 𝐍 is the direction of reaction induced deformation.
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The evolution for 𝐅̇p is given by 𝐅̇p = 𝐃p𝐅p with the plastic stretching given by

𝐃p = 1
√

2
𝜈p𝐍p. (6.4)

urther, using (4.19)2, the equivalent plastic strain rate 𝜈p is constrained by (5.12)3 to obey

(1∕
√

2)𝐌e
0 ∶𝐍

p𝜈p > 0 for 𝜈p > 0, and 𝐌e
0 ∶𝐍

p > 0. (6.5)

ith 𝐍p the direction of plastic flow to be constitutively prescribed.

.2. Constitutive equations

.2.1. Free energy
The free energy is given by

𝜓R = 𝜓̂R(𝐄e , 𝑐, 𝜉, |∇𝜉|), (6.6)

here 𝐄e is the list of principal invariants of 𝐄e.

.2.2. Stress
The elastic Mandel stress is given by

𝐌e = 𝐽 c−1
𝜕𝜓̌R(𝐄e , 𝑐, 𝜉, |∇𝜉|)

𝜕𝐄e
, (6.7)

ith the Cauchy stress given by 𝐓 = 𝐽 e−1𝐑e𝐌e𝐑e⊤, the mechanical Mandel stress by 𝐌m = 𝐅p⊤𝐌e𝐅p−⊤, and the first Piola stress by
R = 𝐽 c𝐅e−⊤𝐌e𝐅p−⊤.

.2.3. Chemical potential. Flux
Using (4.19)3 in (5.4)2, the chemical potential is given by

𝜇 =
𝜕𝜓R
𝜕𝑐

− 𝐽 𝑐𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

. (6.8)

The referential flux of diffusing species is given by

𝐣R = −𝐌mob(𝑐, 𝜉)∇𝜇 (6.9)

with the mobility 𝐌mob a positive semi-definite tensor.

6.2.4. Reaction driving force and kinetics
The reaction kinetics are constrained to obey that − 𝜉̇ ≥ 0. The driving force  for the chemical reaction is

 = 𝜇𝜉 − 𝜇. (6.10)

Combining (4.19)4 and (5.4)3 in (5.6), the chemical potential 𝜇𝜉 of the species of interest in the reacted compound is

𝜇𝜉 =
𝜕𝜓R
𝜕𝜉

− 𝐽 c𝜉𝐌m ∶𝐍𝛽,𝑅 − Div
(

𝜕𝜓R
𝜕∇𝜉

)

. (6.11)

6.3. Governing partial differential equations

The governing equations consist of

1. The local force balance (4.6), viz

Div𝐓R + 𝐛R = 0, (6.12)

where 𝐓R = 𝐽𝐓𝐅−⊤ is the Piola stress and 𝐛R the body force.
2. The local mass balance (2.2), viz

𝑐̇ = −Div 𝐣R − 𝜉̇, (6.13)

with the flux 𝐣R described in Section 6.2.3 and the reaction rate 𝜉̇ in Section 6.2.4
3. The reaction kinetics summarized in Section 6.2.4 introduce an additional PDE for the rate of reaction due to dependence of
the free energy on the gradient ∇𝜉. Using (6.11) in (6.10), the final equation for the reaction kinetics may be given as

𝜉̇ = 𝑓 ( ), with  =
𝜕𝜓R − 𝐽 c𝜉𝐌m ∶𝐍𝛽,𝑅 − Div

(

𝜕𝜓R
)

− 𝜇, (6.14)
13
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where the function 𝑓 ( ) of  must obey − 𝜉̇ ≥ 0 in order to satisfy the dissipation inequality (5.12). A number of reaction
kinetics may be considered for the function 𝑓 ( ) which satisfy this constraint, the simplest of which, for example, is a linear
relation of the form 𝜉̇ = −𝑅0 , with 𝑅0 a reaction constant.
Finally, using (5.4)3 the boundary condition (4.18) for the PDE (6.14) becomes

𝜂 =
𝜕𝜓R
𝜕∇𝜉

⋅ 𝐧R, (6.15)

which as noted before will allow us to capture wetting (surface energy) chemical boundary conditions. This type of boundary
condition is critical and common even in solid/solid interphases as the fully wetted interface often has the minimum energy
(cf. Cogswell and Bazant, 2013 for more details).

. Specialization of the constitutive equations

The theory presented thus far is quite general. We next present special constitutive equations which are: (i) useful for modeling
eS2 conversion electrodes as will be done in Section 9, and (ii) provide a clearer understanding of the specific capabilities of the
heoretical framework.

.1. Diffusion and reaction induced deformations

We begin by specifying the manner in which diffusion and reaction of species induce mechanical deformation by specifying the
ensors {𝐍𝛼,𝐷,𝐍𝛽,𝐷,𝐍𝛽,𝑅} in (6.3). We now restrict ourselves to problems in which the deformation induced by either diffusion or
hemical reactions is isotropic.
Consider a generic isotropic volumetric expansion whose volumetric rate of deformation with respect to the variable of interest

s constant, that is

𝐅 = 𝐽 1∕3𝟏 with 𝑑𝐽
𝑑𝑐

= 𝛺 = constant, (7.1)

hich leads to a simple deformation gradient of the form 𝐅 = (1 +𝛺𝑐)1∕3𝟏. The rate of stretching of such a deformation gradient is
iven by

𝐃 = 𝐅̇𝐅−1 = 𝛺𝑐̇
3(1 +𝛺𝑐)

𝟏. (7.2)

Motivated by the stretching shown in (7.2), we assume that the directions of diffusion induced stretching in the unreacted and
reacted material 𝐍𝛼,𝐷 and 𝐍𝛽,𝐷, are given by

𝐍𝛼,𝐷 =
𝛺𝛼
𝑐

3(1 +𝛺𝛼
𝑐 𝑐)

𝟏, and 𝐍𝛽,𝐷 =
𝛺𝛽
𝑐

3(1 +𝛺𝛽
𝑐 𝑐)

𝟏. (7.3)

ith 𝛺𝛼
𝑐 and 𝛺

𝛽
𝑐 constant partial molar volumes associated with the unreacted and reacted phases, respectively. The values 𝛺𝛼

𝑐 and
𝛽
𝑐 thus quantify the amount of diffusion induced volumetric expansion and may be calculated from experimental observations or
b initio calculations.
Similarly, we restrict ourselves here to isotropic reaction induced deformations and define the direction 𝐍𝛽,𝑅 as

𝐍𝛽,𝑅 =
𝛺𝜉

3(1 +𝛺𝜉𝜉)
𝟏, (7.4)

ith 𝛺𝜉 a constant partial molar volume associated with reaction induced deformations. Combining (7.3) and (7.4) in (6.3), the
diffusion and reaction induced stretching are given by

𝐃𝛼,𝐷 =
𝛺𝛼
𝑐

3(1 +𝛺𝛼
𝑐 𝑐)

𝑐̇ 𝟏, 𝐃𝛽,𝐷 =
𝛺𝛽
𝑐

3(1 +𝛺𝛽
𝑐 𝑐)

𝑐̇ 𝟏, and 𝐃𝛽,𝑅 =
𝛺𝜉

3(1 +𝛺𝜉𝜉)
𝜉̇ 𝟏. (7.5)

7.2. Free energy

The free energy per reference volume is assumed to be separable and of the form

𝜓̌R(𝐄e , 𝑐, 𝜉, |∇𝜉|) = 𝜓𝑐R(𝑐, 𝜉) + 𝜓
𝜉
R(𝜉) + 𝜓

m
R (𝐄e , 𝑐, 𝜉) + 𝜓

𝑔
R(|∇𝜉|). (7.6)

Here:

(i) 𝜓𝑐R is the change in chemical free energy due to mixing of the diffusing species. We take it to be a weighted average of the free
energies of the unreacted (denoted by 𝛼) and reacted (denoted by 𝛽) phases in the material point, with the contribution of each
14
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phase assumed to be given by a regular solution model (cf. DeHoff, 2006). Specifically

𝜓𝑐R(𝑐, 𝜉) = (1 − 𝜉 )𝜓𝑐,𝛼(𝑐) + 𝜉𝜓𝑐,𝛽 (𝑐),

𝜓𝑐R(𝑐, 𝜉) = (1 − 𝜉 )𝑐Dmax

(

𝜇𝛼0 𝑐 + 𝑅𝜗
(

𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)
)

)

+ 𝜉 𝑐Dmax

(

𝜇𝛽0 𝑐 + 𝑅𝜗
(

𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)
)

)

.

(7.7)

Here, 𝜇𝛼0 and 𝜇
𝛽
0 are reference potentials of the diffusing species in the unreacted and reacted phases of the host. We define 𝑐

def
= 𝑐∕𝑐Dmax

as the normalized concentration of diffusing species with 𝑐Dmax the maximum molar concentration of species which may be hosted
in either the pristine or reacted material.3

This expression for the chemical free energy is similar to those used in purely diffusional treatments (cf. DeHoff, 2006), with the
difference that the standard state 𝜇0 differs for the species hosted in either the reacted or unreacted material, and the free energy
contributions are averaged through the terms 𝜉 and (1 − 𝜉). Similar treatment can be found in Guyer et al. (2004).

Remark 3. Note here that in writing (7.7), we assumed that the diffusing species is uniformly distributed over the two phases
in the material point. In addition, we make the specific assumption that 𝑐Dmax is a constant and hence the unreacted and reacted
material may host the same amount of maximum diffusing species. A more general treatment is provided in Appendix A where
e distinguish between the concentration of diffusing species in different phases. Appendix A makes clear the particular limiting
ondition of a uniform concentration of diffusing species within the material point, and how this specific condition yields the free
nergy (7.7). □

ii) 𝜓𝜉R includes a potential energy function with two local minima associated with the chemical reaction barrier (i.e. chemical
ctivation energy) as well as the reference chemical potential for the species of interest in the reacted compound. It is given by

𝜓𝜉R(𝜉) = 𝐸a
(

𝜉
)2 (1 − 𝜉

)2 + 𝜉𝜇𝜉0 , (7.8)

here the first term follows the work of Guyer et al. (2004) and introduces the reaction barrier 𝐸a in our continuum kinetics
ormulation,4 while the second term sets the reference chemical potential to 𝜇𝜉0. The consequences of including this potential
andscape in 𝜓𝜉R will be shown in detail in the numerical examples to follow. In essence, this function may drive the reactions
ccurring in the bulk of the solid to occur over a sharp interface, even when a sharp interface is not kinetically preferred. We note
hat the term 𝜉𝜇𝜉0 must be included for it sets the reference potential for 𝜇

𝜉 through (6.11). Note here that 𝜇𝜉0 denotes the reference
otential of the species when it is chemically reacted and part of the new compound, while 𝜇𝛽0 denotes the reference potential of the
pecies when it is merely diffusing through the new compound.

ii) 𝜓mR is the contribution to changes in the free energy due to the elastic deformation of the host electrode material. It is taken to
e given by

𝜓mR (𝐄e, 𝑐, 𝜉) = 𝐽 c
[

1
2𝐄

e ∶C(𝑐, 𝜉)[𝐄e]
]

, (7.9)

here

C(𝑐, 𝜉)
def
= 2𝐺(𝑐, 𝜉)I + (

𝐾(𝑐, 𝜉) − 2
3
𝐺(𝑐, 𝜉)

)

𝟏⊗ 𝟏, (7.10)

is the elasticity tensor, with I and 𝟏 the fourth- and second-order identity tensors. The shear and bulk moduli are assumed to obey
he following interpolation (cf. Loeffel et al., 2013)

𝐺(𝑐, 𝜉) = (1 − 𝜉)𝐺𝛼(𝑐) + 𝜉𝐺𝛽 (𝑐),

𝐾(𝑐, 𝜉) = (1 − 𝜉)𝐾𝛼(𝑐) + 𝜉𝐾𝛽 (𝑐),
(7.11)

here 𝐺(𝑐) and 𝐾(𝑐) are concentration-dependent shear and bulk moduli and the subscripts 𝛼 and 𝛽 denote that these belong to
ither the unreacted or reacted phases of the solid.

iv) 𝜓𝑔R is the interfacial free energy that penalizes sharp interfaces in the bulk and is simply taken as

𝜓𝑔R(|∇𝜉|) =
1
2
𝜆|∇𝜉|2, (7.12)

ith 𝜆 a gradient energy coefficient.
As noted in Remark 1 in Section 4.1, one of the features of the gradient phase-field model developed here is that it will allow us

o set a finite interface width, making the framework amenable to numerical solutions using finite elements. The parameter 𝜆 will
hus control the minimum width of the interface.

3 One could replace concentrations here by activity coefficients to account for deviations from ideal behavior, as is done for example in the work of Bazant
(2013).

4 Note that the polynomial function serves to introduce the energy barrier, and not to model phase separation through spinodal decomposition.
15
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Finally, using (7.7) through (7.12) in (7.6), the total free energy which accounts for the combined effects of mixing (diffusion),
eactions, and finite elastic deformations is given by

𝜓R =
(

1 − 𝜉
)

𝑐Dmax

(

𝜇𝛼0 𝑐 + 𝑅𝜗
(

𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)
)

)

+ 𝜉𝑐Dmax

(

𝜇𝛽0 𝑐 + 𝑅𝜗
(

𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)
)

)

+ 𝜉𝜇𝜉0

+ 𝐽 c
[

1
2𝐄

e ∶C(𝑐, 𝜉)[𝐄e]
]

+ 𝐸a𝜉2(1 − 𝜉)2 + 1
2
𝜆|∇𝜉|2.

(7.13)

emark 4. In the sections that follow we will take derivatives of the free energy 𝜓R given by (7.13) with respect to the concentration
f diffusing species 𝑐 and the reaction coordinate 𝜉. In doing so, we will neglect the derivative of 𝐽 𝑐 which is present in the
mechanical free energy 𝜓mR given by (7.9) with respect to those quantities. We note that derivatives of 𝐽 𝑐 will be multiplied by
a term which is quadratic in the mechanical logarithmic strains, in large part this motivates our neglect of this derivative. Given
the finite strain nature of this framework, it is possible for these quadratic terms to not be insignificant. Nonetheless, we chose to
ignore this particular derivative so as not to obfuscate the more relevant physics discussed next.

7.3. Stress

The elastic Mandel stress is obtained using (7.13) in (6.7) as

𝐌e = 2𝐺(𝑐, 𝜉)𝐄e +
(

𝐾(𝑐, 𝜉) − (2∕3)𝐺(𝑐, 𝜉)
)

(tr𝐄e)𝟏, (7.14)

and the Cauchy, Piola, and mechanical Mandel stresses are given by

𝐓 = 𝐽 e−1
[

2𝐺(𝑐, 𝜉)𝐄eH +
(

𝐾(𝑐, 𝜉) − (2∕3)𝐺(𝑐, 𝜉)
)

(tr𝐄eH)𝟏
]

,

𝐓R = 𝐽 c𝐅e−⊤𝐌e𝐅p−⊤,
𝐌m = 𝐅p⊤𝐌e𝐅p−⊤,

(7.15)

with 𝐄eH the spatial logarithmic elastic strain.

7.4. Chemical potential. Flux

Using (7.13) in (6.8), the chemical potential for the diffusing species is given by

𝜇 = (1 − 𝜉)𝜇𝛼0 + 𝜉𝜇𝛽0 + 𝑅𝜗 ln
( 𝑐
1 − 𝑐

)

− 𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

, (7.16)

where in writing the above we neglect contributions arising from derivatives of the elasticity tensor C with respect to 𝑐 since these
are quadratic in strain.

We specialize the flux of diffusing species to be isotropic and write (6.9) as

𝐣R = −𝑚̂(𝑐, 𝜉)∇𝜇, (7.17)

with the mobility 𝑚 given by

𝑚̂(𝑐, 𝜉) = 𝑚̂0(𝜉)𝑐(1 − 𝑐), with 𝑚̂0(𝜉) = (1 − 𝜉)𝑚𝛼0 + 𝜉𝑚
𝛽
0 > 0. (7.18)

Here 𝑚𝛼0 and 𝑚
𝛽
0 are related to the diffusivities through the standard relations

𝑚𝛼0 =
𝐷𝛼

0
𝑅𝜗

, and 𝑚𝛽0 =
𝐷𝛽

0
𝑅𝜗

, (7.19)

ith 𝐷𝛼
0 and 𝐷

𝛽
0 the diffusivity of the diffusing species in the unreacted and reacted phases, respectively.

.5. Reaction driving force and kinetics

As mentioned in the introduction, one of the objectives of this theoretical framework is to provide a thermodynamically consistent
ield treatment for chemical reactions, and the associated mechanical deformations, in solids. The general chemical reaction driving
orce  is given by (6.10), with the chemical potential 𝜇𝜉 of the reacted species given by (6.11). The chemical potential landscape
s conceptualized in Fig. 3. In this potential, we assume the generic reaction 𝐴 + 𝐶 → 𝐵 occurs through a process of the form

𝐴 + 𝐶 → 𝐴𝐶 → 𝐵 (7.20)

here we define a transition state 𝜓‡∕(𝑅𝜗) for the chemical reaction. As shown in the right of Fig. 3, the reaction evolves first
16

hrough A+C→ AC to reach the activated state, and subsequently through AC → B whereby the new 𝛽 phase forms. This treatment



Journal of the Mechanics and Physics of Solids 151 (2021) 104368A. Afshar and C.V. Di Leo

t
f

m
b
r

C

r
n
a

Fig. 3. Conceptual potential landscape for the chemical reaction. An atom leaves the unreacted 𝛼 phase of the reaction zone and moves to the vicinity of the
reacted phase in the activated state, A+C→ AC. Subsequently, the activated complex reacts forming the additional 𝛽 phase, AC → B. Additional diffusing atoms
are present in both phases.

is motivated on the theory of chemical kinetics formulated by Bazant and co workers (Bazant, 2013), and is adopted here for a field
reatment in continuum mechanics with mechanical coupling. A different formulation of stress modulating rate kinetics can also be
ound in the work of Ghasemi and Gao (2020).
Thus, the overarching idea is that there is a global driving force between the chemical potentials of the reacted and unreacted
aterials (𝜇𝜉0 − 𝜇

𝛼
0 ) which drives the reaction forwards (or backwards) and a local driving force due to the transition state energy

arrier, characterized by 𝐸a in (7.13), which drives the reaction towards the local minima. These terms are further detailed with
espect to the final specialized form of the driving force.
Using (7.13) in (6.11) yields 𝜇𝜉 as

𝜇𝜉 =
𝑐Dmax
𝑐Rmax

(

−𝜇𝛼0 + 𝜇𝛽0
)

𝑐 + 𝜇𝜉0 +
𝑑
𝑑𝜉

(

𝐸a𝜉2(1 − 𝜉)2
)

− 𝐽 𝑐𝜉𝐌m ∶𝐍𝛽,𝑅 − Div (𝜆∇𝜉). (7.21)

ombining (7.21) along with 𝜇 from (7.16) in (6.10) yields

 = 𝜇𝜉 − 𝜇

=
𝑐Dmax
𝑐Rmax

(

−𝜇𝛼0 + 𝜇𝛽0
)

𝑐 + 𝜇𝜉0 +
𝑑
𝑑𝜉

(

𝐸a𝜉2(1 − 𝜉)2
)

− 𝐽 𝑐𝜉𝐌m ∶𝐍𝛽,𝑅 − Div (𝜆∇𝜉)

− (1 − 𝜉)𝜇𝛼0 − 𝜉𝜇𝛽0 − 𝑅𝜗 ln
( 𝑐
1 − 𝑐

)

+ 𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷
)

,

(7.22)

which after rearranging may be written in the following useful form

 = 𝜇𝜉 − 𝜇

= 1
𝑐Rmax

(

𝑐 − 𝜉
)(

𝜇𝛽0 − 𝜇𝛼0
)

+ (𝜇𝜉0 − 𝜇
𝛼
0 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energetic

+ 𝑑
𝑑𝜉

(

𝐸a𝜉2(1 − 𝜉)2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
activation barrier

−𝑅𝜗 ln
( 𝑐
1 − 𝑐

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
entropic

+ 𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷 − 𝜉𝐍𝛽,𝑅
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mechanical

− Div (𝜆∇𝜉)
⏟⏞⏞⏟⏞⏞⏟
numerical

regularization

(7.23)

In (7.23) we have identified the following therms. The first two terms represent the energetic difference between the species,
comprising two distinct effects: (i) (𝜇𝛼0 − 𝜇𝛽0 ) denotes the difference between reference potentials of the species diffusing in the
reacted and unreacted phase. Physically, this term captures the fact that the reaction driving force may be influenced by the diffusion
reference potentials since it may be energetically preferable from a diffusion perspective to react to a phase which has lower reference
potential for diffusion. Similarly, this term may retard the reaction if the converse is true. (ii) (𝜇𝜉0−𝜇

𝛼
0 ) denotes the difference between

eference potentials of the species diffusing in the unreacted material and the species which is a part of the reacted compound, and
aturally drives the reaction forward if the chemical potential of the reacted compound is lower. This whole energetic term acts as
global driving force. In order to gain more insight on the nature of this term, we consider two special cases:

• Case 1: 𝜇𝛼0 = 𝜇𝛽0 which implies that the reference potentials for diffusion in both phases are equal at a material point.
Conceptually, this means there is no energetic preference for the species diffusing in either phase and hence there is no
17
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energetic contribution towards enhancing or retarding the reaction. In this particular case, the energetic term in (7.23) reduces
to (𝜇𝜉0 − 𝜇

𝛼
0 ) and it is only the difference in reference potentials between the diffusing species and the species which is part of

the reacted compound that governs the energetic term.
• Case 2: 𝜇𝛽0 = 𝜇𝜉0 which implies that the reference potential for the species is the same whether it is diffusing through the reacted
phase or part of the reacted compounds. In this particular case, the energetic term in (7.23) reduces to

(

𝑐∕𝑐Rmax + (1 − 𝜉)
)

(𝜇𝜉0 −
𝜇𝛼0 ), which has a form familiar in the literature. In the chemo-mechanics literature, one usually finds a term of the form 𝐻(1−𝜉)
introduced through a harmonic free energy of the form (1∕2)𝐻(1− 𝜉)2 as first proposed by Ulm et al. (2000) and subsequently
adopted in a number of publications (cf. Loeffel and Anand, 2011; Konica and Sain, 2020; Cui et al., 2020; Zhao et al.,
2019a). Here, this term arises naturally without the introduction of the ‘‘chemical modulus’’ 𝐻 , as the energetic difference
between unreacted and reacted states. A particular benefit, as used in Section 9, is that this modulus may be determined
in straightforward fashion from experimentally measured energies for any given reaction. To be in line with the published
literature, this is the special case we will use for our numerical simulations in Section 9.

The second term is an activation energy barrier associated with the energy of the transition state, and characterized by the energy
𝐸a. This term has a significant impact on the sharp-interface nature of the reaction front. This term acts as a local driving force for
the chemical reaction and drives the reaction towards the two energy minima. The energy 𝐸a in this term may also be determined
experimentally or from ab initio calculation for a given chemical reaction.

The third term captures the role of configurational entropy and drives the reaction towards maximum entropy. The fourth term
captures the effect of mechanical stress on the reaction driving force. The final term in (7.23) arises from the gradient phase-field
nature of the theory and regularizes the interface width, setting a minimum width controlled by 𝜆.

Remark 5. The theoretical framework summarized in Section 6 above and specialized here, can also be considered as a special
case, under specific constraints, of a more general framework in which one treats the diffusion of species through the 𝛼 and 𝛽 phases
of unreacted and reacted material separately. Specifically, Appendix A demonstrates that the framework presented here is a limiting
case of the more general formulation under two conditions that the chemical potentials of the diffusing species in the two phases
are in equilibrium, and the concentration of diffusing species within the material point is uniformly distributed. □

An additional feature of the reaction driving force  in (7.23) is that in order for the dissipative constraint (5.12)1 to hold,
here is a critical concentration of the diffusing species below which the reaction will not initiate. The existence of such a threshold
oncentration is shown by first principles calculations in the work of Wan et al. (2010), and is reproduced here from a continuum
thermodynamics approach. The critical concentration for reaction initiation, 𝑐crt, is found by solving (7.23) for the case of  = 0.
As a demonstration, consider the stress-free case 𝐌m = 𝟎 where in addition we assume no gradients ∇𝜉 = 0. For such a case, the
critical concentration 𝑐crt depends on the difference (𝜇𝜉0 − 𝜇

𝛼
0 ) and the ratio 𝑐

D
max∕𝑐

R
max. The specific values are shown in Fig. 4. As

expected, for the case of (𝜇𝜉0 − 𝜇
𝛼
0 )∕(𝑅𝜗) = 0 the critical concentration depends only on the entropic part of (7.23) and is equal to

𝑐crt = 0.5, which corresponds to the maximum entropy of an ideal mixture. As (𝜇𝜉0 − 𝜇
𝛼
0 )∕(𝑅𝜗) increases, the critical concentration

drops rapidly, which is the case for most experimentally relevant reactions.
Having discussed the reaction driving force  , we now specify the reaction kinetics equation. We now restrict ourselves to

modeling only forward reactions (i.e. 𝜉̇ > 0). The simplest form of the reaction kinetics which satisfies the dissipative constraint
(5.12)1 is a linear relationship of the form

𝜉̇ =

{

−𝑅0 , if 𝜉 < 0,
0, if 𝜉 = 1,

(7.24)

Fig. 4. Critical concentration for reaction initiation, 𝑐crt, as a function of energetic difference (𝜇𝜉0 − 𝜇
𝛼
0 ), plotted for both the case of (𝜇

𝛼
0 = 𝜇𝛽0 ) and the case of

𝜇𝛽0 = 𝜇𝜉0). For the case of (𝜇
𝛽
0 = 𝜇𝜉0), the critical concentration depends also on the maximum reaction to diffusion concentrations ratio, 𝑐Dmax∕𝑐Rmax. For most

ractical chemical reactions, the energetic difference (𝜇𝜉0 − 𝜇
𝛼
0 ) is much larger than thermal energy 𝑅𝜗.
18
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with 𝑅0 > 0 a positive reaction rate constant.

Remark 6. Although, for simplicity, a linear relationship as shown in (7.24) is used here, the theoretical framework is general and
may accommodate any form of non-linear kinetics which satisfies the dissipative constraint (5.12)1. For example one may define
forwards and backwards non-linear reaction kinetics of the form

𝜉̇ =

⎧

⎪

⎨

⎪

⎩

𝑅0→

(

exp
(−𝛼
𝑅𝜗

)

− 1
)

if  < 0,

𝑅0←

(

1 − exp
(

(1 − 𝛼)
𝑅𝜗

))

, if  > 0,
(7.25)

where 𝑅0→ and 𝑅0← are forward and backward reaction rates, and 𝛼 ∈ (0, 1) is a symmetry factor. For the particular case of
𝑅0 = 𝑅0→ = 𝑅0← this yields

𝜉̇ = 𝑅0

(

exp
(−𝛼
𝑅𝜗

)

− exp
(

(1 − 𝛼)
𝑅𝜗

))

. (7.26)

hich is the well-known Butler–Volmer kinetics. Further, we note that while in this work we only simulate forward reactions in
he numerical examples provided in Section 9, both backward and forward reaction may be captured using the kinetics shown in
7.25) with the additional condition that 𝜉̇ = 0 if 𝜉 = 0 or 𝜉 = 1.

7.6. Plastic constitutive equations

Here we utilize the classical J2 plasticity theory. We adopt the classical codirectionality hypothesis whereby the plastic flow
direction 𝐍p is codirectional with the deviatoric elastic Mandel stress 𝐌e

𝐍p =
𝐌e

0
|𝐌e

0|
, and hence 𝐃p = 1

√

2
𝜈p

𝐌e
0

|𝐌e
0|
, (7.27)

where we have used (6.4). We define an equivalent shear stress

𝜏p
def
= 1

√

2
|𝐌e

0|, (7.28)

uch that the constitutive equation for the microforce balance (4.19)2 may be written as

𝜏p = 𝑌 (𝛾̄𝑝) when 𝜈p > 0, (7.29)

here 𝑌 (𝛾̄𝑝) > 0 is the yield stress of the material, taken here to depend only on the equivalent plastic shear strain 𝛾̄𝑝. In combination
hese satisfy the constraints (6.5) arising from the dissipation inequality. The loading–unloading condition naturally follows as

𝜈p ≥ 0, 𝑓 ≤ 0, 𝜈p𝑓 = 0, (7.30)

where 𝑓 = 𝜏p − 𝑌 (𝛾̄𝑝) is the yield function. Finally, the consistency condition of (7.30) can be written as

𝜈p ̇𝑓 = 0 when 𝑓 = 0. (7.31)

8. Governing partial differential equations for the specialized constitutive equations. Boundary conditions

The final set of governing partial differential equations consist of:

1. The local macroscopic force balance, Eq. (6.12), viz.

Div𝐓R + 𝐛R = 𝟎, (8.1)

where 𝐓R given by (7.15)2, and 𝐛R is the non-inertial body force.
2. The local mass balance for the diffusing species (6.13) which together with the flux (7.17) gives

𝑐̇ = Div (𝑚∇𝜇) − 𝜉̇ (8.2)

with the mobility 𝑚 given in (7.18), the chemical potential in (7.16) and the reaction kinetics governed by the PDE (8.3)
below.

3. The reaction kinetics are governed by (7.24) which using the driving force (7.23) for the special case 𝜇𝛽0 = 𝜇𝜉0 yields the
governing PDE for the reaction kinetics as

𝜉̇ = −𝑅0 , with

 =

(

𝑐Dmax
𝑐Rmax

𝑐 + (1 − 𝜉)

)

(𝜇𝜉0 − 𝜇
𝛼
0 ) +

𝐸a

𝑐Rmax
(2𝜉 − 6𝜉2 + 4𝜉3) − 𝑅𝜗 ln

( 𝑐
1 − 𝑐

)

+ 𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷 − 𝜉𝐍𝛽,𝑅
)

− Div (𝜆∇𝜉),

(8.3)

which in this particular framework is a PDE due to the presence of the Div (∇𝜉) term in the driving force  . Following (7.24),
these kinetics also obey the condition 𝜉̇ = 0 when 𝜉 = 1, which marks the end of the reaction.
19
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Finally, we need initial and boundary conditions to complete the model. We define 1 and 2 to be complementary subsurfaces
f the boundary 𝜕B of the body B, i.e. 𝜕B = 1 ∪ 2 and 1 ∩ 2 = ∅. In a similar fashion, 𝜇 and 𝐣 are defined as complementary
subsurfaces of the boundary: 𝜕B = 𝜇 ∪ 𝐣 and 𝜇 ∩ 𝐣 = ∅, and finally let 𝜉 and 𝜂 are also complementary subsurfaces of the
boundary: 𝜕B = 𝜉 ∪𝜂 and 𝜉 ∩𝜂 = ∅. In a time interval 𝑡 ∈ (0, 𝑇 ) then the deformation is specified on 1 and the surface traction
n 2 as:

𝝌 = 𝝌̆ on 1 × (0, 𝑇 ),

𝐓R𝐧R = 𝐭̆R on 2 × (0, 𝑇 );

}

(8.4)

hile the chemical potential is specified on boundary 𝜇 and the species flux on boundary 𝐣

𝜇 = 𝜇̆ on 𝜇 × (0, 𝑇 ),

𝐣R ⋅ 𝐧R = 𝑗R on 𝐣 × (0, 𝑇 );

}

(8.5)

nd similarly the reaction is specified on boundaries 𝜉 and the wetting boundary condition on 𝜂 .

𝜉 = 𝜉 on 𝜉 × (0, 𝑇 ),

𝜆∇𝜉 ⋅ 𝐧R = 𝜂̆ on 𝜂 × (0, 𝑇 ).

}

(8.6)

he initial conditions is also written as

𝝌(𝐗, 0) = 𝝌0(𝐗), and 𝜇(𝐗, 0) = 𝜇0(𝐗) and 𝜉(𝐗, 0) = 𝜉0(𝐗) in B. (8.7)

he coupled set of PDEs (8.1)–(8.3), along with boundary conditions (8.4)–(8.6), and initial conditions (8.7) give an initial/boundary-
value problem for the unknowns of motion 𝝌(𝐗, 𝑡), the chemical potential 𝜇(𝐗, 𝑡), and the extent of the reaction 𝜉(𝐗, 𝑡).

9. Numerical simulations

In this Section we detail a set of numerical simulations aimed at both highlighting the important features of our theoretical frame-
work and addressing an engineering problem of relevance. The theoretical framework is implemented in Abaqus Standard (Simulia,
2010) with a custom user-element (UEL) subroutine. In order to make the theoretical framework more amenable to numerical
implementation, we have utilized the so called ‘‘micromorphic’’ formulation (cf. Forest, 2009; Di Leo et al., 2014; Di Leo, 2015)
where an auxiliary variable is introduced to ease numerical convergence. Complete details of the numerical implementation are
presented in Appendix B. We emphasize that the use of this particular numerical technique does not affect the numerical results and
produces equivalent outputs as would be generated with a direct implementation of the coupled PDEs in question.

We present three sets of numerical simulations in the subsequent sections. In Section 9.1 we present simulations which are purely
chemical (i.e. no mechanical deformation or stress generation) to demonstrate the manner in which the theory captures the formation
and evolution of sharp reaction interfaces which are either kinetically or thermodynamically driven. In Section 9.2 we address an
engineering problem of relevance, namely we perform three-dimensional simulations of the reaction of FeS2 crystals with either
Li or Na ions. In particular, we demonstrate the manner in which the theoretical framework may be calibrated in straightforward
fashion. Subsequently, we demonstrate the role of mechanical deformation and stress on determining the morphology of reaction
front with good qualitative agreement with experiments. Finally, in Section 9.3 we present a set of numerical results to elucidate
the role and importance of surface wetting (surface energy) boundary conditions in modeling the aforementioned FeS2 crystals
undergoing chemical reactions.

9.1. Modeling sharp interface reactions in the absence of mechanical coupling

In this section we focus on purely chemical (i.e. diffusion–reaction) simulations and neglect all mechanical deformation and
stress terms in the theoretical framework. Here we demonstrate the mechanisms which control the formation of a sharp interface
during the diffusion–reaction process. In particular, we explore the manner in which reaction vs. diffusion kinetics affect sharp
interface formation and the role of the energy barrier introduced in the free energy. We model a quarter of a two-dimensional
square simulation domain and mesh it with 10 000 elements. Consistent with modeling a quarter simulation domain, elements on
the external boundaries are prescribed a constant flux while elements on the mirrored (internal) boundaries are prescribed zero
flux. So as to focus on the terms controlling sharp interface reaction kinetics, in this section we apply zero wetting (surface energy)
boundary conditions (i.e. 𝜂 = 0 in (8.6)2). The energetic driving force and ratio of maximum species hosted through diffusion and
consumed during the reaction in (7.23) are taken as

𝜇𝜉0 − 𝜇
𝛼
0

𝑅𝜗
= 5 and

𝑐Dmax
𝑐Rmax

= 1, (9.1)

ith 𝑅𝜗 the thermal energy. To characterize the diffusion kinetics, reaction kinetics, and the activation energy barrier we introduce
he non-dimensional quantities

𝑅0𝐿2
and 𝐸a

R , (9.2)
20
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where 𝑅0 is the reaction rate in (7.24), 𝐷0 is the diffusivity in (7.19) and assumed here to be the same for reacted and unreacted
materials, 𝐿 is the length of the simulation domain, 𝐸a is the activation energy in (7.23), 𝑅𝜗 is the thermal energy with 𝑅 the
gas constant and 𝜗 the absolute temperature, and 𝑐Rmax is the maximum molar concentration of species consumed during chemical
reaction. The quantity (𝑅0𝐿2)∕𝐷0 controls the ratio of reaction to diffusion kinetics, while the quantity 𝐸a∕(𝑅𝜗𝑐Rmax) controls the
magnitude of the activation energy barrier.

We consider here two regimes for the formation of a sharp interface during a diffusion–reaction process. The first regime, termed
‘‘kinetically controlled’’, occurs when the diffusion–reaction problem is diffusion limited, that is when the reaction kinetics are much
faster than the diffusion kinetics. This regime will naturally result in a sharp interface as there is no time for the diffusing species to
transport beyond the reaction front and form a wide interface. This regime is most often used in the literature as the mechanism
for producing a sharp interface (cf. Konica and Sain, 2020; Loeffel et al., 2013; Zhao et al., 2019a). Such a regime is shown in
Fig. 5(a) where we set 𝐸a∕(𝑅𝜗𝑐Rmax) = 0 and consider simulations with increasing values of (𝑅0𝐿2)∕𝐷0. The first simulation with
𝑅0𝐿2)∕𝐷0 = 0.01 does not form a sharp interface. As we increase this ratio and the kinetics of reaction becomes faster, we form a
harp interface. Past the value of (𝑅0𝐿2)∕𝐷0 = 1 considered here, the width of the sharp interface remains constant and is determined
y the 𝜆 parameter in (7.23) which is introduced for numerical regularization so as to maintain an interface of finite width. While
his regime is physical in nature – that is some systems will have reaction kinetics which are faster than diffusion kinetics – not all
roblems of relevance which exhibit sharp interface reactions (including the one considered in Section 9.2) have reaction kinetics
hich are faster than diffusion.
We now consider the second regime, termed ‘‘thermodynamically controlled’’, which occurs when the activation energy

ntroduced through 𝜓𝜉R in (7.8) becomes significant. In such a regime, a sharp interface may form even when the reaction kinetics are
luggish and are the limiting process in the diffusion–reaction physics. In this regime a sharp interface is formed when the height of
he potential barrier is significantly larger than the thermal energy. This regime is shown in Fig. 5(b) where we set (𝑅0𝐿2)∕𝐷0 = 0.01
nd consider simulations with increasing values of 𝐸a∕(𝑅𝜗𝑐Rmax). The first simulation with 𝐸a∕(𝑅𝜗𝑐Rmax) = 0 is identically equal to its
ounterpart in Fig. 5(a) above and as such does not produce a sharp interface. However now, as we increase 𝐸a∕(𝑅𝜗𝑐Rmax) – while
aintaining the kinetics fixed at a ratio which would not produce a sharp interface – we can see the formation of a sharp interface
t 𝐸a∕(𝑅𝜗𝑐Rmax) = 20. Again, above values of 𝐸a∕(𝑅𝜗𝑐Rmax) = 20, the width of the interface is governed by the 𝜆 parameter in (7.23).
As discussed in Section 9.2, a large family of relevant solids undergoing sharp-interface reactions for applications in energy

torage and conversion electrodes belong to the family in which the reaction kinetics are sluggish (cf. Boebinger et al., 2018;
hang et al., 2015). In this class of reactions the sharp interface is governed by the height of the thermodynamic energy barrier as
e have introduced in our theoretical framework. The developed theoretical framework fills this gap in the available continuum
hemo-mechanics treatment of reaction–diffusion–deformation problems.
Finally, one additional crucial consideration is with regards to anisotropy. Some sharp interface reactions occur with an

nisotropic reaction front (cf. Liu et al., 2011; Lee et al., 2012). The physics controlling that front may arise for example from
nisotropies in the manner in which the reaction occurs, rather than anisotropies in the diffusivity of the species. If a sharp interface
rises in the kinetically controlled regime anisotropies in the reaction rate will not impact the actual morphology of the interface since

Fig. 5. Diffusion–reaction (no mechanics) sharp interface simulations in a two-dimensional domain. (a) Shows the formation of a sharp interface in the kinetically
driven regime where the reaction rate is significantly faster than the diffusion kinetics. (b) Shows the formation of a sharp interface in the thermodynamically
driven regime where the activation energy is much larger than the thermal energy.
21
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diffusion is the limiting factor. On the other hand, if one wants to model an anisotropic reaction front that is thermodynamically
driven, one cannot rely on anisotropy in diffusion kinetics as it is not the limiting factor in this regime. An anisotropic reaction front
morphology arising from anisotropic reaction kinetics will be demonstrated in Section 9.2.

9.2. Modeling chemo-mechanics of sharp interface reactions in FeS2 conversion electrodes

In this Section we apply our theoretical framework to an engineering problem of relevance, namely the modeling of conversion
electrode materials for next generation energy storage. In particular, we focus on the reaction of FeS2 crystals with different ions
s recently experimentally studied by Boebinger et al. (2018). Through this modeling we also highlight the role of mechanics in
he chemo-mechanical modeling of these materials with a particular emphasis on how mechanics changes the morphology of the
eaction interface. In turn, the morphology of the interface is critical for it largely dictates the manner in which stresses are generated
nd can subsequently lead to failure of the host material during the reaction process.
As shown in Fig. 6, Boebinger et al. (2018) observed that in the case of reaction of FeS2 with the ‘‘small’’ Li ions (left figure)

the morphology of the interface was particularly sharp (concave) and significant fracture occurred. In contrast, they observed that
when reacting FeS2 with the ‘‘large’’ Na ions (right figure), the morphology of the interface was smoother (convex) and significantly
less fracture was observed in the electrode. This observation is significant since reaction of FeS2 with Li leads to volume changes of
approximately 180% whereas reaction with Na leads to changes of approximately 330%. One would thus expect mechanical failure
to be more prevalent in the reaction with Na ions; however, the opposite was experimentally observed. Importantly, both reactions
proceed through the formation and propagation of a sharp interface.

In order to model the diffusion–reaction–deformation behavior of these crystals we consider a three-dimensional (3D) cubic
crystal measuring 40nm in each side. We discretize one-eight of the crystal with a finite element mesh and appropriate symmetry
boundary conditions. Fig. 7 shows the 20 × 20 × 20 nm cube simulation domain which is discretized with 10 585 brick elements
(approximately 20 × 20 × 20 elements per side). The exterior edges of the crystal are slightly filleted to avoid numerical convergence
issues at the early stages of the simulation when the reaction front first forms. We apply a constant flux and zero traction boundary
conditions on the faces {𝐴,𝐵, 𝐶} shown in Fig. 7, the remaining faces have symmetry boundary conditions. The magnitude of the
applied flux was chosen to fill the simulation domain with 𝑐 = 𝑐Dmax+𝑐

R
max moles of species in approximately one hour. The numerical

value is given by 𝐣R = 0.75 ⋅ 10−6mol/m2∕s2.
As discussed in the introduction, and detailed in Section 9.3, wetting (surface energy) boundary conditions are critical in

obtaining experimentally relevant reaction morphologies. Here on faces {𝐴,𝐵, 𝐶} we apply a constant surface energy by prescribing

𝜂 = 𝜆∇𝜉 ⋅ 𝐧R = 10 Jμm∕mol (9.3)

as a boundary condition for the PDE governing the reaction kinetics (8.3). In the absence of experimental or ab-initio data yielding
the precise value, here this value was chosen by trial and error to provide sufficient surface wetting to capture the experimentally
observed reaction morphologies. The prescribed value corresponds to a surface energy of 𝜂𝑐Rmax = 0.8 J∕m2, which is in the order of
magnitude expected for solid surface interfaces (cf. Cogswell and Bazant, 2013).

The reaction being modeled proceeds as follows

FeS2 + 4M → Fe + 2M2S (9.4)

where M is a placeholder for either Li or Na ions. It is worth noting here that we treat the whole network of iron and ion-sulfide on
the right hand side as one product phase. In other words, subsequent phase separation of iron in the product phase is not modeled
and is outside the scope of this work.

We make the following assumptions in further specializing the theory described in Section 7 to this particular problem. On the
chemical expansions, we take all chemically induced deformations to be due to reaction, and neglect volume changes due to the

Fig. 6. Lithiation vs. sodiation of FeS2 crystals. Although lithiation produces smaller overall reaction induced deformations, the morphology of the reaction front
s significantly sharper and results in significant fracture. sodiation proceeds with a reaction front morphology which is blunter and significantly less fracture is
bserved.
ource: Reproduced and adapted with permission from Boebinger et al. (2018).
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Fig. 7. Three-dimensional simulation domain for one-eighth of an FeS2 nano particle. Constant flux, zero traction, and constant wetting boundary conditions are
applied on the {𝐴,𝐵, 𝐶} face shown. On the remaining three faces we apply symmetry boundary condition (i.e. no displacement in the perpendicular direction
to the face, zero flux, and zero wetting).

diffusion, that is 𝐃𝛼,𝐷 = 𝐃𝛽,𝐷 = 𝟎. For the plastic behavior we employ a standard rate-independent elastic–plastic Mises flow rule as
escribed in Section 7.6. The yield function is given as

𝑌 = 𝑌0 +𝐻𝛾̄𝑝 (9.5)

ith yield strength 𝑌0 and linear hardening coefficient 𝐻 (for similar works using Mises theory in the context of energy storage
hemo-mechanics, cf. Brassart and Suo, 2013; Hofmann et al., 2020, and Zhao et al., 2011a). The specific material properties are
isted in Table 1, and we note the small amount of linear hardening introduced is used to ease numerical convergence.
The reaction–diffusion portion is identically equal to that presented in Section 7 with one modification to account for the

nisotropic nature of the reaction. We introduce an anisotropy of the reaction rate motivated by the experimental observations
f Boebinger et al. (2018). We implement this anisotropy by multiplying the reaction rate 𝑅0 by the following factor

(1 − 3𝛿)
(

1 + 4𝛿
1 − 3𝛿

(

𝑛4𝑥 + 𝑛
4
𝑦 + 𝑛

4
𝑧

))

(9.6)

where (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) are cosine directions normal to the reaction front, obtained from ∇𝜉∕|∇𝜉|. The parameter 𝛿 controls the strength
of the anisotropy and we have calibrated this to 0.25 to reproduce the experimentally observed reaction fronts. The form of the
anisotropy function in (9.6) is taken from Wang and Inatomi (2010) where it was employed for phase field modeling of anisotropic
rowth of crystals.
Material parameters are listed in Table 1. The chemical properties were determined as follows:

• The diffusivity of lithium ions in FeS2 was reported in the experiment by Tao et al. (2016) and is presumed here to be the
same for both reacted and unreacted phases. The same diffusivity is also used for sodium as its diffusivity was not readily
available in the literature.

• The reaction rate 𝑅0 is estimated from the experimental observations in Boebinger et al. (2018), by measuring the size of the
internal FeS2 crystal (unreacted phase) at different times.

• The energetic driving forces 𝜇𝜉0 and 𝜇𝛼0 are computed based on the energies of formation of the individual compounds with
the assumption of zero energy of formation for the solid Fe and the diffusing species. This value is on the order −500 to
−600 kJ/mol, orders of magnitude higher than the thermal energy which is 2.5 kJ/mol at room temperature.

• The maximum concentration of diffusing species is given by 𝑐Dmax = 𝜙𝜌FeS2 2∕FeS2 2 with 𝜌FeS2 2 the mass density of the host,
FeS2 2 the molar mass of the host, and 𝜙 the number of sites available. We use here 𝜙 = 8 due the cubic structure of the FeS2
crystal.

• The maximum concentration of reacted species is given by 𝑐Rmax = 2𝜌FeS2 2∕FeS2 2, where the coefficient 2 is the stoichiometric
amount of M in the reacted product in reaction (9.4).

• The experimental observations of Boebinger et al. (2018) on the observed volume changes yield that 𝛺Li
𝜉 𝑐

R
max = 1.8 and

𝛺Na
𝜉 𝑐Rmax = 3.3 which using the calibrated value for 𝑐Rmax yield the partial molar volumes as 𝛺Li

𝜉 = 22 μm33∕mol and

𝛺Na
𝜉 = 40 μm33∕mol.

• The energetic barrier 𝐸a = 4 ⋅ 106 kJ/m3 is taken from the works of Wan et al. (2010) and Zhao et al. (2011b), where it was
calculated for lithium insertion in Silicon using first principles. We use the same energetic barrier here for lithium and sodium
in FeS2 since the specific values were not readily available in the literature.

• The anisotropic factor 𝛿 in (9.6) is calibrated based on the experimental observations of Boebinger et al. (2018).
The above highlights an important feature of our theoretical framework which is that due to the thermodynamically consistent

formulation, almost all parameters for the chemical portion of the theoretical framework discussed above can be found experimentally
23
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Table 1
Material properties for the fully coupled reaction–diffusion–deformation theory.

Parameter Value Source

Chemical 𝐷0 2 × 10−16 m2/s Tao et al. (2016)

𝑅0 10−3 1/s Boebinger et al. (2018)

𝜇𝛼0 −167 KJ/mol Chase Jr (1998)

𝜇𝜉0(Li2S) −447 KJ/mol Greenwood and Earnshaw (1997)

𝜇𝜉0(Na2S) −370 KJ/mol Raberg (2007)

𝑐Dmax = 8 𝜌FeS2/FeS2 0.32 ⋅ 106 mol/m3 Set by crystal structure

𝑐Rmax = 2 𝜌FeS2/FeS2 0.08 ⋅ 106 mol/m3 Set by stoichiometry

𝜌FeS2 5.0 g/cm3 PubChem Database (2005)

FeS2 120 g/mol PubChem Database (2005)

𝛺Li
𝜉 𝑐

R
max 1.8 Boebinger et al. (2018)

𝛺Na
𝜉 𝑐Rmax 3.3 Boebinger et al. (2018)

𝐸a 4 ⋅ 106 KJ/m3 Wan et al. (2010)

𝛿 3 Calibrated
Mechanical EpristineFeS2

30 GPa Boebinger et al. (2018)

EreactedFeS2
20 GPa Boebinger et al. (2018)

𝜈FeS2 0.3 Boebinger et al. (2018)

𝑌0 1.5 GPa Boebinger et al. (2018)

𝐻 1.0 GPa

Numerical 𝜆 10.0 nJμm5/mol2

or from ab-initio simulations (the only exception being the anisotropic reaction rates). That is, the theoretical framework may be
calibrated in straightforward fashion and as such should prove useful in application to a number of engineering problems of
relevance. Finally, we note that based on the material properties above, the non-dimensional parameter (𝑅0𝐿2)∕𝐷0 is equal to
0.008 for a 40nm length scale. As such, for this system the sharp interface is predominantly thermodynamically driven, and would not
occur in the absence of the activation energy.

The mechanical properties were extracted predominantly from the work of Boebinger et al. (2018). The Elastic modulus
reported there was measured using nano-indentation for both pristine and reacted phases of FeS2 crystal. We chose here to use
he average of the two reacted Young’s modulus in simulation and assume a constant Poisson’s ratio. Further, following their work,
he yield stress is simply assumed to be 5% of Elastic modulus. The interfacial energy parameter 𝜆 in (7.23), which is introduced
or numerical regularization, was chosen as 𝜆 = 8.0 nJμm5/mol2. This was determined through simulations to provide a minimum
nterface width of approximately 2 nm, which could then be discretized with sufficient finite elements so as to provide accurate
umerical results with the computational resources available.
Fig. 8 shows isocontours of the reaction coordinate 𝜉 over time in (a) the one-eight simulation domain, (b) mirrored about

wo planes (representing a view cutting through the center of the crystal), and (c) of the fully-mirrored domain. In Fig. 8(a), the
ndeformed exterior of the simulation domain is shown with a dashed line while the deformed exterior is shown with a solid line.
e can observe the manner in which a sharp anisotropic reaction forms and evolves over time with the accompanying large reaction
nduced deformations. We note throughout the simulation the sharp, concave-like, lithiation morphology which is also observed in
he corresponding lithiation experiments of Boebinger et al. (2018) shown in the left of Fig. 6.
More importantly we now wish to compare the difference between lithiation and sodiation using our theoretical framework and

umerical implementation. We note that the only parameter of relevance that changes between these two simulations is the partial molar
olume 𝛺𝜉 which is almost twice as large for the case of sodiation over lithiation. The energy of formation 𝜇

𝜉
0 is also slightly different

or these two materials but this does not have major impact on the simulation results.
Fig. 9 compares the evolution of the reaction front between (a) lithiation and (b) sodiation. We can clearly observe that

he morphology of the reaction front changes drastically. This change is due to the complex coupling between mechanical
eformations/stress and reaction kinetics as captured through the reaction driving force  in (7.23). Increasing the molar volume 𝛺𝜉
ot only increases the amount of reaction induced deformations, it also generates a different stress field and a different magnitude
f stress-coupling with the reaction kinetics which acts to ‘‘blunt’’ the sharp corners of the reaction front.
The phenomena is further illustrated in Fig. 10(a–b) where we show a side view of the inside of the crystal and visualize

socontours of the reaction coordinate 𝜉 for (a) lithiation and (b) sodiation. Note here we have chosen to compare simulation results
ith the reaction front at similar locations, rather than at a fixed time. Comparing (a) and (b) in Fig. 10, we can clearly observe that
he theoretical framework – by varying only the partial molar volume 𝛺𝜉 – reproduces the experimental observation of Boebinger
t al. (2018) whereby FeS2 reactions with Li lead to a sharp (concave-like) reaction front while reactions with Na lead to a blunt
convex-like) reaction front. The arrows in Fig. 10 show the good qualitative agreement between the simulation results and the TEM
mages of Boebinger et al. (2018), where we highlight that in addition to capturing the correct morphology of the reaction front,
he simulations also capture the manner in which the external reacted surfaces change between lithiation and sodiation. We note
24
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Fig. 8. Isocontours of reaction coordinate 𝜉 with (a) showing the one-eight simulation domain, (b) mirrored about two planes, and (c) the fully-mirrored domain.

Fig. 9. Isocontours of reaction coordinate 𝜉 with (a) showing the lithiation simulation and (b) showing the sodiation simulation.

once again that the only simulation parameter of relevance varied between these simulations is the partial molar volume 𝛺𝜉 . The strength

of the reaction anisotropy, as prescribed through (9.6), is the same for both simulations.
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Fig. 10. Isocontours of reaction coordinate 𝜉 in the inside of the crystal for (a) lithiation, (b) sodiation, and (c) sodiation without the effect of stress on the
reaction driving force. Comparing (a–b) shows that although sodiation experiences larger volumetric expansions, the stress-coupling leads to a blunter reaction
front. Comparing (b–c) shows that the effect of stress coupling drives the blunting of the reaction front in the sodiation simulations.

The blunting effect arises from the fact that the sodiation simulation with larger reaction induced deformations has significantly
stronger coupling between mean tensile stresses and reaction rate at the corners of the simulation domain which in turn accelerates
the reaction at those corners and leads to a blunter reaction front. The coupling arises from the stress effect in the reaction driving
force  given in (7.23). To illustrate the importance of this coupling, Fig. 10(b–c) compares two sodiation simulations with (b) the
fully-coupled chemo-mechanical simulation, and (c) an uncoupled simulation. In Fig. 10(c) we have removed the stress effect term

𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷 − 𝜉𝐍𝛽,𝑅
)

= 1
3
(𝛺𝜉𝜉)tr𝐌m

from the reaction driving force  in (7.23). As can be observed in Fig. 10(c), removing the stress effect on the reaction driving force
leads to a return to sharp concave-like reaction front even for the case of sodiation. Further, note that the stress coupling arises
not just from the stress field through the tr𝐌m term above, but also through the magnitude of 𝛺𝜉 which multiplies the stress. As
such, the sodiation simulations need not produce significantly larger stresses, when compared to lithiation, to lead to blunting since
they have larger 𝛺𝜉 values. This confirms our observation that stress-coupling plays a critical role in determining the shape of the sharp
interface reaction front.

Finally, it is important to note that our simulation framework demonstrates the possibility that mechanics plays a critical role
in the development and evolution of the reaction front morphology in FeS2 crystals. However, this does not exclude the possibility
that the blunting of the reaction front observed experimentally during sodiation may arise from a number of combined mechanisms,
including possible variations in material properties such as reactivity, activation energy, and yield stress between Li and Na in FeS2.
Further careful experimentation is necessary to definitively sort out the contributions from mechanics to those of chemistry in this
class of problems. Nonetheless, the results shown here serve to demonstrate the capabilities of the general theoretical framework
developed in this work and in particular the manner in which it may be calibrated and applied to an engineering problem of
relevance in a straightforward fashion.

We finish this set of simulation results by briefly discussing the development of stresses and the potential for fracture. The
theoretical formulation is fully-coupled in the sense that the stresses affect the reaction front morphology which in turn affects
the distribution of stresses by altering the manner in which the reaction proceeds. To illustrate this, Fig. 11 shows contours of the
positive principal stress {𝜎1, 𝜎2, 𝜎3} of the Cauchy stress for (a) lithiation and (b) sodiation along the (110) plane. The figures are
taken at an instance where the reaction front has just formed, as stresses are largest during this time. This instance is highlighted by
the insets in Fig. 11 which show isocontours of the reaction front along with a wireframe outline of the deformed body. Comparing
Fig. 11(a) and (b) we can observe that the magnitude of the maximum principal stress 𝜎1 is larger in the lithiation simulations,
ere by approximately 10%, even though the overall reaction induced deformations are smaller in lithiation than sodiation. This
s in good qualitative agreement with the experimental observations of Boebinger et al. (2018) who observed that fracture occurs
more frequently in lithiation than in sodiation, even though this is intuitively not what one would expect as FeS2 incurs much larger
deformations during sodiation. Although stresses are larger in lithiation simulations, it must be noted that they are not drastically
different and this suggest that further experimental investigations need to be performed to understand if there are also changes in
the fracture toughness properties of the reacted materials which can help explain the experimental observations.
26
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Fig. 11. Contours of positive principal stresses {𝜎1 , 𝜎2 , 𝜎3} during (a) lithiation and (b) sodiation. The inset shows isocontours of the reaction coordinate 𝜉 along
ith a wireframe of the deformed body to highlight the location of the front within the solid at the times shown.

.3. Sharp interface morphologies and the role of surface wetting boundary conditions

We present here a series of numerical examples to demonstrate the importance of the surface wetting (surface energy) boundary
ondition (8.6)2 in reproducing experimentally relevant reaction front morphologies. All material parameters are identical to those
listed in Section 9.2 with the only modification being to the 𝜂 = 𝜆∇𝜉 ⋅ 𝐧R boundary condition.

Fig. 12 shows isocontours of the reaction front for lithiation simulations with surface wetting (𝜂 = 10 Jμm∕mol) in (a) against
imulations with zero surface wetting (𝜂 = 0) in (b) and (c). In Fig. 12(b) we show the wetting free simulations mirrored about two
lanes (representing a view cut through the center of the crystal), while (c) shows the fully-mirrored domain also for the wetting
ree case.
Comparing Fig. 12(a) and (b) we can clearly observe the importance of the wetting boundary condition. In Fig. 12(b–c), without

any surface wetting, the morphology of the reaction front does not form a core–shell structure, as is expected and experimentally
observed. The surfaces of the crystal do not become fully reacted early in the simulation, rather they remain partially reacted. From
a numerical perspective, this can be expected from the nature of the boundary condition (8.6)2 which dictates the value of ∇𝜉 ⋅ 𝐧R,
which can also be thought of as the angle between the isocontours of 𝜉 and the free surfaces. When 𝜂 = 0, isocontours penetrating the
free surfaces must be perpendicular to the free surface, that is ∇𝜉 and the unit normal to the free surface 𝐧R must be perpendicular.
This in turn prevents these surfaces from becoming fully wetted. In contrast, as shown in Fig. 12(a), a non-zero value of the surface
etting boundary condition makes it favorable for the free surface to become fully reacted early in the simulation process, yielding
he experimentally relevant core–shell structure. We emphasize that the only difference between the simulations shown in Fig. 12(a)
nd (b–c) is the wetting boundary condition, all other material properties and boundary conditions are identical.
The need for appropriate surface wetting boundary conditions is particularly important for chemo-mechanically coupled

roblems. This is demonstrated in Fig. 13, where we compare simulations with no mechanical deformation or coupling (left two
olumns, a–b and e–f) to fully-coupled chemo-mechanical simulations (right two columns, c–d and g–h). Simulations are shown at
= 850 s (top row, a–d) and 𝑡 = 950 s (bottom row, e–h).
Focusing first on the mechanics free simulations, we can observe that for simulations without wetting, (a) and (e), the free

urfaces will still become fully reacted at a relatively early stage such that by 𝑡 = 950 s as shown in Fig. 13(e) the simulation has led
o a core–shell morphology albeit with a somewhat distorted core structure. The addition of wetting does of course help improve the
imulation even in the mechanics-free case as shown in (b) and (f). With wetting, we observe the formation of a core–shell structure
arly on in the simulation and the morphology of the reaction front in the core–shell structure remains a cube, retaining the original
hape of the external surface. In contrast, when considering fully-coupled chemo-mechanical simulations as shown in the right two
olumns, (c–d, and g–h), the wetting boundary condition is critical in achieving a core–shell morphology. In chemo-mechanical

(c) and (g) we do not observe the formation of a core–shell structure.
27

imulations without wetting, Fig. 13
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Fig. 12. Isocontours of reaction coordinate 𝜉 for lithiation simulations with (a) surface wetting (𝜂 = 10 Jμm∕mol), and (b–c) no surface wetting (𝜂 = 0). (a–b)
how the simulation domains mirrored about two planes, while (c) shows the simulation domain fully mirrored.

Fig. 13. Isocontours of reaction coordinate 𝜉 for lithiation simulations. (a–b) and (e–f) show simulations with no mechanical deformation or stress coupling,
hile (c–d) and (g–h) show the fully-coupled chemo-mechanical simulations. We demonstrate the manner in which wetting boundary conditions are critical in
ully-coupled simulations where a core–shell morphology is never achieved during simulation in the absence of these boundary conditions.

The role of the magnitude of 𝜂 is briefly illustrated in Fig. 14 using fully-coupled two-dimensional simulations with (a) 𝜂 = 0, (b)
𝜂 = 5 Jμm∕mol, and (c) 𝜂 = 10 Jμm∕mol. For each particular simulation, we show isocontours of 𝜉 when the free surfaces first become
fully reacted. We can see two important effects of the magnitude of 𝜂. First, for the case of 𝜂 = 0 in Fig. 14(a), as also discussed above,
e do not achieve a core–shell morphology, rather the reaction interface evolves significantly into the body until the reaction fronts
eet at the free surfaces. In contrast, as 𝜂 is increased to a non-zero value in Fig. 14(b–c), the free surfaces become fully reacted
28
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Fig. 14. Isocontours of reaction coordinate 𝜉 for fully-coupled two-dimensional simulations with (a) 𝜂 = 0, (b) 𝜂 = 5 Jμm/mol, and (c) 𝜂 = 10 Jμm/mol. For each
case, results are shown at the instance when the free surfaces first become fully reacted. We can clearly observe the manner in which increasing surface wetting
𝜂 leads to earlier wetting of the external surfaces and a well-defined and undistorted core–shell morphology.

early on in the simulation and the reaction front achieves a core–shell morphology. For an intermediate value of 𝜂 = 5 Jμm/mol
as shown in Fig. 14(b), full surface wetting still occurs only after the corners of the simulation domain are significantly reacted,
leading to the distorted morphology shown. As 𝜂 is increased to 10 Jμm/mol and beyond, this distortion disappears and the free
surfaces become fully wetted before reactions take place anywhere else on the body. The second important point is that increasing
values of 𝜂 also speed up the time at which the surfaces first become fully wetted. As shown in Fig. 14, as 𝜂 increases full-wetting
occurs earlier in time. These two-dimensional simulations were used to inform the choice of surface wetting boundary condition
employed in the simulations shown in Section 9.2.

10. Concluding remarks

We have formulated a thermodynamically consistent field theory that couples diffusion of species, bulk sharp interface chemical
reactions, and mechanical deformations. The framework was specialized to the engineering problem of relevance of modeling
conversion electrodes for energy storage. In particular we demonstrated the manner in which material parameters may be calibrated
in a straightforward fashion. The simulated results captured the experimental observations including the change in reaction front
morphologies when reacting FeS2 crystals with different ions.

Specific major contributions of this work include:

• The framework distinguishes between kinetically and thermodynamically driven sharp interface. Here kinetics encompasses the
diffusion and reaction rates which may drive a sharp interface, while thermodynamics includes an activation energy capturing
the reaction potential landscape which may also lead to the formation of a sharp interface.

• The thermodynamically consistent treatment enabled us to derive a physically motivated reaction driving force expression
in which different contributions of energy, configurational entropy, mechanical stress, and activation energy can be readily
identified. The formulation presented is general, and may be specialized to recover similar forms as in the existing literature
but can also encompass other physical considerations. The continuum field treatment of the driving force also resulted in
the existence of a critical concentration, below which the reaction would not initiate. Particularly useful then is the fact that
material properties driving the reaction kinetics can be calibrated from the literature or experiments.

• The gradient based phase-field formulation is able to capture wetting (surface energy) boundary conditions which we
demonstrated are critical to reproducing experimentally meaningful reaction morphologies, especially in the context of
conversion materials for energy storage. Consequences of applying this surface energy as a boundary condition and its role in
determining the reaction front morphology were elucidated using numerical simulations.

The theory was implemented in a three-dimensional finite element model and applied to modeling chemical reactions in a
potential conversion electrode for energy storage. The role of mechanics in controlling the reaction morphology and subsequent
stress distribution was demonstrated, and showcased the critical role mechanics can play in the behavior of these materials. The
simulations captured the morphology of the chemical reaction front with good qualitative agreement as observed experimentally
through TEM imaging.
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ppendix A. Formulation based on a decomposition of the diffusing species in the absence of mechanics

In this Appendix we present a brief formulation of a general reaction–diffusion theoretical framework with decomposition of
he diffusing species into multiple species. The framework is then specialized specifically with the intent to find the special forms
of the constitutive equations and the limiting conditions under which the theoretical framework developed in Sections 2 through 6
ay be motivated as a particular case of the two-species diffusion theory. Specifically, we will demonstrate how the theoretical
ramework presented in the main body can be considered as a limiting case of this more general framework under conditions of
quilibrium diffusion and uniform distribution of concentration within the material point in which the chemical reaction is occurring.
e note that the specialized constitutive forms are chosen solely for the purpose of comparing to the main body formulation and
ot as a derivation of a stand-alone two-species diffusion formulation. For brevity, we present only the chemical reaction–diffusion
henomena, in the absence of mechanical coupling and in the absence of gradients in the reaction coordinate.

.1. Mass conservation

Consider the schematic Fig. 15 of a part P over which we have ongoing diffusion and the generic reaction 𝐴 + 𝐶 → 𝐵. Regions
abeled as 𝛼 represent unreacted phases of the part, while regions labeled 𝛽 represent reacted phases. We now consider two diffusing
pecies, distinguishing between the presence of the species in either 𝛼 or 𝛽 phases. Let 𝑐𝛼(𝐗, 𝑡) denote the number of moles of diffusing
pecies in the 𝛼 phase per unit volume, and 𝑐𝛽 (𝐗, 𝑡) the number of moles of diffusing species in the 𝛽 phase per unit volume.5 As in
ection 2, we let 𝜉 denote the number of moles of reacted species, with 𝜉̇ the reaction rate. We define 𝜉 = 𝜉∕𝑐𝜉max as the extent of
reaction. We introduce here a new quantity, 𝑅𝛼𝛽 , which denotes the transfer rate of diffusing species between the 𝛼 and 𝛽 phases.
Physically, this is the diffusion of species across the interface between reacted and unreacted portions of the material.

Mass conservation may now be written as two diffusion–reaction equations of the form

𝑐̇𝛼 = −Div 𝐣𝛼 − 𝑅𝛼𝛽 − 𝜉̇, (A.1)

𝑐̇𝛽 = −Div 𝐣𝛽 + 𝑅𝛼𝛽 , (A.2)

with 𝐣𝛼 the flux of species into 𝛼 phases, and 𝐣𝛽 the flux of species into 𝛽 phases. Consistent with the schematic in Fig. 15, chemical
reactions leading to the formation of new 𝛽 phase occur between the diffusing species in the unreacted 𝛼 and the host phase itself,
hence inclusion of the reaction rate 𝜉̇ only in (A.1).

Fig. 15. Schematic of a part P with unreacted portions denoted by 𝛼 and reacted portions denoted by 𝛽. 𝑅𝛼𝛽 denotes diffusion across the 𝛼-𝛽 interfaces, 𝜉̇
characterizes the growth of a 𝛽 phase due to chemical reaction, and 𝐣𝛼 and 𝐣𝛽 are the fluxes of species into the 𝛼 and 𝛽 phases respectively.

5 Note that in this development, consistent with our neglect of mechanical coupling and mechanical deformations, we no longer distinguish between
30
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Summing (A.1) and (A.2) yields the same conservation Eq. (2.2) from Section 2 of the form

𝑐̇ = −Div 𝐣 − 𝜉̇ (A.3)

here in writing (A.3) we have defined

𝑐
def
= 𝑐𝛼 + 𝑐𝛽 , and 𝐣

def
= 𝐣𝛼 + 𝐣𝛽 , (A.4)

s the total concentration of diffusing species 𝑐, and the total flux 𝐣. With this decomposition of the diffusing species into unique
dentifiers, we now develop the remainder of the formulation based on continuum thermodynamics.

.2. Free-energy imbalance

Under isothermal conditions, and considering here a formulation without mechanical work, the free energy imbalance may be
ritten as

̇

∫P
𝜓𝑑𝑣 ≤ −∫𝜕P

𝜇𝛼𝐣𝛼 ⋅ 𝐧𝑑𝑎 − ∫𝜕P
𝜇𝛽 𝐣𝛽 ⋅ 𝐧𝑑𝑎, (A.5)

which using the divergence theorem over the boundary integral terms, and using the fact that this must hold for all parts P, yields
the local free energy imbalance as

𝜓̇ + 𝜇𝛼Div 𝐣𝛼 + 𝐣𝛼 ⋅ ∇𝜇𝛼 + 𝜇𝛽Div 𝐣𝛽 + 𝐣𝛽 ⋅ ∇𝜇𝛽 ≤ 0. (A.6)

Using the mass balance Eqs. (A.1) and (A.2) this may be written as

𝜓̇ − 𝜇𝛼(𝑐̇𝛼 + 𝜉̇) − 𝜇𝛽 𝑐̇𝛽 + 𝑅𝛼𝛽 (𝜇𝛽 − 𝜇𝛼) + 𝐣𝛼 ⋅ ∇𝜇𝛼 + 𝐣𝛽 ⋅ ∇𝜇𝛽 ≤ 0. (A.7)

A.3. Constitutive equations

A.3.1. Energetic constitutive equations
We consider a constitutive equation for the free energy 𝜓 of the form

𝜓 = 𝜓̂(𝑐𝛼 , 𝑐𝛽 , 𝜉). (A.8)

Substituting (A.8) into (A.7) the free energy imbalance may be written as
(

𝜕𝜓
𝜕𝑐𝛼

− 𝜇𝛼

)

𝑐̇𝛼 +
(

𝜕𝜓
𝜕𝑐𝛽

− 𝜇𝛽

)

𝑐̇𝛽 +
(

𝜕𝜓
𝜕𝜉

− 𝜇𝛼

)

𝜉̇ + 𝑅𝛼𝛽 (𝜇𝛽 − 𝜇𝛼) + 𝐣𝛼 ⋅ ∇𝜇𝛼 + 𝐣𝛽 ⋅ ∇𝜇𝛽 ≤ 0. (A.9)

As in Section 5.1 following (5.3), here too we assume that processes associated with diffusion (governed by 𝑐̇𝛼 and 𝑐̇𝛽) are energetic,
hile processes associated with the chemical reaction (governed by 𝜉̇) are dissipative. We further assume here that the process of
iffusing across an 𝛼 − 𝛽 interface governed by 𝑅𝛼𝛽 is dissipative, which will be further clarified subsequently.
As the inequality in (A.9) is to hold for all values of 𝑐̇𝛼 and 𝑐̇𝛽 , the ‘‘coefficients’’ must vanish and we are led to the thermodynamic

estriction that the free energy determine the chemical potentials through the ‘‘state relations’’:

𝜇𝛼 =
𝜕𝜓
𝜕𝑐𝛼

,

𝜇𝛽 =
𝜕𝜓
𝜕𝑐𝛽

.
(A.10)

We are now left with a reduced dissipation inequality of the form

 = −
(

𝜕𝜓
𝜕𝜉

− 𝜇𝛼

)

𝜉̇ − 𝑅𝛼𝛽 (𝜇𝛽 − 𝜇𝛼) − 𝐣𝛼 ⋅ ∇𝜇𝛼 − 𝐣𝛽 ⋅ ∇𝜇𝛽 ≤ 0. (A.11)

A.3.2. Dissipative constitutive equations
As in Section 5.2, we define the chemical potential of the species of interest in the reacted compound as

𝜇𝜉
def
=
𝜕𝜓
𝜕𝜉

(A.12)

and define the thermodynamic force driving the chemical reaction as


def
= 𝜇𝜉 − 𝜇𝛼 (A.13)

and the dissipation inequality (A.11) may now be written as

 = − 𝜉̇ − 𝑅𝛼𝛽 (𝜇𝛽 − 𝜇𝛼) − 𝐣𝛼 ⋅ ∇𝜇𝛼 − 𝐣𝛽 ⋅ ∇𝜇𝛽 ≤ 0. (A.14)
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Remark 7. The dissipation inequality (A.14) has important similarities and differences with the inequality (5.8) in Section 5.2.
First, in this development, the driving force  depends on the difference of 𝜇𝜉 and 𝜇𝛼 , rather than on a single chemical potential

𝜇 as in the main body of this work. This difference arises naturally from the fact that here we distinguish between the chemical
potentials of the diffusing species in either the unreacted or reacted phases.

Second, the dissipation inequality (A.14) has an additional driving force (𝜇𝛽 − 𝜇𝛼) which drives the diffusion of species across
the 𝛼−𝛽 interface. As expected, this process also depends on a jump in chemical potential. It is similar to the manner in which bulk
diffusion will depend on gradients in chemical potential, but now at an interface, where the transformation 𝑅𝛼𝛽 will depend on the
jump in chemical potential. □

A.4. Equilibrium diffusion between 𝛼 and 𝛽 phases

We now make the specific assumption that the process of diffusion of species across the 𝛼−𝛽 interface is an equilibrium process.
Thus, whenever such phases exists in the body (i.e. whenever 0 < 𝜉 < 1) we constrain ourselves to

𝜇𝛼 = 𝜇𝛽 (A.15)

which effectively states that these species are in chemical equilibrium within the material point. Another way of viewing this
constraint is by stating that the diffusion process across the 𝛼 − 𝛽 phase is much faster than other processes. In essence, following
the dissipation inequality (A.14), we expect the diffusion rate 𝑅𝛼𝛽 to be a function of the driving force (𝜇𝛽 − 𝜇𝛼) and to drive this
driving force to zero as the process reaches equilibrium. If 𝑅𝛼𝛽 is sufficiently fast, the two potentials 𝜇𝛼 and 𝜇𝛽 will always be in
equilibrium such that this driving force is essentially always zero.

In view of the restriction (A.15), the chemical potentials (A.26) are no longer independent. Further, we define a chemical potential
𝜇 of the form

𝜇
def
=
𝜇𝛼 + 𝜇𝛽

2
. (A.16)

which we note also implies that 𝜇 = 𝜇𝛼 = 𝜇𝛽 through the constraint (A.15). Focusing first on the dissipation inequality, use of (A.15)
in (A.14) along with the fact that 𝐣 = 𝐣𝛼 + 𝐣𝛽 from (A.4)2 yields the following dissipation inequality

 = − 𝜉̇ − 𝐣 ⋅ ∇𝜇 ≤ 0, (A.17)

which in the absence of mechanical contributions, is identical in form to (5.8) in Section 5.2 of the main body. Here we may now
rescribe a constitutive equation for the total flux 𝐣 as a function of ∇𝜇 in identical nature to (6.9).
The theoretical framework as presented in Sections A.1 through A.4 is a complete framework and may be solved through finite

lement analysis if desired once the free energy (A.8) is specified. For completeness the governing partial differential equation would
ake the form

𝑐̇ = Div (𝑚∇𝜇) − 𝜉̇ (A.18)

ith 𝑐̇ = 𝑐̇𝛼 + 𝑐̇𝛽 and where we have introduced 𝐣 = −𝑚∇𝜇 with 𝑚 a mobility. The concentration 𝑐𝛽 (or alternatively 𝑐𝛼 as this is
rbitrary) is now a dependent variable solved in any increment through the constraint 𝜇𝛼 = 𝜇𝛽 from (A.15). Finally, considering
inear reaction kinetics, the reaction rate 𝜉̇ would be solved using

𝜉̇ =

{

−𝑅0 , if 𝜉 < 0,
0, if 𝜉 = 1,

(A.19)

ith 𝑅0 > 0 a reaction rate constant, and  given in (A.13).
The two-species diffusion–reaction formulation presented thus far is quite general. In the following Section we specialize this

reatment solely with the intent to compare to the main body theory and finding the limiting conditions under which the main body
heoretical framework may be derived as a limiting case.

.5. Specialization of the constitutive equations. Comparison to the main body theory

We now specialize the form of the free energy function 𝜓 with an objective of developing the chemical potentials 𝜇𝛼 and 𝜇𝛽 and
he driving force  and comparing to our formulation in the main body of this work.
Similar to (7.6) in Section 7.2, we take the free energy to be separable and of the form

𝜓̂(𝑐𝛼 , 𝑐𝛽 , 𝜉) = 𝜓𝑐 (𝑐𝛼 , 𝑐𝛽 , 𝜉) + 𝜓𝜉 (𝜉). (A.20)

ere

(i) 𝜓𝑐 is the change in the chemical free energy due to the mixing of the diffusing species. As in the main body, it is taken to
32

be a weighted average over the reacted and unreacted phases, with the contribution of each phase assumed to be given by a
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𝜓𝑐 (𝑐𝛼 , 𝑐𝛽 , 𝜉) = (1 − 𝜉 )𝜓𝑐,𝛼(𝑐𝛼) + 𝜉𝜓𝑐,𝛽 (𝑐𝛽 )

= (1 − 𝜉 ) 𝑐𝛼max

(

𝜇𝛼0 𝑐𝛼 + 𝑅𝜗
(

𝑐𝛼 ln 𝑐𝛼 + (1 − 𝑐𝛼) ln(1 − 𝑐𝛼)
)

)

+ 𝜉 𝑐𝛽max

(

𝜇𝛽0 𝑐𝛽 + 𝑅𝜗
(

𝑐𝛽 ln 𝑐𝛽 + (1 − 𝑐𝛽 ) ln(1 − 𝑐𝛽 )
)

)

.

(A.21)

where 𝑐𝛼 and 𝑐𝛽 are the normalized species concentrations (which will be defined shortly), 𝑐𝛼max and 𝑐
𝛽
max are the maximum

molar concentration, and 𝜇𝛼0 and 𝜇
𝛽
0 are the reference potentials, all respectively in the unreacted 𝛼 and reacted 𝛽 phases.

(ii) 𝜓𝜉 is the free energy of the diffusing species in the reacted compound and serves to introduce the reference potential for this
species, it is identical to (7.8) in the absence of the energy barrier term. Here we could also include the activation energy as
included in (7.8) but we neglect this term since it is not relevant to our discussion.
The energy is given as

𝜓𝜉 (𝜉) = 𝜉𝜇𝜉0 . (A.22)

Using (A.21) and (A.22) the total free energy is given by

𝜓𝑐R(𝑐, 𝜉) = (1 − 𝜉 )𝜓𝑐,𝛼(𝑐𝛼) + 𝜉𝜓𝑐,𝛽 (𝑐𝛽 )

= (1 − 𝜉 ) 𝑐𝛼max

(

𝜇𝛼0 𝑐𝛼 + 𝑅𝜗
(

𝑐𝛼 ln 𝑐𝛼 + (1 − 𝑐𝛼) ln(1 − 𝑐𝛼)
)

)

+ 𝜉 𝑐𝛽max

(

𝜇𝛽0 𝑐𝛽 + 𝑅𝜗
(

𝑐𝛽 ln 𝑐𝛽 + (1 − 𝑐𝛽 ) ln(1 − 𝑐𝛽 )
)

)

+ 𝜉𝜇𝜉0 .

(A.23)

We now consider the specific conditions under which the chemical free energy 𝜓𝑐 (𝑐𝛼 , 𝑐𝛽𝜉) in (A.21) will be identical to 𝜓𝑐R(𝑐, 𝜉) in
he main body (7.7) in Section 7.2. The two energies are identical if the following conditions are met

𝑐 = 𝑐𝛼 = 𝑐𝛽 , and 𝑐Dmax = 𝑐𝛼max = 𝑐𝛽max. (A.24)

This motivates our statement in the main body — Remark 3 following (7.7) — that rationalizes our model as assuming a uniform
distribution of diffusing species within the material point.

Under the specific condition (A.24) the two energies are identical, and we will demonstrate the chemical potential and reaction
driving forces are also identical. The constraints (A.24) have a number of consequences which we elaborate on next. First, using
𝑐 = 𝑐𝛼 + 𝑐𝛽 from (A.4)1, the constraints (A.24) dictate that the normalized concentrations 𝑐𝛼 and 𝑐𝛽 must be defined as

𝑐𝛼
def
= 2

𝑐𝛼
𝑐𝛼max

, and 𝑐𝛽
def
= 2

𝑐𝛽
𝑐𝛽max

. (A.25)

We next derive the chemical potentials and reaction driving forces and compare with the main body of the theory.

A.5.1. Chemical potential
Using (A.23) in (A.10) the chemical potentials are given by

𝜇𝛼 = 2(1 − 𝜉)
(

𝜇𝛼0 + 𝑅𝜗 ln
(

𝑐𝛼
1 − 𝑐𝛼

))

,

𝜇𝛽 = 2𝜉
(

𝜇𝛽0 + 𝑅𝜗 ln
( 𝑐𝛽
1 − 𝑐𝛽

))

.
(A.26)

In view of the definition for 𝜇 from (A.16) and under the constraints (A.24) we may write

𝜇 =
(

1 − 𝜉
)

𝜇𝛼0 + 𝜉𝜇𝛽0 + 𝑅𝜗 ln
( 𝑐
1 − 𝑐

)

, (A.27)

which is identical in form to the chemical potential (7.16) in Section 7.4 of the main body of this paper, of course here in the
bsence of mechanical coupling.

.5.2. Reaction driving force
Using (A.23) in (A.12), the chemical potential for the species of interest in the reacted compound is given by

𝜇𝜉 = 𝜇𝜉0 +
2

𝑐𝜉max

(

𝜇𝛽0 𝑐𝛽 − 𝜇
𝛼
0 𝑐𝛼

)

+ 2
𝑐𝜉max

(

𝑐𝛽max𝑔̂(𝑐𝛽 ) − 𝑐
𝛼
max𝑔̂(𝑐𝛼)

)

, (A.28)

where for brevity we have defined the function

𝑔̂(𝑐) = 𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐). (A.29)
33
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Considering the equilibrium of chemical potentials (A.15) and the definition of 𝜇 in (A.16), we may write that 𝜇𝛼 = 𝜇 and hence
he thermodynamic driving force (A.13) for reaction may be expressed as  = 𝜇𝜉 −𝜇. Then, under the constraints (A.24), and using
𝜉 from (A.28) and 𝜇 from (A.27) we may write  as

 = 𝜇𝜉 − 𝜇

= 𝜇𝜉0 +
2

𝑐𝜉max

(

𝜇𝛽0
𝑐
2
− 𝜇𝛼0

𝑐
2

)

−
(

1 − 𝜉
)

𝜇𝛼0 − 𝜉𝜇𝛽0 − 𝑅𝜗 ln
( 𝑐
1 − 𝑐

)

, (A.30)

which after rearranging may be written in the following useful form

 = 𝜇𝜉 − 𝜇

= 1
𝑐𝜉max

(

𝑐 − 𝜉
)(

𝜇𝛽0 − 𝜇𝛼0
)

+
(

𝜇𝜉0 − 𝜇
𝛼
0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energetic

−𝑅𝜗 ln
( 𝑐
1 − 𝑐

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
entropic

(A.31)

which is identical in form to the thermodynamic driving force (7.23) in Section 7.5 of the main body of this work with 𝑐Rmax = 𝑐𝜉max.
Of course here  is not mechanically coupled and does not contain either the activation barrier or numerical regularization terms
which were also omitted.

As such, we can concisely describe the main body of this work as a limiting case of the more general two-species diffusion–
eaction under two particular conditions, namely:

• The diffusing species in the unreacted 𝛼 and reacted 𝛽 phases are in equilibrium, such that their chemical potentials are equal
at all times, that is 𝜇𝛼 = 𝜇𝛽 . Note that this does not imply that their reference potentials, 𝜇𝛼0 and 𝜇

𝛽
0 are equal, for they may

still differ.
• The concentration within the material point is considered uniformly distributed such that 𝑐𝛼 = 𝑐𝛽 = 𝑐, and the maximum molar
concentration of diffusing species allowed in each phase are identical such that 𝑐𝛼max = 𝑐𝛽max = 𝑐Dmax.

his analysis helps make clear what the underlying limiting conditions of the theory derived in the main body are. If a particular
ystem is modeled in which it is desirable to relax these constraints, the two-species formulation provided in this appendix provides
n avenue for the development of a more complex two-species theoretical framework as necessary.

ppendix B. Numerical implementation. Micromorphic approach

The theory has been implement in the finite element software Abaqus/Standard (Simulia, 2010) by writing a user-element
ubroutine (UEL), which couples mechanical deformation, ion diffusion and chemical reactions. The system of PDEs summarized in
ection 8, however, can cause significant convergence issues. To alleviate the difficulty associated with the numerics, we utilized
split micromorphic implementation (cf. Forest, 2009; Di Leo et al., 2014) in which the gradient term ∇𝜉 in (8.3) is substituted

with a micromorphic counterpart ∇𝜉m. We note that this method, for appropriate numerical values as discussed below, will yield
identical results to those that would be achieved if we had directly implemented the original PDEs shown in Section 8.

The micromorphic derivation is achieved by modifying the free energy (7.6) by introducing an additional penalty term, as
following:

𝜓̌R(𝐄e , 𝑐, 𝜉, |∇𝜉|) = 𝜓𝑐R(𝑐, 𝜉) + 𝜓
𝜉
R(𝜉) + 𝜓

m
R (𝐄e , 𝑐, 𝜉) + 𝜓

𝑔
R(|∇𝜉

m
|) + 𝜓micromorphR (𝜉, 𝜉m), (B.1)

where we note that the gradient energy 𝜓𝑔R is now in terms of ∇𝜉m and we have introduced a penalty energy 𝜓micromorphR (𝜉, 𝜉m) of
the form

𝜓micromorphR (𝜉, 𝜉m) = 1
2
𝛾(𝜉 − 𝜉𝑚)2, (B.2)

ith a 𝛾 a simulation parameter which penalizes the difference between the real 𝜉 and its micromorphic counterpart 𝜉m. For
sufficiently large values of 𝛾 the real 𝜉 and micromorphic 𝜉m parameters become virtually identical.6

With the modified free energy (B.1), the time-dependent PDE for the reaction kinetics (8.3) is replaced with a time-independent
PDE for the micromorphic 𝜉m of the form

0 = 𝛥(𝜆𝜉m) + 𝛾(𝜉 − 𝜉m), (B.3)

where 𝜆 is the same gradient energy parameter as discussed in the main body of this work. The reaction 𝜉 is now an internal state
variable with an evolution equation of the form

𝜉̇ = −𝑅0 , with

 =

(

𝑐Dmax
𝑐Rmax

𝑐 + (1 − 𝜉)

)

(𝜇𝜉0 − 𝜇
𝛼
0 ) +

𝐸a

𝑐Rmax
(2𝜉 − 6𝜉2 + 4𝜉3) − 𝑅𝜗 ln

( 𝑐
1 − 𝑐

)

+ 𝐽 c𝐌m ∶
(

(1 − 𝜉)𝐍𝛼,𝐷 + 𝜉𝐍𝛽,𝐷 − 𝜉𝐍𝛽,𝑅
)

+ 𝛾(𝜉 − 𝜉m).

(B.4)

6 See for example Appendix B in Di Leo (2015) which compares micromorphic and direct numerical simulations for a Cahn–Hilliard phase-field simulation
34

and demonstrates in detail the equivalence of the two methods for suitable choice of simulation parameters.
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Fig. 16. (a) L2 norm of the difference between 𝜉 and 𝜉m in diffusion–reaction simulations when the reaction front is half-way through the simulation domain
s a function of the simulation parameter 𝛾. (b) Normalized difference between the width of the reaction front in simulations with a direct implementation of
he theory, 𝑑, and a micromorphic implementation 𝑑𝑚 as a function of the simulation parameter 𝛾. The simulation domain is 𝐿 = 10 μm in size.

We note that using (B.3) the term 𝛾(𝜉 − 𝜉m) = −Div (𝜆∇𝜉m), and thus the result of this process is that we have replaced the original
erm Div (𝜆∇𝜉) with one in terms of ∇𝜉m.
Finally, the boundary conditions (8.6) are replaced with

𝜉m = 𝜉 on 𝜇𝜉 × (0, 𝑇 ),

𝜆∇𝜉m ⋅ 𝐧R = 𝜂̆ on ρ𝜉 × (0, 𝑇 ).

}

(B.5)

hich will act in identical fashion to the original boundary conditions.
To calibrate the simulation parameter 𝛾 so as to provide results which accurately describe the original problem we ran multiple

iffusion–deformation simulations equivalent to those shown in Section 9.1. Fig. 16(a) shows the L2 norm of the difference 𝜉 − 𝜉m
ver the simulation domain when the reaction front is half way through the simulation domain as a function of 𝛾. As shown, as the
arameter 𝛾 increase, penalizing the difference between 𝜉 and 𝜉m, the difference becomes negligibly small.
To further emphasize the convergence towards the exact implementation we implemented the theory (without mechanics)

hrough a direct implementation of the PDEs summarized in Section 8 without the use of the micromorphic variable. Fig. 16(b)
ompares the width of the reaction zone from the direct implementation 𝑑, and the micromorphic implementation 𝑑micromorph. Here
oo we observe that as the value of 𝛾 increases the difference between the reaction front width becomes negligible and we recover
he exact solution. Based on these results, we ensure that the micromorphic approach yields valid results by choosing 𝛾 = 5 × 105

J(nm)3/mol2 for all simulations shown in Section 9 of the main body of this work.
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