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Abstract

Motivation: Nanopore sequencing provides a real-time and portable solution to genomic sequencing, enabling bet-
ter assembly, structural variant discovery and modified base detection than second generation technologies. The
sequencing process generates a huge amount of data in the form of raw signal contained in fast5 files, which must
be compressed to enable efficient storage and transfer. Since the raw data is inherently noisy, lossy compression
has potential to significantly reduce space requirements without adversely impacting performance of downstream
applications.

Results: We explore the use of lossy compression for nanopore raw data using two state-of-the-art lossy time-series
compressors, and evaluate the tradeoff between compressed size and basecalling/consensus accuracy. We test sev-
eral basecallers and consensus tools on a variety of datasets at varying depths of coverage, and conclude that lossy
compression can provide 35-50% further reduction in compressed size of raw data over the state-of-the-art lossless
compressor with negligible impact on basecalling accuracy (=0.2% reduction) and consensus accuracy (<0.002%
reduction). In addition, we evaluate the impact of lossy compression on methylation calling accuracy and observe
that this impact is minimal for similar reductions in compressed size, although further evaluation with improved
benchmark datasets is required for reaching a definite conclusion. The results suggest the possibility of using lossy
compression, potentially on the nanopore sequencing device itself, to achieve significant reductions in storage and
transmission costs while preserving the accuracy of downstream applications.

Availabilityand implementation: The code is available at https://github.com/shubhamchandak94/lossy_compres
sion_evaluation.

Contact: schandak@stanford.edu or tsachy@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Due to the ongoing research into improving basecalling technol-

1 Introduction ) . >
ogies and the scope for further improvement in accuracy, the raw

Nanopore sequencing technologies developed over the past decade
provide a real-time and portable sequencing platform capable of
producing long reads, with important applications in completing
genome assemblies and discovering structural variants associated
with several diseases (Jain et al., 2016). Nanopore sequencing con-
sists of a membrane with pores where DNA passes through the pore
leading to variations in current passing through the pore. This elec-
trical current signal is sampled to generate the raw signal data for
the nanopore sequencer and is then basecalled to produce the read
sequence. Due to the continuous nature of the raw signal and high
sampling rate, the raw signal data requires large amounts of space
for storage, e.g. a typical 30x depth human sequencing experiment
can produce terabytes of raw signal data, which is an order of
magnitude more than the space required for storing the basecalled
reads (Jain et al., 2018).

data needs to be retained to allow repeated analysis of the sequenc-
ing data. This makes compression of the raw signal data crucial
for efficient storage and transport. There have been a couple of loss-
less compressors designed for nanopore raw signal data, namely,
Picopore (Gigante, 2017) and VBZ (https://github.com/nanopore
tech/vbz_compression/). Picopore simply applies gzip compression
to the raw data, while VBZ, which is the current state-of-the-art
tool, uses variable byte integer encoding followed by zstd compres-
sion. Although VBZ reduces the size of the raw data by 60%,
the compressed size is still quite significant and further reduction
is desirable. However, obtaining further improvements in lossless
compression is challenging due to the inherently noisy nature of the
current measurements.

In this context, lossy compression is a natural candidate to
provide a boost in compression at the cost of certain amount of
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distortion in the raw signal. There have been several works on lossy
compression for time series data, including SZ (Liang et al., 2018)
and LFZip (Chandak et al., 2020) that provide a guarantee that the
reconstruction lies within a certain user-defined interval of the ori-
ginal value for all time steps. However, in the case of nanopore raw
current signal, the metric of interest is not the maximum deviation
from the original value, but instead the impact on the performance
of basecalling and other downstream analysis steps. In particular,
two quantities of interest are the basecalling accuracy and the con-
sensus accuracy. The basecalling accuracy measures the similarity of
the basecalled read sequence to the known true genome sequence,
while the consensus accuracy measures the similarity of the consen-
sus sequence obtained from multiple overlapping reads to the
known true genome sequence. As discussed in Wick et al. (2019),
these two measures are generally correlated but can follow different
trends in the presence of systematic errors. In general, consensus ac-
curacy can be thought of as the higher-level metric, which is usually
of interest in most applications, while basecalling accuracy is a
lower-level metric in the sequencing analysis pipeline.

In this work, we study the impact of lossy compression of nano-
pore raw signal data on basecalling and consensus accuracy. We
evaluate the results for several basecallers and at multiple stages of
the consensus pipeline to ensure the results are generalizable to fu-
ture iterations of these tools. We find that lossy compression using
general-purpose tools can provide significant reduction in file sizes
with negligible impact on accuracy. To further stress-test the ability
of lossy compression to preserve useful information, we look into
the impact of lossy compression on methylation calling performance
and reach similar conclusions as those for basecalling accuracy. To
the best of our knowledge, this is the first study exploring the use
of lossy compression for nanopore raw signal data and performing
a systematic analysis of its impact on downstream applications.
We believe our results provide motivation for research into special-
ized lossy compressors for nanopore raw signal data and suggest
the possibility of reducing the resolution of the raw signal
generated on the nanopore device itself while preserving the down-
stream performance. The source code and data for our analysis
is publicly available at https://github.com/shubhamchandak94/
lossy_compression_evaluation and can be useful as a benchmark-
ing pipeline for further research into lossy compression for nano-
pore data.

2 Background

2.1 Nanopore sequencing and basecalling

Nanopore sequencing, specifically the MinION sequencer devel-
oped by Oxford Nanopore Technologies (ONT) (Jain et al., 2016),
involves a strand of DNA passing through a pore in a membrane
with a potential applied across it. Depending on the sequence
of bases present in the pore (roughly 6 bases at any instant), the
ionic current passing through the pore varies with time and is
measured at a sampling frequency of 4kHz. The sequencing
produces 5-15 current samples per base, which are quantized to a
16-bit integer and stored as an array in a version of the HDFS
format called fastS. The current signal is then processed by the
basecaller to generate the basecalled read sequence and the corre-
sponding quality value information. In the uncompressed format,
the raw current signal requires close to 18 bytes per sequenced
base which is significantly more than the amount needed for
storing the sequenced base and the associated quality value. The
sequenced FASTQ files can also be compressed further using
specialized compressors (Dufort y Alvarez et al., 2020) to further
reduce the storage costs.

Over the past years, there has been a shift in the basecalling strat-
egy from a physical model-based approach to a machine learning-
based approach leading to significant improvement in basecalling
accuracy [see Rang et al. (2018) and Wick et al. (2019) for a detailed
review]. In particular, the current default basecaller Guppy by ONT
[based on open source tool Flappie (https://github.com/nanopore
tech/flappie)] uses a recurrent neural network that generates
transition probabilities for the bases which are then converted to the

most probable sequence of bases using Viterbi algorithm. Another
recent basecaller by ONT is bonito (https://github.com/nanopore
tech/bonito/, currently experimental), which is based on a convolu-
tional neural network and CTC decoding (Graves et al., 2006),
achieving close to 92-95% basecalling accuracy in terms of edit dis-
tance. Despite the progress in basecalling, the current error rates are
still relatively high (typically 5-10%) with considerable fraction of
insertion and deletion errors, which necessitates the storage of the
raw data for utilizing improvements in the basecalling technologies
for future (re)analysis.

2.2 Assembly, consensus and polishing

Long nanopore reads allow much better repeat resolution and are
able to capture long-range information about the genome leading to
significant improvements in de novo genome assembly (Jain et al.,
2018). However, genome assembly with nanopore data needs to
handle the much higher error rates as compared to second gener-
ation technologies such as Illumina, and there have been several spe-
cialized assemblers for this purpose, including Flye (Kolmogorov
etal.,2019; Lin et al., 2016) and Canu (Koren et al., 2017), some of
which allow hybrid assembly with a combination of short and long
read data.

Nanopore de novo assembly is usually followed by a consensus
step that improves the assembly quality by aligning the reads to a
draft assembly and then performing consensus from overlapping
reads [e.g. Racon (Vaser et al., 2017)]. Note that the consensus step
can be performed even without de novo assembly if a reference se-
quence for the species is already available, in which case the align-
ment to the reference is used to determine the overlap between
reads. Further polishing of the consensus sequence can be performed
with tools specialized for nanopore sequencing that use the noise
characteristics of the sequencing and/or basecalling to find the most
probable consensus sequence. For example, Nanopolish (Loman
et al., 2015) directly uses the raw signal data for polishing the con-
sensus using a probabilistic model for the generation of the raw sig-
nal from the genomic sequence. Medaka (https:/nanoporetech.
github.io/medaka/) is the current state-of-the-art consensus polish-
ing tool both in terms of runtime and accuracy (https://github.com/
rrwick/August-2019-consensus-accuracy-update/). Medaka uses a
neural network to perform the consensus from the pileup of the
basecalled reads at each position of the genome.

2.3 Methylation calling

DNA methylation plays an important role in various biological
functions (Simpson et al., 2017), with 6 mA and 5mC being the
most commonly studied methylated bases (methylated versions of A
and C, respectively). Since nanopore sequencing can work with na-
tive (non-PCR amplified) DNA, it is possible to detect methylated
bases due to the changes in the raw signal when the methylated base
passes through the pore. This fact has been exploited to develop
methylation calling pipelines using various techniques including hid-
den Markov model (HMM)-based methods and neural network-
based methods (Liu et al., 2019; Loman et al., 2015; Ni et al., 2019;
Simpson et al., 2017). In this work, we use Megalodon (https://
github.com/nanoporetech/megalodon/) which first anchors the inter-
mediate probabilities produced by the basecalling neural network
(from Guppy basecalling modes that call both modified and un-
modified bases) to the reference sequence. It then uses traditional
HMM algorithms such as Viterbi and forward-backward algorithms
(Rabiner, 1989) to compute the probability that a given base is
modified. This common framework can be used to call different
types of base modifications by providing the appropriate basecalling
model, and we focus on CpG motifs on the human genome in this
work.

2.4 Lossy compression

Lossy compression (Gersho and Gray, 1992) refers to compression
of the data into a compressed bitstream where the decompressed
(reconstructed) data need not be exactly but only approximately
similar to the original data. Lossy compression is usually studied in

1Z0Z 1snBny Z| uo Jasn ASIBAIUN PIOJUBIS Aq Z| LEEDY/E LES/EZ-Z2/9E/3I0IE/SONBILIOI0IG/WOo0 dNODjWa PeoE//:Sd)y WOl papeojumoq



Nanopore lossy compression

5315

the context of a distortion metric that specifies how the distortion or
error between the original and the reconstruction is measured.
This gives rise to a tradeoff between the compressed size and the
distortion, referred to as the rate-distortion curve. Here, we work
with two state-of-the-art lossy compressors for time-series data,
LFZip (Chandak et al., 2020) and SZ (Liang et al., 2018). Both
these compressors work with a maxerror parameter that specifies
the maximum absolute deviation between the original and the
reconstructed data. If xq,...,xr denotes the original time-series,
#1,..., % denotes the reconstructed time-series, and ¢ is the max-
error parameter, then these compressors guarantee that
max;—1, )% — %] < e

LFZip and SZ use slightly different approaches toward lossy
compression. LFZip uses a prediction-quantization-entropy coding
approach, and in this work we use a mode wherein the prediction
step is skipped and LFZip simply performs uniform scalar quantiza-
tion (i.e. uniform binning with the bin size determined by the maxer-
ror) followed by entropy coding. This mode provided the best
compression in our experiments. SZ uses a curve fitting step fol-
lowed by entropy coding, with the reconstruction lying on a low-
degree local polynomial approximation to the original data.

There are a couple of reasons for focusing on lossy compressors
with maximum absolute deviation as the distortion metric instead of
mean square error or mean absolute error in this work. The first rea-
son is that the guaranteed maximum error implies that the recon-
structed raw signal is close to the original value at each and every
timestep and not only in the average sense. Hence, the maximum
error distortion metric is preferable for general applications where
the true distortion metric is not well understood. The second reason
is the availability of efficient implementations which is crucial for
compressing the large genomic datasets. However, we believe that
there is significant scope for using mean square error and other

(a) (b)

metrics for developing specialized lossy compressors for nanopore
data given the better theoretical understanding of those metrics.

3 Experiments

We next describe the experimental setup in detail (see Fig. 1 for a
flowchart representation). The instructions for downloading the
datasets and installing the tools, as well as the scripts for performing
the experiments are available on the GitHub repository. The experi-
ments were run on an Ubuntu 18.04.4 server with 40 Intel Xeon
processors (2.2GHz), 260 GB RAM and 8 Nvidia TITAN X
(Pascal) GPUs.

3.1 Datasets

Table 1 shows the datasets used for analysis in this work. The first
three bacterial datasets were chosen to be representative datasets
with different GC-content and flowcell types, including the latest
R10.3 pore. We note that some of the tools were not run on the
Escherichia coli dataset since they do not yet support the R10.3
pore. For all these datasets the ground-truth genomic sequence is
known through hybrid assembly with long and short read technolo-
gies. The table also shows the uncompressed and VBZ compressed
sizes for the datasets, we observe that lossless compression can pro-
vide size reduction of roughly 60%. For each dataset, we run our
analysis on both the original read depth as well as subsampled ver-
sions of the datasets (2x, 4x and 8 x subsampling of Fastq files per-
formed using Seqtk (https://github.com/lh3/seqtk/)). This helps us
understand how the impact of lossy compression on consensus ac-
curacy depends on read depth. The last dataset (human) is used for
basecalling and methylation calling accuracy evaluation, and we use
one flowcell (FAB45280) of NA12878 human nanopore data from
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Lossless and lossy compression of raw signal data

Basecalling, consensus and methylation calling accuracy analysis

Fig. 1. Flowchart showing the experimental procedure. (a) The raw data was compressed with both lossless and lossy compression tools, (b) the original and lossily compressed
data was then basecalled with three basecalling tools. Finally, the basecalled data and its subsampled versions were assembled and the assembly (consensus) was polished using
a three-step pipeline (1. Flye, 2. Rebaler, 3. Medaka). The tradeoff between compressed size and basecalling/consensus accuracy was studied. For one dataset, methylation call-
ing and accuracy evaluation was performed using Megalodon. Parts of the evaluation pipeline are based on previous work on basecaller comparison in Wick et al. (2019} and

its addendum (https://github.com/rrwick/August-2019-consensus-accuracy-update/)

Table 1. Datasets used for analysis

Species Sample Genome  GC- Flowcell Read Read Approx.  Raw signal size (GB) Source
size (bp)  content type count length depth
N50 (bp) Uncompressed VBZ
(lossless)

Staphylococcus CAS38_02 29%x10°  32.8% R9.4.1 11 047 24 666 83x 4.86 2.02 Wick et al.

aureus (2019)
Klebsiella INF032 5.1x10° 57.6% R9.4 15154 37181 108x 10.14 4.32 Wick et al.

pneumoniae (2019)
Escherichia coli  K-12 MG1655 4.6 x10° 50.8% R10.3 92 000 7431 128x 12.09 5.14 See Caption
Homo sapiens NA12878 3.1x10°  40.9% R9.4 128 314 11 404 0.29x 25.37 10.31 Jain et al.

(2018)

Note: The E.coli dataset was obtained from http://albertsenlab.org/we-ar10-3-pretty-close-now/. N50 is a statistical measure of average length of the reads [see

Wick et al. (2019) for a precise definition]. The uncompressed size column refers to storing the raw signal in the default representation using 16 bits/signal value.

The first three datasets (bacterial) were used for basecalling and consensus accuracy evaluation, while the last dataset (low-coverage human dataset from a single

flowcell) was used for basecalling and per read methylation calling accuracy evaluation.
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Jain et al. (2018) consisting of around 900 M sequenced bases. For
basecalling accuracy evaluation, we generate the ground truth gen-
ome by applying the variants from GIAB (Zook et al., 2016) to the
reference genome. More details on the methylation calling experi-
ments are provided in Section 3.5.

We focus on using bacterial datasets rather than human datasets
for consensus accuracy evaluation for a few reasons similar to those
cited in Wick et al. (2019). Firstly, bacterial datasets typically have a
more reliable ground truth allowing for more precise estimation of
the impact of lossy compression. This is especially important for
consensus accuracy which can be very high (= 99.9%), leading to a
much greater uncertainty in the evaluation due to errors in the
ground truth sequence. The smaller size for bacterial datasets also
allows more extensive experimentation at higher coverage and
across several parameters. Due to these reasons, previous studies
have often relied on bacterial datasets for consensus/assembly accur-
acy evaluation, and used human datasets only for basecalling accur-
acy evaluation. [e.g. see the works Teng et al. (2018) and Zeng et al.
(2020) on novel basecalling algorithms]. In addition, lossy compres-
sion with maximum deviation constraint is typically local in nature,
with LFZip in particular performing uniform scalar quantization in-
dependently at each time step. Thus, the size of the genome should
not impact the analysis and the results should generalize to larger
genomes. Further experimentation on larger eukaryotic datasets
remains part of future work as better benchmark datasets are
obtained.

We also looked into the possibility of using data from Zymo mi-
crobial community standard (Nicholls et al., 2019) which has been
used to evaluate basecallers and consensus tools. However, we
decided to use the previously described datasets for a couple of rea-
sons. First, the Zymo dataset is a metagenomic dataset and obtain-
ing data for individual species requires additional analysis and
introduces a possibility of erroneous conclusions. Second, several
neural network models in the downstream pipeline (e.g. basecallers
and Medaka consensus) are commonly trained on parts of the Zymo
dataset, with different tools using different training and testing
genomes. This makes the data unsuitable when comparing several
tools due to overfitting concerns.

3.2 Lossy compression

To study the impact of lossy compression, we generate new fastS
datasets by replacing the raw signal in the original fast5 files with
the reconstruction produced by lossy compression. We use open
source general-purpose time-series compressors LFZip (Chandak
et al., 2020) (version 1.1) and SZ (Liang et al., 2018) (version
2.1.8.3). Both the tools require a parameter representing the max-
imum absolute deviation (maxerror) of the reconstruction from the
original. We conducted ten experiments for each tool by setting the
maxerror parameter to 1,2,...,10. To put this in context, note that
for a typical current range of 60 pA and the typical noise value of 1-
2 pA, the maxerror settings of 1 and 10 correspond to current values
of 0.17 and 1.7 pA, respectively (https://github.com/nanoporetech/
kmer_models/). Finally, we note that both LFZip and SZ can com-
press millions of timesteps per second and hence can be used to com-
press the nanopore raw signal data in real time as it is produced by
the sequencer.

3.3 Basecalling and consensus
We perform basecalling on the raw signal data (both original and
lossily compressed) using two modes of Guppy (version 3.6.1) as
well as with bonito (version 0.2.0, note that bonito is currently an
experimental release). For Guppy, we use the default high accuracy
mode (guppy_hac) and the fast mode (guppy_fast). Both the modes
use the same general framework but differ in terms of the neural net-
work architecture size and weights. We use these three basecaller
settings to study whether lossy compression leads to loss of useful in-
formation that can be potentially exploited by future basecallers.
We use a three-step assembly, consensus and polishing pipeline
based on the analysis and recommendations in https://github.com/
rrwick/August-2019-consensus-accuracy-update/. The first step is de

novo assembly using Flye (version 2.7.1) (Kolmogorov et al., 2019;
Lin et al., 2016) which produces a basic draft assembly. The second
step is consensus polishing of the Flye assembly using Rebaler
(https://github.com/rrwick/Rebaler/, version v0.2.0) which runs
multiple rounds of Racon (version 1.4.13) to produce a high quality
consensus of the reads. Finally, the third step uses Medaka (version
1.0.3) by ONT that performs further polishing of the Rebaler con-
sensus using a neural network-based approach. Note that the neural
network model for Medaka needs to be chosen corresponding to the
basecaller.

3.4 Evaluation metrics

For evaluating the basecalling and consensus accuracy, we use the
pipeline presented for the task of basecaller comparison in Wick
et al. (2019) and its addendum (https:/github.com/rrwick/August-
2019-consensus-accuracy-update/). The basecalled reads were
aligned to the true genome sequence using minimap2 (Li, 2018) and
the read’s basecalled identity was defined as the number of matching
bases in the alignment divided by the total alignment length. We re-
port only the median identity across reads in the results section (see
Supplementary Material for details on accessing the per-read
results). The consensus accuracy after each stage is computed in a
similar manner, where instead of aligning the reads, we split the as-
sembly into 10 kbp pieces and then find median identity across these
pieces. Finally, we compute the basecalling and consensus Qscore
using the Phred scale as Qscore = —10log 14(1 — identity) where the
identity is represented as a fraction. We refer the reader to Wick
et al. (2019) for further discussion on these metrics. In addition, we
evaluate the accuracy of homopolymer sequences in the consensus
using the fastmer.py script (https:/github.com/jts/assembly_accur
acy), since homopolymer calling has been identified as one of the
main challenges of nanopore sequencing (Rang et al., 2018).

3.5 Methylation calling and evaluation

We consider the impact of lossy compression on methylation calling
to understand whether the loss in information due to compression
leads to further degradation of methylation calling performance as
compared to basecalling, given that methylation calling is a more
sensitive task than basecalling. For evaluating this impact, we use
the pipeline and benchmark dataset used in two previous works,
DeepMod (Liu et al., 2019) and DeepSignal (Ni et al., 2019). We
use NA12878 human nanopore data from Jain et al. (2018) which
used native (non-PCR amplified) DNA and use a benchmark
obtained from bisulfite sequencing from the ENCODE project
(ENCFF835NTC) (ENCODE-Project-Consortium et al., 2012).
Following the procedure in (Ni et al., 2019), we identify the high
confidence positive and negative sites on the genome by restricting
ourselves to sites with coverage at least five, and 100% positive or
negative calls on both strands in the bisulfite dataset. This resulted
in roughly 5.4 M positive and 4.7 M negative high confidence sites
on the genome.

We then used Megalodon (version 2.1.0) on the nanopore data-
set to obtain a list of per-read methylation calls (predicted probabil-
ities) for each CpG motif in the read. We used a basecalling model
specially trained for calling CpG methylation released in the Rerio
repository (https://github.com/nanoporetech/rerio/). We then com-
puted the precision, recall and AUC (area under ROC curve),
restricting ourselves to the high confidence sites determined above.
For the precision and recall computation, we used a threshold of 0.5
for the predicted methylation probabilities.

As shown in Table 1, we used only one flowcell of data consist-
ing of around 900 M sequenced bases. For this study, we focused ex-
clusively on per-read evaluation and did not attempt to compute
correlation of the methylation frequencies with the bisulfite data as
done in Ni et al. (2019). We believe that the per-read evaluation
should be indicative of the extent to which lossy compression leads
to loss of information regarding methylation. We also found other
datasets in the previous works (Liu et al., 2019; Ni et al., 2019;
Simpson et al., 2017) where ground truth positive and negative data-
sets were generated using methyltransferase enzyme and PCR-
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amplification, respectively. However, these datasets were generated
with older pores (R7 or 2D technology) which are not supported by
the modern methylation calling tools. Better benchmark datasets in
the future can be helpful for more extensive evaluation.

4 Results and discussion

We now discuss the main results obtained from the experiments
described above. Throughout the results and discussion, the com-
pressed sizes for lossy compression are shown relative to the com-
pressed size for VBZ lossless compression, where the lossless
compression sizes are shown in Table 1. Additional results and plots
are available in the Supplementary Material.

Figure 2 shows the variation of the size of the lossily compressed
dataset with the maxerror parameter. We see that LFZip generally
provides better compression than SZ at the same maxerror value,

Lossy compression sizes vs. maxerror parameter
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Fig. 2. Compressed size for lossy compression with LFZip and SZ for the S.aureus
dataset as a function of the maxerror parameter. The compressed sizes are shown
relative to the VBZ lossless compression size
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although this fact by itself does not guarantee a better tradeoff for
the metrics of interest. We also see that lossy compression can pro-
vide significant size reduction over lossless compression even with
relatively small maxerror (recall that maxerror of 1 in the 16-bit rep-
resentation of the raw signal corresponds to 0.17 pA error in the cur-
rent value). For example, at maxerror of 5, lossy compression can
provide size reduction of around 50% over lossless compression and
size reduction of around 70% over the uncompressed 16-bit
representation.

Both SZ and LFZip can compress millions of samples per second,
with SZ being about an order of magnitude faster than LFZip
(Chandak et al., 2020). Since LFZip simply performs uniform scalar
quantization and entropy coding (in the mode used here), we believe
that it can be significantly optimized further for this application. We
also looked into the possibility that lossy compression could impact
the speed/peak memory usage of the steps in the downstream pipe-
line (basecalling, assembly, etc.), however we observed that such
effects were relatively small (=5-10% change) and mostly attribut-
able to experimental variation. See the Supplementary Material for
time and memory usage results for various stages in the pipeline and
the impact of lossy compression on these.

4.1 Basecalling accuracy

Figure 3 shows the tradeoff achieved between basecalling accuracy
and compressed size for the four datasets for all three basecallers.
First, we observe that guppy_hac performs the best closely followed
by bonito, and guppy_fast is typically far behind. As the maxerror
parameter is increased, the basecalling accuracy stays stable for all
the basecallers till the compressed size reaches 65% of the losslessly
compressed size. For example, the basecalling accuracy for the
Staphylococcus aureus dataset with guppy_hac is ~96.1% for loss-
less compression, and ~96.0% at a 35% size reduction. After this
the basecalling accuracy drops more sharply, becoming 2% lower
than the original lossless level when the maxerror parameter is 10.
The drop seems to follow a similar trend for all the basecallers and
compressors, suggesting that at least 35% reduction in size over
lossless compression can be obtained without sacrificing basecalling
accuracy. Note that for maxerror parameter equal to 10, the
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compression size. Bonito was not run on E.coli due to lack of support for the R10.3 pore
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allowed deviation of the reconstructed raw signal is larger than the
typical noise levels in sequencing, and hence lossy compression
probably leads to perceptible loss in the useful information con-
tained in the raw signal.

We observed that the impact of lossy compression on read
lengths and the number of aligned reads is negligible
(Supplementary Material). This suggests that lossy compression gen-
erally leads to local and small perturbations in the basecalled read
and does not lead to major structural changes in the read such as
loss of information due to trimmed/shortened reads. This is expected
given that the lossy compressors used here guarantee that the recon-
structed signal is within a certain deviation from the original signal
at each time step.

4.2 Consensus accuracy

Figures 4, 5a and b study the tradeoff between consensus accuracy
and compressed size (i) across basecallers for the final Medaka pol-
ished assembly, (ii) across the assembly stages and (iii) across read
depths in subsampled datasets, respectively. As expected, we observe
that the consensus accuracy is significantly higher than basecalling
accuracy across these experiments. We also observe that the consen-
sus accuracy stays at the original lossless level till the compressed
size reaches around 40-50% of the losslessly compressed size (50—
60% reduction) and the drop in accuracy beyond this is relatively
small. For example, the consensus accuracy for the S.aureus dataset
with guppy_hac is ~99.997% for lossless compression, and stays
the same at a 50% size reduction. Thus, the impact of lossy com-
pression on consensus accuracy is less severe than that on basecall-
ing accuracy. This suggests that the errors introduced by lossy
compression are generally random in nature and are mostly cor-
rected by the consensus process.

In our experiments, lossy compression did not affect the number
of assembled contigs (always 1) and the contig length in most cases
(Supplementary Material). The only exceptions were the 4x and 8x
subsampled versions of the E.coli dataset where the assemblies
for both the lossless and the lossily compressed datasets were
fragmented. This might be due to lower data quality as evidenced by
the significantly smaller read lengths for this dataset (see Table 1).
In general, this again suggests that the impact of lossy compression
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is localized and without large-scale disruptions in the assembly/con-
sensus process, although further experiments on larger eukaryotic
genomes might be required to strengthen this claim.

Figure 5a considers the consensus accuracy after each stage of
the assembly/consensus process (Flye, Rebaler, Medaka) for the
S.aureus dataset basecalled with guppy_hac. We see that each stage
leads to further improvement in the consensus accuracy. We also ob-
serve that the earlier stages of the pipeline are impacted more heavily
by lossy compression (in terms of percentage reduction in accuracy)
than the final Medaka stage. This is expected since each successive
stage of the assembly/consensus pipeline provides further correction
of the basecalling errors caused due to lossy compression. This effect
is similar to the equalizing effect of polishing applied to different
basecallers observed in Wick et al. (2019). We see a similar trend for
the other dataset and analysis tools (see Supplementary Material).

Figure 5b studies the impact of subsampling to lower read depths
on the consensus accuracy (after Medaka polishing) for the S.aureus
dataset basecalled with guppy_hac. Note that the original dataset
has around 80x depth of coverage, so 8x subsampling produces a
depth of 10x which is generally considered quite low. We observe
that lossy compression has more severe impact on consensus accur-
acy for lower depths, but 40-50% of size reduction can still be
achieved without sacrificing the accuracy. This is again expected
because consensus works better with higher depth datasets and is
able to correct a greater fraction of the basecalling errors. We see a
similar trend for the other dataset and analysis tools (see
Supplementary Material).

Figure 6 considers the accuracy of homopolymers (of length 5-8)
for the Medaka polished assembly of the S.aureus dataset basecalled
with guppy_hac. We see that the impact of lossy compression is
more pronounced for longer homopolymer sequences which are
harder for the basecaller and assembly tools to handle, with around
30% size reduction over lossless compression possible with negli-
gible impact on the accuracy. Thus, depending on the requirements,
a lower maxerror parameter should be chosen to achieve higher ac-
curacy for the longer homopolymer sequences. We believe it should
be possible to overcome this challenge by designing specialized lossy
compressors and by training the models in the basecalling and
consensus pipeline on the lossily compressed data. We see a similar
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Fig. 4. Consensus accuracy versus compressed size for (a) S.aureus, (b) K. preumoniae and (c) E.coli datasets. The results are displayed for the polished Medaka assembly for
the losslessly compressed data and the lossily compressed versions with LFZip and SZ (with maxerror 1-10) for the four basecallers. The compressed sizes are shown relative

to the VBZ lossless compression size. Bonito and guppy fast were not used on E.coli due to lack of corresponding Medaka models for the R10.3 pore
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sion size

trend for other subsampling levels and other datasets (see
Supplementary Material).

Overall, we observe that both LFZip and SZ can be used as tools
to significantly save on space without sacrificing basecalling and
consensus accuracy. The savings in space are close to 50% over loss-
less compression and 70% over the uncompressed representation.
While it is not possible to say with certainty that we don’t lose any
information in the raw signal that might be utilized by future base-
callers, the results for the different basecallers and consensus stages
suggest that applying lossy compression (for a certain range of

parameters) only affects the noise in the raw signal without affecting
the useful components. Finally, the decision to apply lossy compres-
sion and the extent of lossy compression should be based on the
read depth (coverage), with more savings possible at higher depths
where consensus accuracy is the metric of interest.

4.3 Methylation calling accuracy
Figure 7 shows the precision, recall and AUC for CpG methylation
calling on the NA12878 Homo sapiens dataset. Across the >128K
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Fig. 7. Precision, recall and AUC (area under ROC curve) for NA12878 CpG methylation calling using Megalodon. The metrics are computed for per-read methylation calls.

For the precision and recall, a probability threshold of 0.5 was used for the predicted methylation probabilities. The results are displayed for the losslessly compressed data and

the lossily compressed versions with LFZip and SZ {with maxerror 1-10). The compressed sizes are shown relative to the VBZ lossless compression size

reads, there were roughly 670K positive ground truth positions and
560K negative ground truth positions after alignment. Recall that
only genomic positions with sufficiently high confidence regarding
the methylation status from bisulfite data were considered for the
evaluation (~5.4 M positive and ~4.7 M negative sites on genome,
counting both strands). The achieved precision, recall and AUC
were roughly 0.945, 0.845 and 0.945 respectively. As seen in the
figure, the impact of lossy compression is similar to that on basecall-
ing accuracy, with negligible impact for compression gains around
35-40% over lossless compression. This is despite the fact that
methylation calling is generally considered a harder problem than
basecalling due to the increased resolution needed for it. Further
benchmarking using improved benchmark datasets in the future can
be performed to strengthen these conclusions.

5 Conclusions and future work

We explore the use of lossy compression for nanopore raw data and
its imapct on the basecalling and consensus accuracy. We find that
lossy compression with existing tools can reduce the compressed size
by 35-50% over lossless compression with less than 0.2% percent
reduction in basecalling accuracy. The impact on consensus accur-
acy is even lower with less than 0.002% reduction at similar com-
pression levels. Similar conclusions hold across datasets at different
depths of coverage as well as several basecalling and assembly
stages (with slight variation in the impact due to baseline lossless
levels), suggesting that lossy compression with appropriate param-
eters does not lead to loss of useful information in the raw signal.
For datasets with high depth of coverage, even further reduction is
possible without sacrificing consensus accuracy. The analysis pipe-
line and data, partly based on Wick et al. (2019) and its adden-
dum, are available online on GitHub along with documentation,
and can be useful for further experimentation and development
of specialized lossy compressors for nanopore raw signal data,
which is part of future work. Further experiments on methylation
accuracy evaluation and assembly for larger eukaryotic genomes
are also part of future work, contingent upon the availability of
improved benchmark datasets.

We believe that further research in this direction can lead to lossy
compression algorithms tuned to the specific structure of the nano-
pore data and the evaluation metrics of interest, leading to further
reduction in the compressed size. Further research into modeling the
raw signal and the noise characteristics can help in this front.
Another interesting direction could be the possibility of jointly
designing the lossy compression with the modification of the algo-
rithms in the downstream applications to match this compression.
In particular, the current neural network models used in the basecal-
lers can be retrained on the lossily compressed data to further under-
stand the loss in information due to lossy compression. Finally, just
as research on impact of lossy compression of Illumina quality
scores on variant calling (Ochoa et al., 2017; Yu et al., 2015) led to
[llumina reducing the default resolution of quality scores, it might
be interesting to explore a similar possibility for nanopore data by

performing the lossy compression or data binning on the nanopore
sequencing device itself.
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