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Abstract— Ability to generate intelligent and generalizable
facial expressions is essential for building human-like social
robots. At present, progress in this field is hindered by the
fact that each facial expression needs to be programmed by
humans. In order to adapt robot behavior in real time to
different situations that arise when interacting with human
subjects, robots need to be able to train themselves without
requiring human labels, as well as make fast action decisions
and generalize the acquired knowledge to diverse and new
contexts. We addressed this challenge by designing a physical
animatronic robotic face with soft skin and by developing
a vision-based self-supervised learning framework for facial
mimicry. Our algorithm does not require any knowledge of
the robot’s kinematic model, camera calibration or predefined
expression set. By decomposing the learning process into a
generative model and an inverse model, our framework can be
trained using a single motor babbling dataset. Comprehensive
evaluations show that our method enables accurate and diverse
face mimicry across diverse human subjects.

I. INTRODUCTION

Facial expressions are an essential aspect of nonverbal
communication. In our day-to-day lives, we rely on diverse
facial expressions to convey our feelings and attitudes to
others and interpret other people’s emotions, desires and
intentions [1]. Facial mimicry [2]–[5] is also recognized as a
vital stepping stone towards the early development of social
skills for infants. Therefore, building robots that can automat-
ically mimic diverse human facial expressions [6]–[9] will
facilitate more natural robotic social behaviors and further
encourage stronger engagement in human-robot interactions.
Mimicking human facial expressions is also the first step
towards achieving adaptive facial reactions in robots. Despite
the practical value of such systems, extant research in this
domain mostly focuses on the hardware design and pre-
programmed facial expressions, allowing robots to select one
of the facial expressions from a predefined set. Generalizing
across various human expressions has remained challenging.

Current robotic face systems cannot mimic human facial
expressions adaptively. The key limitation is the lack of a
general learning framework that can learn from limited hu-
man supervision. Some traditional methods [10]–[16] define
a set of pre-specified facial expressions. Others generalize
this process to search for closest match from a database [17]
or by following an fitness function [17], [18]. However, as
human expressions are highly diverse, these approaches have
limited value in practical robot-human interactions.
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Fig. 1: Eva 2.0 is a general animatronic robotic face for facial
mimicry. The robot does so by learning the correspondence
between facial landmarks and self-images as well as a
learned inverse kinematic model. The entire learning process
relies on the robot’s motor babbling in a self-supervised
manner. Our robot can mimic varieties of human expressions
across many human subjects.

In this work, we present Eva 2.0 (Fig. 1) with significant
upgrades to our previous Eva 1.0 [19] platform with more
flexible and stable control. We further propose a general
learning-based framework to learn facial mimicry from visual
observations that can generalize well to different human sub-
jects and diverse expressions. Importantly, our approach does
not rely on human supervisions to provide ground-truth robot
commands. Our key idea is to decompose the problem into
two stages: (1) given normalized human facial landmarks, we
first use a generative model to synthesize a corresponding
robot self-image with the same facial expression and then
(2) leverage an inverse network to output the set of motor
commands from the synthesized image.

Our experiments suggest that our approach outperforms
previous nearest-neighbor search-based algorithms and direct
mapping from human face to action methods. Moreover,
quantitative visualizations of our robot imitations demon-
strate that, when presented with diverse human subjects, our
method generates appropriate and accurate facial expression
imitations.

Our primary contributions are threefold. First, we present
an animatronic robotic face with soft skin and flexible control
mechanisms. Second, we propose a vision-based learning
framework for robot facial mimicry that can be trained in a



self-supervised manner. Third, we construct a human facial
expression dataset from previous database, YouTube videos
and real-world human subjects. Our approach enables strong
generalization over 12 human subjects and nearly 400 salient
natural expressions. Our robot has a response time within
0.18 s, indicating a strong capability of real-time reaction.
Qualitative results and open-sourced platforms are in our
supplementary video at https://rb.gy/9koqpg.

II. RELATED WORKS

Animatronic Robotics Face Designing physical animatronic
robot face capable of imitating human facial expressions
is an important topic in human-robot interaction [20]–[27].
Early works [10]–[16], [28] solely focus on hardware design
of the robot face and pre-program the facial expressions.
Kismet [20], [29]–[34] generates diverse facial expressions
by interpolating among predefined basis facial postures over
a three-dimensional space. Albert HUBO [10] imitates spe-
cific human body movements, including facial expression.
WE-4R [28] determines the expression with emotion vectors.
Hashimoto et al. [12] maps the human face configuration
to a robot through life-mask worn by a human subject.
Asheber et al. [16] proposed a simplified design to enable
easier programming and flexible movements. However, all
these designs rely on a fixed set of pre-programmed facial
expressions that cannot generalize to novel expressions and
require extensive human efforts through trail-and-error.

Recent studies start to integrate more general motion
control into the hardware designs. Affetto [35]–[37] adopts
hysterical sigmoid functions to model motor displacement.
However, the landmarks are tracked with OptiTrack sensors
on the face. Our method does not require any hardware
attachment on the robot face. XIN-REN [38] uses an AAM
model to track the facial features for a specific person, which
consequently cannot generalize well to novel subjects. They
also calculate the robot solution with the robot kinematic
equation, while ours learns the model automatically.

Hyung et al. [18] have proposed a genetic algorithms to
search for the best facial expression. However, the algorithm
is inefficient when the search space grows with the com-
plexity of the robot. Therefore, the approach cannot perform
online inference, while our robot can react to a novel facial
expression within 0.18s in a fully online manner. Liu and Ren
[17] classified the input emotion and search in a discrete pre-
defined expression set which constrains possible outcomes.

Synthetic Video Generation and Animation Significant
progresses have been made in synthetic video generation
with a focus on motion re-targeting. The goal of video
synthesis [39]–[42] is to learn the mapping from a source
video to a target video domain to render photorealisitc
videos. Our work does not aim to render a realistic video
or image. Rather, we aim to map human facial expressions
to a physical robot platform.

On the other hand, some works in character face anima-
tion [43]–[47] targets at driving a digital face with human
motions. Cao et al. [43] learns to recognize human facial

landmarks and map them to a 3D avatar. Their method
requires full 3D knowledge of the digital face, making it hard
to generalize to real robots. Our approach learns a kinematic
model of the physical robot through self-supervised motor
babbling without any prior knowledge of the control mech-
anisms.

The most relevant works pertain to motion re-targeting
[48]–[51]. Chan et al. [52] proposes to transfer dance motion
to a different human subject in a rendered video. Similarly,
X2Face [53] and Face2Face [54] learns to synthesize novel
face movements videos. However, the aim of these works
is realistic video rendering, rather than a physical robot
realization. Moreover, most prior works assume a strong
correlation of kinematic configurations between the source
and target domain. However, as most robotic platforms, our
robot does not share same control mechanisms as humans.
Therefore, existing approaches cannot be directly applied in
real-life contexts.

Imitation Learning Our work also shares the same high-
level goal as imitation learning. However, most imitation
learning research focus on the manipulation [55]–[59], loco-
motion [58], [60], [61] or navigation [62]–[64], as discussed
in detail in comprehensive review articles [65]–[67]. Our
work studies facial mimicry. With our learning framework,
we can directly train our models with the robotic face on
an offline dataset and generalize on different human face
configurations.

III. DESIGN

Our robot design — based on our previous Eva 1.0 [19]
with significant upgrades — consists of two sub-assembly
modules: facial movement module and neck movement mod-
ule. We use micro servo motors (MG90S) to actuate all
the components of our robotic face. All parts in our design
are based on off-the-shelf hardware components that can be
easily purchased online or 3D printed. To accelerate research,
we open-source the design and step-by-step assembly process
on our website. An overview of our hardware design is shown
in Fig. 2.

Facial Movement Module Our facial movement module
can be further divided into skull frame, eye module, muscle
module and jaw module. Compared to Eva 1.0, we redesign
the 3D shape of the skull frame to enlarge the maneuvering
space and thus allow for more flexible movements. The new
skull frame also facilitates tighter connection to the skin with
smoother and more natural looks on the face surface.

By adding a pair of ball joints and three pairs of paral-
lelogram mechanisms, we now also ensure that the 6DoF
eyeball module can move freely within a ±20◦ range both
horizontally and vertically, making the movements more
stable. The rotation of each eyeball is controlled by two
motors and three ball joint linkages. We also upgraded the
eyelid design based on human face.

Our robot skin is attached to the front skull. The muscles
driving facial expressions are attached to the inner side of
the skin with a piece of fiber fabric, a strand of nylon cord,
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Fig. 2: Mechanical Design: our robot is actuated by the
motor servo module (A) controlled by a Raspberry Pi 4
located at the bottom. The soft skin is connected to 10 motors
via nylon cord. Our 6DoF eye module (B) is decoupled from
the front skull. The RGB camera (C) is only used for random
data collection of robot self-images but not for testing. The
6DoF neck module (D) follows Steward platform.

and a servo actuator inside the back of the skull. By pulling
different nylon cords, a specific skin region can be deformed.
We use the same region selection as Eva 1.0. To reduce the
noise for muscle control, we run each nylon cord through a
transparent vinyl tube linking the skull front and the motor.
Our design ensures that the deformation in each muscle is
proportional to the motor’s rotation angle. Our design enables
a large possible space of facial expressions by manipulating
10 pairs of symmetrical muscles in different proportions.

The jaw module is responsible for deforming the two mus-
cles around the mouth. This is similar to the aforementioned
skin movement design, but benefits from two additional
coupled motors that control the movement, allowing the jaw
to open up to 20◦.

Neck Movement Module Our 6DoF neck module design
is inspired by Stewart platform. Six motors are arranged in
3 pairs evenly distributed on 3 sides of the hexagon base.
Each pair comprises two motors in a mirrored arrangement
that are connected to a ball joint linkage.

IV. MODELS

We propose a learning-based framework for controlling
the animatronic robotic face to mimic varieties of human
facial expressions. An overview of our learning algorithms is
shown in Fig. 3. We consider the following problem setup:
given an image of human face displaying a natural facial
expression, the model needs to output the motor commands
to actuate the robot to imitate the given facial expression.

Without human pre-programming for different expres-
sions, the problem poses several key challenges and desired
properties. First, we hope that the learning algorithm can
generalize to diverse unseen human faces. We leveraged the
recent advances in human facial landmark detection to obtain
abstract representations from high-dimensional image frames
(Section IV-A) which can be shared among different human
subjects.

The second challenge in attempting to achieve facial
mimicry stems from the lack of ground-truth pairs of hu-
man expressions and robot motor commands. Without hard-
coding and extensive trail-and-error, obtaining such a pair
is not practical. In this paper, we overcome this issue by
adopting a two stage learning-based method: (1) a generative
model which first synthesizes a robot self-image from facial
landmarks processed by a proposed normalization algorithm
(Section IV-C and Section IV-B), (2) and an inverse model
that is trained to produce desired motor commands from the
generated robot image (Section IV-D). As we will show, the
ground-truth labels for both models can be acquired with one
round of self-supervised data collection without any human
input.

A. Representation of Facial Expression

We capture facial expressions via facial landmarks, as
this has been shown as an effective means of representing
the underlying emotions. More importantly, facial landmarks
provide a unified abstraction from diverse high-dimensional
human images under different lighting, background and
poses.

Specifically, we extract facial landmarks with OpenPose
[68], [69] software. The output is a vector of 53×3 size repre-
senting the spatial position of 53 landmarks on human faces,
with the last dimension being confidence scores. We also
extracted the head pose for direct neck movement control. As
ground-truth pairs for generating motor commands directly
from the extracted human landmarks are not available, we
adopt a different strategy, as discussed below.

B. Landmark Normalization

Before we send the landmarks from human faces for robot
learning, we need to normalize the spatial locations of the
landmark vector to the robot domain. This is necessary due
to potential variations in the scale or landmark arrangements
in the captured human faces. Formally we normalize each
landmark coordinate from human space LH to robot space
LR with:

LR =
(LH −Hmin)(Rmax −Rmin)

Hmax −Hmin
+Rmin

where Hmin, Hmax, Rmin, Rmax represent the value ranges
of the spatial location per corresponding landmark in the
sampled human and robot image frames.

C. Generative Model

The generative model takes in the normalized human
landmarks and generates a synthetic RGB image allowing
the robot to conceive the same facial expression, which we
denote as robot’s self-image. We parametrize the generative
model G with a deep neural network with parameter θ.

A key challenge here is to map the coordinate vector to
a high-dimensional image. This could be accomplished by
encoding the input vectors with a fully-connected network,
which is thus used by the robot to learn the entire spatial
mapping. However, this simple approach requires a network



Fig. 3: Model Overview: our two-stage framework consists of two major modules: a generative network and an inverse
network. Given an image captured by a regular RGB camera, we first extract facial landmarks with OpenPose. We then
normalize the human landmarks to the robot scale and embed it on an image. Together with a reference static robot self-
image, these two images are concatenated to the generative network to synthesize a robot self-image as if the robot makes the
same expression. The inverse model takes the synthetic robot self-image to output the final motor commands for execution.

of strong capacity and optimization algorithm and does not
perform well in practice [70].

To this end, we propose to encode the spatial coordinates
of the landmarks to a two-channel image mask Mw×h×2

i

[52]. The first channel has the value of 1 if there is a
landmark at the particular location and 0 otherwise. The
second channel is a greyscale image indicating the confi-
dence score returned by the landmark detection algorithm.
This encoding matches the size of the robot image, which
helps with ensuring correct spatial correspondence.

Furthermore, instead of relying on the network to directly
regress the absolute value in the output image, it only needs
to output the “change” in the image introduced by landmark
displacements. In practice, we achieve this by conditioning
the network with a static robot self-image Iw×h×3

s whereby
the two images are concatenated along the depth channel.
Our generative model can be expressed as: Ii ← G(Mi, Is).

Implementation Details We use a fully convolutional
encoder-decoder architecture [71], [72] where the resolution
of the decoder network is enhanced by several hierarchi-
cal feature refinement convolutional layers [73]. Since the
network is fully convolutional, we can preserve all the
spatial information with high-quality outputs. Our network
is optimized with a simple pixel-wise mean-squared error
loss using Adam [74] optimizer and a learning rate of 0.001.
We train the network for 200 epochs with batch size 196
until convergence on a validation dataset. We include more
details in the supplementary. The formal objective function
that we minimize is:

LG = MSE(G(M, Is), I)

D. Inverse Model

The inverse model F maps the synthetic robot self-image
to motor commands in order to learn an inverse mapping
from the goal image to actions.

Action representation Our robot utilizes N motors to
actuate the face muscles. Given the robot face image, it is
straightforward to frame this problem as continuous value
regression. That is, given an input image, the network needs
to output N values for N motor encoders. However, this
framing can quickly become impractical in complex real-
world scenarios and may lead to over-engineering. In prac-

Fig. 4: Training Data Collection: the whole training process
of our generative model and the inverse model rely on a
single robot dataset without human supervision. We collect
our training data with random motor babbling in a self-
supervised manner whereby the camera facing the robot is
used solely for gathering the training data, i.e., it is not used
during evaluation

tice, we observe that the motors have certain angle threshold
to produce salient and stable motion. As a result, we can
achieve salient motions with a discrete parameterized angle
encoder without loss of accuracy.

We normalized and discretized the motor values to the
[0, 1] range with 0.25 step size, resulting in 5 values per
motor. This discretization converts the original problem to
a multi-class classification problem. Given an input robot
image, the inverse model will output 5×N numbers, where
every five numbers represents the probability of choosing
each motor angle for one actuator. Our inverse model can be
expressed as: Ai ← F (Ii).

Implementation Details Our architecture has 6 convolu-
tional layers followed by several fully-connected layers to
adapt the output dimension to be 5 × N . We train our
network with a multi-class Cross-Entropy loss with Adam
optimizer and a learning rate of 0.00005 for 58 epochs. We
have 14, 000 pairs for training and 1, 000 pairs for validation
and testing respectively. The formal objective function is:

LF = ΣN−1
n=0 CE(Fn(I),An)

E. Training Data Collection
Both models can be trained separately with the same data

collected via self-supervised motor babbling (Fig. 4). We



randomized the angles of the 10 motors ranging from 0
to 1 with an interval of 0.25 for 16, 000 steps. We used
Intel RealSense D435i to capture RGB images and cropped
the image to 480 × 320 to center the robot head. For each
step i, we recorded the motor command values Ai, the
corresponding robot images Ii, as well as the extracted
landmark LR,i from the robot with OpenPose. We thus
obtain the training pairs of the generative model as (LR,i,
Ii) and the training pairs of the inverse model as (Ii, Ai).
Since the data collection is purely random, the process does
not require any human labeling.

F. Inference

Once the generative model and the inverse model are
trained, we can use them jointly to perform inference. Given
the input human image captured by an RGB camera, we first
extract the landmark coordinates. After our normalization
procedure, we can send it to our generative model which then
outputs a synthetic robot self-image. This synthetic robot
image serves as input for the inverse model which outputs the
motor commands. All the network training and testing can
be accomplished on a single NVIDIA 1080Ti GPU, whereas
the motor commands on the robot are executed via WiFi.

V. EXPERIMENTS

A. Evaluation Dataset

Even though the training of our models do not require
any human face dataset, we constructed a human facial
dataset with salient facial expressions to perform extensive
evaluations. Our human expression dataset is a combination
of MMI Facial Expression database [75] and a set of online
videos featuring eight subjects. We uniformly down-sampled
the original videos to obtain 380 salient frames covering a
variety of facial expressions and human subjects.

B. Baselines

We are interested in evaluating the effectiveness of our
approach for the generative model (GM), the inverse model
(IM), and finally the entire pipeline. To this end, we design
our baseline and ablation studies for each of them. For the
generative model, we compared our method with a randomly
sampled (RS) image from a collection of real images. This
comparison aims to ascertain whether the synthetic image
can outperform the real image and whether our model can
predict reasonable motion on the static robot template.

Even though our method successfully convert the inverse
model to a classification problem, a purely random baseline
only has a 20% success rate. We also compared our model
with another two less random simple baselines — a randomly
initialized network (RI) and a model trained for about 100
iterations (RI-100).

For the entire pipeline, we evaluated different combi-
nations of the above baselines. For example, we obtained
one baseline by combining our generative model with an
inverse model that has been trained for 100 iterations.
Additionally, we present another three baselines. The first
one is to perform a nearest neighbor retrieval (NN) with

the landmarks extracted from the output of our generative
model. We can directly search within our robot dataset.
This baseline replaces our inverse model with a NN model.
Similarly, we can perform such NN operation with human
landmarks as a direct input. Lastly, we assessed whether
we can directly generate the motor commands without our
two-stage algorithm by training a network to output motor
commands from our embedded input landmarks.

We used the same architecture for all the above baselines
while varying only the number of channels in the first layer
for different input dimensions. We trained all the models with
three random seeds and report the mean and standard errors.

C. Evaluation Metrics

Our evaluation metrics cover both the pixel-wise accuracy
of synthetic image and the accuracy of the output commands.
We also extracted landmarks from our synthetic image to
measure if the model successfully learns the facial expression
than simply copying the static image. Moreover, we provide
qualitative visualizations for the final pipeline. We also
extracted landmarks from our entire pipeline execution to
compare against the input human landmarks. We use L2
metric for both the image and landmark distances.

D. Results

Generative Model Tab. I shows the quantitative evaluation
for our generative model. Our generative model outperforms
the random baseline by a large margin. Note that the image
distance is normalized by the total number of pixel values
(480 × 320 × 3) which range from 0 and 1, whereas the
landmark distance is normalized by the total number of
landmarks (53).

TABLE I: Accuracy of the Generative Model

Method Image Distance ↓ (×10−5) Landmark Distance ↓

GM (ours) 3.47± 0.009 0.46± 0.002

RS 6.47± 0.039 0.84± 0.007

Inverse Model Tab. II shows the evaluation result for
our inverse model. Compared with the random initialized
model, the model trained for 100 iterations as well as the
purely random baselines (20% accuracy), our inverse model
produces much more accurate motor commands.

TABLE II: Accuracy of the Inverse Model

Method Command Distance ↓ Command Accuracy ↑ (%)

IM (ours) 0.53± 0.009 75.86± 0.042

RI 1.39± 0.009 30.34± 0.038

RI-100 0.90± 0.010 56.40± 0.041

Two-Stage Pipeline By combining the generative and in-
verse model, we can use the synthetic output from the
generative model as the input for the inverse model, allowing
us to evaluate the entire two-stage pipeline. As shown in Tab.
III, our two-stage strategy outperforms all baselines, but is



Fig. 5: Robot Visualizations: we executed the output motor commands on our physical robot to demonstrate that our method
supports accurate facial mimicry of a variety of human expressions across multiple human subjects.

inferior to the performance of its component models. This
is to be expected, as the inverse model takes the synthetic
output from the generative model as its input when these are
evaluated jointly, whereas individual evaluations are based on
real images from our robot dataset. Nonetheless, our method
still achieves the best predictions and is particularly advan-
tageous compared to two single model baselines, indicating
that decomposing the problem into two sub-steps is a prudent
design choice.

TABLE III: Accuracy of the Entire Two-Stage Pipeline

Method Command Distance ↓ Command Accuracy ↑ (%)

GM IM 0.83 ±0.008 54.57 ±0.048

GM NN 1.06 ±0.009 45.74 ±0.045

GM RI 1.39 ±0.009 30.34 ±0.039

GM RI-100 0.98 ±0.009 53.48 ±0.041

Landmark to Motor 1.03 ±0.011 52.81 ±0.048

Landmark NN 0.98 ±0.095 49.3 ±0.045

Pipeline Execution We executed the output motor com-
mands from the above two-stage pipeline on our physical
robot and computed the landmark distance extracted from
the resulted robot face with the ground-truth normalized
landmarks. To provide qualitative evaluations, we visualized
the final robot face together with the input human face in
Fig. 5.

Our evaluation was conducted on 380 salient frames
which covers 10 video clips from 8 subjects. We show
the quantitative results compared with a random baseline in
Fig. 6. Our approach demonstrates a flexible learning-based
framework to mimic human facial expression. Our method
also generalizes across various human subjects without any
human supervision.

VI. CONCLUSIONS AND FUTURE WORK
We present a new animatronic robot face design with

soft skin and visual perception system. We also introduce
a two-stage self-supervised learning framework for general
face mimicry. Our experiments demonstrate that the two-
stage algorithm improves the accuracy and diversity of

Fig. 6: Pipeline Execution: we executed the motor com-
mands output by our entire two-stage pipeline and extracted
the landmarks from the resulting physical robot face to
compare against the ground-truth human landmarks as well
as a random baseline to benchmark the task difficulty. The
results show that our robot can imitate different human
expressions accurately.

imitating human facial expressions under various conditions.
Our method enables real-time planning and opens new op-
portunities for practical applications.

Although we show that robots based on our design are
capable of mimicking diverse human facial expressions from
visual observations, it is necessary to study this problem with
other modalities. For example, when several humans are in-
volved in a conversation, the context will also influence their
facial expressions. Thus, for future investigations, it would
be beneficial to incorporate speech signal into the decision-
making process while also allowing robots to reciprocate
verbally.

Furthermore, even though imitation is an important step
towards imbuing robots with more complex skills, being able
to generate appropriate reaction expressions will be essential
for interactive social robots. More broadly, building inter-
active robot face will require higher-level understanding of
other’s emotion, desires and intentions. Hence, an interesting
direction is to explore higher-order thinking for robots.
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