

Molten-Salt Mediated CO₂ Capture and Utilization for Ethane Oxidative Dehydrogenation with Super-Equilibrium CO₂ Conversion

Junchen Liu, Yunfei Gao, Xijun Wang, Fanxing Li*

Abstract

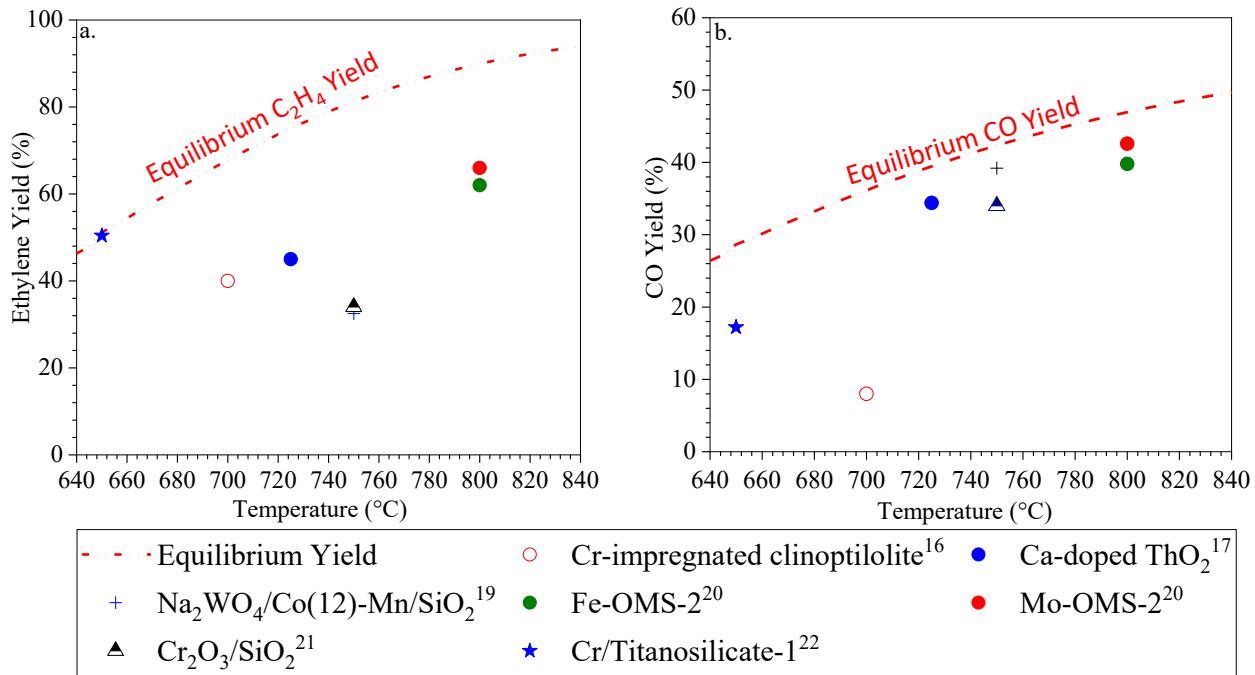
5 CO₂-mediated oxidative dehydrogenation (CO₂-ODH) of ethane represents a promising method
6 for carbon dioxide utilization. Existing CO₂-ODH has yet to demonstrate >50% single-pass CO
7 yield due to the intrinsic equilibrium limitations for the CO₂-ODH reactions. We report a unique
8 approach with mixed molten carbonates as reaction media for CO₂-ODH, which strategically
9 partitions the CO₂-ODH reactions into gas and molten-salt phases and facilitates integrated CO₂
10 capture from power plant flue gases. Consequently, 89% CO yield was achieved at 770 °C,
11 doubling the equilibrium limitation. The high CO yield in turn enhances ethylene formation.
12 Further characterizations confirm that molten-salt mediated ODH (MM-ODH) proceeds through
13 a gas-phase cracking and molten-salt mediated reverse water-gas-shift reaction pathway. Based on
14 this understanding, general principles to optimize the molten-salt reaction medium were developed.
15 Thermodynamic analysis further revealed the principle for molten salt selection. Process analyses
16 confirmed that MM-ODH has the potential to be significantly more efficient for CO₂ capture and
17 utilization than conventional CO₂-ODH.

18

19

20 **Introduction**


21 With the ever-increasing global energy consumption and rising demand for the fossil energy, the
22 annual anthropogenic CO₂ emission is projected to be 45 billion tons by 2050 under a business-
23 as-usual scenario¹. To avoid the dire consequences of global climate change, there is an urgent
24 need for efficient and economically viable technologies to mitigate CO₂ emissions. Although
25 widespread utilization of renewable energy can reduce the global carbon footprint, our continued
26 reliance on fossil fuels calls for effective CO₂ capture, sequestration, and utilization (CCSU)
27 technologies in the fossil energy sector.


28 As the first step in CCSU, CO₂ capture is the most energy intensive and is responsible for 70%~80%
29 of the total energy consumption in carbon capture and sequestration²⁻⁵. Rochelle and coworkers
30 established that 220 kWh_e of energy is required to capture and compress 1 metric ton of CO₂ from
31 coal-fired power plant flue gas, with an estimated cost of \$52/ton (2009 dollars) using the well-
32 established solvent based technology, such as amine scrubbing². Although many alternative CO₂
33 capture approaches have been proposed and are under different stages of research and development,
34 significant energy consumption and cost would nevertheless incur⁶⁻¹⁰. The energy and cost
35 penalties associated with CO₂ capture pose significant challenges for CO₂ utilization and
36 sequestration since they both require a concentrated CO₂ stream. Compared to sequestration, CO₂
37 utilization has the potential to provide significant economic incentives by converting CO₂ into
38 valuable products^{11,12}. CO₂ utilization technologies investigated to date include CO₂ to fuel, CO₂
39 to chemicals, CO₂ enhanced oil recovery, etc.¹¹⁻¹⁵ Among these, CO₂-mediated oxidative
40 dehydrogenation (CO₂-ODH) of light alkanes, particularly ethane,^{14,16-24} has opened up new and
41 exciting opportunities for: (a) producing a value-added ethylene product, which is in high demand
42 (~200 million tons/year by 2025) and energy-intensive to produce²⁵; (b) simultaneous utilization

43 of the abundantly available ethane resulted from the shale gas revolution²⁶; (c) co-production of
44 CO, a valuable industrial gas.

45 **CO₂-ODH of Ethane – A Promising Approach with Intrinsic Equilibrium Limitations**

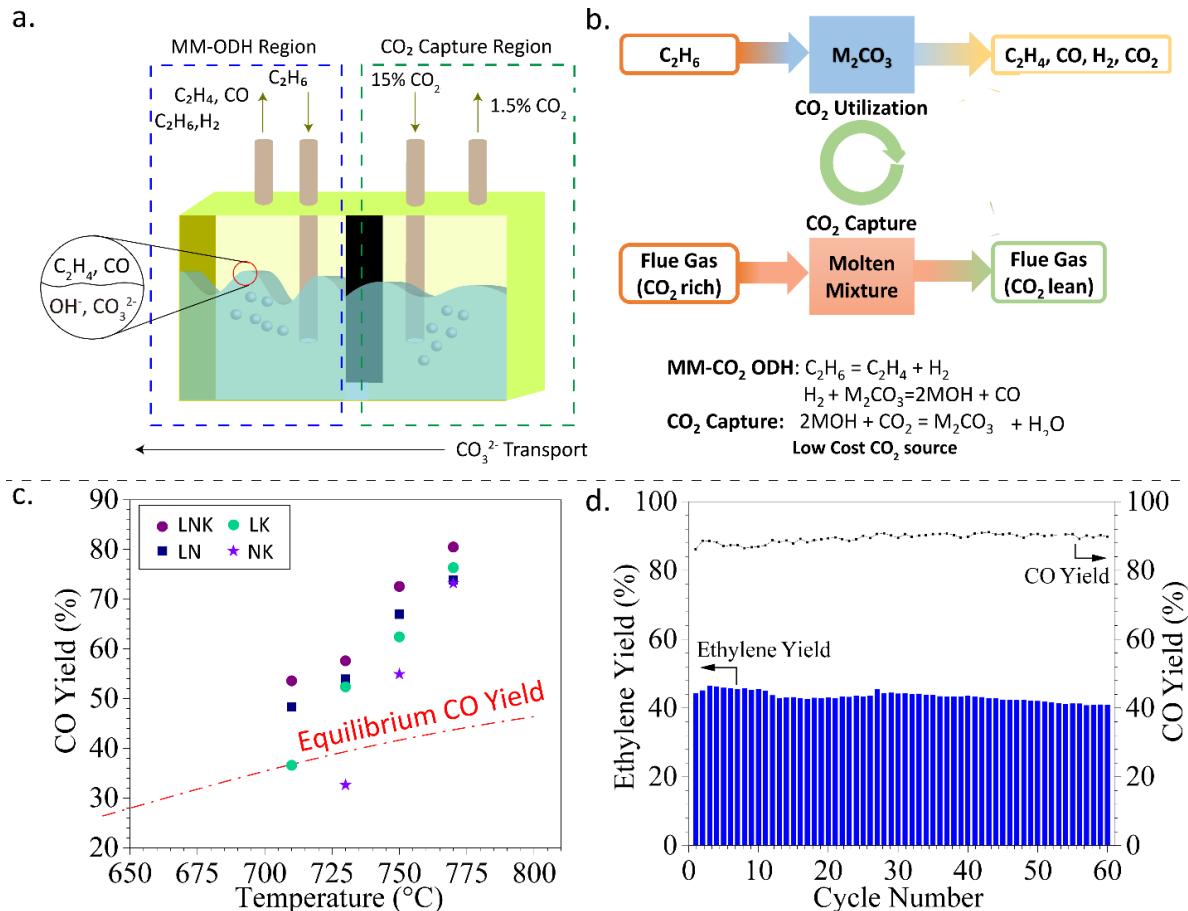
46 Ethylene yield in commercial steam cracking processes is equilibrium limited due to the formation
47 of H₂ as a coproduct. As such, the single-pass ethylene yield is generally limited to ~55% in steam
48 crackers. To address this challenge, oxidative ethane dehydrogenation using CO₂ as a soft oxidant
49 (CO₂-ODH) were widely investigated. Two primary reaction pathways for CO₂-ODH that have
50 been reported include: (1) Direct ethane cracking reaction followed by a reverse water-gas-shift
51 (RWGS) reaction to convert the by-product H₂ into CO and H₂O¹⁴, as described in **Eqn. 1 and 2**;
52 (2) Catalytic oxidative dehydrogenation of ethane with CO₂, typically on a metal oxide catalyst
53 surface through a Mars-van Krevelen type mechanism¹⁴. In either reaction pathways, the overall
54 reaction can be written as **Eqn. 3**. **Fig. 1** summarizes the equilibrium ethylene and CO yield in
55 CO₂-ODH based on a C₂H₆/CO₂ = 1/1 molar-flow based feed condition. We note that byproducts
56 such as C₃+, coke, and steam reforming products are not included in the equilibrium analysis since
57 they are kinetically limited in the context of ethane cracking conditions. This represents a
58 commonly accepted approach to analyze ethane cracking reactions²⁷⁻³¹.

62
63 **Fig. 1.** Equilibrium ($\text{CO}_2/\text{C}_2\text{H}_6=1$) and experimentally obtained yields of selected ethane CO_2 -ODH catalysts: (a)
64 C_2H_4 yields; (b) CO yields.

65 To date, most CO_2 -ODH studies focus on catalyst development with the goal of improving
66 ethylene selectivity and yield. Numerous high performance catalysts have been reported along
67 with important mechanistic insights, warranting further investigation of this important subject^{13–}
68 ^{16,18–21,23,24,32}. Although single-pass ethylene yields reported on a number of CO_2 -ODH catalysts
69 (**Fig. 1a**) were comparable to those in commercial steam ethane cracking (~55%), CO yields
70 ($Y_{\text{CO}} = \frac{y_{\text{CO}}}{y_{\text{CO}} + y_{\text{CO}_2}}$) still remained severely equilibrium limited (**Fig. 1b**). To date, the highest CO
71 yield reported was 55.7% at 830 °C for a K-Cr-Mn-O/SiO₂ catalyst.²⁴ However, this relatively
72 high CO yield resulted from severe coking and dry reforming activities, which sacrificed the
73 ethylene selectivity. Other promising CO_2 -ODH catalysts include those containing Cr and/or Ni.
74 Their CO_2 conversions are generally lower than 45%, but with satisfactory ethylene selectivity
75 (>80%) and reasonable coke resistance^{19,21,33–37}. While CO_2 conversion (or CO yield) has received
76 little attention in most of the previous CO_2 -ODH studies, it is an important parameter to consider

77 since: (1) Gaseous products from ethane ODH need to undergo compression and deep cooling
78 prior to cryogenic distillation. A low CO₂ to CO conversion would significantly increase the cost
79 and energy consumption in these stages due to the presence of H₂, negatively impacting the
80 attractiveness of CO₂-ODH³⁸; (2) the increase in the yield of CO, a high value product, can increase
81 the overall product value while promoting the effectiveness for CO₂ utilization. Given that both
82 RWGS and CO₂-ODH of ethane reactions are endothermic, CO₂-ODH is favored at higher
83 temperatures from a thermodynamic standpoint. Nonetheless, the CO yield of the experimental
84 studies reported to date are generally limited to ~45%, even when carried out at 800 C, as shown
85 in Fig. 1. This is understandable given the intrinsic thermodynamic limitations on CO₂ conversion,
86 which in turn limits the maximum ethylene yields. Another important challenge to conventional
87 CO₂-ODH resides in the needs for purified CO₂, which is energy-intensive to capture and separate.
88 To summarize, an ideal CO₂-ODH technology should be able to: (a) combine CO₂ capture and
89 utilization into an integrated process; (b) achieve high CO and ethylene yields without being
90 subjected to the equilibrium limitations witnessed in conventional approaches.

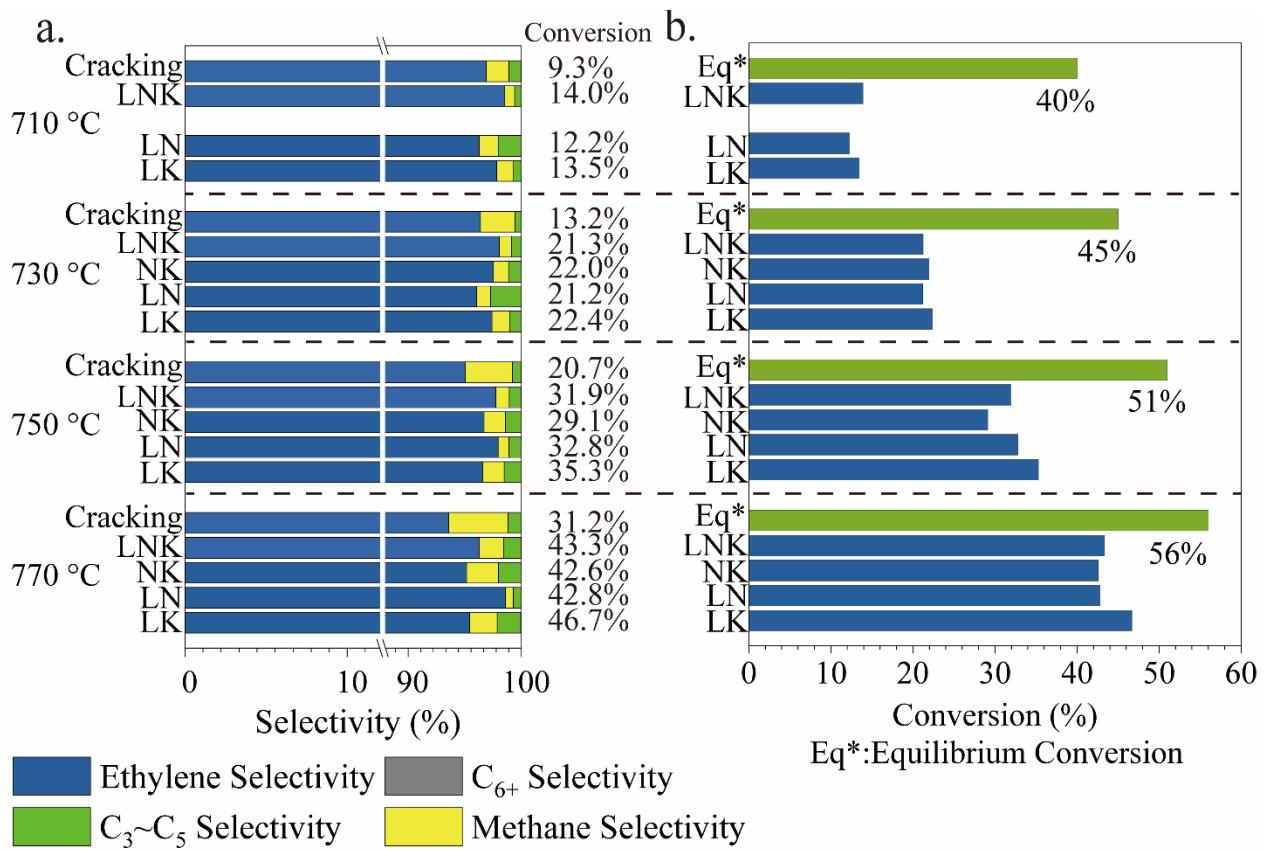
91 Integration of carbon capture and utilization has been attempted in the context of dry reforming of
92 methane. Both Buelens et al. and Tian et al. used a hybrid system involving a calcium oxide based
93 sorbent and Ni based catalysts to capture CO₂ followed by converting carbonate formed into CO
94 and/or H₂^{39,40}. The high operating temperature and relatively low methane feed concentration
95 alleviate equilibrium limitations for dry (or “super dry”) reforming, allowing high CO/H₂ yields.
96 To our best knowledge, integration of CO₂ capture and utilization for ethylene production in an
97 isothermal system have only been reported by Rezaei et al⁴¹. In their study, an H-Zeolite Socony
98 Mobil 5 (H-ZSM-5) based dehydrogenation catalyst layer is used in conjunction with K₂O-CaO,
99 Na₂O-CaO and CaO based CO₂ sorbent layer in a packed bed reactor. Captured CO₂ is released


100 from the sorbent by raising the reactor temperature in the ethane conversion step. 22% ethylene
101 yield was reported, along with 14% CO₂ conversion due largely to the aforementioned equilibrium
102 limitations. In principle, a hybrid system involving a CO₂ sorbent and heterogeneous catalyst could
103 potentially be used for CO₂-ODH of ethane. However, more severe equilibrium limitations would
104 be anticipated considering the high endothermicity for carbonate decomposition during the CO₂
105 utilization/ethane conversion step⁴²⁻⁴⁴.

106 Herein, we proposed and demonstrated a molten-carbonate mediated ODH (MM-ODH) approach
107 to capture and utilize CO₂ for the co-production of ethylene and CO with high yields. Strategic
108 design of the molten-carbonate system circumvents the equilibrium limitations imposed on
109 conventional CO₂-ODH processes, *achieving a super-equilibrium CO yield of 89.2%, doubling*
110 *the equilibrium yield for conventional CO₂-ODH*. This novel process also attained 93% ethylene
111 selectivity and 56% H₂ conversion. In the following sections, an overview of the proposed MM-
112 ODH process and the rationale behind the equilibrium circumvention using the molten-salt as both
113 a reaction and CO₂ capture medium are discussed first. Subsequently, the feasibility of the process
114 is experimentally validated. An investigation of the reaction pathway is then presented as well as
115 thermodynamic analyses to examine the selection of the molten-salt reaction media. Finally, an
116 energy analysis is presented to determine the process efficiency for CO₂ utilization.

117 **MM-ODH: Reaction Scheme and Proof-of-Concept**

118 As illustrated in **Fig. 1**, CO yield with simultaneous presence of CO₂ and ethane is equilibrium
119 limited irrespective of the ODH catalyst type. Such an equilibrium limitation would be even more
120 severe if a solid CO₂ sorbent is used. For instance, integrating calcium carbonate as the source of
121 CO₂ in ODH would make the CO₂-ODH process 167.6 kJ/mol more endothermic at 800°C and
122 limit the CO₂ conversion to 41% (vs. 47% with CO₂ co-feed) as calculated by HSC Chemistry
123 Outotec v10. This additional thermodynamic limitation would appear to be inevitable for any CO₂-


124 ODH approach with integrated CO₂ capture since a system that is spontaneous for CO₂ capture
125 would have a natural tendency to inhibit CO₂ release, adding the difficulty for CO₂ conversion in
126 CO₂-ODH from a thermodynamic standpoint. To circumvent this challenge, we propose to use
127 molten carbonates as a reaction medium to partition the CO₂ and ethane in the liquid phase and
128 gas phase, respectively. Unlike solid CO₂ sorbents which have a fixed activity coefficient of 1 for
129 the gas phase CO₂-ODH reactions, the molten carbonate system enables simultaneous equilibria
130 in both the gas and liquid phases, as illustrated in **Fig. 2a**. As will be further discussed through the
131 detailed thermodynamic analyses in later sections, the eutectic formation can increase the activity
132 of the molten carbonate salt, allowing “super-equilibrium” CO yields. A schematic of the MM-
133 ODH approach based on the abovementioned strategy is shown in **Fig. 2b**. As illustrated, MM-
134 ODH integrates CO₂ capture and ethane CO₂-ODH into the molten carbonate reaction medium.
135 The MM-ODH system is operated in two cyclic steps forming a reaction loop: in Step 1, molten
136 carbonates are converted into CO and hydroxides by H₂ generated from ethane dehydrogenation;
137 In Step 2, the molten hydroxides subsequently capture CO₂ from a flue gas stream while
138 regenerating the carbonates.

139
140 **Fig. 2.** (a) A conceptual reactor schematic with molten carbonate reaction media designed to simultaneously capture
141 CO_2 and convert ethane; (b) Simplified schematic of the MM-ODH process; (c) MM-ODH reaction results for LNK,
142 (Li-Na)₂CO₃ (LN), (Li-K)₂CO₃ (LK) and (Na-K)₂CO₃ (NK) at different temperatures ; (d) Performance of 60 cycle
143 tests with LNK at 770 °C
144

145 **Fig. 2c** and **2d** highlight our experimental results demonstrating the feasibility and attractiveness
146 of MM-ODH. These results were obtained with (Li-Na)₂CO₃, (Li-K)₂CO₃, (Na-K)₂CO₃, and (Li-
147 Na-K)₂CO₃ salt mixtures at their respective eutectic compositions and tested in an 1 inch OD
148 alumina tube. The selection of the carbonate mixtures are based on the melting point and its
149 stability (i.e. lower CO_2 release). (Na-K)₂CO₃ is not included at 710 °C due to its high melting
150 point of 710 °C.⁴⁵ In addition, the high melting point of Li_2CO_3 (724 °C) makes it unsuitable for
151 experimental investigation. The experimental setup and method of calculation are described in the
152 **Fig. S1 and Table S1** (supplementary document). As can be seen in **Fig. 2c**, MM-ODH exhibited

153 significantly higher CO yields than those predicted from conventional CO₂–ODH equilibrium. For
154 all the molten salts screened, the CO yields increased with temperature. At 770 °C, all molten salts
155 demonstrated CO yields $\geq 73\%$. A maximum CO yield of 89.2% was achieved with (Li-Na-K)₂CO₃
156 (LNK) mixed molten salts, nearly doubling the equilibrium CO yield in conventional CO₂-ODH.
157 In the extended ODH step, the CO yields could reach up to 92.2% at 770 °C, as shown in **Fig. S2**
158 in the supplementary document. The LNK molten salts also exhibited stable ethylene yield
159 averaging at 43.4% and CO yield averaging at 89.4% for over 60 cycles (**Fig. 2d**).
160 MM-ODH also demonstrated higher ethylene yields when compared to thermal cracking. As
161 shown in **Fig. 3a** and **3b**, each molten salt eutectic system exhibited selectivity to ethylene above
162 ($>90\%$) at 770 °C and ethane conversion above 70%, with a slightly higher selectivity in C₃~C₅
163 and methane than that of thermal cracking. The formation of C₆₊ species are negligible in all cases.
164 In addition, the reforming activity and coke formation are also minimal, as determined by
165 hydrogen in the supplementary documents. As one would anticipate, the ethylene selectivity
166 decreased with increasing temperature while ethane conversion and olefin yields increased.
167 Methane, C₄, and C₆₊ accounted for $\leq 5\%$ of the overall product selectivity.

168

169 **Fig. 3.** (a). MM-ODH results with LNK, NK, LN, LK reaction media. Thermal (blank) cracking results are shown for
170 comparison purpose. Reaction conditions: 10 vol.% ethane balance Ar, 50 ml/min total gas flow rate. (b) Conversion
171 profile of the MM-ODH results in comparison with equilibrium conversion of CO₂-ODH of ethane.

172

173 The CO₂ capture and storage capability of the molten salts was further examined through
174 thermogravimetric analysis with result shown in **Figs. S3 and Fig. S4** (See supplementary
175 document). To further confirm the ability of the molten salt can capture diluted CO₂ in a flue gas
176 stream, 3 vol.% CO₂ was flown through fully decomposed Li₂CO₃, the alkali metal carbonate with
177 highest tendency to decompose into CO₂ and oxide. As shown in **Fig. S3**, the sorbent is highly
178 reactive towards this dilute CO₂ stream at CO₂ concentrations well beneath the typical flue gases
179 concentration (~12 – 15 vol.%). The CO₂ capacity of the molten salt sorbent was stable under
180 repeated cycles (**Fig. S4**). In comparison, CaCO₃ sorbent based CO₂ capture system tend to

181 experience significant sintering-induced deactivation within 20 carbonation-calcination cycles.^{46–}
182 ⁵⁵ Although few recent studies have resulted in rather sintering resistant calcium sorbents, precise
183 morphological controls are required.^{46–55} These results demonstrate that the MM-ODH can be a
184 promising process for CO₂ capture and utilization in the context of ethane ODH.

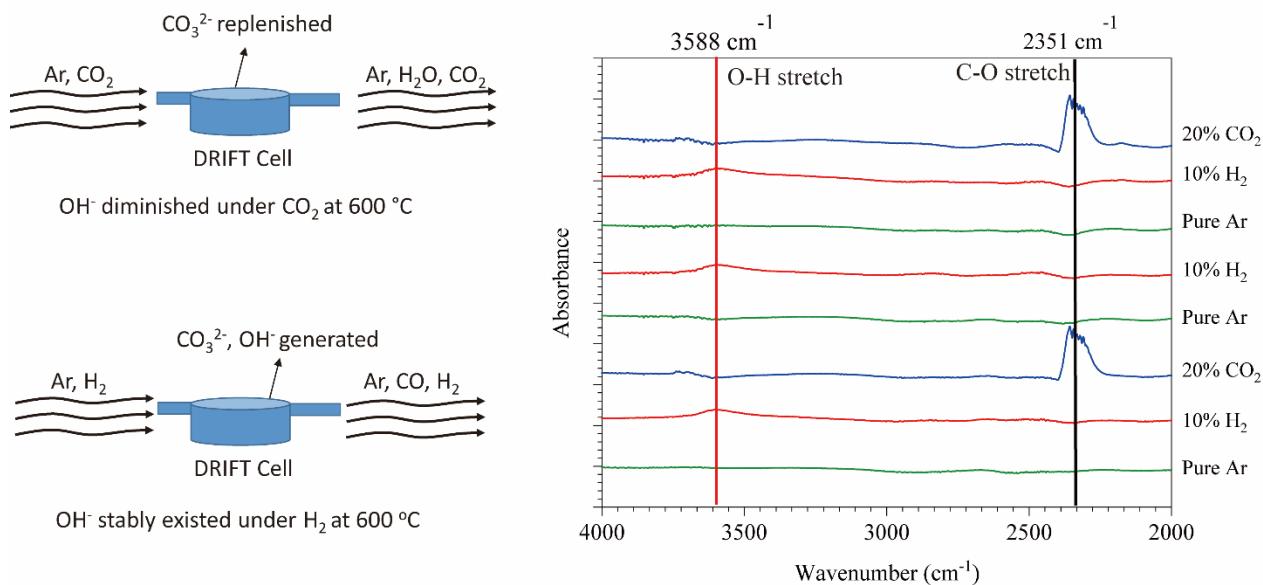
185 **MM-ODH Reaction Pathway**

186 The notably higher ethylene yields compared to thermal cracking may be explained by one of the
187 two possible mechanisms: (a) a kinetically driven yield increase, i.e. the molten carbonate reaction
188 medium acts as a “catalyst” to accelerate the ethane dehydrogenation reaction; or (b) a
189 thermodynamically driven yield increase, i.e. the consumption of the H₂ through CO₂ conversion,
190 which decreases the reverse reaction rate for MM-ODH. To probe the possible mechanism of the
191 reactions, temperature-programmed reaction was carried out to determine the kinetic contribution,
192 followed by *in-situ* DRIFT and H₂/CO₂ cofeed experiment to establish the roles of carbonate and
193 hydroxide in the reaction system.

194 Temperature-programmed reaction (TPR) was first carried out to determine whether the molten
195 salt would contribute to the activation of ethane. A relatively high GHSV (1200 h⁻¹) was used to
196 ensure that the system is operated under a kinetic regime with minimal thermodynamic effects. It
197 was determined that the onset temperature for ethane dehydrogenation was higher in the presence
198 of the molten salt than that with ethane thermal cracking alone (**Fig. S5**). The ethylene yield in the
199 molten carbonate system was notably lower than that of the ethane cracking in this kinetic regime,
200 thus ruling out the catalytic effect of the molten carbonates system towards ethane conversion. The
201 improved ethylene yields relative to thermal cracking (**Fig. 2**) are therefore thermodynamically
202 driven due to H₂ consumption by a reverse water-gas-shift (RWGS) reaction.

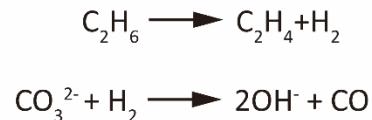
203 To further understand the role of the molten phase in RWGS reactions, the experimental results of
204 CO₂/H₂ cofeed in an empty tube versus H₂ feed to molten LNK were compared. The presence of

205 the molten salt increased CO yield by more than sixfold, from 14% to 92% (**Table S2**). The
206 significant enhancement in the CO yield was primarily resulted from the fixation of CO₂ in the
207 molten phase. Meanwhile, H₂ conversion was increased from 21% to 29%. These results clearly
208 supported that the molten salt acts as a reaction medium for H₂ conversion reaction in a molten-
209 salt mediated RWGS (MM-RWGS) reaction and it was a primary contributor to higher CO yields.


210 These results also suggest that the “super-equilibrium” CO yield was resulted from partitioning
211 CO₂ in the liquid phase and C₂H₆ in the gas phase. By fixating CO₂ in the molten salt, the H₂
212 conversion increased and the CO₂ in the product gas would be significantly lower.

213 The participation of the molten carbonate in the MM-RWGS reaction was further verified by *in-*
214 *situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under isothermal
215 H₂/CO₂ cycles. Due to the limitation of the instrument, the study was performed at 600°C. As
216 shown **Fig. 4**, injection of H₂ (10%, balance Ar) resulted in a peak at 3588 cm⁻¹, assigned to the
217 O-H stretching indicating that LiOH was formed when Li₂CO₃ was exposed to H₂, via a molten-
218 salt mediated RWGS reaction: Li₂CO₃ + H₂ = 2LiOH + CO. The O-H stretching peak disappeared
219 under 20% CO₂ and the C-O stretch peak characteristics of Li₂CO₃ appeared. This indicated that
220 CO₂ was captured by the molten salt and LiOH was converted back to Li₂CO₃. These findings
221 were further verified in **Fig. S6**.

222 To summarize, the MM-ODH reaction proceeds through a parallel gas-phase cracking and molten-
223 salt mediated RWGS reaction pathway. That is, the presence of the molten carbonates facilitated
224 hydrogen conversion into CO and (molten) hydroxides, which increase the ethylene yield. *In-situ*
225 conversion of H₂ in turn enhances ethane cracking by alleviating equilibrium limitations. The
226 alkali metal hydroxides formed in the ODH step are highly effective for CO₂ capture to regenerate


227 the carbonates, enabling a cyclic CO_2 capture and utilization scheme. The thermodynamic
228 feasibility and the criteria for molten salt selection will be further discussed in the next section.

229

230

CO₂ Utilization

CO₂ Capture

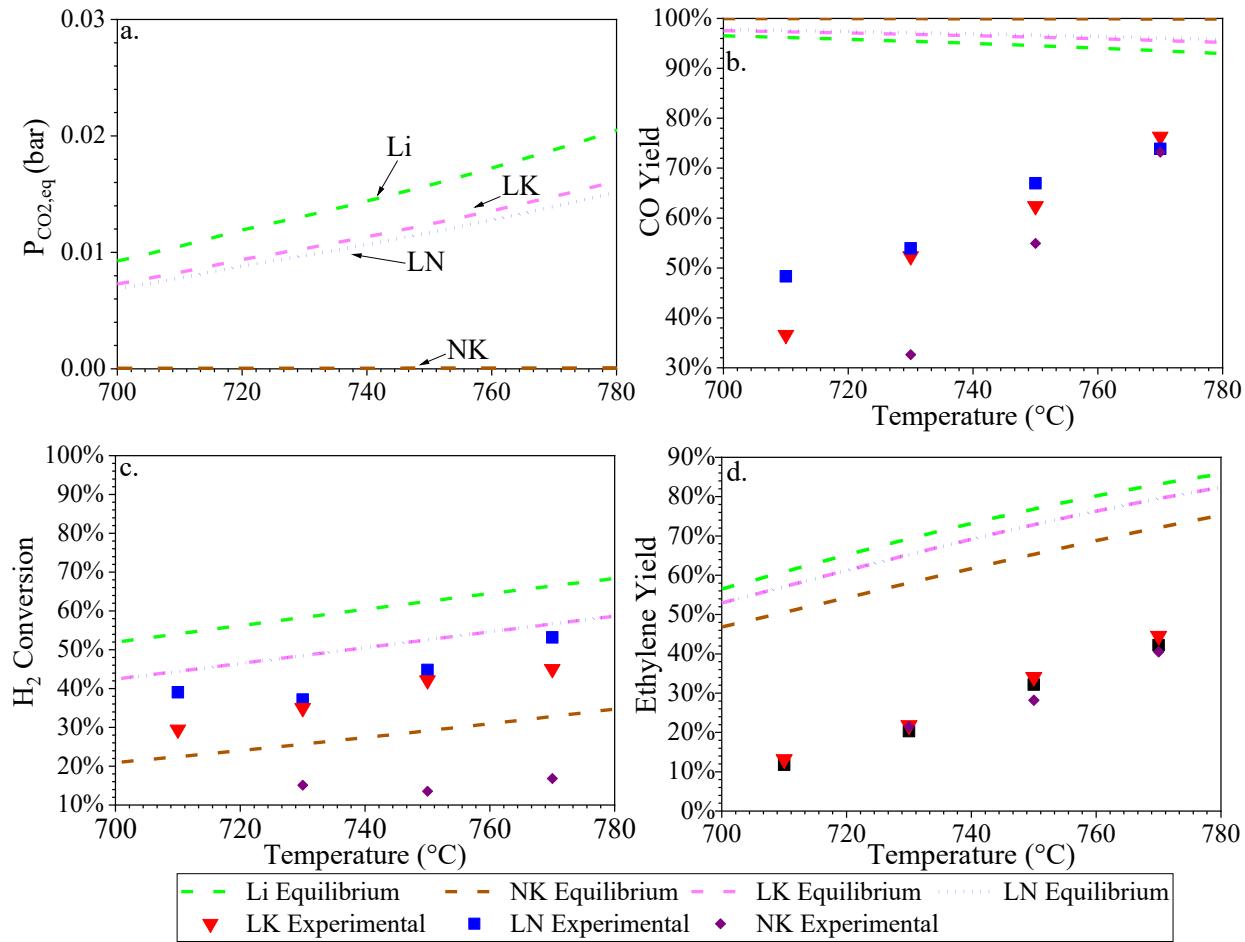

231

Fig. 4. *In-situ* DRIFTS experiments at 600 °C on MM-ODH reactions in the presence of a Li_2CO_3 , Na_2CO_3 and K_2CO_3 eutectic reaction medium.

233 Thermodynamic Analysis and Effect of Molten Salt Compositions

234 Given that ethane conversion in MM-ODH is thermodynamically driven, and that the high CO₂
235 conversion was resulted from partitioning the reactions in both the gas and liquid phase, it would
236 be informative to determine the effect of molten salt compositions on the reaction thermodynamics.
237 Due to the complexity of the MM-ODH reaction system, a hybrid thermodynamic analysis method
238 combining HSC Chemistry Software and numerical thermodynamic analysis was utilized. HSC
239 Chemistry was used to establish the equilibrium among H₂, CO₃²⁻, OH⁻, H₂O, CO₂, CO, O²⁻

240 between 500 to 900 °C. The result was combined with the thermal cracking equilibrium constant
 241 obtained via HSC to determine the equilibrium yield of ethylene. The ethane reforming reaction,
 242 which was observed to be minimal in experiments, was not considered in the analysis.

243

244 **Fig. 5.** (a) Equilibrium CO_2 partial pressure, (b) Equilibrium CO yield (c) Equilibrium H_2 conversion, and (d)
 245 Equilibrium ethylene yield of Li_2CO_3 (Li), 62% Li_2CO_3 -38% K_2CO_3 (LK), 55% Li_2CO_3 -45% Na_2CO_3 (LN),
 246 43.5% Li_2CO_3 -31.5% Na_2CO_3 -25% K_2CO_3 (LNK) at the molar ratio used in experiments. The symbols correspond to
 247 the experimental results. Li_2CO_3 was not investigated experimentally due to the high melting point.

248 The activities of all the eutectics tested in the experiments were calculated by adopting Temkin
 249 equation to account for the deviation from the ideal solution assumption, as shown in **Equation**
 250 **S2-S5**. The results from these analyses, summarized in **Fig. 5**, demonstrate that the experimental

251 ethylene and CO yields were both below the thermodynamic limits in the two-phase system. This
252 confirmed that while MM-ODH process circumvents the conventional CO₂-ODH equilibrium by
253 partitioning liquid gas phase product and alternating reaction route, the reactions themselves do
254 not violate the thermodynamic limit in the MM CO₂-ODH system.

255 During the ODH step, the molten salt primarily functions as a reaction medium to facilitate a
256 modified RWGS with carbonate ions in the liquid phase. The extent of this modified RWGS
257 reaction, which is directly related to the carbonate's tendency for decomposition, would: (i) affect
258 H₂ conversion which in turn affects the ethylene yield by shifting the ethane pyrolysis equilibrium;
259 (ii) affect the CO yield. **Fig. 5a** illustrates the equilibrium CO₂ partial pressures ($P_{CO_2,eq}$) for the
260 carbonates of interest. Li₂CO₃, which had the greatest tendency to decompose into Li₂O and CO₂,
261 had the highest equilibrium partial pressure. Given that Na₂CO₃ and K₂CO₃ were more stable than
262 Li₂CO₃, mixing Li₂CO₃ with Na₂CO₃ or K₂CO₃ decreased the $P_{CO_2,eq}$. NK being the eutectic of
263 Na₂CO₃ and K₂CO₃, as anticipated, has the lowest $P_{CO_2,eq}$. As can be expected, a low $P_{CO_2,eq}$
264 would generally lead to high CO yield (**Fig. 5a & Fig. 5b**), since minimal CO₂ would be produced
265 during the ODH step. However, $P_{CO_2,eq}$ being too low would lead to low equilibrium conversion
266 of the modified RWGS reaction and hence low H₂ conversion (**Fig. 5c**). A low H₂ conversion
267 would in turn lead to low ethylene yield (**Fig. 5d**). An intermediate $P_{CO_2,eq}$ can thus enhance both
268 CO yield (a combination of low CO₂ slippage and high carbonate conversion) and high ethylene
269 yield. From **Fig. 5**, it can be concluded that LK provides a satisfactory balance among CO yield,
270 H₂ conversion, and ethylene yield. LNK is not included in **Fig. 5** since the correlation for its
271 activity coefficient is not available, but Janz et al. had shown that the $P_{CO_2,eq}$ of LNK was
272 comparable to other binary eutectic, as shown in **Table S3** in the supplementary document⁵⁶. The
273 Gibbs free energies calculated from *ab initio* molecular dynamics (AIMD) simulations further

corroborated with this analysis, as can be seen in Fig. 6 (see Section 4 in the Supplementary information for more details). The estimated reaction Gibbs free energy (ΔG) of LK is 0.74 eV (71.40 kJ/mol) higher than that of Li_2CO_3 in terms of the modified RWGS, which would lead to a lower equilibrium conversion of modified RWGS for LK than that of Li_2CO_3 . However, in terms of carbonation reaction, since the ΔG of LK is 0.78 eV (75.26 kJ/mol) lower than Li_2CO_3 , the $P_{\text{CO}_2,eq}$ of LK would be significantly lower than that of Li_2CO_3 , indicating a significantly higher CO yield. Since the ΔG of LNK on modified RWGS and carbonation reaction are in between Li_2CO_3 and LK, and that the ΔG of carbonation reaction is still negative, an intermediate equilibrium conversion of modified RWGS and a low $P_{\text{CO}_2,eq}$ is expected for LNK, which also exhibits its potential for desirable CO yield, H_2 conversion, and ethylene yield. Furthermore, our experiments indicated that LNK has the potential for a high H_2 conversion as shown in Table S4 in supplementary document, supporting that this ternary eutectic could be an optimal choice for MM-ODH from a thermodynamic standpoint.

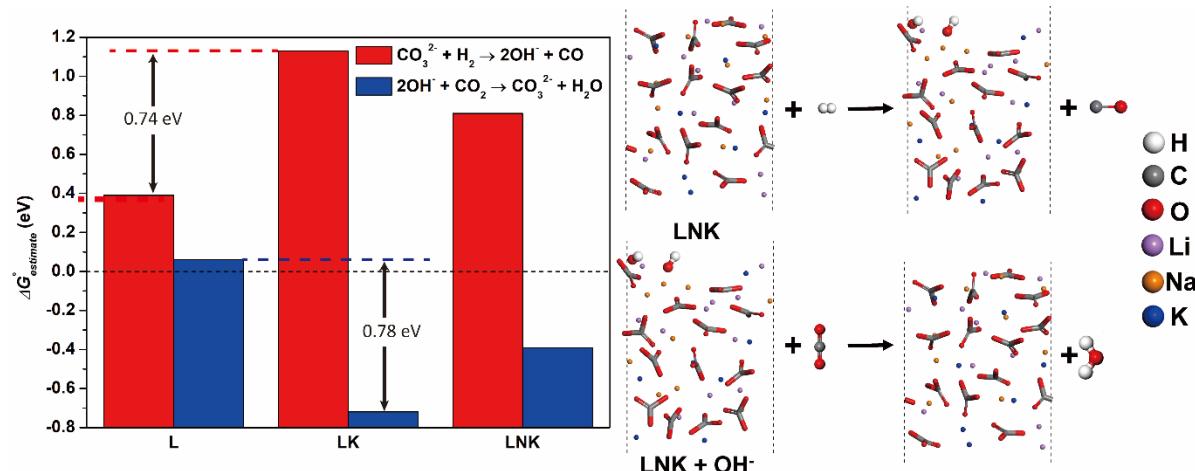
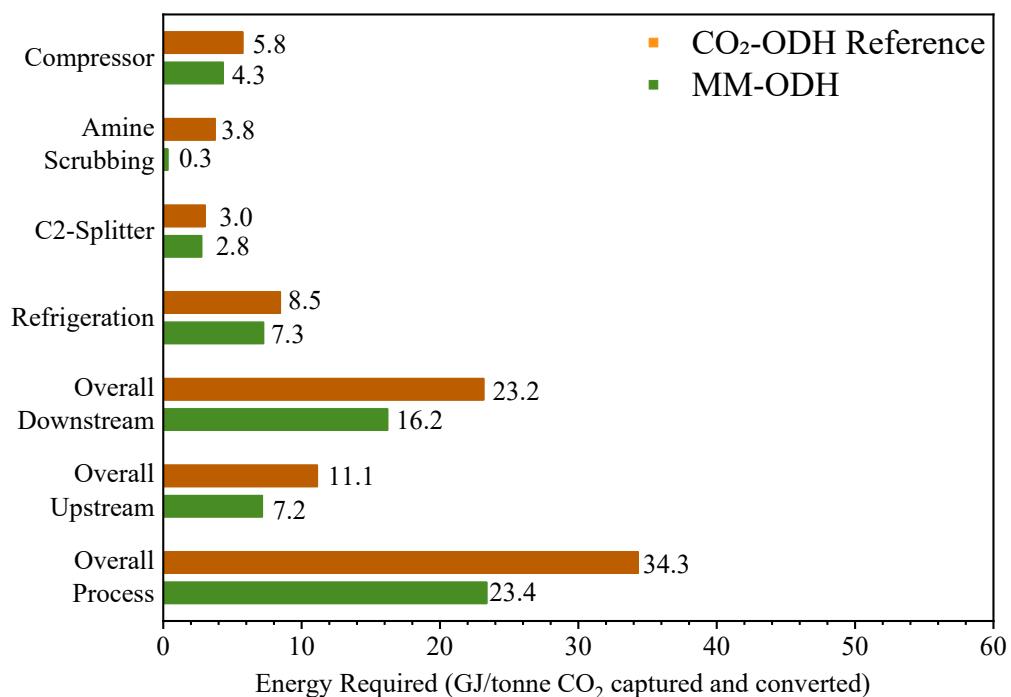
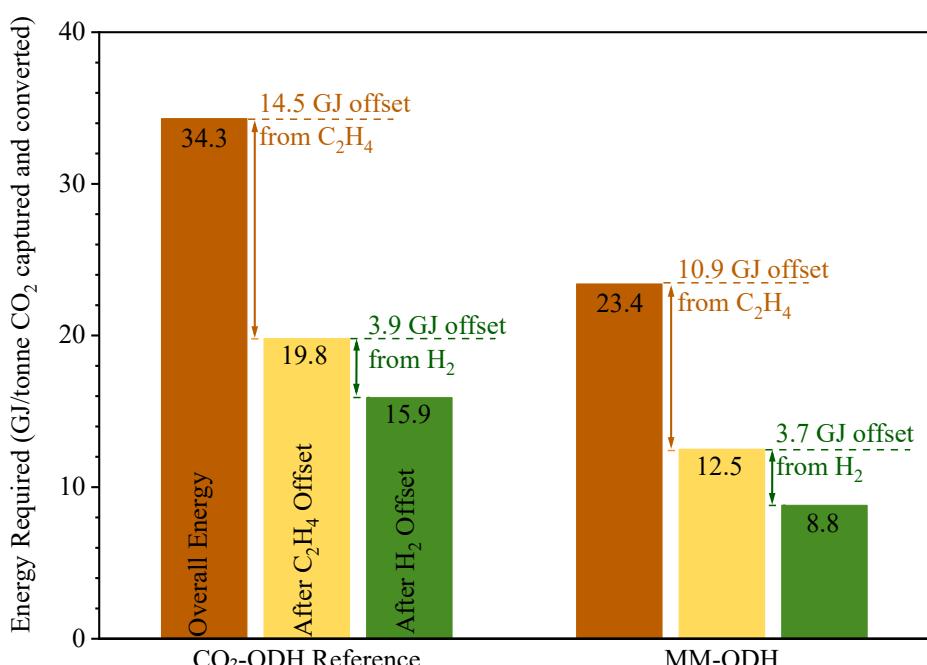


Fig 6. The *ab initio* molecular dynamic result for Gibbs free energy of modified RWGS and carbonation reaction of Li_2CO_3 (L), $(\text{Li}-\text{K})_2\text{CO}_3$ (LK) and $(\text{Li}-\text{Na}-\text{K})_2\text{CO}_3$ (LNK)

290


291 Energy Consumption for CO_2 Utilization

With the feasibility of MM-ODH validated by both thermodynamic analysis and experimental data, it would be desirable to compare its energy requirement when compared to the conventional CO₂-ODH. ASPEN Plus simulation was used to model the energy requirements for both MM-ODH and conventional CO₂-ODH. Both models were detailed in **Fig. S8-S10** and **Table S6-S12** in the supplementary document. For CO₂-ODH, OMS-2 catalyst was selected for modeling purpose, because it demonstrated by far the highest ethylene and CO yields based on literature report and was operated at a higher temperature than MM-ODH²⁰. **Fig. 7a** demonstrated key energy requirements for the process. Unlike CO₂-ODH, the regenerator that used to capture CO₂ was a net exothermic reaction that offset 52.5% heat required from the MM-ODH reactor. The CO₂ lean stream was then used for heat integration and stream generation. Consequently, the upstream energy requirement was significantly reduced. The main energy savings in the downstream was from 91.5% lower energy requirement for amine scrubbing. Other energy saving such as lower compression and refrigeration duty was due to higher CO₂ conversion and lower moles flow on a dry basis. Energy savings were also observed from methane distillation due to 50% drop in CH₄ selectivity and CO purification due to higher H₂ conversion and minimum coking activity in the MM-ODH case. Overall, MM-ODH can lead to 31.9% energy reduction when compared to CO₂-ODH with OMS-2 in order to capture and convert 1 tonne of CO₂. We also note that both processes co-produce C₂H₄ and H₂ along with CO. In order to more accurately quantify the energy consumed for CO₂ capture and conversion (to CO), the energy associated with ethylene and H₂ production are subtracted from the overall process energy consumption, as illustrated in **Fig. 7b**. Corresponding assumptions and calculations are given in the supplementary document^{38,57}. As can be seen, the energy consumption for CO₂ capture and utilization was **8.8 GJ/ton CO₂** for MM-


314 ODH and **15.9 GJ/ton CO₂** for CO₂-ODH with OMS-2. This corresponds to a 44.6% energy
315 reduction from the proposed MM-ODH approach.

316

a.

b.

317

318 **Fig. 7.** (a) Energy consumptions for MM-ODH and conventional CO₂-ODH, normalized to per metric ton of CO₂
319 captured and converted²⁰; (b) Process energy requirement for CO₂-ODH with OMS-2 and MM-ODH. The energy
320 requirement for C₂H₄ production and H₂ production were assumed to be 9.9 GJ/ton C₂H₄ (based on stream cracking)³⁸
321 and 100 GJ/ton H₂ (based on steam methane reforming)⁵⁷.

322

323 Conclusion

324 The current study reports alkali metal carbonates as effective reaction media for CO₂-ODH of
325 ethane with integrated CO₂ capture. This molten-salt mediated ODH (MM-ODH) process
326 demonstrated a CO yield up to 89.2%, nearly doubling the equilibrium CO yield in conventional
327 CO₂-ODH processes. In addition, an equilibrium-enhanced ethylene yield with >90% selectivity
328 was demonstrated. The “super-equilibrium” CO yield was achieved by partitioning the CO₂-ODH
329 reactions into both the gas and molten-salt phases, as confirmed by a detailed thermodynamic
330 analysis. The analysis was also shown to be effective to project the relative performance of the
331 various molten salt reaction media. Characterizations of the MM-ODH reactions indicated that
332 ethane conversion in the presence of molten carbonate reaction media proceeds through a parallel
333 gas-phase cracking and molten-salt mediated RWGS reaction. The presence of the molten
334 carbonates facilitates hydrogen conversion into CO and molten hydroxides via a molten-salt
335 mediated reverse water-gas-shift reaction (MM-RWGS). *In-situ* conversion of H₂ in turn enhanced
336 ethane cracking by alleviating equilibrium limitations. The alkali metal hydroxides formed in the
337 ODH step are highly effective for CO₂ capture to regenerate the carbonates, enabling stable
338 performance for cyclic CO₂ capture followed with CO₂ utilization via ethane ODH. ASPEN Plus
339 simulation indicates that the MM-ODH approach can result in up to 44.6% energy savings for
340 integrated CO₂ capture and utilization.

341

342 **References**

343 1. EIA projects global energy-related CO₂ emissions will increase through 2050. *IEA*
344 <https://www.eia.gov/todayinenergy/detail.php?id=41493> (2019).

345 2. Rochelle, G. T. Amine Scrubbing for CO₂ Capture. *Science* **325**, 1652–1654 (2009).

346 3. Vitillo, J. G., Smit, B. & Gagliardi, L. Introduction: Carbon Capture and Separation. *Chem. Rev.* **117**,
347 9521–9523 (2017).

348 4. Liang, L. *et al.* Carbon dioxide capture and conversion by an acid-base resistant metal-organic
349 framework. *Nat Commun* **8**, 1233 (2017).

350 5. Leung, D. Y. C., Caramanna, G. & Maroto-Valer, M. M. An overview of current status of carbon
351 dioxide capture and storage technologies. *Renewable and Sustainable Energy Reviews* **39**, 426–443
352 (2014).

353 6. Zhang, X. *et al.* Post-combustion carbon capture technologies: Energetic analysis and life cycle
354 assessment. *International Journal of Greenhouse Gas Control* **27**, 289–298 (2014).

355 7. Raynal, L. *et al.* The DMXTM process: An original solution for lowering the cost of post-combustion
356 carbon capture. *Energy Procedia* **4**, 779–786 (2011).

357 8. Pirngruber, G. D., Guillou, F., Gomez, A. & Clausse, M. A theoretical analysis of the energy
358 consumption of post-combustion CO₂ capture processes by temperature swing adsorption using solid
359 sorbents. *International Journal of Greenhouse Gas Control* **14**, 74–83 (2013).

360 9. Bounaceur, R., Lape, N., Roizard, D., Vallieres, C. & Favre, E. Membrane processes for post-
361 combustion carbon dioxide capture: A parametric study. *Energy* **31**, 2556–2570 (2006).

362 10. Erlach, B., Schmidt, M. & Tsatsaronis, G. Comparison of carbon capture IGCC with pre-combustion
363 decarbonisation and with chemical-looping combustion. *Energy* **36**, 3804–3815 (2011).

364 11. Hepburn, C. *et al.* The technological and economic prospects for CO₂ utilization and removal.
365 *Nature* **575**, 87–97 (2019).

366 12. Zimmermann, A. W. *et al.* Techno-Economic Assessment Guidelines for CO₂ Utilization. *Front.*
367 *Energy Res.* **8**, 5 (2020).

368 13. Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J. & Saravanan, A. A review on photochemical,
369 biochemical and electrochemical transformation of CO₂ into value-added products. *Journal of CO₂*
370 *Utilization* **33**, 131–147 (2019).

371 14. Gomez, E., Yan, B., Kattel, S. & Chen, J. G. Carbon dioxide reduction in tandem with light-alkane
372 dehydrogenation. *Nat Rev Chem* **3**, 638–649 (2019).

373 15. Kuuskraa, V. A., Godec, M. L. & Dipietro, P. CO₂ Utilization from “Next Generation” CO₂
374 Enhanced Oil Recovery Technology. *Energy Procedia* **37**, 6854–6866 (2013).

375 16. Rahmani, F., Haghghi, M. & Amini, M. The beneficial utilization of natural zeolite in preparation of
376 Cr/clinoptilolite nanocatalyst used in CO₂-oxidative dehydrogenation of ethane to ethylene. *Journal*
377 *of Industrial and Engineering Chemistry* **31**, 142–155 (2015).

378 17. Baidya, T., van Vugt, N. & Baiker, A. Selective Conversion of Ethane to Ethene via Oxidative
379 Dehydrogenation Over Ca-doped ThO₂ Using CO₂ as Oxidant. *Top Catal* **54**, 881–887 (2011).

380 18. Valenzuela, R. X., Bueno, G., Cortés Corberán, V., Xu, Y. & Chen, C. Selective oxidehydrogenation
381 of ethane with CO₂ over CeO₂-based catalysts. *Catalysis Today* **61**, 43–48 (2000).

382 19. Zhu, J. *et al.* Na₂WO₄/Mn/SiO₂ catalyst for oxidative dehydrogenation of ethane using CO₂ as
383 oxidant. *Catalysis Today* **148**, 310–315 (2009).

384 20. Jin, L. *et al.* Studies on Dehydrogenation of Ethane in the Presence of CO₂ over Octahedral
385 Molecular Sieve (OMS-2) Catalysts. *ChemCatChem* **1**, 441–444 (2009).

386 21. Wang, S., Murata, K., Hayakawa, T., Hamakawa, S. & Suzuki, K. Oxidative dehydrogenation of
387 ethane by carbon dioxide over sulfate-modified Cr₂O₃/SiO₂ catalysts. *Catalysis Letters* **63**, 59–64
388 (1999).

389 22. Zhao, X. & Wang, X. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over
390 Cr/TS-1 catalysts. *Catalysis Communications* **7**, 633–638 (2006).

391 23. Gaab, S., Machli, M., Find, J., Grasselli, R. K. & Lercher, J. A. Oxidative dehydrogenation of ethane
392 over novel Li/Dy/Mg mixed oxides: structure–activity study. *Topics in Catalysis* **23**, 151–158 (2008).

393 24. Krylov, O. V., Mamedov, A. Kh. & Mirzabekova, S. R. The regularities in the interaction of alkanes
394 with CO₂ on oxide catalysts. *Catalysis Today* **24**, 371–375 (1995).

395 25. Wood Mackenzie. Ethylene Global Supply Demand Analytics Service. *Ethylene Global Supply*
396 *Demand Analytics Service* [https://www.woodmac.com/news/editorial/ethylene-global-supply-](https://www.woodmac.com/news/editorial/ethylene-global-supply-demand-analytics-service/)
397 [demand-analytics-service/](https://www.woodmac.com/news/editorial/ethylene-global-supply-demand-analytics-service/) (2018).

398 26. Oglend, A., Lindbäck, M. E. & Osmundsen, P. Shale Gas and the Relationship between the U.S.
399 Natural Gas, Liquefied Petroleum Gases and Oil Markets. *SSRN Journal* (2013)
400 doi:10.2139/ssrn.2295604.

401 27. Ranjan, P., Kannan, P., Al Shoaibi, A. & Srinivasakannan, C. Modeling of Ethane Thermal Cracking
402 Kinetics in a Pyrocracker. *Chem. Eng. Technol.* **35**, 1093–1097 (2012).

403 28. Sundaram, K. M. & Froment, G. F. Modeling of thermal cracking kinetics—I. *Chemical Engineering*
404 *Science* **32**, 601–608 (1977).

405 29. Sundaram, K. M., Van Damme, P. S. & Froment, G. F. Coke deposition in the thermal cracking of
406 ethane. *AIChE J.* **27**, 946–951 (1981).

407 30. Van Geem, K. M. *et al.* Automatic reaction network generation using RMG for steam cracking of n-
408 hexane. *AIChE J.* **52**, 718–730 (2006).

409 31. Venkataraman, K., Redenius, J. M. & Schmidt, L. D. Millisecond catalytic wall reactors:
410 dehydrogenation of ethane. *Chemical Engineering Science* **57**, 2335–2343 (2002).

411 32. Deng, S., Li, H., Li, S. & Zhang, Y. Activity and characterization of modified Cr₂O₃/ZrO₂ nano-
412 composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO₂. *Journal of*
413 *Molecular Catalysis A: Chemical* **268**, 169–175 (2007).

414 33. Zhang, X., Ye, Q., Xu, B. & He, D. Oxidative dehydrogenation of ethane over Co–BaCO₃ catalysts
415 using CO₂ as oxidant: effects of Co promoter. *Catal Lett* **117**, 140–145 (2007).

416 34. Yan, B., Yao, S. & Chen, J. G. Effect of Oxide Support on Catalytic Performance of FeNi - based
417 Catalysts for CO₂ - assisted Oxidative Dehydrogenation of Ethane. *ChemCatChem* **12**, 494–503
418 (2020).

419 35. Yan, B. *et al.* Active sites for tandem reactions of CO₂ reduction and ethane dehydrogenation. *Proc
420 Natl Acad Sci USA* **115**, 8278–8283 (2018).

421 36. Porosoff, M. D. *et al.* Identifying Different Types of Catalysts for CO₂ Reduction by Ethane through
422 Dry Reforming and Oxidative Dehydrogenation. *Angew. Chem.* **127**, 15721–15725 (2015).

423 37. Yao, S. *et al.* Combining CO₂ Reduction with Ethane Oxidative Dehydrogenation by Oxygen-
424 Modification of Molybdenum Carbide. *ACS Catal.* **8** (2018).

425 38. Haribal, V. P., Neal, L. M. & Li, F. Oxidative dehydrogenation of ethane under a cyclic redox
426 scheme – Process simulations and analysis. *Energy* **119**, 1024–1035 (2017).

427 39. Tian, S., Yan, F., Zhang, Z. & Jiang, J. Calcium-looping reforming of methane realizes in situ CO₂
428 utilization with improved energy efficiency. *Sci. Adv.* **5**, eaav5077 (2019).

429 40. Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of
430 methane intensifies CO₂ utilization via Le Chateliers principle. *Science* **354**, 449–452 (2016).

431 41. Al-Mamoori, A., Lawson, S., Rownaghi, A. A. & Rezaei, F. Oxidative dehydrogenation of ethane to
432 ethylene in an integrated CO₂ capture-utilization process. *Applied Catalysis B: Environmental* **278**,
433 119329 (2020).

434 42. Bui, M. *et al.* Carbon capture and storage (CCS): the way forward. *Energy Environ. Sci.* **11**, 1062–
435 1176 (2018).

436 43. Gupta, H., Lyer, M. V., Sakadjian, B. B. & Fan, L.-S. Reactive separation of CO₂ using pressure
437 pelletised limestone. *International Journal of Environmental Technology and Management* **4**, (2004).

438 44. Sakadjian, B. B., Iyer, M. V., Gupta, H. & Fan, L.-S. Kinetics and Structural Characterization of
439 Calcium-Based Sorbents Calcined under Subatmospheric Conditions for the High-Temperature CO₂
440 Capture Process. *Ind. Eng. Chem. Res.* **46**, 35–42 (2007).

441 45. Reisman, A. Heterogeneous Equilibria in the System K₂CO₃-Na₂CO₃. *Journal of the American*
442 *Chemical Society* **81**, 807–811 (1958).

443 46. Kim, S. M., Kierzkowska, A. M., Broda, M. & Müller, C. R. Sol-gel Synthesis of MgAl₂O₄-
444 stabilized CaO for CO₂ Capture. *Energy Procedia* **114**, 220–229 (2017).

445 47. Chen, J., Duan, L. & Sun, Z. Accurate Control of Cage-Like CaO Hollow Microspheres for
446 Enhanced CO₂ Capture in Calcium Looping via a Template-Assisted Synthesis Approach. *Environ.*
447 *Sci. Technol.* **53**, 2249–2259 (2019).

448 48. Naeem, M. A. *et al.* Optimization of the structural characteristics of CaO and its effective
449 stabilization yield high-capacity CO₂ sorbents. *Nat Commun* **9**, 2408 (2018).

450 49. Manovic, V. *et al.* Influence of calcination conditions on carrying capacity of CaO-based sorbent in
451 CO₂ looping cycles. *Fuel* **88**, 1893–1900 (2009).

452 50. MacDowell, N. *et al.* An overview of CO₂ capture technologies. *Energy Environ. Sci.* **3**, 1645
453 (2010).

454 51. Kurlov, A., Armutlulu, A., Donat, F., Studart, A. R. & Müller, C. R. CaO-Based CO₂ Sorbents with
455 a Hierarchical Porous Structure Made via Microfluidic Droplet Templating. *Ind. Eng. Chem. Res.* **59**,
456 7182–7188 (2020).

457 52. Broda, M. & Müller, C. R. Synthesis of Highly Efficient, Ca-Based, Al₂O₃-Stabilized, Carbon
458 Gel-Templated CO₂ Sorbents. *Advanced Materials* **24**, 3059–3064 (2012).

459 53. Su, C., Duan, L. & Anthony, E. J. CO₂ capture and attrition performance of competitive eco-friendly
460 calcium-based pellets in fluidized bed. *Greenhouse Gas Sci Technol.* **8**, 1124–1133 (2018).

461 54. Ma, X., Li, Y., Duan, L., Anthony, E. & Liu, H. CO₂ capture performance of calcium-based synthetic
462 sorbent with hollow core-shell structure under calcium looping conditions. *Applied Energy* **225**, 402–
463 412 (2018).

464 55. Erans, M., Manovic, V. & Anthony, E. J. Calcium looping sorbents for CO₂ capture. *Applied Energy*
465 **180**, 722–742 (2016).

466 56. Janz, G. J. Molten carbonate electrolytes as acid-base solvent systems. *J. Chem. Educ.* **44**, 581

467 (1967).

468 57. Raissi, A. T. & Block, D. L. Hydrogen: Automotive fuel of the future. *IEEE Power and Energy Mag.*

469 **2**, 40–45 (2004).

470