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Abstract
Motivated by the Bekenstein–Hawking formula and the area law behaviour of
entanglement entropy,we propose that in anyUV finite theory of quantumgrav-
ity with a smooth spacetime, the total entropy for a pure state in a co-dimension
one spatial region, to leading order, is given by S = A

4GN
, where A is the area

of the co-dimension two boundary. In the context of Dp brane holography we
show that for some specially chosen regions bulk entanglement can be mapped
to ‘target space’ entanglement in the boundary theory.Our conjecture then leads
to a precise proposal for target space entanglement in the boundary theory at
strong coupling and large N. In particular, it leads to the conclusion that the
target space entanglement would scale like O(N2) which is quite plausible in a
system with O(N2) degrees of freedom. Recent numerical advances in study-
ing the D0 brane system hold out the hope that this proposal can be tested in a
precise way in the future.

Keywords: entanglement entropy, holography, matrix model

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum entanglement plays a key role in gauge-gravity duality. In AdS/CFT correspondence,
the Ryu-Takayanagi formula [1] and its covariant version [2], together with its extensions
[3, 4], provide a strikingly simple geometric understanding of the entanglement entropy of
a subregion in the boundary theory in terms of extremal surfaces in the bulk.

In this note we consider entanglement entropy in the bulk itself and its interpretation in the
boundary theory. Consider some spatial subregion of the bulk and the entanglement of this
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subregion with its complement. We may consider the associated entanglement entropy. Our
aim is to ask: what is the value for this ‘bulk entanglement entropy’ and what is the meaning
of this quantity in the dual quantum field theory? This bulk entanglement entropy is itself, of
course, a tricky concept since the bulk theory is a theory of gravity. Nevertheless one would
expect that in some smooth spacetime backgroundwith approximately local physics, this is the
entanglement of quantum fields, including gravitons, across the co-dimension two boundary
of the subregion. Our aim is to seek a definition of this quantity which agrees with this notion
in the semiclassical regime, but can be extended beyond this. We will propose such a definition
in terms of the holographically dual field theory.

The leading term in this entropy is expected to be proportional to the area of the boundary
in units of an appropriate power of a UV cutoff. In the context of entanglement across a black
hole horizon, it has been argued that this UV divergent term renormalizes the Newton constant
[5–7]. In an UV complete theory of gravity the answer should be finite, and it is natural to then
ask what provides this cutoff.

In this note we conjecture that given a consistent theory of quantum gravity, in any smooth
spacetime the total entropy in a spatial co-dimension one region is given by the area formula,

S =
AE

4GN
, (1)

with AE denoting the area in the Einstein frame.
More precisely, we conjecture that the formula above is true for a pure state where the

entropy is fully accounted for by the entanglement entropy and given by

SEE =
AE

4GN
. (2)

Note that equation (1) gives the leading order behaviour of the entropy, there can be subleading
terms, e.g., arising in string theory from gs and α

′ corrections, which could give corrections to
equations (1), (2), which may not be universal.

For mixed states, the formula equation (1) can still be sometimes true if the density matrix
for the mixed state can be obtained starting from a pure state in a bigger system which also
admits a gravity description. In fact in such cases equation (1) follows from the conjecture
for pure states, equation (2). Such a situation arises for a thermal state in AdS/CFT which is
described by a black hole in the gravity dual. The thermal state’s densitymatrix can be obtained
from that of a pure state in the thermo-field double system and the correspondingdual geometry
is the double sided black hole. More generally for mixed states we suspect that some version
of equation (1) is still valid, once it is stated precisely in terms of the fine-grained entropy of
the degrees of freedom of a light sheet associated with a boundary of area A [10], but we have
not understood this well yet and leave a detailed discussion for general mixed states for the
future3.

We can be most definite about our conjecture equation (2) in the context of AdS/CFT like
situations where the gravity theory has a dual which lives on a time-like boundary. In such
situations, which arise for example in the near-horizon geometries of Dp brane theories, the
state in the bulk can be mapped to a state in the boundary dual. The bulk entanglement then
maps to the von Neumman entropy of a suitably defined density matrix in the boundary theory,
which we will see shortly is associated with target space entanglement. Even in such situations

3We are grateful to R Bousso for drawing our attention to this issue and in particular for bring reference [10] to our
notice.
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though, once a black hole is present, one can consider a bulk region inside the horizon and
the precise map of the bulk entanglement to the boundary theory is such cases is not well
understood by us as yet and left for further investigation.

Our conjecture stems from the following, admittedly intuitive, reasoning. One expects in
any quantum mechanically complete theory to get a finite result for the bulk entanglement,
for example, in a closed string theory describing the bulk. For a black hole horizon one also
expects the result to agree with the Bekenstein–Hawking formula,

SBH =
AH

4GN
. (3)

This suggests that the cut-off rendering the entanglement finite is provided by GN in general,
leading to the relations equations (1), (2). In particular, for a black hole that forms from the col-
lapse of a pure state it is quite plausible that SBH is accounted for completely by entanglement,
leading to equation (2).

Let us note that in the context of Einstein gravitywith somematter, the entanglement entropy
of matter and gravitons across the black hole horizon appears as a quantum correction to the
Bekenstein–Hawking entropy which may be regarded as a ‘classical’ contribution [7]. How-
ever if Einstein gravity itself is an effective theory obtained by integrating out massive closed
string modes, such a classical contribution itself can be considered as an entanglement entropy
of the fundamental degrees of freedom. This viewpoint is consistent with what happens in
models of induced gravity [8].

We also note that our conjecture equation (1) is equivalent to saying that the Beken-
stein bound is saturated by our notion of the bulk entropy, to leading order, in any smooth
background. For mixed states, the total entropy is a sum of ‘quantum’ entanglements and a
‘disorder’ part inherited from themixed state. Recall that for a quantumsystem, an initial mixed
state ρ =

∑
i wi|αi〉〈αi|, the form of the reduced densitymatrix (RDM) is ρA =

∑
iwiρ

i
A whose

von Neumann entropy combines the quantum entanglement from the ρiA = trAc |αi〉〈αi| (inher-
ent in the pure states |αi〉) with the classical or ‘disorder’ contribution −

∑
i wilogwi which

would be present even if the states |αi〉 are factorizable states. For target space entropies, which
will be of relevance for us, these concepts are suitably generalized. We envisage the saturation
of the bound, if (1) holds for mixed states, as a trade off between these two parts of the entropy
such that the sum equals the bound.

What makes the conjecture above interesting is that improvements in numerical techniques
now hold out the hope that we can test it precisely in the future. With this motivation in mind
here we consider this problem in the context of Dp brane holography for some special spa-
tial co-dimension one regions. We show that the bulk entanglement entropy can be mapped
to the boundary theory in a fairly precise manner. The boundary theory, for example for D0
branes, and more generally for Dp branes with p < 3, has no dimensionless parameter other
than N—the number of branes. This constrains the form of the result, and one finds that the
expression in equation (2) agreeswith what could arise in the boundary theory. In fact the result
equation (2), when expressed in terms of the appropriate dimensionless variables, scales like
N2 which is quite plausible in a system with O(N2) degrees of freedom.

We find that for the special co-dimension one regions we consider the bulk entanglement
maps in a fairly precise way to a quantity sometimes referred to as ‘target space entanglement’
in the boundary theory. It is worth pausing to briefly explain this idea here. Consider a quantum
mechanical system where the degrees of freedom live in time alone. Some of these degrees of
freedom include target space directions along which the system can move, such a system arises
for example in the case of the field theory limit of the D0 brane theory. There is no spatial
extent in the quantum mechanical case so we cannot consider a spatial sub-region and define

3
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an entanglement in that manner, as is often done in a field theory. However we can consider
some restriction in the target space and associate an entanglement with this restriction—this
is referred to as the target space entanglement. The simplest example is a single particle, say
an harmonic oscillator, in one dimension x; we may want to restrict ourselves to some region
a < x < b and only concern ourselveswith measurementswhich can bemadewhen we restrict
ourselves to this region. Even if the state of the system is pure, this restriction on the set of all
observables we have access to gives rise to a density metric whose von Neumann entropy is
then the target space entanglement entropy. If Ψ(x) is the wave function, the density matrix is
given in the position basis by

ρ(x, x′) = Ψ∗(x)Ψ(x′) (4)

with x ∈ [a, b]. The sub algebra of observables one is correspondingly restricted to is given by
operators of the form

Ô =

∫ b

a

∫ b

a
dx dx′C(x, x′)|x〉〈x′| (5)

where C is Hermitian, satisfying, C(x, x′) = C∗(x′, x). One can think of the entanglement
entropy as being associated with this sub algebra. While target space entanglement agrees
with the usual notion of entanglement of a bulk region in the regime of couplings where the
bulk is semi-classical, it clearly remains a well-defined quantity for any regime of couplings.
The target space entanglement, therefore, provides the general notion of ‘bulk entanglement’
that we are seeking.

Target space entanglement has been implicitly used to define notions of entanglement
entropy in several situations. One example involves worldsheet formulations of string theory
[6, 9]. It is also the basis for discussion of entanglement entropy in the c = 1 matrix model
[11] dual to two dimensional non-critical string theory [12, 13]. This also appears in a slightly
different context in [14]. The formalism of general target space entanglement has been recently
developed in [15, 16].

In general due to the non-commuting nature of the target space spatial coordinates in theD0
brane theory (and similarly the higher Dp systems) it is not possible to precisely map a region
in the bulk to an appropriate restriction in the target space of the boundary theory. However for
some carefully chosen co dimension one regions in the bulk we show that this is possible. This
then allows us to map the bulk entanglement entropy quite precisely to target space entropy in
the boundary theory.

Ourmapping is not totally precise though, and we find that there are two natural possibilities
which arise in the boundary theory. Distinguishing between them and checking whether the
target space entanglement in either case agrees with (2) would require numerical work. In fact
there have been great strides recently in studying some of the field theories which arise in the
context of AdS/CFT numerically. For example the free energy at strong coupling for the D0
brane matrix theory has been studied by [19] and shown to agree quite precisely with the bulk
result coming from a black hole. While calculations of target space entanglement will be much
more challenging, these advances allow us to hope that such a calculation can be carried out in
the not so distant future, allowing a test of whether either of the two possibilities for the target
space entanglement agrees with equation (2). Such a numerical calculation would provide a
very non-trivial check for our conjecture (for a recent discussion of entanglement entropy in
matrix models in a different context see [20]).

Some of the above discussion is best understood for the c = 1 model which is dual to 1+ 1
dimensional string theory [11]. Here the space in the string theory arises from the space of
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eigenvalues of the N × N Hermitian matrix M while the eigenvalues themselves are coordi-
nates of N fermions. The ‘bulk’ description arises from second quantization of these fermions.
The fermion field can be bosonized yielding collective field theory of the density of eigenval-
ues. The fluctuations of the collective field are related to the ‘massless tachyon’ of the two
dimensional string theory, which is the only dynamical mode. The bulk entanglement entropy
of an interval has the usual meaning in this second quantized language and was computed
in [12]. This calculation has been more recently revisited and improved in [13]. The leading
answer for the entanglement entropy of an interval is finite; the UV cutoff discussed earlier
is provided here by the position dependent string coupling. The fact that the string coupling
enters as the cutoff is consistent with the conjecture that the Newton constant provides the
UV cutoff. The finiteness can be ultimately traced to the fact that we are dealing with N × N
matrices. In the bosonic formulation, this manifests itself in the fact that there are at most N
independent single trace operators of the form TrMn. (Note that TrMn for n > N is expressible
as a sum of products of the lower single traces.) Since n is a quantum number conjugate to the
emergent space direction, this means that the collective field should really be thought of as liv-
ing on a lattice with spacing ∼ 1/N. This becomes clearer in a basis formed by the characters
of the permutation group which are in one to one correspondence to fermion wavefunctions
[17], or in the formalism of bosonization of a finite number of fermions in [18]. Matrix quan-
tum mechanics is equivalent to the first quantized formulation—the bulk entanglement then
relates to an appropriate subalgebra of operators. This becomes an example of ‘target space
entanglement’ mentioned above.

Our considerations also apply to field theories, which arise for example as duals in the Dp
brane case with p� 3. In this case there is the usual notion of entanglement entropy associated
with a spatially localized region.However one can also consider a notion of target space entropy
which arises when one restricts to observables which can only access some region of target
space, without imposing any restriction along the spatial directions in which the field theory
lives. We show that it is the latter type of target space entanglement which is dual to the bulk
entanglementwhenwe consider spatial regions in the bulk extending fully along those in which
the field theory lives with restrictions only in the spatial directions transverse to the field theory
ones. Upto the kind of ambiguity mentioned above which one faces in the D0 brane case, the
mapping of the bulk entanglement to the field theory target space entanglement is precise, and
we find once again that our proposed bulk entanglement entropy equation (2) scales like N2

when exposed in terms of the dimensionless variables of the field theory. It is worth pointing out
that for field theories we can consider a more general notion of entanglement where we impose
a restriction on both the spatial region and within that region a further restriction on the region
of target space that case be accessed. This generalized entanglementwould interpolate between
the usual spatially localized entanglement, which has a dual interpretation as an RT surface,
and the target space entanglement we have been discussing here. We leave an exploration of
this interesting idea for the future.

As was pointed out above the formula we suggest for bulk entanglement, equation (2), is
only at leading order and would have corrections, due to both α′ and string loop effects. Since
the definition of target space entropy in the field theory is a general one these corrections could
be computed on the boundary side. We can also consider the weakly coupled limit in the field
theory where the dual spacetime is highly curved with a curvature of order the string scale; the
boundary theory definition would still hold in this case and would allow us to make sense of
the entanglement.

Finally, our conjecture (2) considers the Einstein frame area: this is natural from the pre-
sumed connection to the Bekenstein–Hawking formula. We can also consider another possi-
bility, viz that the entanglement entropy is proportional to the area in the string framemetric. In
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fact we find that in this case we get a result which can be obtained from the holographic dual,
provided we use the string length ls as the UV cutoff. However, in this case the result scales
as N0 rather than N2. This is, in a sense, less natural to expect. However it is still possible. A
detailed numerical calculation which we allude to will determine which of these alternatives
is correct.

This note is organized as follows. In section 2 we calculate the bulk entanglement across
a simple co-dimension two surface in the geometry of N coincident D0 branes following the
proposal (2), and show that when the parameters which appear in the setup are expressed in
terms of appropriate scales of the D0 brane theory, the answer scales as N2. In section 3 we
put forward our proposal for the target space entanglement which corresponds to the calcula-
tion of section 2. Section 4 extends the supergravity calculation of section 2 to Dp branes for
p< 3. Section 5 discusses the target space entanglement proposal for the Dp brane field the-
ory. Section 6 contains discussions of our results and their extensions. The appendices deal
with the definition and evaluation of target space entanglement for the case of a single matrix
relevant for c = 1 case, and a proof that this notion is identical to the notion of entanglement
in the second quantized formulation which is commonly used.

While this work was in progress, the paper [21] appeared, which discussed the possible
relevance of areas of extremal surfaces in BFSS/gravity duality. Our work differs in an essential
way: our ultimate aim to understand the meaning of entropy and entanglement across any
surface in the bulk, regardless of whether it is extremal or not. (In fact in recent literature the
phrase ‘bulk entanglement entropy’ is sometimes used to talk about the entanglement across
an extremal surface obtained in the context of a quantum correction to entanglement entropy
of the dual field theory associated with a spatial region of the boundary field theory [3, 22]).
In this paper we put forward a proposal for a set of simple surfaces in various geometries. The
fact that the cutoff in the entanglement entropy in a theory of gravity should be the Newton
constant has been previously argued in [23] from several viewpoints, in particular from the
point of view of a derivation of Einstein equation as an equation of state. Our proposal is based
on a consistency with a holographic description4. We also note that [24] had in fact proposed
that the entanglement entropy in a theory of gravity saturates the Bekenstein bound and gave
some supporting evidence for the proposal which are different from ours5. Our proposal goes
somewhat further: we also conjecture that for general states, the Bekenstein bound is saturated
by the total entropy which includes an entanglement and a disorder part.

2. Bulk entanglement for D0 brane geometries

The simplest setup is the background produced by a stack ofN coincidentD0 branes.We begin
by considering the extremal limit at temperatureT = 0. The string framemetric and the dilaton
in the near horizon region are given by [25]

ds2string = −H0(r)−1/2 dt2 + H0(r)1/2[dx21 + · · ·+ dx29],

e−2φ = H0(r)−3/2,

H0(r) =
R7

r7
,

r2 = x21 + · · · x29.

(6)

4We thank T Jacobson for bringing this to our attention.
5We thank Gary Horowitz for bringing this reference to our attention after the arXiv version appeared.
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Here the scale R is given by

R7 =
(2π)7

7Ω8
l7s (gsN). (7)

ls is the string length, gs is the string coupling and Ω8 is the volume of an eight dimensional
unit sphere. The string frame curvature of this solution becomes large when

r = r0 ≡ (gsN)1/3ls, (8)

so that supergravity description is valid for r 	 r0. However when r = r1 ∼ (gsN)1/7ls the
dilaton becomes large, so that for such small r theM-theory description takes over.

Consider now dividing the nine dimensional bulk into two parts by an eight dimensional
plane at x1 = d. We choose d to be in the region of validity of IIA supergravity or M theory,
i.e. d 	 (gsN)1/3ls. When in addition d 
 (gsN)1/7ls, the induced string frame metric on the
surface x1 = d (at a given time t) is

ds2induced = H0(r̄)1/2[dρ2 + ρ2dΩ2
7], (9)

where we have defined

ρ2 = x22 + · · ·+ x29,

r̄2 = d2 + ρ2. (10)

The Einstein frame area of this eight dimensional surface is then given by

Ad(T = 0) = Ω7

∫ ρ0

0
dρ ρ7H0(r̄)1/2 = Ω7R

7/2
∫ ρ0

0
dρ

ρ7

(d2 + ρ2)7/4
, (11)

where we have used the following relation

ds2Einstein = e−φ/2 ds2string.

We have imposed an IR cutoff on the integral at some ρ0. We have in mind taking

d 	 ρ0 < r0. (12)

The result of the integral is then

Ad(T = 0) =
2
9
Ω7R

7/2ρ
9/2
0

[
1+ O(d2/ρ20)

]
(13)

If we take the IR cutoff to be ρ0 ∼ r0 and d ∼ r1 we see that in the regime (gsN) 
 1 the area
Ad behaves as (using (7))

Ad(T = 0) ∼ (gsN)2l8s [1+ O((gsN)−21/2)] (14)

According to our proposal for the bulk entanglement, equation (2) the entanglement entropy
of the region x1 > d with its complement is

SEE(d) =
Ad
4GN

(15)

7
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As we will see soon, equation (15), where the area term is cut-off by 1/GN , can be expressed
in terms of dimensionless quantities in the D0 brane quantum mechanics, and will scale
like N2.

Let us note in passing that one could imagine taking d = 0. Thiswould necessitate including
the small r region of the bulk theory where the dilaton is large. This is the region described by
M-theory, one expects equation (15) to continue to hold in this case as well, since the RHS is
invariant under a change of duality frames.

From equation (13) we see thatAd and thereforeSEE(d) is dependent on the bulk IR cutoff ρ0.
We would like to get rid of this dependence so that the result can be compared in a precise way
with the matrix theory.One way to do so is to consider the difference between the entanglement
entropy in a finite temperature D0 brane black hole background and the extremal D0 brane
solution considered above. The near-extremal black D0 brane string frame metric is given by
[25]

ds2string = −H0(r)−1/2 f (r) dt2 + H0(r)1/2
[
dr2

f (r)
+ r2dΩ2

8

]

f (r) = 1−
( rH
r

)7
(16)

while the dilaton and the one form gauge field remain the same. The horizon is now at r = rH.
The Hawking temperature for this solution is given by

T =
7

4πR

(rH
R

)5/2
(17)

Before proceeding let us note that the black hole geometry equation (16) admits an exten-
sion, analogous to the well-known Kruskal extension for a Schwarzschild black hole, which
has two time-like boundaries. This double sided geometry is dual to a pure state—the ther-
mofield double state-in a system consisting of two non-interacting D0 brane systems. We can
consider the conjecture equation (2) for a bulk subregion in this extended geometry and its dual
description as the thermo-field double state, see the comments after equation (2) in the intro-
duction. Here we will only consider a bulk region on one side and that too lying outside the
horizon. For our purposes therefore we do not have to worry about the full extended geometry,
and the single sided geometry, described by the metric in equation (16), will be sufficient. The
case of more general bulk regions is very interesting and left for the future.

Consider now an x1 = d surface in the geometry equation (16), with

d 
 rH. (18)

The area of this surface is

Ad(T) = Ω7R
7/2
∫ ρ0

0
dρ ρ7

1
(d2 + ρ2)7/4

[
( f (r̄)−1 − 1)

ρ2

d2 + ρ2
+ 1

]1/2
(19)

We will consider low temperatures so that rH < ρ0. If ρ0 ∼ r0 this translates to

(RT) 	 (gsN)10/21 (20)

In that case one can expand the integrand in powers of rH/
√
d2 + ρ2. To lowest order one gets

Ad(T) = Ω7R
7/2
∫ ρ0

0
dρ

[
ρ7/2

(1+ d2

ρ2
)7/4

+
r7H
2

ρ−7/2

(1+ d2

ρ2
)25/4

+ · · ·
]

(21)

8
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Using (11), the difference of areas in the large ρ0 limit becomes

Ad(T)− Ad(0) =
1
2
Ω7R

7/2r7H

∫ ρ0

0
dρ

ρ−7/2

(1+ d2

ρ2
)25/4

+ · · · (22)

The integral on the right-hand side is finite in the limit of large ρ0, so that we can replace the
upper limit of integration by∞. The leading result is then

Ad(T)− Ad(0) = C0
Ω7R7/2r7H
d5/2

+ · · · , C0 =
2048
69 615

(23)

Here the · · · represent subleading terms in the rH/d expansion.
As promised, the difference (23) is insensitive to the IR cutoff ρ0. The resulting difference

of the entropies, to leading order, using equation (2), equation (1), can be expressed as

S(d, T)− SEE(d, T = 0) = C0
Ω7R7/2r7H
4GNd5/2

(24)

Before going on, let us mention one more way in which the dependence on ρ0 in
equation (13) can bemade to cancel. Consider the supergravity backgroundwhen theD0 branes
are not at the origin of the Coulomb branch. In this case the Harmonic function in equation (6)
is replaced by

H =
R7

N

N∑
i=1

1
|�r −�ri|7

(25)

where �ri is the location of the ith brane in the 9 transverse directions. The area of the surface
x1 = d in this case is given by equation (11) with H replaced by equation (25). Taking the
difference of the area in the geometry when the branes are at the origin of the coulomb branch
and away from the origin then gives,

ΔA = R
7
2

∫
dx2 dx3 . . . dx9

⎡
⎣ 1
r7/2

−
(

1
N

∑
i

1
|�r − �ri|7

)1/2
⎤
⎦ (26)

Here r is given in terms of ρ by equation (10). At large ρ the two terms in the brackets will
cancel to leading order. The second term in the square brackets due to the non-trivial Harmonic
function can be expanded in a multipole expansion, the first correction to the leading term is
due to the dipole and goes like 1

ρ9/2
, etc. The measure in the integral does like ρ7dρ, so if the

dipole term is present the integral will still blow up as ρ→∞. If fact one needs multipole
contributions upto a fairly high order to vanish so that the leading contribution from the differ-
ence in the two terms in the bracket goes like 1

ρ17/2
. While this is not elegant it can be arranged

by choosing a suitable distribution of branes, and the resulting difference in area and hence
entanglement entropies will then be finite.

2.1. Comparison with D0 brane matrix theory

In the proposal which follows we will identify each of the terms SEE(d, T = 0) and S(d, T) in
(24) with quantities in the D0 brane matrix theory. However, as explained above, an unam-
biguous comparison will be possible for the difference of these quantities with the difference

9
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of corresponding quantities in the D0 brane theory. Using equations (24), (7) and (17) and the
relation

GN = 8π6g2s l
8
s (27)

this can be written as

S(d, T)− SEE(d, T = 0) = B0 N
2T14/5

0 d−5/2
0 (28)

where

B0 =
480 22/5159/10π13/2Γ

(
5
4

)
49 74/5Γ

(
25
4

) (29)

We have defined

T = T0Λ (30)

with

Λ =
(gsN)1/3

ls
(31)

and

d = d0(gsN)
1/3ls (32)

We aim to reproduce this behaviour from the theory of D0 branes. The theory of D0 branes
does not have any dimensionless parameter—there is only one scale which is the dimensional
’t Hooft coupling λ = g2YMN. In terms of the bulk parameters this is given by

g2YMN = (gsN)/l
3
s = Λ3. (33)

This allows us to define a dimensionless temperature T0 given in equation (30). Also, the trans-
verse radial coordinate r is proportional to the energy scale of the dual theory. This means that
we should define a dimensionless distance d0 as given by equation (32). We note that the size
of the ground state wave function in this system is also given by (gsN)1/3ls [26, 28], and this
is also the length scale r0, equation (8) beyond which the supergravity approximation breaks
down; these observations agree with taking the dimensionless distance to be d0 as above.

From equation (28) we see that the difference of the two bulk entanglement entropies when
expressed in terms of the appropriate dimensionless variables of the D0 brane matrix theory
scales like N2. We also note that equation (28) is valid when equation (18) holds, this condition
can also be expressed in terms of d0 and T0 and becomes,

d0 
 T2/5
0 (34)

Finally, equation (28) assumes that the supergravity approximation is valid, this requires,

T0 	 1, N 
 1 (35)

It is also worth mentioning that from equations (13) and (2) it follows that the entanglement
entropy itself (obtained by ignoring the d dependent contributions) is given by

SEE ∼ N2

(
ρ0

(gsN)1/3ls

)9/2

(36)

10
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and also scales like N2 when ρ0 is expressed in terms of the appropriate dimensional length
scale of the matrix theory.

In the above discussion we have asserted that the entanglement entropy is proportional to
area in Einstein frame. It is interesting to see what would happen if this was the area in string
frame metric. In that case we get an answer

ΔAstring−frame = Astring−frame(T)− Astring−frame(T = 0) ∼ T14/5
0 d−13

0 l8s (37)

If we now use a UV cutoff which is the string length ls we see that ΔAstring−frame/l8s can be
again expressed in terms of quantities in the D0 brane quantum mechanics. Note however if
this is taken to be a candidate for the entanglement entropy, the answer scales as N0. This
will not connect with the Bekenstein–Hawking formula and appears unnatural since the D0
brane theory has N2 degrees of freedom. However we cannot rule out this possibility without
a concrete calculation in the D0 brane quantum mechanics.

We now turn to a more detailed discussion of D0 brane quantum mechanics.

3. Entanglement in D0 brane quantum mechanics

Here we address the question: what is the bulk entanglement in the dual description in terms
of D0 brane quantum mechanics? Let us begin by reviewing some basics about the D0 brane
matrix quantum mechanics [27].

3.1. Matrix quantum mechanics: basic facts

The action for this 0+ 1 dimensional supersymmetric Yang–Mills theory is given by

S =
N

2(gsN)ls
Tr
∫

dt

⎡
⎣ 9∑
I=1

(DtX
I)2 − 1

l4s

9∑
I 
=J=1

[XI,XJ]2

⎤
⎦+ fermions (38)

where XI(t) are N × N Hermitian matrix functions of time and Dt stands for the covariant
derivative

DtX
I = ∂tX

I + i[At,XI] (39)

This action has a SU(N ) gauge symmetry (actually the symmetry is U(N ), but theU(1) decou-
ples). We can now fix a gauge At = 0. As usual, the resulting Gauss law constraint imposes
the condition that all physical states are invariant under a SU(N ) rotation6. The Hamiltonian
in this gauge is

H =
1
2

Tr

⎡
⎣ (gsN)ls

N

9∑
I=1

(PI)2 +
N

(gsN)l5s

9∑
I 
=J=1

[XI ,XJ]2

⎤
⎦+ fermions (40)

where PI denote the conjugate momenta.
This theory does not have any dimensionless parameter. This is seen clearly by rescaling

XI = (gsN)1/3lsX̃I PI =
1

(gsN)1/3ls
P̃I (41)

6More details of this model are discussed in appendix B.

11
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and the Hamiltonian (40) now becomes

H =
(gsN)1/3

2ls
Tr

⎡
⎣ 1
N

9∑
I=1

(P̃I)2 + N
9∑

I 
=J=1

[X̃I , X̃J]2

⎤
⎦+ fermions (42)

Thus the theory is characterized by a single energy scale

Λ =
(gsN)1/3

ls
(43)

In this At = 0 gauge one is left with a time independent SU(N ) symmetry which also needs
to be modded out. We will do this by diagonalizing one of the matrices, X1. The remaining
symmetry is nowWeyl transformations which permute the eigenvalues of X1 which we denote
byλi, i = 1, . . .N, andmix up thematrix elements of the other eight matricesXI in a non-trivial
fashion. In the following discussion we will ignore the fermions.

In the lowest energy state, all the nine matrices commute with each other. In this case
all the matrices can be diagonalized simultaneously. If the eigenvalues are denoted by
xIi , i = 1 . . .N, these denote the locations of theN D-branes. The origin of this Coulomb branch
has 〈XI〉 = 0—their dispersion provides the scale of the bound state, which is (gsN)1/3ls. The
supergravity description of this state is the N coincident D0 brane solution discussed above.

A generic state may be expressed in the form (the measure is derived in (147) of appendix
B; in the following, we have omitted the tilde sign from Ψ̃ in appendix B):

|ψ〉 =
∫
[dμ]Ψ(λi;X2

i j, . . .X
9
i j) |λi;X2

i j, . . .X
9
i j〉+ (Weyltransforms) (44)

wherewe imposed theWeyl symmetry by summing overWeyl transforms (according to (153)).
The measure is

[dμ] =
N∏
i=1

dλi
9∏

I=2

[dXI] (45)

Here [dXI] =
∏

idX
I
ii

∏
i< jdX

I
i j dX

I
ji is the standard Haar measure. Here and in the following

whenever we write XI the index I runs from 2 to 9.
Using the same basis, a generic operator may be expanded as

Ô =

∫
[dμ]

∫
[dμ′]O(λi,X

I
i j;λ

′
i,X

′ I)|λi;XI〉〈λ′
i,X

′ I |+Weyl transforms (46)

In the low energy description, and at zero temperature, the space of eigenvalues λi corresponds
to one of the space directions, namely x1, in ten-dimensional supergravity.

3.2. Target space entanglement entropy

It is then clear that our calculation of the entanglement entropy across a x1 = d surface in
a particular geometry in the bulk maps to a calculation of the target space entanglement in
the D0 brane quantum mechanics. That is we would like to restrict ourselves to the region
x1 > d and ask what are the operators we can have access to in this region; the von-Neumann
entropy of the density matrix associated with this subalgebra of all observables is then the
relevant entanglement entropy. Compared to the single particle case briefly discussed in the

12
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introduction there are two extra features of this problem worth mentioning, both have to do
with the fact that we are dealing with a system with many degrees of freedom.

In general in a non-relativistic system with many particles, the analysis breaks up into dif-
ferent sectors, each sector being specified by which of the particles are present in the region of
interest. The corresponding set of operators in this sector correspond to all the measurements
one can perform on these particles and the full sub algebra with which we associate the entropy
is then a sum of the algebras of observables in each sector. In fact these sectors are superselec-
tion sectors, since the observables in the algebra do not change the particles in the region of
interest.

The second feature has to do with statistics. In our case the different eigenvalues of the
X1 matrix correspond to fermion-like degrees of freedom. More precisely the wave function
Ψ(λi,XIi j), equation (44) has the property that it picks up a minus sign under interchange of
any given pair of indices i↔ j, i.e., under λi ↔ λ j, XIii ↔ XIjj and X

I
i j ↔ XIji, the wave func-

tion, Ψ→−Ψ. This follows from a special case of the general Weyl transformation (153) in
appendix B, where we choose to permute a given pair (i, j). We are interested here in the target
space region x1 > d. The different super selection sectors are therefore specified only by the
number of eigenvalues of X1 meeting the condition λi > d, and not any particular choice of
these eigenvalues.

On general grounds, it then follows that the density matrix is block diagonal in the different
sectors and of the form

ρ̃ =

m=N⊕
m=0

ρ̃m (47)

where ρm is the densitymatrix in themth sector in whichm eigenvalues ofX1 meet the condition
λ > d (and the remaining the N − m eigenvalues are outside of this region). This is similar to
the equation (99) of appendix A which discusses the case of N fermions; the notation ρ̃m here
is to be identified with ρ̃m,N−m of that equation.

Note that we can write (47) as

ρ̃ =

m=N⊕
m=0

pm ρ̂m (48)

where pm is the probability to be in the mth

pm = Trm(ρ̃m) (49)

and ρ̂ is the normalized density matrix in this sector, satisfying the relation

Trmρ̂ = 1 (50)

The trace in equations (49), (50) is restricted to the mth sector. Note in equation (48) we have
also allowed for no eigenvalue being in the region of interest.

It is worth emphasising that the probabilities pm satisfy the relation

m=N∑
m=0

pm = 1, (51)

so that it follows from equation (49) that the full densitymatrix ρ̃ has the standard normalisation

Tr(ρ̃) = 1. (52)

13
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Before proceeding let us also note that the entanglement entropy, defined as the von
Neumann entropy of equation (48) (cf (98) of appendix A), is given by

SEE = −
∑
m

Trmρ̃m ln(ρ̃m) (53)

= −
∑
m

pm ln pm +
N∑

m=0

pm Trmρ̂ ln(ρ̂) (54)

where the trace Trm again denotes the trace within the sector with m of the eigenvalues
lying in the region of interest. The structure of the density matrix, equation (48) and entropy,
equation (54) are of the general type which arises in the presence of super selection sectors.
And on general grounds it follows that the distillable part of the entanglement is only the sec-
ond term in equation (54), while the first term −

∑
m pmlnpm is a classical piece which cannot

be used as a quantum resource for teleportation, etc [32, 33].
We also note that at non-zero temperature the relationship between the eigenvalues of the

matrix X1 and the coordinate x1 in the background metric is not straightforward. However for
regions far from the horizon these two quantities can be taken to be the same; thus since in
this note we are dealing with the parametric region d 
 rH such an identification would be
justified.

Let us now digress briefly to make one comment which is worth emphasising. For our
proposal, that the entanglement of some region in the bulk corresponds to target space entan-
glement in the boundary theory equation (2), to be sensible it is important that in a pure state the
target space entanglement for a region and its complement are equal. In the specific example
we are considering this implies that the target space entanglement corresponding to the region
x1 > d and x1 < d are equal. It is easy to see that this is the case and in fact the reasoning we
give below can be seen to apply immediately to a general bulk region as well, so long as this
region can be mapped suitably to a target space constraint in the boundary.

Let us denote, for the discussion in this paragraph only, the density matrix for the region
x1 > d by ρ̃(>d). The corresponding entanglement entropy is given by

S(>d)EE = −Tr
[
ρ̃(>d) log ρ̃(>d)

]
. (55)

Note that this trace has to be taken over all the N super selection sectors described above.
Now when m eigenvalues of X1 take values in the range λ > d, N − m eigenvalues lie in the
complement, λ < d. Thus the mth super selection for when we are considering the x1 > d
region maps into the (N − m)th sector for the x1 < d case. A little more analysis also shows
that the density matrices ρ̃(>d)m for the x1 > d region and correspondingly ρ̃(<d)N−m for the x1 < d
region make an equal contribution to their respective entropies, S(>d)EE , S(<d)EE . This follows from
the fact that in each sector the Hilbert space admits a tensor product decomposition, and the
entanglement entropy for a pure state in a bipartite system is equal for both of its constituent
Hilbert spaces7. The sectors where m = 0 and m = N have to be dealt with as a special case.
The equality in these sectors follows simply from the fact that the probability to not find any
eigenvalue taking values in the range λ > d equals that to find all N in λ < d and vice-versa.

7 Actually to deal with the complication of fermion statistics correctly we need to embed the Hilbert space in each
super selection sector in an extended Hilbert space where the required anti-symmetrisation constraint is not imposed.
This extended Hilbert space admits a tensor product decomposition and that is enough to show the equality of the
contributions ρ̃>dm and ρ̃<dN−m make to their respective entanglement entropies.
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We now return to the main thread of our discussion. Consider one of the terms in the state
expressed in (44), e.g. the first term. This has a given ordering of the eigenvalue labels and
the matrix elements of the remaining XI . The corresponding wavefunction is the probability
amplitude that the location of the N D0 branes in the x1 direction are given by the λi. The diag-
onal matrix elements of XI represent open strings which begin and end on the same D0 brane,
while the off-diagonal matrix elements represent open strings which stretch between different
D0 branes. Now suppose in this particular term the first n eigenvalues have λi > d while the
rest have λi < d. We will relabel the index i for the latter set of eigenvalues by the index a. We
need to be able to performmeasurements which involve the matrix elements XIi j, i, j = 1 . . . n,
I = 2 . . . 9, while we do not wish to retain the elements XIab, a, b = (n+ 1) . . .N, I = 2 . . . 9.
This leaves us with the off-diagonal blocks XIia,X

I
ai, i = 1 . . . n, a = n+ 1 . . .N, I = 2 . . . 9

and its transpose. Of course the labelling of the matrix elements pertains to one specific term
in the sum (44). The question we are allowed to ask is how many eigenvalues are larger than
d, not which eigenvalues are larger than d. The sum over Weyl transforms precisely achieves
this—ensuring that the D0 branes are identical particles.

As explained below (see section 3.3 as well as appendix B), this leads us to two different
proposals for the subalgebra of operators whose associated entanglement entropy corresponds
to the quantity computed in the bulk. Let us first focus on the sector in which there are n
eigenvalues λi in the region x1 > d. In our first proposal, the operator subalgebra relevant to
this sector consists of operators in the Hilbert space of variables {λi,XIi j} (see appendix A for
a detailed discussion of operator subalgebras in the simple context of free fermions, e.g. (93))
which are of the form

Ôn = Õn ⊗ 1̄+Weyl,

Õn =

∫ ∏
i

∫ ∞

d
dλi

∫ ∞

d
dλ′

i

I∏
i j

dXIi jdX
′I
i j Õn

({
λi,λ′

i

}
;
{
XIi j,X

′I
i j

})

× |
{
λi,XIi j

}
〉〈
{
λ′
i,X

′I
i j

}
|+Weyl transf

1̄ =

∫
[dμn]|λa,XIiaXIaiXIab }〉〈

{
λa,XIiaX

I
aiX

I
ab

}
|

∫
[dμn] ≡

∫ d

−∞

N∏
a=n+1

dλa

∫ N∏
a,b=n+1

[dXIab]
∫ N∏

a=n+1

n∏
i=1

[dXIiadX
I
ai] (56)

The full operator algebra consists of contribution of operators from the various n-sectors.
From the above definition, it is clear that in this proposal we are tracing over not only the

(N − n)× (N − n) block of the matrices XI , but also the off-diagonal blocks. This means that
we are not performingmeasurements on the open stringswhich join theD0 branes in the x1 > d
region with those in the x1 < d region.

In our second proposal the subalgebra of operators in the n-sector consists of operators in a
Hilbert space of coordinates {λi,XIi j,XIia}, and are of the form

Ôn = Õn ⊗ 1̄+Weyl,

Õn =
∏
i

∫ ∞

d
dλi

∫ ∞

d
dλ′

i

I∏
i j

∫
dXIi jdX

′I
i j

I∏
ia,ai

∫
dXIiadX

′I
iadX

I
aidX

′I
ai

× Õn

({
λi,λ′

i

}
;
{
XIi j,X

′I
i j;X

I
ia,X

′I
ia;X

I
ia,X

′I
ia

})
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× |
{
λi,X

I
i j,X

I
ia

}
〉〈
{
λ′
i,X

′I
i j,X

′I
ia

}
|+Weyl trans

1̄ =

∫
[dνn]|λa,XIab }〉〈

{
λa,XIab

}
|

∫
[dνn] ≡

∫ d

−∞

N∏
a=n+1

dλa

∫ N∏
a,b=n+1

[dXIab] (57)

In this proposal we are tracing over only the (N − n)× (N − n) block of the matrices XI . This
means that our measurements include those made on open strings which join the D0 branes in
the x1 > d region with those in the x1 < d region.

In this paper we will largely focus on the bosonic degrees of freedom in the quantum
mechanics and not discuss the fermionic ones. However let us at least mention that the
fermionic degrees of freedom θA which are also N × N matrices must be dealt with in the
same way as the XI , I = 2, . . .9 matrices. This means in the first proposal we only retain the
(θA)i j blocks and trace over the (N − n)× (N − n) blocks (θA)ab, as well as the off-diagonal
blocks, (θA)ai, (θA)ia. In the second proposal we retain the (θA)i j and the (θA)ai, (θA)ia blocks and
only trace over the (θA)ab block.

For a given state one can now compute the RDM which correctly reproduces expectation
values of either of the set of operators, and from this the von Neumann entropy. The formalism
to write this down is explained in the appendix and will also be elaborated in the next sub-
section. Our conjecture is that one of these will correspond to the bulk entanglement entropy
computed in (section 2).

3.3. The two proposals for target space EE

Before proceeding, some more comments are worth making at this stage. We note that some
motivation for the two proposals above come from the Coulomb branch solutions. In super-
gravity it is known that there are solutions in which the D0 branes are displaced from the
origin and the harmonic function takes the more general form equation (25), with�ri specifying
the location of the ith brane. These solutions also correspond to bound states at zero energy
in the matrix theory. Consider such a solution in which the x1 coordinate of some of the D0
branes lies in the region x1 < d, i.e. outside the region of interest. In defining the entanglement
if these branes are to be excluded, then the open strings stretching between these excluded
branes should also be dropped. This still leaves the choice of whether the degrees of freedom
corresponding to the open strings stretching between the branes inside the region, with x1 > d,
and those outside, with x1 < d, should be retained or dropped. Correspondingly, in the den-
sity matrix of the matrix theory we have two choices of retaining the off-diagonal degrees of
freedom stretching between the eigenvalues with λi < d and λi > d, as discussed above. See
figure 1. For some more details, see appendix B (section B.1).

It is worthwhile to emphasize that even though we draw motivation from a generic point on
the Coulomb branch, the state we are discussing is at the origin of the Coulomb branch. The
supergravity solution for this is a set of coincident D0 branes. However, in the matrix quan-
tum mechanics this state has a non-trivial wavefunction which has a spread of ∼ N1/3ls. This
means that while the expectation value of the matrices vanish in this state, there is a non-zero
probability amplitude (described by the wavefunction) for having a configuration described by
values of λi,λa,XIi j,X

I
a j,X

I
ab, using the notation described above. The open strings we refer to

above are simply a description of this kind of configuration. These comments are also true for
a state of the kind in equation (25) where the branes are displaced from the origin but continue
to lie in the region of validity of the supergravity approximation; while the expectation value
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Figure 1. A typical configuration for the case N = D = 2, where we have two 2× 2
matrices X = diag[λ1,λ2], Y = diag[y11, y22]; (λi, yii) represent the coordinates of the
two D0 branes, i = 1, 2. The figure depicts the situation in which one of the D0 branes,
say with coordinates x1 = (〈λ1〉, 〈y11〉), is in region A : x1 > d, i,e. λ1 > d, while the
other D0 brane with coordinates x2 = (〈λ2〉, 〈y22〉) is in Ā : x1 < d, i.e. λ2 < d. The
variables λ1, y11 represent an open string beginning and ending on the first D0-brane;
they are in the region of interest A and hence must be included in the operator algebra.
Similarly the variables λ2, y22 represent an open string beginning and ending on the sec-
ondD0-brane; they are in the region of interest Ā and hence should be excluded from the
operator algebra. y12, y21 represent open strings straddling between regions A and Ā. One
might wish to exclude the y12, y21 from the operator algebra (first proposal), or include
them (second proposal). Note that, the two D0 branes are actually indistinguishable; as
(151), (153) indicate, the situation described above is indistinguishable from the one in
which the D0 branes are interchanged; hence the above definitions have to take that into
account, as was done for case of N fermions in appendix A.

of the matrices do not vanish now, there is a non-zero probability amplitude for various values
of λi,XIi j, etc.

In either of the above proposals, there are O(N2) degrees of freedom which are traced out.
It is therefore natural to expect that the entanglement entropy will be proportional to N2. We
note that the fact there areO(N ) sectors in the sum, equation (54) does not alter this estimate. If
O(N ) sectors contribute and generically each sector gives a contribution ofO(N2) by which we
mean that the normalized density matrix ρ̂m has Trmρ̂m ln(ρ̂m) ∼ O(N2), then the final result
for the second term in equation (54) would still beO(N2). The first term in equation (54) which
is the classical piece is much smaller and can at most be O(lnN).

When the bulk is a black hole we should consider the D0 brane quantum mechanics in a
thermal state with the same temperature T . There are now two dimensionful quantities in the
calculation. The first is the temperatureT and the second is the value of dwhich has been used to
define the subalgebra. It is clear from the discussion from equation (38) to (43) that the energy
scale in the ’t Hooft limit is given by Λ defined in (43), while the scale which relates super-
gravity distanceswith the eigenvalues is (gsN)1/3ls. Therefore theD0 brane quantummechanics
answer for the entanglement entropies will involve the dimensionless temperature T0 = T/Λ
and the dimensionless d0 introduced above. Once this is done, the answer should be simply
proportional to N2, exactly as in the supergravity calculation. As explained in the previous
section, to keep the bulk calculation within the realm of the supergravity approximation one
could compare the difference of the entropies at finite and zero temperature, this would allow
for a precise test of the coefficient in the area term in equation (2).

While a bound state which corresponds to N D0 branes has been shown to exist [29], an
explicit analytic form is not known. This makes an analytic check of our proposal difficult. It
should be, however, possible to express the target space entanglement entropy discussed above
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in a path integral formulation: then numerical calculations along the lines of [19] can be used
to provide a concrete check of our proposal.

Before ending this subsection let us also mention that a useful toy model to understand 
target space entanglement is to consider the case of a single bosonic matrix quantum mechanics 
with no external potential. In this case the additional XI are not present and we only have the 
eigenvalues λi. As is well known the λi can be considered as the coordinates of N free fermions 
moving on a line. The above description of the relevant subalgebra of operators is in a first 
quantized description. In a second quantized description, the Hilbert space becomes a 
product. The subalgebra of operators pertaining to the subregion λ > 0 a r e g i v e n b yM 
body operators of the form

F =

∫ ∞

0

M∏
i=1

[dλidλ′
i] ψ

†(λ1)ψ†(λ2) · · ·ψ†(λM)

× FM(λ1 · · ·λM ;λ′
1 · · ·λ′

M) ψ(λ
′
1)ψ(λ

′
2) · · ·ψ(λ′

M) (58)

where ψ(x),ψ†(x) are the second quantized fermion fields. In the sector where there are n
particles in this region the operators which have nonzero expectation values must haveM � n.
It can be then shown easily that the functions FM are in one-to-one correspondence with the
matrix elements of operators in the first quantized description in the sector where there are
M particles in the sub-region. In fact, for free fermions one may use well known methods
to compute the RDM [30] to show that the density matrix obtained in the second quantized
description is exactly the same as the first quantized description discussed above. Details of
this are provided in appendix A.

3.4. The sector-wise entanglement

Consider the sector where n eigenvalues satisfy the condition λi > d. Let us use the Weyl
symmetry and arrange for these to be the first n eigenvalues of X1. Then in the first proposal
we would also retain in the density matrix the Xi j, (i, j � n) degrees of freedom and ‘integrate
out’ everything else. Starting with a wave functionΨ(λi,XIi j) with unit norm,∫

dλiDXIi j|Ψ(λi,XIi j)|2 = 1, (59)

where in the integral λi ∈ [−∞,∞] and the measure for XIi j is the standard flat measure for
Hermitian matrices, with a range as explained in the appendices A, B. We then get that the
density matrix in this sector is given by (cf (47))

ρ̃n(λi,XIi j;λ
′
i′ ,X

′I
i′ j′ ) =

(
N
n

)∫
DχAΨ

∗(λi,XIi j,χA)Ψ(λ′
i′ ,X

′I
i′ j′ ,χA) (60)

To save clutter we have denoted all variables to be integrated over generically as χA. These
include λi, i > n and XIi j, where one or both indices i, j are greater than n. Note that the range
of integration over these variables is as follows λi, i > n take values∈ [−∞, d], while XIi j, with
i or j > n, are to be integrated over their full range (real line for i = j and complex plane for
i 
= j). It is important to note that the variables being integrated out, χa, appear in bothΨ

∗ and
Ψ. The combinatorial factor

(N
n

)
arises as follows. The case with n eigenvalues of X1 being

greater than d can arise in
(N
n

)
different ways, by the fermionic symmetry these all give the

same contribution to the density matrix resulting in this combinatorial factor.
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Note that the density matrix ρn is an operator in the space of the degrees of freedom that
remain after imposing the target space constraint and once it is known we can in principle cal-
culate its contribution to the entropy, Trnρnln(ρn). Summing the contributions from the different
sectors then gives the full entanglement entropy, equation (53).

In the second proposal after arranging for the first n eigenvalues to be greater than dwe retain
: λi, i � n, Xij, i, j < n. In addition we retain the degrees of freedom, XIa,i,X

I
ia, with, i < n, a >

n; these satisfy the relation XIai = (XIia)
∗. The density matrix now depends on these degrees of

freedom as well, and equation (60) is replaced by

ρ̃n
(
λi,XIi j,X

I
ai;λ

′
i′ ,X

′I
i′ j′ ,X

I
a′,i′
)

=

(
N
n

)∫
DχAΨ

∗ (λi,XIi j,XIai,χA)Ψ (λi′ ,XIi′ j′ ,XIa′i′ ,χA) (61)

where now the χa variables include : λi, i > n, XIi j, i, j > n. The range of integration for these
variables are as above and the combinatorial factor has the same origin as in the previous case.
More details can be found in appendices A and B.

While we have not been explicit about fermionic degrees of freedom here they are to
be included in a manner analogous to the XI degrees of freedom, as was discussed after
equation (57) above.

Finally let us note the form for ρn if we start not with a wave functionΨ but with a density
matrix for the full system, as would be the case when we consider the finite temperature case
where

ρ =
e−H/T∑
i
e−H/T

, (62)

whereH is the Hamiltonian and the index i denotes sum over all states. The density matrix can
now be regarded as a general functionρ(λi,XIi j;λi′ ,X

I
i′ j′), with i, j, i

′, j′, taking values 1, 2, . . .N.
In this case similar reasoning as above shows that for the first proposal equation (60) is

replaced by

ρ̃n
(
λi,XIi j;λ

′
j,X

′I
i′ j′
)
=

(
N
n

)∫
DχAρ

(
λi,XIi j,χA;λ

′
i′ ,X

′I
i′ j′ ,χA

)
(63)

where χa as above denotes the variables, λi, i > n and XIi j, where one or both labels, i, j > n.
Whereas in the second proposal equation (61) is replaced by

ρ̃n
(
λi,XIi j,X

I
ai;λ

′
j,X

′I
i′ j′ ,X

′I
a′,i′
)
=

(
N
n

)∫
DχAρ

(
λi,XIi j,X

I
ai,χA;λi′ ,X

′I
i′ j′ ,X

′I
a′i′ ,χA

)
(64)

where χA now includes, λi, i > n, and XIi j, with both i, j,> n.

4. Dp branes (p< 3)

The results of section (2 generalize to Dp branes with p< 3. The string frame metric and the
dilaton for the near horizon geometry of N coincident near-extremal black Dp branes are

ds2 =

(
R
r

)−n/2 [
− f (r) dt2 + dy21 + · · · dy2p

]
+

(
R
r

)n/2 [ dr2

f (r)
+ r2dΩ2

n+1

]

e−φ/2 =

(
R
r

) n(p−3)
8

(65)

19



J. Phys. A: Math. Theor. 53 (2020) 444002 S R Das et al

where

n = 7− p Rn = (4π)(n−2)/2Γ(n/2)lns (gsN)

r2 = x21 + · · · x29−p = x21 + ρ2

f (r) = 1−
( rH
r

)n
(66)

and the temperature is given by

T =
n

4πR

(rH
R

) n−2
2

(67)

The brane directions yi each have an extent L. Consider once again a x1 = d surface where
d > rH. The Einstein frame area of this surface is given by

Ad(T) = ΩnR
n/2Lp

∫ ∞

0
dρ

ρn/2

(1+ d2

ρ2
)n/4

[
1+

rnH
ρn

1

(1+ d2

ρ2
)
n
2+1

]1/2
(68)

This integral is divergent at the upper limit. However, as in the case of zero branes, the dif-
ference Ad(T )− Ad(0) is finite. Performing a low temperature expansion as in the previous
section we obtain the difference of the areas which is once again insensitive to the IR cutoff on
ρ and the entropy difference is then given by

ΔSEE =
ΩnΓ

(
n−2
4

)
Γ
(
n+3
2

)
4Γ
(
3n
4 + 1

) LpRn/2rnH
ε8d

n
2−1 (69)

Using the expression for R in (66) and rH in terms of the temperature in (67) we get

ΔSEE = Cp
(gsN)2l8s

ε8
(gsN)

6−n
2(n−2) l

3n2−18n+32
2(n−2)

s T
2n
n−2 L7−n d1−

n
2 (70)

where

Cp = (n+ 1)2
3n2−4n+12

2(n−2) π
n(5n−2)
4(n−2) n−

2n
n−2Γ

(n
2

) 3n−2
2(n−2) Γ

(
n−2
4

)
Γ
(
3n
4 + 1

) (71)

We now need to express the temperature, the p-brane extent and the quantity d in terms of
their appropriate scales. The energy scale Λ of the Dp brane theory is provided by the ’t Hooft
coupling

g2YMN =
(gsN)
ln−4
s

⇒ Λ = (gsN)
1

n−4 l−1
s (72)

This means that we need to express T and the extent L in these units,

T = T0Λ L = L0Λ
−1 (73)

The transverse distance in the geometry is, however proportional to this energy scale multiplied
by l2s . This means that we need to express

d = d0Λl
2
s (74)
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Once again, when expressed in terms of these dimensionless quantities, the result should not
involve gs. This can happen only if the UV cutoff ε is proportional to the ten-dimensional
Planck scale. Using this cutoff, we are left with a final answer proportional to N2,

ΔSEE = BpN
2T

2n
n−2
0 L7−n0 d

1− n
2

0 (75)

where

Bp = (n+ 1)2
3n2−14n+32

2(n−2) π
5n2−26n+48

4(n−2) n−
2n
n−2Γ

(n
2

) 3n−2
2(n−2) Γ

(
n−2
4

)
Γ
(
3n
4 + 1

) (76)

5. Entanglement in Dp brane field theory

The discussion of a candidate subalgebra of operators in the SU(N ) Yang–Mills theory living
on the Dp brane (for p < 3) worldvolume is completely analogous to that for D0 brane quan-
tum mechanics. The matrices are now functions of the spatial coordinates on the Dp brane
worldvolume ξ. The bosonic fields are now worldvolume gauge fields Aμ(ξ),μ = 1 . . . (p+ 1)
and the transverse Higgs fields XI(ξ) with I = 1, . . . 9− p. We then work in a gauge where one
of these Higgs fields, X1 is chosen to be diagonal with elements λi(ξ) and consider a division
of the space of λ(ξ) into two parts, corresponding to λi(ξ) > d and λi(ξ) < d. As in section
(3), there are two choices for the corresponding operator sub-algebra. The generalization for
the choice (56) involves an expression

Ôn = Õn ⊗ 1̄+Weyl,

Õn =
∏
ξ

∏
i

∫ ∞

d
dλi (ξ)

∫ ∞

d
dλ′

i (ξ)
I∏
i j

dXIi j (ξ) dX
′I
i j (ξ)

× Õn

({
λi (ξ) ,λ′

i (ξ)
}
;
{
XIi j (ξ) ,X

′I
i j (ξ)

})
× |

{
λi (ξ) ,XIi j (ξ)

}
〉〈
{
λ′
i (ξ) ,X

′I
i j (ξ)

}
|+Weyl trans

1̄ =

∫
[dμn]|λa,XIiaXIaiXIab }〉〈

{
λa,XIiaX

I
aiX

I
ab

}
|

∫
[dμn] ≡

∏
ξ

∫ d

−∞

N∏
a=n+1

dλa (ξ)
∫ N∏

a,b=n+1

[dXIab (ξ)]
∫ N∏

a=n+1

n∏
i=1

[dXIia (ξ) dX
I
ai (ξ)] (77)

This equation should be regarded in the same spirit as (56); the operator
O({λi(ξ),λ′

i(ξ)}; {A
μ
i j(ξ)X

I
i j(ξ);A

′μ
i j (ξ)X

′I
i j(ξ)}) belongs to the Hilbert space of the variables

{λi(ξ),Aμ
i j(ξ)X

I
i j(ξ)}. The measure here is again a generalization of (56) with the additional

terms involving the gauge fields and the integrals replaced by functional integrals. Note that
(77) involves integration over functions, and the restrictions on the ranges of integration are
over the values of the function at each point on the base space ξ. The subalgebra of operators
for our second proposal also follows in a similar fashion.

6. Discussion

In this paperwe explored the idea that in any smooth spacetime, to leading order, theBekenstein
bound is saturated, equation (1), leading to the proposal that for a pure state the entanglement
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of any co-dimension one region is given by the area of its boundary in units ofGN , equation (2).
We have shown that for a special choice of bulk regions the bulk entanglement can be mapped,
upto one ambiguity, to the target space entanglement in the boundary theory. Our proposal can
therefore be tested precisely using numerical calculations along the lines of [19]. If our proposal
lives up to precise tests, this would mean that the UV cutoff which makes the entanglement
entropy finite in string theory is the Newton constant, and not the string length. In fact, this is
the lesson from the c = 1 example in [12, 13].

We have described the bulk region of interest in a coordinate system and used the rela-
tionship between bulk coordinates and target space of the matrix theory in this coordinate
system. The notion of the region itself and its bounding surface is of course coordinate invari-
ant. In a different coordinate system the map to matrix theory target space will be different,
and therefore the target space restriction will be different. The result, however, will remain the
same.

One would like to extend our considerations to more general regions in the bulk. A prelim-
inary study suggests that this might be possible. For example in the D0 brane case consider a
spherical bulk region given by,

9∑
i=1

(xi)2 � R2 (78)

In the matrix theory the corresponding operator
∑

Tr (X̂i)2 is Hermitian and one can choose a
gauge where it is diagonalized8. This suggests that our considerations might be extendable to
more general bulk regions as well. Such an extension would be particularly interesting for a
region of the type equation (78), since by changing the radius one could then deform the bulk
region smoothly from being away from the black hole horizon to lying on it. It is also worth
mentioning that if our proposal is correct the entropy contained in the region equation (78)
is temperature independent, since its area is independent of T , as can be easily seem from
equation (16). The thermal and entanglement contributions to the entropy presumably trade-off
against each other keeping the total unchanged.

It is also worth commenting that various positivity properties, e.g. positivity of relative
entropy and mutual information [34, 35], should hold for target space entanglement. For
example, positivity of relative entropy and its monotonicity under inclusion of algebras are
general properties which should also apply to target space entanglement; from these follow
positivity of mutual information and strong subadditivity, etc. Using equation (2) these proper-
ties can be mapped to properties of areas bounding regions in the bulk. A preliminary analysis
suggests that they are true and in some cases the inequalities are in fact saturated. For example,
consider two target space regions, A : d < x1 and B : d2 < x1 < d, with A ∪ B : d2 < x1. Then
it is manifestly true that their mutual information I(A,B) is positive, since,

I(A,B) = S(A)+ S(B)− S(A ∪ B) = 2
A(x1 = d)

4GN
> 0 (79)

Similarly considering two overlapping regions with A ∩ B 
= 0, it is easy to see that the strong
subadditivity condition would be saturated

S(A)+ S(B) = S(A ∪ B)+ S(A ∩ B). (80)

See figure 2.

8We are grateful to Shiraz Minwalla for a discussion on this point.
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Figure 2. Strong subadditivity: consider regions A and B. The set A ∪ B is depicted in
pink, whereas A ∩ B is depicted in blue. Denoting the area of the boundary of regions
A, B etc as a(A), a(B) etc, it is straightforward to see that these areas satisfy the equality
a(A)+ a(B) = a(A ∪ B)+ a(A ∩ B).

As discussed in the introduction, for field theories, where the degrees of freedom live in both
spatially extended regions and time, one can consider a more general notion of entanglement
which arises when we consider observables which only access both a spatially localized region
and a restricted region in target space. It would be worth exploring this more general notion in
the context of AdS/CFT further.Without target space restrictions the bulk dual of the boundary
entanglement entropy is the Ryu–Takayanagi surface. With only target space restrictions and
no any restrictions along the spatial directions, we have proposed here, for some cases, that
the target space entanglement maps to bulk entanglement of an appropriate bulk region. The
more general notion combining both spatial and target space restrictions would then interpolate
between these two and it will be interesting to understand its bulk dual in more detail. While
the Ryu–Takayanagi surface is extremal, our preliminary considerations here suggest thatmore
generally when target space constraints are also included, the bulk surface is not extremal and
in fact could be of a quite general type.

We find it very interesting that even for the restricted kind of spatial regions considered here,
a precise map of bulk entanglement exists in the boundary theory. Since the notion of bulk
locality is not precise in a theory of gravity, this was not a priori clear. The boundary theory
of course exists for all value of the coupling and all values of N (in terms of the quantities
appearing in equation (28) all values of T0, d0,N. Thus one could consider how the target
space entanglement changes as one goes to weak coupling, and smaller values of N. The α′

and string loop corrections correspondingly become important in the bulk, and bulk locality
would become a more imprecise notion, but the target space entanglement would continue to
be well defined. One could also try to check this by computing α′ corrections in the bulk.

It is clearly important to find additional, and more doable, tests for our conjecture,
equations (1), (2). One possibility might be to try and investigate this in a semi-classical path
integral which attempts to implement the replica trick in the bulk, about a smooth spacetime
background9.

We end by noting that if, as our preliminary investigation here suggests, the notions of target
space entanglement along with its generalizationmentioned above which combines spatial and

9We are grateful to Shiraz Minwalla for this suggestion.
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target space constraints, can provide a precise notion of bulk entanglement, they would clearly
be important for studies related to information loss and more generally black hole physics.

7. A personal note from SRD

I came to know Peter Freund closely during my years as a graduate student at University of
Chicago, and we remained in touch ever since. His original style of doing physics has been a
major influence inmy life, and his enthusiasmhas been contagious. I am honoured to contribute
this work to his memorial volume.
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Appendix A. Target space entanglement entropy

In this appendix we first present the formalism of target space entanglement entropy in the
context of non-relativistic quantum mechanics of N fermions. Then we go on to prove the
equivalence of RDM constructed by particle number sector (and the consequent EE) in the
first quantized formulation with the standard second quantized theory.

We follow [15, 16] to define the EE in the target space. The key idea here is the algebraic
definition of EE which relies on the usage of a theorem (Artin–Wedderburn) which says that
given any algebra, there always exists a decomposition of the Hilbert space with the struc-
ture of direct sum over tensor products. Once restricted to a particular sector, one can use the
usual notions of RDM due to the tensor product structure. However here we do not distinguish
between ‘classical’ and ‘quantum’ contribution to the EE.

We introduce the notion of target space EE for a system of N fermions moving on the real
line R; from the first quantized viewpoint, R is the ‘target space’. We would like to define the
EE of a target space subregion region A ⊂ R, e.g. A could be the region x > d for some real
number d. Given such a region and its complement Ā, the one-particle Hilbert space, H1 has
the structure of a direct sum, rather than product, of the form

H1 = HA +HĀ, HA = span{|x1〉, x1 ∈ A}, HĀ = span{|x1〉, x1 ∈ Ā} (81)

To study the target space EE, we find it convenient to begin with a discussion of the two-
fermion Hilbert space H2 (we will come back to the one-particle case later on). The most
general two-fermion wavefunction is of the form10

|ψ〉 =
∫

dx1

∫
dx2 ψ(x1, x2)|x1, x2〉a =

∫
dx1

∫
dx2 ψa(x1, x2)|x1, x2〉,

10 Unspecified range of integration would mean full range. E.g.
∫
dx1 =

∫
R dx1.
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|x1, x2〉a ≡
1√
2!

(
|x1〉 ⊗ |x2〉 − |x2〉 ⊗ |〈x1〉

)
, ψa(x1, x2) ≡

1√
2!

(ψ(x1, x2)− ψ(x2, x1))

(82)

The two-particle Hilbert space splits naturally into three sectors, as follows:

H2 = H2,0 +H1,1 +H0,2 (83)

where

H2,0 =span{|x1, x2〉a, x1, x2 ∈ A}
H1,1 =span{|x1, x2〉a, x1 ∈ A, x2 ∈ Ā}

H0,2 =span{|x1, x2〉a; x1, x2 ∈ Ā}

In terms of the wavefunction (82), restricting ranges of the integrals over x1, x2 variously to
the regions A, Ā give the projection of the wavefunction to the various sectors: thus, e.g.

|ψ〉1,1 =
∫
A
dx1

∫
Ā
dx2 ψ(x1, x2)|x1, x2〉a, a〈x1, x2|ψ〉 = ψa(x1, x2) (84)

The corresponding projection operatorsΠ(p,q) :H2 →H(p,q) are given by

Π2,0 =
1
2

∫
A,A

dx1 dx2|x1, x2〉a a〈x1, x2|

Π1,1 =

∫
A,Ā

dx1 dx2|x1, x2〉a a〈x1, x2|

=
1
2

(∫
A
dx1

∫
Ā
dx2 +

∫
Ā
dx1

∫
A
dx2

)
|x1, x2〉a a〈x1, x2|

Π0,2 =
1
2

∫
Ā,Ā

dx1 dx2|x1, x2〉a a〈x1, x2| (85)

It is easy to see each of these projection operators squares to itself and they add up to identity
inH2.

The generalization of these concepts to an N-fermion Hilbert space is straightforward:

HN = ⊕p,q;p+q=NHp,q (86)

Here the notation Hp,q denotes a sector in which there are p particles in the region A and q
particles in the complementary region Ā. We will denote by Πp,q (p+ q = N) the projection
operatorsHN →Hp,q.

It is straightforward to generalize the above discussion to N fermions in RD and the target
space region A is defined by a plane, say A : {x1 > d, x2, . . . , xD ∈ R}. Ā = RD − A. E.g. if
we denote the coordinates of the N particles as xi = xIi , i = 1, 2, . . . ,N, I = 1, 2, . . . ,D, then
the wavefunctions belonging to Hp,q are given by

|ψp,q〉 =
∫
A

D∏
I=1

p∏
i=1

dDxi

∫
Ā

D∏
I=1

N∏
i=p+1

dDxi ψ({xi})|{xi}〉a (87)
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where the subscript a denotes antisymmetrization as before. The decomposition (86) is again
true and the following discussion generalizes in a straightforward fashion with various one-
dimensional integrals replaced by the corresponding d-dimensional integrals.

Reduced density matrix (RDM).
We are interested in defining an RDM ρ̃, associated with the region A, in a state ρ in the

full Hilbert space (which could be pure or mixed). The RDM should have the property that
for observablesO which can be measured by detectors in A, we should have, in an appropriate
sense,

Tr(ρO) = TrA(ρ̃O) (88)

In the following we will define each side carefully.
In a QFT, when one is interested in a spatial subregion A of space time (as against tar-

get space), one proceeds by noting that the full Hilbert space is a tensor product of the form
H = HA ⊗ HĀ, which leads to ρ̃ = TrHĀρ, with TrA interpreted as TrHA .

However, there is no such tensor product decomposition for target space subregions. As
we saw above, the single-particle Hilbert space H1 is a direct sum, rather than a product, of
subspaces associated with A and Ā. A similar statement is true also for an N-particle Hilbert
space. What allows us to proceed is that each given sector H(p,q) in an N-particle Hilbert
space, separately, has an (antisymmetric) tensor product of factors associated with A and Ā
respectively.

Let us explain the case of theH1,1 ⊂ H2 as an illustration. It is easy to see that

H1,1 = HA ∧HĀ; (89)

where the antisymmetric tensor product V ∧W denotes V ⊗W −W ⊗ V .
Operator algebra.
The operators that mapH1,1 →H1,1 are of the form

Span{|x, y〉a a〈x′, y′|, x, x′ ∈ A, y, y′ ∈ Ā} (90)

Among these, operatorsOwhich correspond to observables in region Amust have the property

O|x, y〉a =
∫
A
dx′ Õ(x, x′)|x′, y〉a, (91)

which do not have any effect on |y〉, y ∈ Ā. In fact, the corresponding operator algebra can be
obtained by setting y = y′ in (90) and integrating over the y coordinate. This gives11

A1,1 = Span{
∫
Ā
dy|x, y〉a a〈x′, y|, x, x′ ∈ A}

= Span{|x〉〈x′| ⊗ 1Ā + 1Ā ⊗ |x〉 〈x′|, x, x′ ∈ A}

1Ā ≡
∫
Ā
dy |y〉〈y| (92)

11 The second equality below can be derived as follows. Take a matrix element of the operator inside the ‘span’ in the
first line and show that it is that in the second line.
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It is easy to show that this operator algebra is closed undermultiplication. The operatorO, with
the action defined in (91) can be identified as an element of (92), with the form:

O = Õ1,1 ⊗ 1Ā + 1Ā ⊗ Õ1,1, Õ1,1 ≡
∫
A,A

dx dx′ Õ(x, x′)|x〉〈x′|, (93)

It is easy to check that this operator satisfies the defining property (91) (note that 1Ā|x〉 = 0 for
x ∈ A).
Density matrices.
A general state in the two-fermion Hilbert space is described by a density matrix

ρ =

∫
dx1dx2

∫
dx′1 dx

′
2ρ(x1, x2; x

′
1, x

′
2)|x1, x2〉a a〈x′1, x′2|

The projection of ρ onto the Hilbert spaceH1,1 is given by

ρ1,1 = Π1,1ρΠ1,1 =

∫
A,Ā

dx dy
∫
A,Ā

dx′ dy′
∫
Ā
dx2ρ(x, y; x′, y′)|x, y〉a a〈x′, y′| (94)

AlthoughH(1,1) is not an usual tensor product but an antisymmetrized one (89), one can define
a partial trace with respect toHĀ irrespective of the order of factors: thus

ρ̃1,1 = TrHĀ
Π1,1ρΠ1,1

=

∫
Ā
dy1〈y1|

[∫
A,Ā

dx dy
∫
A,Ā

dx′ dy′
∫
Ā
dx2ρ(x, y; x′, y′)|x, y〉a a〈x′, y′|

]
|y1〉

=

∫
A,A

dx dx′
∫
Ā
dyρ(x, y; x′, y)|x〉 〈x′| (95)

then we get

TrH2 (ρO) = TrHA

(
ρ̃1,1 Õ1,1

)
which is of the form (88), except for the important difference, characteristic of target space
EE, that both operators on the LHS are two-particle operators whereas those on the RHS are
one-particle operators defined on the one-particle Hilbert space HA associated with the factor
in (89) associated with region A; the traces on the two sides also pertain to these two-particle
and one-particle Hilbert spaces respectively.

In general, as mentioned above, an N-fermion Hilbert space HN splits into sectors Hp,q,
p+ q = N (see (86)). In eachHp,q, there exists a tensor product decomposition into twoHilbert
spaces associated, respectively, with the regions A and Ā:

Hp,q = Hp
A ∧Hq

Ā
, Hp

A ≡ (∧pHA) , Hq
Ā
≡
(
∧qHĀ

)
(96)

where ∧pV ≡ V ∧ V ∧ · · · ∧ V (p times). For V = HA (HĀ), respectively, these represent p
fermions in regionA(Ā). By definition,∧0HA = |0〉A = C (zero particles in A) and∧1HA = HA

(similarly for region Ā). Generalizing (95), it is easy to show that the RDM’s in each sector are
given by

ρ̃p,q = TrHq
Ā
ρp,q, ρp,q = Πp,qρΠp,q (97)
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The target space EE is naturally given by the combined von Neumann entropy of RDM’s from
all sectors:

S = −
∑

p,q;p+q=N

TrHp
A
ρ̃p,q log(ρ̃p,q) (98)

This can be equivalently defined as

S = −Tr ρ̃ log(ρ̃)

where ρ̃ is a formal sum of the sectorwise RDM’s

ρ̃ = ⊕p+q=N ρ̃p,q (99)

which acts on the sum of the vector spacesHp
A (in the notation of (96)).

Explicit calculation (N = 2).
Let us work the EE in detail for the two-particle case (N = 2). In this case, the various

sectors have the tensor decomposition

H2,0 =
(
∧2HA

)
⊗ C, H1,1 = HA ∧HĀ, H2,0 = C ⊗

(
∧2HĀ

)
(100)

Note that a general 2 particle state |ψ〉 can be written in multiple ways

|ψ〉 =
∫

dx1

∫
dx2 ψ(x1, x2)|x1, x2〉a

=

∫
dx1

∫
dx2 ψa(x1, x2)|x1, x2〉

=
1√
2

∫
dx1

∫
dx2 ψa(x1, x2)|x1, x2〉a (101)

In the first line the kets are anti-symmetric, in the second line the wavefunction ψ is anti-
symmetric, while in the last line both the kets and the wavefunction ψ are anti-symmetric.
In the following we will use the last representation most often (as the symmetric part of the
wavefunction ψ never contributes if the kets are antisymmetrized). The density matrix ρ is
given by

ρ = |ψ〉〈ψ| = 1
2

∫
dx1 dx2

∫
dx′1 dx

′
2 ψa(x1, x2)ψ∗

a(x
′
1, x

′
2)|x1, x2〉a a〈x′1, x′2|

=
1
2

∫
dx1 dx2

∫
dx′1 dx

′
2 ρa(x1, x2; x

′
1, x

′
2)|x1, x2〉a a〈x′1, x′2| (102)

To proceed, we follow (97) and (100). In the (2, 0) sector the partial trace over Ā is trivial and
we need to take care of only the projections, which just restrict the range of the integrals. Thus
we get

ρ̃2,0 = TrĀ(ρ2,0) = ρ2,0

=
1
2

∫
A
dx1 dx2

∫
A
dx′1 dx

′
2 ψa(x1, x2)ψ∗

a(x
′
1, x

′
2)|x1, x2〉a a〈x′1, x′2| (103)
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In (1, 1) sector, the projection operator (that restricts to H(1,1)) is given by Π1,1 =∫
A dx1

∫
Ādx2|x1, x2〉a a〈x1, x2|. First note its action on the ket |ψ〉

Π1,1|ψ〉 =
1√
2

∫
A
dx1

∫
Ā
dx2|x1, x2〉a a〈x1, x2|

∫
dy1 dy2 ψa(y1, y2)|y1y2〉a

=
1√
2

∫
A
dx1

∫
Ā
dx2|x1, x2〉a

∫
dy1 dy2 ψa(y1, y2)

× (δ(x1 − y1)δ(x2 − y2)− δ(x1 − y2)δ(x2 − y1))

=
√
2
∫
A
dx1

∫
Ā
dx2ψa(x1, x2)|x1, x2〉a

=
1√
2

(∫
A
dx1

∫
Ā
dx2 +

∫
Ā
dx1

∫
A
dx2

)
ψa(x1, x2)|x1, x2〉a

wherewe have used a〈x1, x2|y1y2〉a = δ(x1 − y1)δ(x2 − y2)− δ(x1 − y2)δ(x2 − y1). Therefore

ρ1,1 = 2
∫
A
dx1 dx′1

∫
Ā
dx2 dx′2 ψa(x1, x2)ψ∗

a(x
′
1, x

′
2)|x1, x2〉a a〈x′1, x′2|

Now tracing overHĀ

ρ̃1,1 = TrHĀ
(ρ1,1) = 2

∫
A
dx1 dx′1

∫
Ā
dx2 dx′2 ψa(x1, x2)ψ∗

a(x
′
1, x

′
2)

×
∫
Ā
dz〈z|

(
|x1, x2〉a a〈x′1, x′2|

)
|z〉

= 2
∫
A
dx1 dx

′
1

∫
Ā
dx2 dx

′
2 ψa(x1, x2)ψ

∗
a(x

′
1, x

′
2)|x1〉〈x′1|〈x2|x′2〉

= 2
∫
A
dx1 dx′1

∫
Ā
dx2 ψa(x1, x2)ψ∗

a(x
′
1, x2)|x1〉〈x′1| (104)

In (0, 2) sector,Π02 =
1
2

∫
Ā dx1

∫
Ā dx2|x1, x2〉a a〈x1, x2|. After doing the appropriate partial trace

over H(2, Ā) (see (97)), just gives a number

ρ̃0,2 = TrĀ(ρ0,2) =
1
2

∫
Ā
dx1 dx2 ψa(x1, x2)ψ

∗
a(x1, x2) (105)

As a specific example consider the Slater determinant state given by

|ψ〉 = 1√
2!

(
|u1, u2〉 − |u2, u1〉

)
=

1√
2!

2∑
i1,i2=1

εi1i2 |ui1ui2〉 (106)

where |ui〉 =
∫
dx ui(x)|x〉 are single particle wavefunctions. The wavefunction ψa(x1, x2)

= (u1(x1)u2(x2)− u2(x1)u1(x2))/
√
2. The corresponding density matrix is

ρ = |ψ〉〈ψ| = 1
2!

(
|u1, u2〉 − |u2, u1〉

) (
〈u1, u2| − 〈u2, u1|

)

=
1
2!

2∑
i1,i2, j1, j2=1

εi1i2ε j1 j2 |ui1ui2〉〈u j1u j2 | (107)
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For this particular state the equations (103)–(105)) become

ρ̃2,0 =
1
2!

(
|u1, u2〉AA − |u2, u1〉AA

) (
AA〈u1, u2| − AA〈u2, u1|

)
(108)

(109)

ρ̃0,2 =
1
2!

2∑
i1,i2, j1, j2=1

εi1i2ε j1 j2〈u j1u j2 |ui1ui2〉Ā = (1− p1)(1− p2)− |q12Ā|2 (110)

where |u, v〉AA = |u〉A|v〉A, |u〉A = PA|u〉 ≡
∫
A dx u(x)|x〉, and 〈u|v〉Ā ≡

∫
Ā dx u

∗(x)v(x). Fur-
ther we have written ρ̃1,1 and ρ̃0,2 in terms of p1 =

∫
A dx|u1(x)|2, p2 =

∫
A dx|u2(x)|2 and

q12Ā =
∫
Ā dx u

∗
1(x)u2(x).

Finally, following the general prescription (98), the EE in target space is given by

S = −Tr(ρ̃ log ρ̃) = −
[
Tr(ρ̃2,0 log ρ̃2,0)+ Tr(ρ̃1,1 log ρ̃1,1)+ Tr(ρ̃0,2 log ρ̃0,2)

]
Target space EE for general N.
Now we generalize this to a general N fermion state

|ψ〉 = 1√
N!

∫
dx1 . . . xN ψa(x1, . . . , xN)|x1 . . . xN〉a (111)

where we define

ψa(x1, . . . , xN) ≡
1√
N!

∑
σ∈SN

(−1)σψ(xσ(1), . . . , xσ(N)) (112)

|x1 . . . xN〉a ≡
1√
N!

∑
σ∈SN

(−1)σ|xσ(1) . . . xσ(N)〉 (113)

The corresponding density matrix is

ρ = |ψ〉〈ψ|

=
1
N!

∫
dx1 dx

′
1 . . . xNx

′
N ψa(x1, . . . , xN)ψ

∗
a(x

′
1, . . . , x

′
N)|x1 . . . xN〉a a〈x′1 . . . x′N |

=
1
N!

∫
dx1 dx′1 . . . xNx

′
Nρa(x1, . . . , xN; x

′
1, . . . , x

′
N)|x1 . . . xN〉a a〈x′1 . . . x′N | (114)

For N particle state we have N + 1 sectors namely (N, 0), (N − 1, 1), . . . , (0,N) where the
first entry is the number of particles in A and second entry in Ā. In the (k,N − k) sector, the
projection operator is given by

Πk,N−k =
1
N!

(
N
k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxN|x1, . . . , xN〉a a〈x1, . . . , xN| (115)
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First note its action on |ψ〉

Πk,N−k|ψ〉 =
1
N!

(
N
k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxN|x1, . . . , xN〉a

× 1√
N!

∫
dy1 . . . yN ψa(y1, . . . , yN) a〈x1, . . . , xN|y1, . . . , yN〉a

=
1√
N!

(
N
k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxN ψa(x1, . . . , xN)|x1, . . . , xN〉a

(116)

To go to the last line we have used

a〈x1, . . . , xN|y1, . . . , yN〉a =
∑
σ∈SN

(−1)σδ(x1 − yσ(1)) . . . δ(xN − yσ(N)) (117)

The density matrix restricted to this sector is

ρk,N−k = Πk,N−kρΠk,N−k =

∫
A
dx1 dx′1 . . . dxk dx

′
k

∫
Ā
dxk+1 dx′k+1 . . . dxN dx

′
N

× 1
N!

(
N
k

)2

ψa(x1, . . . , xN)ψa(x′1, . . . , x
′
N)

∗|x1, . . . , xN〉a a〈x′1, . . . , x′N|

Next we need to trace over the particles in Ā. This is easily done

ρ̃k,N−k = TrĀ(ρk,N−k) =
1

(N − k)!

∫
Ā
dzk+1 . . . dzN a〈zk+1 . . . zN |ρk,N−k|zk+1 . . . zN〉a

=
1
N!

(
N
k

)2∫
A
dx1 dx′1 . . . dxk dx

′
k

∫
Ā
dxk+1 dx′k+1 . . . dxN dx

′
N ψa(x1, . . . , xN)

× ψ∗
a(x

′
1, . . . , x

′
N)|x1, . . . , xk〉a a〈x′1 . . . , x′k| a〈xk+1, . . . , xN|yk+1 . . . , yN〉a

=
1
k!

(
N
k

)∫
A
dx1 dy1 . . . dxk dyk

∫
Ā
dxk+1 . . . dxN ψa(x1, . . . , xN)ψ∗

a(x
′
1, . . . , x

′
N)

× |x1, . . . , xk〉a a〈x′1 . . . , x′k| (118)

where we have used

1
(N − k)!

∫
Ā
dzk+1 . . . dzN a〈zk+1 . . . zN |xk+1, . . . , xN〉a a〈x′k+1, . . . , x

′
N|zk+1 . . . zN〉a

= |x1 . . . xk〉a a〈x1 . . . xk| a〈yk+1 . . . yN |xk+1, . . . , xN〉a (119)

More specifically consider the state given by a Slater determinant (of single-particle states
u1, u2, . . . , uN)

|ψ〉 = 1√
N!

∑
i′s

εi1...iN |ui1 . . . uiN 〉 (120)

with the wavefunction ψa(x1, . . . , xN) =
∑

i′s
1√
N!
εi1...iN ui1 (x1) . . . uiN (xN). Each of the i’s can

take values from 1 toN, i.e. in ∈ {1, 2, . . . ,N}. The RDM in the (k,N − k) sector (118) is given
by
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ρ̃k,N−k =

(
N
k

)
1
N!

∑
i′s, j′s

εi1...iNε j1... jN |ui1 . . . uik〉A A〈u j1 . . . u jk |
N∏

n=k+1

〈u jn |uin〉Ā (121)

This formula is very simple to understand. If we worked with the position space wavefunctions
〈x1 . . . xN |ψ〉 = ψa(x1, . . . , xN), the RDM is simply given by

ρ̃(x1, . . . , xk; x1′, . . . , x′k) =

(
N
k

)∫
Ā
dxk+1 . . . dxNψa(x1, . . . , xk, xk+1 . . . xN)

× ψ∗
a(x

′
1, . . . , x

′
k, xk+1 . . . xN) (122)

with the factor
(N
k

)
coming from the number of ways choosing the integration variables.

This is the origin of
(N
k

)
in (118) and (121) while the remaining numerical factor is just for

normalization.
The EE is by the general formula given above (98):

S = −Tr ρ̃ log ρ̃ = −
∑
k

Tr ρ̃k,N−k log ρ̃k,N−k (123)

Equivalence of 1st and 2nd quantized entanglement entropy for free theories.

A.1. 2nd quantized theory

The target space subregion A ⊂ R in the first quantized formalism, can be viewed as a spatial
subregion from the viewpoint of the second quantized formalism where the single particle
states |x〉 can be regarded as created from the zero particle state |0〉 by the second quantized
creation operator:

|x〉 = Ψ†(x)|0〉

The general Fock space state can be regarded as a linear combination of the antisymmetric
states

F � |x1, x2, . . . , xN〉a =
1√
N!

∑
σ∈S(N)

|xσ(1), . . . , xσ(N)〉 = Ψ†(x1) . . .Ψ
†(xN)|0〉

It is easy to see the tensor product decomposition

F = FA ∧ FĀ (124)

which allows one to define RDM’s in terms of the usual partial traces.
Note that since each Fock space is a sum of 0, 1, 2, . . . particle Hilbert spaces, we can write,

using the notations in (96):

FA = |0〉A ⊕HA ⊕H2
A ⊕ . . . , FĀ = |0〉Ā ⊕HĀ ⊕H2

Ā ⊕ . . .

The tensor product (124) thus gets written as a direct sum

F =
(
|0〉
)
⊕
(
HA ⊕HĀ

)
⊕
(
H2
A ⊕ (HA ∧HĀ)⊕H2

Ā

)
+ . . .

= H0 ⊕H1 ⊕H2 + . . . (125)
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Here |0〉A ≡ H0
A ≡ C is the zero-particle state in A, defined by Ψ(x)|0〉A = 0 for all x ∈ A

(similarly for Ā); we have, further used the identities:

|0〉A ⊗ |0〉Ā = |0〉, |0〉A ⊗Hp
Ā
= Hp

Ā
, Hp

Ā
⊗ |0〉Ā = Hp

Ā
,

Note that a wedge product with zero-particle states such as |0〉A becomes an ordinary tensor
product (it amounts to just scalar multiplication by a complex number, see below (96)).

Written in the form (125), we can clearly identify the terms in round brackets as the first
quantized Hilbert spaces Hn with a clear sum of products structure introduced in (86), (96).
We will find below that the RDM in the second quantized framework, sector by sector, is the
same as that in the first quantized framework.

Computation of RDM.
EE in field theories is well-studied in the literature and we follow the method of [30]. Using

the decomposition (124), the RDM ρA of a region A, is defined by

ρA = TrFAρ

where ρ is the density matrix corresponding to the state of the full system. This is, of course,
an operator inFA; however, as shown in [30], for theories with quadratic modular Hamiltonian
as in the case for free fermions, ρA can be expressed in terms of the exponential of a one-body
(particle-number preserving) operator ĤA, the so-called modular Hamiltonian:

ρA = K e−ĤA . (126)

whereK is a constant ensuring TrFAρA = 1. The modular Hamiltonian, projected onto the one-
particle Hilbert spaceHA, (let us call it Ĥ

(1)
A ) can be expressed in an orthonormal basis ofHA:

Ĥ(1)
A =

∑
l

εl|l〉〈l|

By definition, 〈l|l′〉 = δll′ and vl(x) ≡ 〈x|l〉 has support only in x ∈ A. Defining creation and
annihilation operators dl, d

†
l such that |l〉 = d†|0〉, clearly the Fock space operator will be given

by ĤA =
∑

lεld
†
l dl. Using this and (126), we get

ρA = K exp

[
−
∑
l

εld
†
l dl

]
=
∏
l

e−εld
†
l dl

(1+ e−εl )

Suppose we restrict to the N-particle sector of the full Folk space F ; by (125) this sector will
have contributions fromHk, k = 0, 1, . . . ,N. We find that to describe this situation it is enough
to keep only the first N number of λi’s non-zero (the corresponding εis finite) while all other
λi’s can be set equal to zero (the corresponding εi’s sent to infinity). Therefore one can write
the N-particle density matrix as

ρ(N)A =

N∏
l=1

e−εld
†
l dl

(1+ e−εl)
(127)

Two particles (N = 2).
First we explicitly work out the 2 particle case and then generalize to arbitrary N. The

density matrix for N = 2 is

ρ(2)A =
e−ε1d

†
1d1

1+ e−ε1

e−ε2d
†
2d2

1+ e−ε2
(128)
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Without loss of generality, consider the following two particle state in the full space

|s〉 = b†2b
†
1|0〉

where b, b†’s are ‘global’ fermionic annihilation/creation operators satisfying the standard
algebra {bi, b†j} = δi j. The one-particle states |i〉 = b†i |0〉 are global states, i.e. ui(x) ≡ 〈x|i〉
have support in x ∈ R = A ∪ Ā.

The second quantized field Ψ(x) has mode expansions of the form

Ψ(x) =
∑
i

ui(x)bi, x ∈ R, ui(x) = 〈x|b†i |0〉,
∫
R
dxu∗i (x)u j(x) = δi j

Ψ(x) =
∑
l

vl(x)dl, x ∈ A, vl(x) = 〈x|d†l |0〉,
∫
A
dxv∗l (x)vm(x) = δlm (129)

The corresponding formulae forΨ†(x) are given by taking Hermitian conjugation of the above
equations. If ρ(2)A is indeed the correct density matrix for the region of interest, the following
equations should be true (as long as all the operator insertions are within region A)

Tr
(
ρ(2)A Ψ†(x1)Ψ

†(x2)Ψ(x′1)Ψ(x′2)
)
= 〈s|Ψ†(x1)Ψ

†(x2)Ψ(x′1)Ψ(x′2)|s〉

Tr
(
ρ(2)A Ψ†(x1)Ψ(x′1)

)
= 〈s|Ψ†(x1)Ψ(x′1)|s〉

Tr
(
ρ(2)A

)
= 〈s|s〉 (130)

Using the mode expansions (129), the equation (130) lead to (respectively)

λ1λ2

∣∣∣∣v1(x1) v2(x1)
v1(x2) v2(x2)

∣∣∣∣
∗ ∣∣∣∣v1(x′1) v2(x

′
1)

v1(x′2) v2(x′2)

∣∣∣∣ =
∣∣∣∣u1(x1) u2(x1)
u1(x2) u2(x2)

∣∣∣∣
∗ ∣∣∣∣u1(x′1) u2(x

′
1)

u1(x′2) u2(x′2)

∣∣∣∣
λ1v1(x1)∗v1(x′1)+ λ2v2(x1)∗v2(x′1) = u1(x1)∗u1(x′1)+ u2(x1)∗u2(x′1)

Tr
(
ρ(2)A

)
= 1 (131)

where λi = e−εi/(1+ e−εi ). The last equation above just says that our density matrix should be
properly normalized. The remaining two can be written more compactly as operator equations
and through the use of generalized Kronecker delta functions as

2∑
i′s, j′s=1

λi1λi2δ
j1 j2
i1i2

|vi1〉|vi2〉〈v j1 |〈v j2 | =
2∑

i′s, j′s=1

δ j1 j2i1i2
|ui1〉A|ui2〉A A〈u j1 |A〈u j2 |

2∑
i1, j1=1

λi1δ
j1
i1
|vi1〉〈v j1 | =

2∑
i1, j1=1

δ j1i1 |ui2〉A A〈v j1 | (132)

where |ui〉A =
∫
A dx ui(x)|x〉. This follows since the the relation (131) is true for all xi, x′j ∈ A,

we can multiply by position kets and integrate over region A. The generalized Kronecker delta
function δ j1... jni1...in

is defined to be+1 (−1) when i1 . . . in’s are distinct and even (odd) permutation
of j1 . . . jn’s, otherwise it is 0.

From the structure of (128), it is clear that ρ(2)A has non-zero matrix elements only in the
four-dimensional Hilbert space spanned by
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(a) d†2d
†
1|0〉,

(b) d†1|0〉, d
†
2|0〉 and

(c) |0〉,
representing, respectively, a two-particle state, two one-particle states and the zero-particle
state inHA. It is easy to see that these states provide an eigenbasis of (128) with eigenvalues

(a) λ1λ2,
(b) λ1(1− λ2),λ2(1− λ2), and
(c) (1− λ1)(1− λ2),

respectively.
Using these facts, we can write the density matrix restricted to the two-particle subsector

(a), as follows

ρ(2)A,2 = λ1λ2d
†
2d

†
1|0〉〈0|d1d2 = λ1λ2

1√
2!
(|v1v2〉 − |v2v1〉)

1√
2!
(〈v1v2| − 〈v2v1|)

Using the first identity in (131) one can write

ρ(2)A,2 =
1√
2!
(|u1u2〉A − |u2u1〉A)

1√
2!
(A〈u1u2| − A〈u2u1|)

The subscript A is there to remind that this operator has support only in region A. Notice that
this precisely matches the first quantized density matrix ρ̃2,0 (108).

Using the eigenvalues mentioned above, the density matrix, restricted to the one-particle
subsector (b), can be written as a diagonal matrix in the following basis

Through successive use of the identities (131) we can write

ρ(2)A,1 = λ1(1− λ2)|v1〉〈v1|+ λ2(1− λ1)|v2〉〈v2|

= −λ1λ2
(
|v1〉〈v1|+ |v2〉〈v2|

)
+
(
λ1|v1〉〈v1|+ λ2|v2〉〈v2|

)
= −λ1λ2

(
|v1〉〈v1|〈v2|v2〉+ |v2〉〈v2|〈v1|v1〉 − |v1〉〈v2|〈v1|v2〉 − |v2〉〈v1|〈v2|v1〉

)
+
(
|u1〉A A〈u1|+ |u2〉A A〈u2|

)
= −

(
|u1〉A A〈u1|A〈u2|u2〉A+ |u2〉A A〈v2|A〈u1|u1〉A − |u1〉A A〈u2|A〈u1|u2〉A

− |u2〉A A〈u1|A〈u2|u1〉A
)
+
(
|u1〉A A〈u1|+ |u2〉A A〈u2|

)
(133)

where in going from 2nd to 3rd line we have used the 2nd equation in (131) for the second
term. In the 3rd line, we have also introduced inner products of v’s (which are orthonormal)
so that we could use the 1st equation in (131) leading to the final expression. This matches
precisely with the 1st quantized density matrix ρ̃1,1 (109).

The density matrix ρ(2)A , restricted to the zero-particle subsector (c) (let us call it ρ(2)A,0) is
proportional to |0〉〈0|, and agrees with the corresponding first quantized quantity ρ̃0,2 (this can
be directly verified from the two-particle identities (131)).
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Thus we see that in our 2 particle example, the density matrices ρ(2)A,2, ρ
(2)
A,1, ρ

(2)
A,0 match with

ρ̃2,0, ρ̃1,1, ρ̃0,2 (respectively) in the first quantized language.
Arbitrary N.
Now we move to arbitrary N. Similar to the 2 particle example we employ the use of

following identities (for 0 � n � N)

Tr(ρ(N)A Ψ†(x1) . . .Ψ
†(xn)Ψ(x′1) . . .Ψ(x′n)) = 〈s|Ψ†(x1) . . .Ψ

†(xn)Ψ(x′1) . . .Ψ(x′n)|s〉 (134)

which is true as long as all the insertions x1, . . . , x′n lie in region A. The state |s〉 = b†1 . . . b
†
N |0〉

is a global N-particle state in the full space. Using the appropriate mode expansion for Ψ(x)
and after a bit of algebra, these identities can be written as∑

i′s, j′s

δ j1... jni1...in
λi1 . . . λinv

∗
j1
(x1) . . . v∗jn (xn)vi1 (x

′
1) . . . vin(x

′
n)

=
∑
i′s, j′s

δ j1... jni1...in
u∗j1 (x1) . . . u

∗
jn(xn)ui1(x

′
1) . . . uin(x

′
n) (135)

where

λi =
e−εi

1+ e−εi

We can also write the identities as an operator equation∑
i′s, j′s

δ j1... jni1...in
λi1 . . . λin |vi1 . . . vin〉〈v j1 . . . v jn | =

∑
i′s, j′s

δ j1... jni1...in
|ui1 . . . uin〉A A〈u j1 . . . u jn | (136)

Further when there only k particles in regionA (out ofN), one can easily write the ρ(N)k in region
A as

(N
k

)
×
(N
k

)
diagonal matrix in the following basis

(137)

For example consider N = 3 and k = 2

(138)

which is a
( 3
2

)
×
( 3
2

)
matrix. We can write ρ(N)k in a more compact notation

ρ(N)A,k =
1
k!

∑
i′s, j′s

δ
j1... jk
i1...ik

|vi1 . . . vik 〉〈v j1 . . . v jk |λi1 . . . λik
N∏

m=1,m
=i1,...,m
=ik

(1− λm) (139)
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We can rewrite the generalized Kronecker delta function in terms of the Levi-Civita symbols
using the following identity

∑
i′s, j′s

εi1...iNε j1... jN δ jk+1ik+1 . . . δ jN iN = (N − k)! δ j1... jki1...ik
(140)

Making use of this we write

ρ(N)A,k =
1

k!(N − k)!

∑
i′s, j′s

εi1...iNε j1... jN |vi1 . . . vik 〉〈v j1 . . . v jk | λi1 . . . λik

× δ jk+1ik+1 . . . δ jN iN

N∏
m=1,m
=i1,...,m
=ik

(1− λm)

=
1

k!(N − k)!

∑
i′s, j′s

εi1...iNε j1... jN |vi1 . . . vik 〉〈v j1 . . . v jk | λi1 . . . λik

× (1− λik+1 ) . . . (1− λiN )δ jk+1ik+1 . . . δ jN iN

=
1

k!(N − k)!

∑
i′s, j′s

εi1...iNε j1... jN |vi1 . . . vik 〉〈v j1 . . . v jk | δ jk+1ik+1 . . . δ jN iN

×
{

N−k∑
l=0

(−1)l
(
N − k
l

)
λi1 . . . λik+l

}
(141)

where in the last line we have opened the product over (1− λ)’s and organized the sum in
powers of λi’s. In a particular l term in the sum, since the vi’s are orthonormal in region A,
we can replace δ jk+1ik+1 . . . δ jk+1ik+1 by 〈v jk+1 |vik+1〉A . . . 〈v jk+l |vik+l〉A but leave the remaining
δ jk+l+1ik+l+1 . . . δ jN iN as it is. After this we use (140) again with the remaining delta functions

to go back to the generalized Kronecker delta δ
j1... jk+l
i1...ik+l

, this leads to

ρ(N)A,k =
1
k!

N−k∑
l=0

(−1)l

l!

∑
i′s, j′s

δ
j1... jk+l
i1...ik+l

|vi1 . . . vik 〉〈v j1 . . . v jk |λi1 . . . λik+l

× 〈v jk+1 |vik+1〉A . . . 〈v jk+l |vik+l〉A

=
1
k!

N−k∑
l=0

(−1)l

l!

⎡
⎣∑
i′s, j′s

δ
j1... jk+l
i1...ik+l

|ui1 . . . uik〉A A〈u j1 . . . u jk |

× 〈u jk+1 |uik+1〉A . . . 〈u jk+l |uik+l〉A

⎤
⎦ (142)

In the last step we used the identities (136).

A.2. Comparison with the first quantized theory

We will now show that the density matrix within any given sector (121) agrees with its
counterpart (142).
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To begin, notice that the density matrix within a sector (121) has inner products in region Ā.
We would like to write it in terms of region A since that is what naturally appears in the second
quantized theory. Using the orthonormality of un(x)’s

〈u jn |uin〉Ā = δ jnin − 〈u jn |uin〉A

We plug this in (121)

ρ̃k,N−k =

(N
k

)
N!

∑
i′s, j′s

εui1 ...uiN εu j1 ...u jN |ui1 . . . uik〉A A〈u j1 . . . u jk |
N∏

n=k+1

〈u jn |uin〉Ā

=

(N
k

)
N!

∑
i′s, j′s

εi1...iNε j1... jN |ui1 . . . uik〉A A〈u j1 . . . u jk |
N∏

n=k+1

(
δ jnin − 〈u jn |uin〉A

)

=

(N
k

)
N!

∑
i′s, j′s

εi1...iNε j1... jN |ui1 . . . uik〉A A〈u j1 . . . u jk |

×
[

N∏
n=k+1

δ jnin − (N − 1)〈u jk+1 |uik+1〉A
N∏

n=k+2

δ jnin + · · ·+ (−1)l
(
N − k
l

)

× 〈u jk+1 |uik+1〉A〈u jk+2 |uik+2〉A . . . 〈u jk+l |uik+l〉A

×
N∏

n=k+l+1

δ jnin + · · ·+ (−1)N−k〈u jk+1 |uik+1〉A . . . 〈u jN |uiN 〉A

]

=

(N
k

)
N!

∑
i′s, j′s

εi1...iNε j1... jN |ui1 . . . uik〉A A〈u j1 . . . u jk |×

N−k∑
l=0

(−1)l
(
N − k
l

)
〈u jk+1 |uik+1〉A . . . 〈u jk+l |uik+l〉Aδ jk+l+1ik+l+1 . . . δ jN iN

In the end we get

ρ̃k,N−k =
1
k!

N−k∑
l=0

(−1)l

l!

∑
i′s, j′s

δ
j1... jk+l
i1...ik+l

|ui1 . . . uik〉A A〈u j1 . . . u jk |

× 〈u jk+1 |uik+1〉A . . . 〈u jk+l |uik+l〉A (143)

where we have again used (140). The final expression is exactly same as (142). This completes
the proof ρ̃k,N−k = ρ(N)A,k .

Appendix B. Multiple matrices

Let us consider the matrix model described by (38). The model is supersymmetric and has
bosonic and fermionic matrix variables: XIi j,χi j. We will first ignore the fermions in the follow-
ing discussions (i.e. consider the bosonic model) and briefly discuss them later in the section.
In the At = 0 gauge, the theory has a residual symmetry under the time-independent SU(N )
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transformation. This is ensured by the Gauss law condition∑
I

[XI,PI]Ψ[X] = 0, (144)

on the wavefunctions. Equation (144) is equivalent to the singlet condition12

Ψ[XI] = Ψ[UXIU†]. (145)

As a consequence of the SU(N ) invariance, we can make one of the matrices, say X1, diagonal:

X1 = D = diag[λ1, . . . ,λN].

To do this, we write X1 in the form X1 = VDV†, and make a change of variables X1 → (V ,D),
XI → X̃I = V†XIV , I = 2, . . . , 9. The SU(N ) amounts to demanding that the wavefunctions are
independent of V . The Jacobian of this change of variables is the square of the Vandermonde
determinant

Δ(λ) =
∏

1�i< j�N

(λi − λ j).

In other words, ∏
I=1,...,9

[dXI] = Δ2(λ)
∏

i=1,...,N

dλi
∏

I=2,...9

[dX̃I][dV] (146)

The scalar product between two wavefunctions are given by∫ ∏
I=1,...,9

[dXI] Ψ∗[XI]Φ[XI]

= Vol (SU(N))
∫ ∏

i=1,...,N

dλi Δ
2(λ)

∏
I=2,...9

[dX̃I] Ψ∗[D, X̃I]Φ[D, X̃I]

=

∫
[dμ]Ψ̃∗[D,XI] Φ̃[D,XI]

[dμ] =
∏

i=1,...,N

dλi
∏

I=2,...9

[dXI] (147)

where

Ψ̃[D,XI] = CΔ(λ)Ψ[D,XI], I = 2, . . . , 9. (148)

The constant C =
√
Vol (SU(N)). In the first step, we have used the measure (146) and the

singlet condition (145) on thewavefunctions, so that the SU(N ) transformationmatrixV simply
comes out of the integral, yielding a volume factor. In the second step we have absorbed the
Vandermonde determinant in each wavefunction, to have a simpler flat measure [dμ].
Residual symmetry: Weyl transformation.
Even after fixing X1 diagonal, there is a residual transformation, represented by the Weyl

group S(N ) ⊂ SU(N ), which permutes the eigenvalues

(λ1,λ2, . . . ,λN) �→ (λσ(1),λσ(2), . . . ,λσ(N)), σ ∈ S(N). (149)

12 A similar condition also applies to the fermions χi j.
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Under the transformation σ, we also have

XI �→ σ(XI), σ
(
XIi j
)
= XIσ(i)σ( j), I = 2, . . . , 9. (150)

For a simple example, for N = 2, we have

X1 =

(
λ1 0
0 λ2

)
, X2 =

(
x211 x212
x221 x222

)
, . . .

The . . . represent X3 onwards which have a similar expression. The Weyl group is S(2) which
is generated by the single SU(2) transformation matrix

S =

(
0 i
i 0

)
.

which represents the permutation σ : (1, 2) �→ (2, 1). It is easy to compute σ(XI) := SXIS† for
all I = 1, . . . , 9. We find

σ(X1) = σ

[(
λ1 0
0 λ2

)]
=

(
λ2 0
0 λ1

)
,

σ(X2) = σ

[(
x211 x212
x221 x222

)]
=

(
x222 x221
x212 x211

)
, . . . (151)

which confirms (149) and (150).
We must ensure that the wavefunctions are also invariant under these residual (Weyl) trans-

formations, as required by (145). In the N = 2 case, this condition, in the diagonal X1 gauge,
becomes

Ψ[λ1,λ2; x211, x
2
12, x

2
21, x

2
22; . . .] = Ψ[λ2,λ1; x222, x

2
21, x

2
12, x

2
11; . . .]

In the (148) basis, we will have

Ψ̃[λ1,λ2; x
2
11, x

2
12, x

2
21, x

2
22; . . .] = −Ψ̃[λ2,λ1; x

2
22, x

2
21, x

2
12, x

2
11; . . .] (152)

where the− sign appears because of theVandermondedeterminantΔ = (λ1 − λ2) which picks
up a minus sign under the permutation (1, 2) �→ (2, 1).

For more general N, the above equation (152) becomes, for all σ ∈ S(N )

Ψ̃[λi; x2i j, x
3
i j, . . . , x

9
i j] = sign(σ)Ψ̃[λσ(i); x2σ(i)σ( j), x

3
σ(i)σ( j), . . . , x

9
σ(i)σ( j)] (153)

For the case of the single matrix, the above equation simply becomes the statement that the
wavefunction ψ̃ represents N fermions. This was the case discussed in appendix A.

B.1. Target space EE for multiple matrices

We will now discuss how to define target space EE for the model of D0 branes (38). The
variables of the theory are the matrices {XIi j}/S(N) where the quotient represent dividing by
the Weyl transformations. In the diagonal X1 gauge, the wavefunctions, satisfying (153), can
be written as
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Ψ̃ = Ψ̃0(λ1, . . . ,λN ;X2
11,X

2
12, . . . ,X

2
NN; . . .)+Weyltransforms

= Ψ̃0(λ1, . . . ,λN ;X2
11,X

2
12, . . . ,X

2
NN; . . .)

+
∑
σ

sign(σ)Ψ̃0[λσ(i); x
2
σ(i)σ( j), x

3
σ(i)σ( j), . . . , x

9
σ(i)σ( j)] (154)

where the sum over σ denotes all permutations of S(N ) (besides the identity). These are the
equation (44) in section 3. It is easy to see that the operators in the Hilbert space of such
wavefunctions are given by (46).

Let us imagine that we are interested in the target space region A : x1 � d.13 What is the
target space entanglement entropy corresponding to such a region? In particular, how do we
generalize the concepts of appendix A to a theory of matrices?
Classical moduli space.
Note that there is no easy way to associate configurations of N × N matrices to regions

of target space. A priori the simple SU(N )-invariant objects are traces of these matrices and
their products. In the diagonal X1 gauge, the eigenvalues λi, are also invariant objects, upto
permutation, which can be mapped to points on the x1 axis. How does one construct a d-
dimensional region A defined by the codimension one hypersurface x1 > d?

To get an idea, let us turn to the classical moduli space of the D0 brane matrix model (38),
which corresponds to solutions of the equation [XI ,XJ] = 0. By analogy with higher dimen-
sional gauge theories, we will call this moduli space the ‘Coulomb branch’. In the diagonal
gauge for X1 = diag[λ1,λ2, . . . ,λN], this implies XI = diag[XI11,X

I
22, . . . ,X

I
NN] I = 2, . . . , 9].

The solutions xi = (λi,XIii) represent the coordinates of the N D0 branes, i = 1, 2, . . . ,N.
Because of the Weyl invariance, the classical moduli space of D0 branes is

M =
RD

S(N)
, D = 9 (155)

which is the same as that ofN indistinguishable particles inRD. Thus one can define a ‘classical
sector’ of configurationswhere k out of theN identical particles are in theD-dimensional region
A ⊂ RD (and the remaining N − k in Ā) (see figure 1). How does one proceed to the quantum
theory?14

Note that a quantization of the classical configuration space (155) was presented in appendix
A which discussed the case of N fermions in d-dimensions (see in particular (86), (87)).
Following along the same lines, we could try defining different sectors of the Hilbert space
of wavefunctions (154) by projecting onto mutually exclusive subspaces in which k number
of xi’s in the region A (the remaining N − k being in Ā), k = 0, 1, . . . ,N, yielding a similar
decomposition as in (86):

H = ⊕N
k=0Hk,N−k (156)

In the above, we have defined xi = (λi,XIii). As explained in figure 1, these variables define
quantum fluctuations of the coordinates (which are equivalently described in terms of open
strings).

13 Note that we are using the same notation d as in the supergravity calculations. As indicated in the text (see discussions
in section 3, a couple of paragraphs below (46)) in general these two quantities need not be identical; however, the
difference between the two can be neglected when d is sufficiently large in an appropriate sense.
14 Note that ordinarily in a 0 + 1 dimensional theory, the classical moduli space is not expected to survive under
quantization since there is no spontaneous symmetry breaking. However the situation with D0 branes is somewhat
subtle, especially because of supersymmetry; for an early discussion, see [31] and references therein.
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This is not yet a full specification of the quantum theory since we have not said what to do
with the extra, off-diagonal, variables XIi j, which were not present in the N-particle problem.
As explained in figure 1 these represent open strings connecting different branes. Out of these,
there are open strings which connect the k D0 branes which are all in region A (these are
not present in the figure since k = 1 there). We should definitely include them among our
observables (i.e. include them in our operator algebra); similarly the open stringswhich connect
different the N − k D0 branes should be excluded from the operator algebra. The issue is what
to do with open strings that straddle between region A and Ā. Depending on the choice we
make, we arrive at two proposals (see figure 1):
Proposal 1: we exclude the variables XIi j straddling between region A and Ā from the operator

algebra. This leads to (56) of section 3.
Proposal 2: we take the variables XIi j straddling between region A and Ā as part of the operator

algebra. This leads to (57) of section 3.
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