A Transformation-based Method for Auditing the IS-A Hierarchy of Biomedical Terminologies in the Unified Medical Language System (UMLS)

Fengbo Zheng¹, Jay Shi², Yuntao Yang³, W. Jim Zheng³, Licong Cui^{3*}

¹Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

²Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA

³School of Biomedical Informatics, University of Texas Health Science Center at Houston,

Houston, TX 77030, USA

Key words: Unified Medical Language System, biomedical terminologies, SNOMED CT, Gene

Ontology, quality assurance

Word Count: 3,984

*Corresponding author: Licong Cui, 7000 Fannin Street, Suite 600, Houston, TX 77030, USA.

Email: licong.cui@uth.tmc.edu. Telephone: 713-500-3791, Fax: 713-500-3929.

ABSTRACT

Objective: The Unified Medical Language System (UMLS) integrates various source terminologies to support interoperability between biomedical information systems. In this paper, we introduce a novel transformation-based auditing method that leverages the UMLS knowledge to systematically identify missing hierarchical IS-A relations in the source terminologies.

Material and Methods: Given a concept name in the UMLS, we first identify its base and secondary noun chunks. For each identified noun chunk, we generate replacement candidates that are more general than the noun chunk. Then we replace the noun chunks with their replacement candidates to generate new potential concept names which may serve as supertypes of the original concept. If a newly generated name is an existing concept name in the same source terminology with the original concept, then a potentially missing IS-A relation between the original and the new concept is identified.

Results: Applying our transformation-based method to English-language concept names in the UMLS (2019AB release), a total of 39,359 potentially missing IS-A relations were detected in 13 source terminologies. Domain experts evaluated a random sample of 200 potentially missing IS-A relations identified in the SNOMED CT (US edition), and 100 in the Gene Ontology. 173 out of 200 and 63 out of 100 potentially missing IS-A relations were confirmed by domain experts, indicating our method achieved a precision of 86.5% and 63% for the SNOMED CT and Gene Ontology, respectively.

Conclusions: Our results showed that our transformation-based method is effective in identifying missing IS-A relations in the UMLS source terminologies.

OBJECTIVES

The Unified Medical Language System (UMLS) integrates over 15 million concept names from more than 200 source terminologies, including SNOMED CT and Gene Ontology, to enable interoperability between biomedical information systems.[1-5] As the information about concepts and relations between concepts in source terminologies is preserved in the UMLS Metathesaurus, the quality issues existent in source terminologies (e.g., missing relations between concepts) affect the qualities of the UMLS and UMLS-based information systems. In this paper, we introduce a novel transformation-based auditing method that leverages the knowledge in the UMLS to systematically identify missing hierarchical IS-A relations in the source terminologies. Quality improvement of the source terminologies will in turn enhance the qualities of the UMLS knowledge sources.

BACKGROUND AND SIGNIFICANCE

UMLS

The UMLS, developed by the US National Library of Medicine, integrates various health and biomedical vocabularies and standards to enable interoperability between different applications and systems. It has been used in supporting a wide range of applications in biomedicine including information retrieval, natural language processing (NLP), deep learning, phenotyping, and clinical decision support.[6-18]

The UMLS consists of three knowledge sources: the Metathesaurus that contains concepts from many terminologies, the Semantic Network that contains semantic types and their relationships, and the SPECIALIST Lexicon and Lexical Tools to facilitate NLP.[1-5]

The UMLS Metathesaurus is organized by concept or meaning. Since a concept can have many different names, the UMLS Metathesaurus links all the names from different source terminologies that have the same meaning. Every occurrence of a concept name (or string) in each source terminology is the basic building block or "atom" of the UMLS Metathesaurus and assigned a unique atom identifier (AUI). Atoms with the same meaning are mapped to a concept assigned a concept unique identifier (CUI). For example, consider a concept in the SNOMED CT with ID 282766005 and preferred name "Lower back injury." It also has a synonym "Lumbar region injury." [19] In the UMLS Metathesaurus, the AUI for its preferred name is A3255024 and the AUI for its synonym is A3288211. These two atoms are both mapped to the same UMLS concept with CUI C0560632, which has a total of 14 atoms mapped from different source terminologies. The UMLS preserves the relations between concepts from its source terminologies. For instance, the IS-A relation between the atom "Superficial injury of lower back" with AUI A28900983 and the atom "Lower back injury" with AUI A3255024 comes from SNOMED CT.

In addition, each UMLS concept (CUI) is assigned at least one semantic type in order to provide a consistent categorization of all concepts. For example, the concept "Lower back injury" (CUI: C0560632) is assigned a semantic type "Injury or Poisoning." There are 127 semantic types in the UMLS such as "Disease or Syndrome," and "Therapeutic or Preventive Procedure."

Related work on auditing UMLS

Given its wide use, quality defects of the UMLS will impact the qualities of all the downstream applications based on the UMLS. For instance, missing IS-A relations reduce the recall of UMLS-based information retrieval systems with valid results being missed from the query results.[20] For example, suppose there is a need to identify a cohort of patients with "Arthritis of

left subtalar joint" from a UMLS-based electronic health record system. However, "Osteoarthritis of left subtalar joint" is currently not listed as its subtype in any of the UMLS source terminologies (i.e., a missing IS-A relation). Consequently, all the patients with "Osteoarthritis of left subtalar joint" would be missing from the cohort query result. Quality assurance or auditing of the UMLS and its sources has been an active research area. Cimino utilized the semantic information to detect ambiguous concepts, redundant concept pairs, inconsistent parent-child relationships, and missing relations between semantic types in the UMLS.[21] Bodenreider investigated the problem of circular hierarchical relationships between concepts in the UMLS, identified potential causes and their corresponding treatments, and suggested prevention measures.[22] Chen et al. presented a structural method to group concepts with the same semantic type and partition the concepts into subgroups for the auditors to review and identify missing hierarchical relationships in the UMLS.[23] He et al. leveraged the mappings among different terminologies in the UMLS and developed a topological-patternbased method to enrich concepts in the SNOMED CT and NCI Thesaurus. [24, 25] Cui leveraged the UMLS mappings to identify inconsistent relationships between concepts across different terminologies.[26] Abeysinghe et al. leveraged the UMLS knowledge to identify supporting evidence for potential subtype inconsistencies detected in the Gene Ontology, NCI Thesaurus and SNOMED CT.[27] All these showed that the UMLS provides a promising environment for enhancing the qualities of its source terminologies.

Specific contribution

In this paper, we leverage the UMLS knowledge to develop a novel, transformation-based method to automatically identify missing IS-A relations in the UMLS source terminologies. Our method takes full advantage of the rich knowledge provided by the UMLS for auditing and

improving the qualities of its source terminologies, which in turn enhances the quality of the UMLS. Unlike the traditional terminology auditing methods that often rely on the knowledge within the terminology itself (i.e., internal knowledge), our method leverages not only the terminology itself but also the knowledge from other multiple terminologies in the UMLS (i.e., both internal and external knowledge). This will result in newly identified missing IS-A relations that would not be uncovered by only looking into one or two individual terminologies. In addition, unlike previous related work on auditing the UMLS that mainly focused on auditing high level views (e.g., semantic types, concepts/CUIs, relations between concepts), this work intends to audit the UMLS source terminologies in the atom level.

MATERIALS AND METHODS

atoms) in the UMLS contain more than one noun chunk. The key idea of our transformation-based auditing method is to replace those noun chunks in a concept name with more general concept names. If a newly generated name after the replacement is an existing concept name in the same source terminology, then we consider there is a potentially missing IS-A relation between the two concepts corresponding to the original and new concept names.

Our method consists of four main steps to identify potentially missing IS-A relations for each concept name in the UMLS: (1) parse the concept name and identify noun chunks; (2) generate replacement candidates for noun chunks; (3) perform concept name transformation and construct new potential concept names; and (4) map newly constructed concept names to atoms and identify potentially missing IS-A relations in the source terminologies.

This work is based on the UMLS 2019AB release. A large proportion of concept names (or

Parsing concept names

We first convert each concept name to lower case. We then use spaCy ,[28] an open-source library for advanced NLP, to perform dependency parsing and identify noun chunks within concept names. For example, Figure 1 shows the dependency graph of the concept name "Primary basal cell carcinoma of left eyelid" where two base noun chunks can be identified: "primary basal cell carcinoma" and "left eyelid." Here a base noun chunk consists of a head (e.g., "carcinoma") plus words describing the head (e.g., "primary basal cell").[29] Note that "basal cell" is not a base noun chunk since it is used to modify or describe "carcinoma." Instead, we consider such noun phrases describing the head as secondary noun chunks.

After the parsing, each concept name C can be represented as an ordered array of elements $[c_I, c_I]$

After the parsing, each concept name C can be represented as an ordered array of elements $[c_1, c_2, ..., c_n]$, where c_i can be a single word, a base noun chunk, or a secondary noun chunk. For instance, the concept name "*Primary basal cell carcinoma of left eyelid*" can be represented in two forms: (1) [primary basal cell carcinoma, of, left eyelid]; and (2) [primary, basal cell, carcinoma, of, left eyelid].

Identifying replacement candidates

In this step, we identify replacement candidates that are more general than the noun chunks (base and secondary) in each concept name. If a noun chunk can be mapped to a UMLS atom (i.e., the noun chunk is also a concept name in an existing source terminology), then we consider the concept names of this atom's ancestors in its source terminology as replacement candidates for the noun chunk; otherwise, the noun chunk is considered as not having any replacement candidates. In other words, we leverage existing IS-A relations in the UMLS source terminologies to identify replacement candidates. To avoid replacement candidates being too general, we leveraged ancestors of the atom within a distance of two levels using Depth-limited-search.[30]

Take the concept name "Acute dacryoadenitis of left eye" in Table 1 as an example, it can be represented as an array [acute dacryoadenitis, of, left eye]. The noun chunk "acute dacryoadenitis" can be mapped to 9 atoms. For example, A2889158 is an atom sourced from the SNOMED CT (US edition) with seven level-2 ancestors. After going through all the 9 atoms, the following replacement candidates for "acute dacryoadenitis" can be obtained: "disorder of lacrimal gland," "disorder of eyelid or lacrimal system," "dacryoadenitis," "inflammation of specific body systems," "acute inflammatory disease," "inflammatory disorder of head," "acute disease," and "inflammatory disorder."

Table 1. An example of the transformation process for "Acute dacryoadenitis of left eye"

Concept name	Acute dacryoadenitis of left eye		
Representation ($[c_1, c_2, c_3]$)	[acute dacryoadenitis, of, left eye]		
Replacement candidates for	{dacryoadenitis, inflammation of specific body systems, acute disease,		
"acute dacryoadenitis" (r1)	acute inflammatory disease, inflammatory disorder, inflammatory disorder		
	of head, disorder of eyelid or lacrimal system, disorder of lacrimal gland}		
Replacement candidates for	{organ of special sense, eye, subdivision of face}		
"left eye" (r ₃)			
Combinatorial replacements	[{acute dacryoadenitis, dacryoadenitis, inflammation of specific body		
	systems, acute disease, acute inflammatory disease, inflammatory		
	disorder, inflammatory disorder of head, disorder of eyelid or lacrimal		
	system, disorder of lacrimal gland}, of, {left eye, organ of special sense,		
	eye, subdivision of face}]		
Potentially missing IS-A	SNOMEDCT_US:		
relations detected in source	"acute dacryoadenitis of left eye" IS-A "acute disease of eye"		
terminologies	MEDCIN:		

Concept name transformation

For each concept name with noun chunk(s) such that the replacement candidates have been identified already, we replace the original noun chunk(s) with their corresponding candidates to generate new potential concept names, which may serve as supertypes of the original concept name (since the replacement candidates are more general than the original noun chunk). Formally, given a concept name C represented by $[c_1, c_2, ..., c_n]$ where there exists an i such that c_i is a base or secondary noun chunk and r_i is a set of replacement candidates for c_i , then we replace c_i with any candidate in r_i and concatenate the array as a string to construct new concept names that may serve as C's supertypes. If there are multiple such i's, we will perform combinatorial replacements for multiple i's.

Take the concept name "Acute dacryoadenitis of left eye" in Table 1 as an example. There are three elements in its array representation $[c_1, c_2, c_3]$ where c_1 and c_3 are base noun chunks. There are 8 replacement candidates for c_1 and 3 for c_3 . A total of 35 new potential concept names can be obtained after the combinatory replacements for c_1 and c_3 , including "acute disease of eye" and "acute inflammatory disease of left eye." Note that the total number 35 can be obtained by multiplying 9 (8 new noun chunks and 1 original noun chunk for c_1) by 4 (3 new noun chunks and 1 original noun chunk for c_3), and subtracting 1 (the original concept name) from it.

Identify missing IS-A relations in source terminologies

In this step, we check if the newly generated concept names exist in the UMLS (i.e., exactly match the names of UMLS atoms) to identify potentially missing IS-A relations between atoms

in source terminologies. Given a concept name C (mapped to an atom AUI_C) and a potential concept name S serving as its supertype, if the following conditions hold:

- 1) S can be mapped to a UMLS atom AUI_S ;
- 2) AUI_S comes from the same source terminology T as AUI_C ;
- 3) currently there is no IS-A relation (either direct or indirect) between AUI_S and AUI_C claimed in T; and
- 4) AUI_C has the same semantic type as AUI_S , or the set of semantic types of AUI_C contains that of AUI_S as a subset,

then we consider there is a potentially missing IS-A relation between AUI_C and AUI_S (i.e., AUI_C IS-A AUI_S) in the terminology T. Note that missing IS-A relations between atoms from different source terminologies are beyond the scope of this work. The semantic type requirement of C and S is to avoid ambiguities caused by concept names which may have multiple meanings. For example, the concept name "cold" could refer to lower temperature (with a semantic type " $Natural\ Phenomenon\ or\ Process$ ") or a kind of disease (with a semantic type " $Disease\ or\ Syndrome$ ").

For "acute dacryoadenitis of left eye" in Table 1, after the transformation, "acute disease of eye" is one of its potential new concept names which can be mapped to atoms, while "acute inflammatory disease of left eye" cannot. By further mapping concept names to atoms, a potentially missing IS-A relation between "acute dacryoadenitis of left eye" with AUI A27761536 and "acute disease of eye" with AUI A3463187 can be identified in the SNOMED CT.

It is worth noting that the potentially missing IS-A relations identified by our method may contain redundancy. Here a missing IS-A relation (say "x IS-A y") identified in a terminology T

is considered redundant, if there exists another missing IS-A relation "x IS-A z" identified in T such that y is currently an ancestor of z in T. In this case, if "x IS-A z" is a valid missing IS-A relation, then "x IS-A y" can be implied as valid by "x IS-A z" and "z IS-A y." Therefore, we further remove the potentially missing IS-A relations that are redundant from the result.

RESULTS

Identifying missing IS-A relations

We applied our method to the English-language concept names in the UMLS (2019AB release). In total, our method identified 42,362 potentially missing IS-A relations from 13 source terminologies in the UMLS. 39,359 out of 42,362 are non-redundant. Table 2 shows the number of potentially missing IS-A relations (non-redundant) detected in each source terminology. Table 2 also presents each terminology's size including the number of concepts and the number of direct IS-A relations, as well as the number of existing IS-A relations that can be identified by our transformation-based method. In total 149,568 existing IS-A relations can be identified from 13 source terminologies, and 109,031 of them are direct IS-A relations.

Table 2. The number of potentially missing IS-A relations detected in the UMLS source terminologies in English, as well as the terminology size and the number of existing IS-A relations that can be identified for each terminology.

Same Assessinale and	Terminology size		# of existing IS-A relations identified		# of potentially
Source terminology	# of concepts	# of direct IS-A relations	direct + indirect	direct	missing IS-A relations identified
MEDCIN	348,808	353,304	30,001	23,692	16,779
UWDA	61,127	62,285	34,564	24,594	10,865
FMA	102,595	104,341	54,644	39,274	7,230

SNOMEDCT_US	401,832	994,499	19,859	14,529	3,833
NCI	151,966	159,479	688	539	334
GO	49,907	77,067	9,640	6,246	250
SNOMEDCT_VET	36,527	40,689	82	81	23
НРО	16,222	18,313	37	30	11
СРМ	3,079	3,853	7	7	10
UMD	27,309	12,889	0	0	8
PDQ	18,874	4,298	43	36	8
СРТ	40,892	14,072	1	1	7
ATC	5,485	4,969	2	2	1

Among 39,359 potentially missing IS-A relations identified, 36,997 were obtained from a single noun chunk replacement (1-replacement), 2,338 from two noun chunk replacements (2-replacement), and 24 from three noun chunk replacements (3-replacement) (see Supplementary Appendix I for more details).

Evaluation

To assess the effectiveness of our method for identifying missing IS-A relations in the UMLS source terminologies, a sample of 200 IS-A relations from SNOMED CT (the "Clinical Finding" subhierarchy) and a sample of 100 from the Gene Ontology were randomly selected. The samples were reviewed by domain experts (author JS is a clinical expert familiar with SNOMED CT, and authors YY and WJZ have expertise in systems biology and genomics). For each relation, we provided domain experts with the preferred names of the two concepts involved, as well as the links to the two concepts in their online browsers.

Domain experts verified that 173 out of 200 potentially missing IS-A relations in the SNOMED CT (a precision of 86.5%) and 63 out of 100 in the Gene Ontology (a precision of 63%) are valid (i.e., true positives). Table 3 lists 15 valid examples (a complete list of evaluated samples can be

found in Supplementary Appendix II for SNOMED CT and Supplementary Appendix III for Gene Ontology).

Table 3. Examples of missing IS-A relations confirmed by domain experts. Ten examples are from the SNOMED CT (SNOMEDCT_US) and five are from the Gene Ontology (GO)

Subtype concept	Supertype concept	Source terminology
Abrasion and/or friction burn of buttock	Superficial injury of buttock with infection	SNOMEDCT_US
with infection (disorder)	(disorder)	
Camptodactyly of right hand (disorder)	Congenital deformity of right hand	SNOMEDCT_US
	(disorder)	
Acute gastrojejunal ulcer with hemorrhage	Peptic ulcer with hemorrhage AND with	SNOMEDCT_US
AND with perforation but without	perforation but without obstruction	
obstruction (disorder)	(disorder)	
Malignant melanoma of skin of forearm	Malignant neoplasm of skin of forearm	SNOMEDCT_US
(disorder)	(disorder)	
Deficiency of adenosylhomocysteinase	Deficiency of hydrolase (disorder)	SNOMEDCT_US
(disorder)		
Infestation caused by Boophilus (disorder)	Infestation caused by Ixodidae (disorder)	SNOMEDCT_US
Abscess of nasal septum (disorder)	Inflammatory disorder of cartilage	SNOMEDCT_US
	(disorder)	
Obsessive compulsive disorder caused by	Anxiety disorder caused by stimulant	SNOMEDCT_US
cocaine (disorder)	(disorder)	
Primary malignant neoplasm of frontal lobe	Malignant neoplasm of cerebral cortex	SNOMEDCT_US
(disorder)	(disorder)	
Rupture of anterior cruciate ligament of left	Injury of cruciate ligament of knee	SNOMEDCT_US
knee (disorder)	(disorder)	

negative regulation of testosterone	negative regulation of steroid hormone	GO
biosynthetic process	biosynthetic process	
macrophage migration inhibitory factor	enzyme binding	GO
binding		
response to camptothecin	response to topoisomerase inhibitor	GO
formate dehydrogenase complex	oxidoreductase complex	GO
negative regulation of transmembrane	negative regulation of cellular process	GO

Table 3 also contains four examples of missing IS-A relations in SNOMED CT that were obtained by multiple noun chunk replacements. For instance, the missing IS-A relation between "Obsessive compulsive disorder caused by cocaine (disorder)" and "Anxiety disorder caused by stimulant (disorder)" was obtained through the following two replacements: (1) "Obsessive compulsive disorder" IS-A "Anxiety disorder" in the NCI Thesaurus; and (2) "Cocaine" IS-A "Psychostimulant" and "Psychostimulant" IS-A "Stimulant" in the SNOMED CT. The detailed replacements for the evaluated samples can be found in Supplementary Appendices II and III.

Analyses of false positive cases

Based on the evaluation results of the domain experts, we examined false positive cases (i.e., invalid missing IS-A relations). More specifically, we looked into the noun chunks within the concept names and their replacement candidates (i.e., existing IS-A relations) to find the potential causes.

Table 4. Examples of false positives (or invalid missing IS-A relations) and the existing IS-A relations causing the false positives.

Subtype concept	Supertype concept	Source terminology	Existing IS-A relation(s) causing the
			false positive

Benign neoplasm of false	Benign neoplasm of	SNOMEDCT_US	"false vocal cord" IS-A "vocal cord" in
vocal cord (disorder)	vocal cord (disorder)		the NCI Thesaurus
Deficiency of	Deficiency of	SNOMEDCT US	"lysophospholipase" IS-A
Deficiency of	Deficiency of	SNOWEDCI_OS	Tysophosphonpase 13-A
lysophospholipase (disorder)	triacylglycerol lipase		"phospholipase" IS-A "triacylglycerol
	(disorder)		lipase" in the SNOMEDCT_US
Abscess of thumb of left	Abscess of finger of left	SNOMEDCT_US	"thumb" IS-A "finger" in the UWDA and
hand (disorder)	hand (disorder)		FMA
Calculus of gallbladder with	Calculus of gallbladder	SNOMEDCT_US	"acute and chronic cholecystitis" IS-A
acute and chronic	with acute cholecystitis		"acute cholecystitis" in the MEDCIN
cholecystitis (disorder)	(disorder)		
cellular response to beta-	cellular response to	GO	"beta-carotene" IS-A "vitamin A" in the
carotene	vitamin A		SNOMEDCT_US
caprolactam metabolic	propylene metabolic	GO	"caprolactam" IS-A "propylene" in the
process	process		SNOMEDCT_US
cellular response to	cellular response to	GO	"ammonium ion" IS-A "ammonia" in the
ammonium ion	ammonia		SNOMEDCT_US

Table 4 presents 7 invalid missing IS-A relations as well as the existing IS-A relations in the UMLS that were leveraged to obtain these invalid relations. We noted that the main cause of false positives is that the biomedical meanings of replacement candidates are not considered to be more general than their corresponding noun chunks. This could relate to either incorrect existing IS-A relations or different views of different terminologies. Take "cellular response to beta-carotene" IS-A "cellular response to vitamin A" detected in the Gene Ontology as an example. The domain experts believe that "beta-carotene" is an antioxidant that converts to vitamin A (which is not an IS-A relation), while SNOMED CT has an IS-A relation between "Beta-carotene (substance)" and "Retinol (substance)" (with a synonym "Vitamin A"),

indicating that this is an incorrect IS-A relation in the SNOMED CT. Consider "Abscess of thumb of left hand (disorder)" IS-A "Abscess of finger of left hand (disorder)" detected in the SNOMED CT. It was obtained by leveraging an existing relation "Thumb" IS-A "Finger" in both UWDA and FMA. However, the detected missing IS-A relation is invalid, since in SNOMED CT "Finger" only includes the second to fifth digit of the hand (i.e., "Thumb" is not a "Finger").

Effect of restricting the IS-A source for noun chunk replacement

Relating to the subtle terminology difference, a natural question is whether restricting the IS-A relations leveraged for noun chunk replacement to be in the same terminology will have an effect on the performance of our method. To study this, we performed an experiment by restricting replacement candidates in the same terminology, which resulted in a total of 20,754 potentially missing IS-A relations, compared to 39,359 without applying the restriction (see Supplementary Appendix IV for more details).

We further looked into the evaluated samples regarding the performance comparison. For SNOMED CT, 173 out of 200 evaluated relations (without applying the restriction) are valid, achieving a precision of 86.5%. Among 200 evaluated ones, 107 of them can be obtained by applying the restriction, and 103 out of 107 are valid, achieving a precision of 96.26%. Therefore, the precision is increased by 9.76% with the restriction applied. However, the number of valid missing IS-A relations is decreased from 173 to 103, a 40.46% reduction. For Gene Ontology, 63 out of 100 evaluated relations (without applying the restriction) are valid, achieving a precision of 63%. Among 100 evaluated ones, 21 of them can be obtained by applying the restriction, and 18 out of 21 are valid, achieving a precision of 85.71%. Therefore, the precision is increased by 22.71%. However, the number of valid missing IS-A relations is

decreased from 63 to 18, a 71.43% reduction. It can be seen that although restricting to the same source terminology for noun chunk replacement can improve the precision to some extent, leveraging multiple sources can identify more missing IS-A relations to a greater extent while still achieving acceptable precisions.

DISCUSSION

In this paper, we introduced a transformation-based method to replace noun chunks in a concept name with more general concept names in order to detect potentially missing IS-A relations in the UMLS source terminologies. To find noun chunk replacement, we leverage abundant knowledge of IS-A relations between concept names provided by the UMLS.

Distinction with related work

Other auditing methods designed for a specific terminology including pattern-based, lexical-based and deep learning-based methods usually rely on the knowledge in the terminology itself and require transferring knowledge to features for representing concepts in order to identify missing IS-A relations between concepts.[31-38] Therefore, the effectiveness of such methods to some extent relies on the terminology itself (i.e., internal knowledge), while our method leverages both internal and external knowledge through the UMLS to perform the auditing. More importantly, our method enables the auditing of multiple source terminologies at the same time.

Exact versus normalized matching

For parsing and mapping concept names, we directly used the exact names without performing any normalization. We further tried normalizing concept names (after noun chunks were identified) using the UMLS lexical tool LuiNorm.[39] We also utilized the normalized format for generating replacement candidates for noun chunks and mapping newly constructed concept

names to atoms. As a result, the potentially missing IS-A relations identified using normalized matching contain all the 39,359 ones identified by exact matching as a subset. In addition, the normalized matching identified 10,627 extra potentially missing IS-A relations (see Supplementary Appendix V for more details).

Indeed, normalized matching helped identify extra valid missing IS-A relations. For example, a missing IS-A relation between "Malignant neoplasm of connective tissue" and "Neoplasm of connective tissues" in the SNOMED CT was identified by normalized matching, since "tissues" were normalized to "tissue." However, there were also invalid cases identified. For instance, "Asymmetry" is a child of "Symmetries" in the SNOMED CT. Performing normalization resulted in "Asymmetry" IS-A "Symmetry" and thus an invalid missing IS-A relation: "Asymmetry of mandible" IS-A "Symmetry of mandible." Since the main focus of this paper is the transformation-based method, it is beyond the scope of this work to thoroughly compare the actual performances of the exact matching and normalized matching, as it requires additional manual evaluation by domain experts.

Potential for concept enrichment

Since our focus in this work is to identify missing IS-A relations in the UMLS source terminologies, we require that the two atoms involved in a potentially missing IS-A relation be from the same terminology. For those ones with the two atoms coming from different source terminologies, missing concepts may be identified for concept enrichment in source terminologies. That is, if the supertype atom does not appear in the same source terminology with the subtype atom, then the supertype atom may be a potentially missing concept (i.e., new concept) for the terminology or a missing synonym for an existing concept in the source terminology of the subtype atom.

Applicability to a specific terminology

Although our method was designed for auditing multiple source terminologies in the UMLS, it can be applied within a specific terminology such as the SNOMED CT itself without using the UMLS. A question that may arise is: Will this give the same results obtained for restricting the IS-A relations leveraged for noun chunk replacement to be in the UMLS SNOMED CT? The answer to this question depends on whether the IS-A relations in the UMLS SNOMED CT are identical to that in the original SNOMED CT. It is worth noting that relations in the UMLS are expressed in terms of CUIs (concepts) and AUIs (atoms or concept names). For the SNOMED CT (US 09/01/2019 edition) integrated in the UMLS (2019AB release), only IS-A relations between designated preferred names of SNOMED CT concepts are maintained. Therefore, if we only leverage such IS-A relations between preferred names of concepts when applying our method within the SNOMED CT, then the same results will be obtained; however, if we leverage additional IS-A relations such as those between synonyms of concepts, then more results will be obtained and need further domain expert evaluation.

Limitations and future work

In this study, we only evaluated the SNOMED CT and Gene Ontology due to the lack of expertise in other terminologies. Although the evaluation results showed that our transformation-based method is effective in identifying missing IS-A relations in the SNOMED CT and Gene Ontology, additional evaluation by domain experts is still needed to assess the effectiveness of our method for auditing other source terminologies. Another limitation of this work is regarding the incorrect IS-A relations that can be further revealed through manual examination of the invalid missing IS-A relations identified by our method. It would be desirable to develop an automated approach to detect such incorrect IS-A relations in the source terminologies.

CONCLUSIONS

In this paper, we introduced a transformation-based auditing method to detect potentially missing IS-A relations in the UMLS source terminologies. Leveraging rich knowledge in the UMLS (2019AB release), our method is able to audit multiple terminologies at the same time. Experts' evaluation showed the effectiveness of our method (a precision of 86.5% for SNOMED CT and 63% for the Gene Ontology). Further analyses of invalid missing IS-A relations derived by our method revealed additional quality issues in the source terminologies. Since the source terminologies are regularly integrated into the UMLS, quality improvement of its source terminologies will directly enhance the quality of the UMLS itself.

Funding Statement

This work was supported by the National Science Foundation (NSF) through grants 1657306 and 1931134, as well as the National Institutes of Health (NIH) through grants R21CA231904, 1UL1TR003167 and R01AG066749, as well as the Cancer Prevention and Research Institute of Texas (CPRIT) through grant RP170668. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF, NIH, or CPRIT.

Competing Interests Statement

The authors have no competing interests to declare.

Author Contributions

LC and FZ conceptualized and designed this study. FZ developed the auditing algorithms, generated the auditing results, and prepared the evaluation samples for SNOMED CT and Gene

Ontology. JS reviewed and evaluated the samples for SNOMED CT. YY and WJZ reviewed and evaluated the samples for Gene Ontology. FZ and LC analyzed the evaluation results. FZ and LC wrote the manuscript.

Acknowledgment

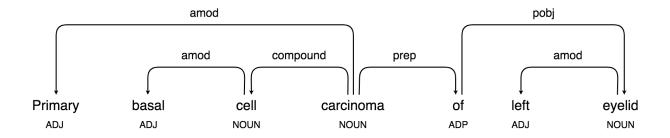
The authors would like to thank the anonymous reviewers for their valuable comments that help improve the quality of this paper.

References

- Humphreys BL, Lindberg DAB. Building the Unified Medical Language System. In Proceedings of the Annual Symposium on Computer Application in Medical Care 1989;475-480.
- 2. Lindberg DAB, Humphreys BL, McCray AT. The Unified Medical Language System. *Yearbook of Medical Informatics* 1993;2(01):41-51.
- Humphreys BL, Lindberg DAB, Schoolman HM, et al. The Unified Medical Language System: An Informatics Research Collaboration. *Journal of the American Medical Informatics Association* 1998;5:1-11.
- 4. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. *Nucleic acids research* 2004;32.
- UMLS Reference Manual. https://www.ncbi.nlm.nih.gov/books/NBK9676/ (accessed 20 Jan 2020)

- 6. Chute CG, Yang Y, Evans DA. Latent Semantic Indexing of medical diagnoses using UMLS semantic structures. *In Proceedings of the Annual Symposium on Computer Application in Medical Care* 1991;185-189.
- 7. Nadkarni P, Chen R, Brandt C. UMLS Concept Indexing For Production Databases: A Feasibility Study. *Journal of the American Medical Informatics Association* 2001;8(1):80-91.
- 8. Hersh W, Price S, Donohoe L. Assessing thesaurus-based query expansion using the UMLS Metathesaurus. *In Proceedings of the AMIA Symposium* 2000;344-348.
- Lu K, Mu X. Query expansion using UMLS tools for health information retrieval.
 Proceedings of the American Society for Information Science and Technology 2009;46(1):1-6.
- 10. Martinez D, Otegi A, Soroa A, et al. Improving search over Electronic Health Records using UMLS-based query expansion through random walks. *Journal of biomedical informatics* 2014;51:100-6.
- 11. McCray AT, Aronson AR, Browne AC, et al. UMLS knowledge for biomedical language processing. *Bulletin of the Medical Library Association* 1993;81(2):184.
- 12. Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. *In Proceedings of the AMIA Symposium* 2001;17–21.
- 13. Chen L, Gu Y, Ji X, et al. Clinical trial cohort selection based on multi-level rule-based natural language processing system. *Journal of the American Medical Informatics***Association 2019;26(11):1218-26.
- 14. Yao L, Mao C, Luo Y. Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. *BMC medical informatics and decision making* 2019;19(3):71.

- 15. Maldonado R, Yetisgen M, Harabagiu SM. Adversarial Learning of Knowledge Embeddings for the Unified Medical Language System. AMIA Summits on Translational Science Proceedings 2019;543–552.
- 16. Adamusiak T, Shimoyama N, Shimoyama M. Next Generation Phenotyping Using the Unified Medical Language System. *JMIR medical informatics* 2014;2(1):e5.
- 17. Achour SL, Dojat M, Rieux C, et al. A UMLS-based Knowledge Acquisition Tool for Rule-based Clinical Decision Support System Development. *Journal of the American Medical Informatics Association* 2001;8(4):351-60.
- 18. Lee PJ, Lee YH, Kang Y, et al. A Medical Decision Support System Using Text Mining to Compare Electronic Medical Records. *In International Conference on Human-Computer Interaction* 2019;199-208.
- 19. SNOMED CT Browser. https://browser.ihtsdotools.org/ (accessed 20 Jan 2020)
- 20. Zhang GQ, Tao S, Zeng N, et al. Ontologies as nested facet systems for human–data interaction. *Semantic Web* 2020;11(1):79-86.
- 21. Cimino JJ. Auditing the Unified Medical Language System with Semantic Methods. *Journal* of the American Medical Informatics Association 1998;5(1):41-51.
- 22. Bodenreider O. Circular hierarchical relationships in the UMLS: etiology, diagnosis, treatment, complications and prevention. *In Proceedings of the AMIA Symposium* 2001;57-61.
- 23. Chen Y, Gu HH, Perl Y, et al. Structural group-based auditing of missing hierarchical relationships in UMLS. *Journal of biomedical informatics* 2009;42(3):452-67.


- 24. He Z, Geller J, Chen Y. A comparative analysis of the density of the SNOMED CT conceptual content for semantic harmonization. *Artificial intelligence in medicine* 2015;64(1):29-40.
- 25. He Z, Chen Y, de Coronado S, Piskorski K, Geller J. Topological-Pattern-Based Recommendation of UMLS Concepts for National Cancer Institute Thesaurus. *In AMIA Annual Symposium Proceedings* 2016;618-627.
- 26. Cui L. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance. *In AMIA Annual Symposium Proceedings* 2015;456–465.
- 27. Abeysinghe R, Zheng F, Hinderer EW, et al. A Lexical Approach to Identifying Subtype Inconsistencies in Biomedical Terminologies. *In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)* 2018;1982-1989.
- 28. SpaCy: Industrial-Strength Natural Language Processing. https://spacy.io/ (accessed 20 Jan 2020)
- 29. SpaCy Linguistic Features. https://spacy.io/usage/linguistic-features (accessed 20 Jan 2020)
- 30. Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and function using NetworkX. Los Alamos National Lab.(LANL), Los Alamos, NM (United States) 2008.
- 31. Liu H, Zheng L, Perl Y, et al. Can a Convolutional Neural Network Support Auditing of NCI Thesaurus Neoplasm Concepts?. *In ICBO* 2018.
- 32. Sun Q, Zhang GQ, Zhu W, et al. Validating Auto-Suggested Changes for SNOMED CT in Non-Lattice Subgraphs Using Relational Machine Learning. *Studies in health technology and informatics* 2019;264:378-82.
- 33. Abeysinghe R, Brooks MA, Talbert J, et al. Quality assurance of NCI Thesaurus by mining structural-lexical patterns. *In AMIA Annual Symposium Proceedings* 2017;364-73.

- 34. Cui L, Zhu W, Tao S, et al. Mining non-lattice subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT. *Journal of the American Medical Informatics Association* 2017;24(4):788-98.
- 35. Bodenreider O. Identifying Missing Hierarchical Relations in SNOMED CT from Logical Definitions Based on the Lexical Features of Concept Names. *ICBO/BioCreative* 2016.
- 36. Abeysinghe R, Hinderer EW, Moseley HN, Cui L. Auditing subtype inconsistencies among gene ontology concepts. *In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)* 2017;1242-1245.
- 37. Cui L, Bodenreider O, Shi J, et al. Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs. *Journal of biomedical informatics* 2018;78:177-84.
- 38. Abeysinghe R, Brooks MA, Cui L. Leveraging Non-lattice Subgraphs to Audit Hierarchical Relations in NCI Thesaurus. *In AMIA Annual Symposium Proceedings* 2019;982-991.
- 39. LuiNorm.

https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg/2016/docs/userDoc/tools/luiNorm.htm 1 (accessed 10 April 2020)

Figure legends

Figure 1: Dependency graph of the concept name "Primary basal cell carcinoma of left eyelid."

