
MNRAS 491, 5330–5350 (2020) doi:10.1093/mnras/stz3114

Advance Access publication 2019 November 14

Testing the impact of satellite anisotropy on large- and small-scale

intrinsic alignments using hydrodynamical simulations

S. Samuroff ,‹ R. Mandelbaum and T. Di Matteo
McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Accepted 2019 October 30. Received 2019 September 27; in original form 2019 January 28

ABSTRACT

Galaxy intrinsic alignments (IAs) have long been recognized as a significant contaminant to

weak lensing-based cosmological inference. In this paper we seek to quantify the impact of a

common modelling assumption in analytic descriptions of IAs: that of spherically symmetric

dark matter haloes. Understanding such effects is important as the current generation of

IA models are known to be limited, particularly on small scales, and building an accurate

theoretical description will be essential for fully exploiting the information in future lensing

data. Our analysis is based on a catalogue of 113 560 galaxies between z = 0.06 and 1.00

from MASSIVEBLACK-II, a hydrodynamical simulation of box length 100 h−1 Mpc. We find

satellite anisotropy contributes at the level of ≥ 30–40 per cent to the small-scale alignment

correlation functions. At separations larger than 1 h−1 Mpc the impact is roughly scale

independent, inducing a shift in the amplitude of the IA power spectra of ∼ 20 per cent.

These conclusions are consistent across the redshift range and between the MASSIVEBLACK-

II and the ILLUSTRIS simulations. The cosmological implications of these results are tested

using a simulated likelihood analysis. Synthetic cosmic shear data are constructed with the

expected characteristics (depth, area, and number density) of a future LSST-like survey. Our

results suggest that modelling alignments using a halo model based upon spherical symmetry

could potentially induce cosmological parameter biases at the ∼1.5σ level for S8 and w.

Key words: gravitational lensing: weak – methods: numerical – cosmology: theory – large-

scale structure of Universe.

1 IN T RO D U C T I O N

In many ways the field of cosmology has changed irrevocably in

the past decade. With large-volume measurements from a new

generation of instruments, it has finally become possible to test

the predictions of theorists to meaningful precision. So much is

this the case that the distinction between ‘theorist’ and ‘observer’

has increasingly less meaning; cutting edge cosmology is now a

process of using ever more powerful data sets to constrain, test,

break, and ultimately rebuild our models of the Universe. This is

particularly true of weak lensing cosmology, which began to flourish

somewhat later than the study of the cosmic microwave background

(CMB) as a cosmological probe. The transition into a data-led high-

precision discipline has, by necessity, seen an increased amount of

time devoted to understanding the numerous, often subtle, sources of

systematic error. Without such efforts, as a community, our ability

to constrain the cosmological parameters encoded in large-scale

structure will very quickly become limited by systematics. For an

overview of recent developments in lensing cosmology we refer

� E-mail: ssamurof@andrew.cmu.edu

the reader to contemporary reviews on the subject (Kilbinger 2015;

Mandelbaum 2018).

Often new methods have been developed to circumvent limi-

tations in our ability to deal with certain systematics. One good

example is the case of shear measurement bias, which is inherent to

the process of inferring galaxy ellipticities. A coherent community

effort (Heymans et al. 2006; Massey et al. 2007; Bridle et al.

2010; Kitching et al. 2011; Mandelbaum et al. 2015) has seen

the development of several novel techniques, which can calibrate

shear biases to sub-percentage level without the need for massive

high-fidelity image simulations (Bernstein et al. 2016; Huff &

Mandelbaum 2017; Sheldon & Huff 2017). There are hopes that

a combination of innovations such as multi-object fitting (Drlica-

Wagner et al. 2018), internal self-calibration (see Dark Energy

Survey Collaboration 2017; Joudaki et al. 2018 for practical

implementations), and improved spectroscopic overlap will bring

similar advances in the case of photometric redshift (photo-z)

error.

Amongst various other lensing systematics, a phenomenon

known as intrinsic alignments (IAs) poses significant theoretical

challenges for future analyses. Generally, the term ‘intrinsic align-

ments’ covers two slightly different physical effects; physically
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close pairs of galaxies will tend to align with each other through

interaction with local large-scale structure, producing weak positive

alignment (known as II correlations; Catelan, Kamionkowski &

Blandford 2001; Crittenden et al. 2001). Often the dominant form

of IA contamination, however, comes in the form of GI correlations

(Hirata & Seljak 2004). These arise due to the fact that mass on the

line of sight simultaneously lenses background objects and tidally

interacts with nearby galaxies. There are a good many reviews on

the subject of IA in the literature, to which we refer the reader for

more details (Joachimi et al. 2015; Kiessling et al. 2015; Kirk et al.

2015; Troxel & Ishak 2015).

Unlike many potential sources of bias, IAs are inherently astro-

physical in nature, rather than the result of flaws in the measurement

process. No amount of ingenuity will alter the fact that such

correlations are present in the data and enter on similar angular

scales to cosmic shear. That neglecting IAs when modelling cosmic

shear or galaxy–galaxy lensing will induce significant (� 1σ ) biases

in one’s recovered cosmological parameters is now well established

(Krause, Eifler & Blazek 2016; Blazek et al. 2017). In practice the

most feasible way of mitigating IAs is to simply model them out,

including additional parameters in any likelihood analysis, which

are marginalized over with wide priors. Unfortunately the efficacy

of such a technique is somewhat limited by the models in question;

to marginalize out the impact of IAs without residual biases, one

requires a sufficiently accurate model to describe their impact.

Due to limitations in both theory and available data, however,

no model has been demonstrated to be accurate for all galaxy

types at the level needed for future surveys. Understanding IAs

at the level of basic physical phenomenology and from a theoretical

perspective is, then, crucial if the community wishes to fully exploit

the cosmological information in the large-volume lensing data that

will shortly become available.

The most commonly used IA model, known as the Linear Align-

ment Model (Hirata & Seljak 2004) and its empirically motivated

variant, the Non-linear Alignment (NLA) Model (Bridle & King

2007) treat intrinsic shape correlations as linear in the background

tidal field. This model is well tested in the regime of low-redshift

luminous red galaxies (Joachimi et al. 2011; Singh, Mandelbaum &

More 2015), but observational validation is somewhat lacking in

the mixed-colour samples, extending to higher redshifts, common

in lensing cosmology. One approach to this problem has been to

develop self-consistent perturbative models, which include both

linear (tidal alignment) and quadratic (tidal torque) contributions.

A small handful of such models have been published (Blazek,

Vlah & Seljak 2015; Blazek et al. 2017; Tugendhat & Schäfer 2018)

and implemented in practice (Dark Energy Survey Collaboration

2016; Troxel et al. 2018a). An alternative approach is to build an

analytic prescription for the IA signal using a halo model or similar.

Given the known limitations of perturbation theory on the smallest

scales, in the fully one-halo regime, such models are especially

attractive from a theoretical perspective. Similar techniques have

been employed with some success to model non-linear growth

and baryonic effects (Fedeli 2014; Mead et al. 2015; Schneider &

Teyssier 2015; Mead et al. 2016) and galaxy bias (Peacock &

Smith 2000; Schulz & White 2006; Dvornik et al. 2018). The

literature around application of such methods to IAs is, however,

less extensive. An early example is presented by Smith & Watts

(2005), who propose a halo model-based approach to modelling the

alignment of triaxial dark matter haloes. This was followed several

years later by Schneider & Bridle (2010), wherein a similar method

was developed to describe the power spectra of galaxy IA. Under

their model galaxies are split into ‘centrals’ and ‘satellites’, with the

Table 1. Summary statistics for the two hydrodynamic simulations consid-

ered in the paper. The row labelled ‘particle mass’ shows dark matter, then

stellar mass in units of ×106 h−1 M�.

MASSIVEBLACK-II ILLUSTRIS-1

Comoving volume (h−3 Mpc3) 1003 753

Particle mass (×106 h−1 M�) 11.0,2.2 6.3,1.3

Resolution (h−1 Mpc) 0.04 0.03

latter aligning radially towards the former within spherical haloes.

Such a picture is reasonably well motivated, both by theory and

observational evidence (Rood & Sastry 1972; Faltenbacher et al.

2007; Pereira, Bryan & Gill 2008; Sifón et al. 2015; Huang et al.

2018).

Use of such models to make analytic predictions, however,

requires a number of assumptions. Generally one must assume

the distribution of satellite galaxies within dark matter haloes to

be spherically symmetric. This is despite extensive observational

and numerical evidence suggesting otherwise (see e.g. West &

Blakeslee 2000; Knebe et al. 2004; Bailin et al. 2008; Agustsson &

Brainerd 2010; Piscionere et al. 2015; Butsky et al. 2016; Libeskind

et al. 2016; Welker et al. 2017. More discussion of the physical

mechanisms that generate anisotropy and further references can

be found in Zentner et al. 2005). This paper seeks to test this

approximation using hydrodynamical simulations, with the aim

of building a physical understanding that can be propagated into

future modelling efforts; the question has attracted some level

of speculation in the past, but has not hitherto been tested

robustly.

This paper is structured as follows. In Section 2 we describe a

set of hydrodynamical simulations used in this analysis. These data

sets are public and well documented and so we will focus here on

the relevant details and changes introduced for this work. A brief

discussion of the sample selection used to construct our galaxy

catalogues is also presented. The process for building two- and

three-dimensional galaxy shape information and a symmetrization

procedure, which is central to this work, are set out in Section 3.

The latter part of this section then sets out a series of measurements

designed to capture the impact of halo anisotropy on two-point

alignment statistics, and ultimately on cosmic shear. In Section 4 we

present our results, alongside a series of robustness tests intended

to test the applicability of our findings. In Section 5 we present

a simulated likelihood analysis with the aim of assessing the

cosmological implications of modelling errors of the sort discussed

in the previous sections of the paper. Section 6 concludes and offers

a brief discussion of our findings.

2 A SI MULACRUM UNI VERSE

In this section we describe the mock universe realizations used

in this work and the measurement pipeline applied to it. For a

fuller description of the simulations see Khandai et al. (2015) and

Vogelsberger et al. (2014). The basic statistics of the two simulations

are summarized in Table 1. The pipeline from SUBFIND data to

symmetrized galaxy catalogues and correlation functions is hosted

on a public repository.1 The processed catalogues themselves are

also available for download from https://git.io/iamod mbiicats.

1https://github.com/ssamuroff/mbii
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5332 S. Samuroff, R. Mandelbaum, and T. Di Matteo

2.1 MASSIVEBLACK-II

MASSIVEBLACK-II is a hydrodynamical simulation in a cosmological

volume of comoving dimension L = 100 h−1 Mpc. The mock

universe’s initial conditions were generated with a transfer function

generated by CMBFAST
2 at redshift 159. The simulation was then

allowed to evolve through to z = 0. The basic gravitational evolution

of mass is governed by the Newtonian equations of motion and the

simulation run assumes a flat �CDM cosmology with, σ 8 = 0.816,

�m = 0.275, ns = 0.968, �b = 0.046, �de = 0.725, h = 0.701, and

w = −1.0.

The simulation volume contains a total of 2 × 17923 particles

(dark matter and gas); particles of dark matter and gas have mass

1.1 × 107 and 2.2 × 106 h−1 M�, respectively. The simulation is

based on a version of GADGET (P-GADGET; see Di Matteo et al.

2012; Khandai et al. 2015), which evaluates the gravitational forces

between particles using a hierarchical tree algorithm and represents

fluids by means of smoothed particle hydrodynamics (SPH).

Star formation is governed by a Schmidt–Kennicutt law of the

form ρ̇∗ = ε∗ρ/tff , where the left-hand term is the star formation

rate density, ρ is the mass density of gas, and ε∗ is an efficiency

constant with fixed value 0.02 (Kennicutt 1998). The denominator

tff has units of time and corresponds to the free fall time of the

gas. Star particles are generated from gas particles randomly with

a probability determined by the star formation rate. The simulation

run includes basic models for active galactic nucleus (AGN) and

supernova feedback. The code models black holes as collisionless

particles, which acquire mass by accreting ambient gas. As gas

accretes it releases energy as photons at a rate proportional to the

rate of mass growth of the black hole; the efficiency constant εr

is assumed to have a fixed value of 0.1 (Di Matteo et al. 2012).

A fixed fraction (5 per cent) of this energy is then assumed to

couple with nearby gas within the softening length (1.85 kpc).

This somewhat crude model, at least at some level, captures the

influence of black hole feedback on the motion and thermodynamic

state of surrounding matter. Additionally, the simulation contains

a basic model for supernova feedback. Thermal instabilities in

the interstellar medium are assumed to operate only above some

critical density ρ th, which produces two phases of baryonic matter:

clouds of cold gas surrounded by tenuous baryons at pressure

equilibrium. Star formation occurs in the dense part, upon which

short lifetime massive stars begin to expire, form supernovae and

release fixed bursts of energy to their immediate surroundings.

Conceptually similar to the black hole feedback model, this has

the effect of providing localized groups of particles periodically

with instantaneous boosts in energy and momentum.

2.2 ILLUSTRIS

To test the robustness of our results we will also incorporate public

data from a second hydrodynamic simulation. Though the format

of the output is ultimately the same, ILLUSTRIS was generated by

an independent group with a number of notable methodological

differences from MASSIVEBLACK-II. We use the ILLUSTRIS-1 data

set here, which was generated at a similar but non-identical

�CDM cosmology, defined by σ 8 = 0.809, �m = 0.2726, ns =
0.963, �b = 0.046, �de = 0.7274, h = 0.704, w = −1.0.

The data are well documented on the data release website3

and attendant papers (Vogelsberger et al. 2014). The simulation

2https://lambda.gsfc.nasa.gov/toolbox/tb cmbfast ov.cfm
3illustris-project.org

code makes use of an approximate model for galaxy formation,

which includes gas cooling (primordial and metal line), stochastic

star formation, stellar evolution, kinetic stellar feedback driven by

supernovae, and supermassive black hole seeding, accretion and

merging, in addition to a multimodal model for AGN feedback. A

number of tunable parameters are included in the model and the

process used to decide their values is outlined by Vogelsberger et al.

(2013).

2.3 Galaxy catalogues

The following paragraphs describe the steps used to construct

processed object catalogues, upon which two-point measurements

are made. The discussion is largely generic to MASSIVEBLACK-II and

ILLUSTRIS-1. The few points of difference between the pipeline run

on the two simulations are stated explicitly.

2.3.1 Haloes and subhaloes

For the purposes of this work we treat the term ‘galaxy’ as a

synonym for ‘subhalo with a stellar component of non-zero mass’.

Particles are grouped together into haloes using a friends-of-friends

(FoF) algorithm, which uses an adaptive linking length of 0.2 times

the mean interparticle separation. Subhaloes are identified using

SUBFIND (Springel et al. 2001). The algorithm works as follows: the

local density is first calculated at the positions of all particles in a

given FoF group, with a local smoothing scale set to encircle a fixed

number (20 in our case) of neighbours. The density is estimated by

kernel interpolation over these neighbours. If a particle is isolated

then it forms a new density peak. If it has denser neighbours in

multiple different structures, an isodensity contour that crosses the

saddle point is identified. In such cases the two structures are merged

and flagged as a candidate subhalo if they have above some threshold

number of particles.

Baseline cuts are applied to the MASSIVEBLACK-II subhalo cat-

alogues to remove objects with fewer than 300 star particles or

1000 dark matter particles (equivalent to mass cuts at 6.6 × 108

and 1.1 × 1010 h−1 M�, respectively). Cuts on properties such as

mass will likely induce some level of selection bias in the various

properties with which they correlate. They are, however, necessary

to ensure subhalo convergence (see e.g. appendix B of Chisari

et al. 2018b and section 2.3 of Tenneti et al. 2015b). This is

analogous to basic level cuts on flux and likelihood in shear studies

on real data; if it is not possible to derive reliable shapes (on

the ensemble level) from a significant part of the galaxy sample,

then one’s ability to draw physically meaningful conclusions is

limited. ILLUSTRIS-1 differs slightly from MASSIVEBLACK-II in

both box size and particle mass resolution, and so we adjust the

cuts accordingly to maintain mass thresholds at approximately

the same level. Unless explicitly stated, all results presented in

this paper assume these cuts. The ILLUSTRIS-1 data set used

here is smaller than MASSIVEBLACK-II, both in raw number of

galaxies surviving cuts (35 349 compared with 113 560) and in

comoving number density (0.08 against 0.11 h3 Mpc−3). Some

basic physical characteristics of the two simulations are set out

in Table 1.

2.3.2 Central flagging

The processed catalogues contain three binary flags for ‘central’

galaxies, which we describe in the following paragraph. Though

MNRAS 491, 5330–5350 (2020)
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classifying real galaxies as centrals or satellites is common in

practice, the quantities used to do so are, of course, observed ones.

We do not have exact analogues in the simulations for properties

such as flux and apparent magnitude. Rather, we have access to

fundamentally unobservable ones such as dark matter mass and

three-dimensional comoving position. Given this, we propose two

alternative criteria for identifying a halo’s central galaxy: (i) the

galaxy with the shortest physical distance (Euclidean separation in

three-dimensional comoving coordinates) from the minimum of the

dark matter halo’s gravitational potential well and (ii) the galaxy

with the highest total mass (dark matter and stars) in the halo.

We compute central flags for our catalogues using both of these

definitions.

Unfortunately, each has its own limitations. Definition (i) is a

split based on a significantly noisy quantity. Given the relatively

fine mass resolution, it is not uncommon that what might naturally

be described as a halo’s central galaxy (a large, high-mass object

close to the potential minimum) shares the inner region with a large

number of low-mass objects. The potential for misclassification

is obvious; indeed we find that adopting (i) hinders our ability

to reproduce observable trends (e.g. a gradual decline in satellite

fraction with stellar mass) due to mislabelling of high-mass central

objects as satellites. Criterion (ii) has similar drawbacks as a split

metric. There is observational evidence (e.g. Johnston et al. 2007;

Rykoff et al. 2016; Simet et al. 2017) that in many cases a halo’s

most massive galaxy can be significantly offset from its centroid

(as defined by the gravitational potential). By visual inspection of a

subset of MASSIVEBLACK-II haloes, it is clear that such an offset is

not uncommon,4 particularly in those undergoing mergers or with

otherwise distorted, non-spherical mass distributions. We thus con-

struct a third definition (iii), under which a halo’s central is the most

massive galaxy within a radius of 0.1 R from the potential minimum,

where R =
(

GM/106h2
)

1
3 is dependent on the total FoF halo mass

M and (mildly) the background cosmology. We consider (iii) to be

the most physically meaningful of these alternatives, and so adopt it

as our fiducial definition in the following sections. In Section 4.2 we

test the robustness of our results to this analysis choice and find no

qualitative change due to switching between definitions (iii) and (i).

Note that the flagging is performed prior to mass cuts, and so while

every halo has a central galaxy under all three of these definitions, it

is non-trivial that it survives in the final catalogue. The final satellite

fractions in the four redshift slices used in this work are shown in

Table 2. Note that (i) and (ii) produce comparable values, with a

similar mild increase towards high redshift. It is noticeable that

the satellite fraction, defined as the total fraction of all subhaloes

that are not flagged as centrals, is significantly lower than 0.5, and

observation that is true under all three central definitions. Though

counterintuitive given the simple picture of haloes with one central

and a host of satellites, the catalogues contain a large number

of low-mass haloes with one (or fewer) subhaloes. Such haloes

often contain no satellites and so act to dilute the global satellite

fraction.

The same code pipeline is applied equivalently to SUBFIND

outputs on both MASSIVEBLACK-II and ILLUSTRIS-1 to generate

catalogues in a common format. For the galaxy catalogues used

in this work and example scripts to illustrate their basic usage, see

https://github.com/McWilliamsCenter/ia modelling public.

4This is true in the low-redshift regime, within which the four snapshots

considered in this work sit. It is reasonable to expect that miscentring of the

most massive galaxy may be less common at high redshift.

Table 2. The essential characteristics of the simulated MASSIVEBLACK-

II galaxy catalogues used in this study, after baseline mass cuts. The rows

represent different simulation snapshots (labelled, from top, 85, 79, 73, and

68 in the nomenclature of the data release). The satellite fraction is computed

using a hybrid central definition (the most massive galaxy within the centre-

most 10 per cent of the halo radius R, as defined for a particular halo), which

is designed to be robust to noise in the physical subhalo properties. The

final two columns show the mean per-component ellipticity dispersion (i.e.

[σ e1 + σ e2]/2) for the projected (2D) shapes of the stellar and dark matter

components of the galaxies at each redshift.

Redshift No. of galaxies Satellite frac. σ e (stars) σ e (matter)

0.062 0.114 M 0.351 0.411 0.354

0.300 0.121 M 0.359 0.401 0.341

0.625 0.129 M 0.366 0.390 0.330

1.000 0.136 M 0.380 0.382 0.320

3 MEASUREMENTS

In addition to the basic level object detection and flagging described

in the previous section, a series of additional measurements are

required before we can attempt to draw conclusions from the

simulated data. In this section we describe the process of shape

measurement, converting a collection of three-dimensional particle

positions associated with each subhalo into projected galaxy shapes.

We then define a series of two-point statistics, on which we rely in

the following sections of this paper.

3.1 Inertia tensors and shapes

For any practical application of weak lensing, the salient properties

of a population of galaxies are its shape statistics. In real two-

dimensional pixel data, one typically works with ellipticities, which

may be expressed in terms of two-dimensional moments. An analo-

gous calculation may be performed with the three-dimensional sim-

ulated galaxies in MASSIVEBLACK-II. This is well-trodden ground,

and so we will sketch out the calculation briefly and refer the readers

to a host of other papers for more detail (Chisari et al. 2015; Velliscig

et al. 2015; Chisari et al. 2017). A detailed presentation of alignment

angles, shapes, and two-point correlations and how they depend on

the chosen definition of the inertia tensor can also be found in

Tenneti et al. (2015a, b). Starting from a collection of stellar or dark

matter particles associated with a subhalo, we calculate the inertia

tensor

Iij =
1

W

Np
∑

α=1

wαxi,αxj,α, (1)

where the Roman indices indicate one of the three spatial coordinate

axes i, j ∈ (x, y, z) and the sum runs over the Np particles within

the subhalo. The positions xk are defined relative to the centroid of

the subhalo. The coefficients wα are particle weights and the pre-

factor term is the sum over weights W =
∑

αwα . In the simplest

case, which we refer to as the basic inertia tensor, particles are

weighted equally and the sum of the (normalized) weights is

simply the number of particles in the subhalo. This will be our

default option; unless stated otherwise the reader should assume

the results presented later in this paper use this definition of the

inertia tensor. An alternative approach, which defines the ‘reduced’

inertia tensor, is to weight by the inverse square of the radial

distance from the subhalo centroid, wα = r−2
α . This estimator by

construction downweights light on the edges of the galaxy profiles

and in this sense produces projected ellipticities more akin to what

MNRAS 491, 5330–5350 (2020)
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5334 S. Samuroff, R. Mandelbaum, and T. Di Matteo

might be measured from real data. It is also true, however, that

imposing circularly symmetric weighting induces a bias towards

low ellipticities; obtaining accurate measurements via this estimator

requires an explicit correction such as the iterative method of

Allgood et al. (2006).

Evaluating each element of the 3 × 3 inertia tensor I provides a

simple numerical description of the three-dimensional shape of the

galaxy. We then decompose I into eigenvectors, which represent

unit vectors defining the orientation of the major, intermediate, and

minor axes of the ellipsoid Aμ = (Ax,μ, Ay,μ, Az,μ), μ ∈ (1, 2, 3);

and three eigenvalues λi, which quantify its axis lengths.

In order to fully capture higher order effects present in real data,

ray tracing and light cones would be required to generate projected

per-galaxy images (see e.g. Peterson et al. 2015). Given the size of

the data set and the scope of this study, however, a simple projection

along the z-axis of the simulation box is sufficient. Points on the

projected ellipse x must satisfy the equation xᵀQx = 1 with

Q−1 =
3

∑

μ=1

A⊥,μA
ᵀ

⊥,μ

λ2
μ

−
κκ

ᵀ

α2
, (2)

and A⊥,μ = (Ax,μ, Ay,μ). In the above we define

α2 =
3

∑

μ=1

(

Az,μ

λμ

)2

(3)

and

κ =
3

∑

μ=1

Az,μA⊥,μ

λ2
μ

. (4)

The moments of the two-dimensional ellipse Q can then be

converted into the two ellipticity components standard in lensing

via

(e1, e2) =
(Qxx − Qyy, 2Qxy)

Qxx + Qyy + 2
√

|Q|
. (5)

The above recipe mirrors similar calculations in Piras et al. (2018)

and Joachimi et al. (2013), to which we refer the reader for more

detail. Note that we have chosen a particular ellipticity definition e =
(a − b)/(a + b) here.5 Although these quantities can be measured

equivalently using dark and visible matter constituents, unless stated

otherwise the results in the following sections use the latter only.

This is expected to give results more directly relevant to real lensing

surveys, but the impact of this decision is tested in Section 4.2.3.

3.2 Symmetrizing the distribution of satellites in haloes

The most basic picture of the Universe sees all mass contained

by discrete dark matter haloes. Each of these haloes then hosts a

number of subhaloes, some of which contain luminous matter and

are thus considered detectable galaxies. In the various permutations

of the halo model used in the literature, typically one assumes

spherical dark matter haloes and, by implication, isotropic satellite

distributions about the halo centres. There is a significant amount

of evidence from N-body (dark matter) simulations, however, that

haloes are more often than not triaxial (Bailin & Steinmetz 2005;

Kasun & Evrard 2005; Allgood et al. 2006) and the ensemble of

5The alternative definition, often also referred to as ellipticity, or sometimes

polarization or distortion, in the literature is defined χ = (a2 − b2)/(a2 +
b2). It can be recovered analogously using equation (3.1), but without the

final term in the denominator.

Figure 1. Two-dimensional schematic diagram of the halo symmetrization

process described in Section 3.2. The background colour gradient is intended

to represent the distribution of dark matter in the halo, but is not a quantitative

mapping of the halo mass profile. Galaxies (subhaloes with stellar particles)

are shown as filled ellipses, and the halo centroid is shown as a black cross.

The black dashed lines show three isopleths of constant radius about the

centroid. The central galaxy (shown in red) is unaffected, while satellites

(blue ellipses) at each radius are redistributed randomly about the circle. The

relative orientations of the galaxies to the centroid are explicitly maintained

by the rotation.

subhaloes within them has some preferred axis (West & Blakeslee

2000; Knebe et al. 2004; Zentner et al. 2005; Bailin et al. 2008). This

implies that satellite galaxies should be similarly anisotropically

distributed about the centre of their host halo, a conclusion borne

out by the limited amount of data from hydrodynamical simulations

currently available.

To test the impact of this anisotropy we create an artificially

symmetrized version of the galaxy catalogues described in Sec-

tion 2.3. The symmetrization process entails identifying all satellites

associated with a particular halo and applying a random rotation

about the halo centroid. At any particular distance from the centroid

this effectively redistributes the satellites across a spherical shell of

the same radius. We explicitly rotate the galaxy shapes in three

dimensions, such that their relative orientation to the halo centre

is preserved. Without this second rotation (position, then shape)

interpretation of the physical effects at work is difficult, as the

process washes out both the impact of halo asphericity and the

(symmetric) gravitational influence of the host halo on galaxy shape.

A cartoon diagram of this isotropization process is shown in Fig. 1.

Though conceptually very simple, the mathematics of such a

three-dimensional rotation bears some thought. The aim is to

transform the spherical coordinates of each satellite galaxy relative

to the halo centroid as

R → R, θ → θ ′, φ → φ′. (6)

The galaxy shape also requires an equivalent transformation in

order to maintain the relative orientation to the halo centre. As

implemented for this analysis the symmetrization process involves

the following steps:

(i) Starting from the inertia tensor of star particles in a par-

ticular satellite galaxy, we compute a 3 × 3 eigenvector matrix

A = (a, b, c), and a set of three eigenvalues λ = (λ1, λ2, λ3).

(ii) Random position angles cosθ
′
, φ

′
are drawn from uniform

distributions over the range [ − 1/2, 1/2] and [ − π , π ], respectively.

(iii) A rotation matrix is constructed describing the transforma-

tion between the initial and the new positions, such that r′ = Rθ .r.

The calculation of Rθ is described in Appendix B.

(iv) The same transformation described by the rotation matrix Rθ

is applied to each of the three orientation vectors a, b, c, a process

that preserves the relative orientation of the galaxy to its new radial

position vector r′ = (R, θ ′, φ′).
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Modelling IAs: impact of aspherical satellite dsbtns 5335

This leaves us with, for each satellite galaxy in a particular halo,

a new rotated position r′ and an orientation (eigenvector) matrix

A′. The three-dimensional axis lengths λi are unchanged by the

transformation.

The symmetrization process is designed such that it respects the

periodic boundary conditions of the simulation volume. That is,

galaxies in haloes that traverse the box edge are shifted before

rotation to form a contiguous group. In cases where rotation leaves

a galaxy that was within the box outside its edges, it is shifted back

to the opposite side of the volume.

3.3 Two-point correlation functions

In the following we describe a series of two-point statistics used as

estimators for the IA contamination to cosmic shear. All correlation

functions used in this study were computed using the public

HALOTOOLS package6 (Hearin et al. 2017). The most straightforward

(and highest signal to noise) two-point measurement one could make

is that of galaxy clustering in three dimensions. We adopt a common

estimator of the form (Landy & Szalay 1993)

ξgg(r) =
DD − 2DR + RR

RR
, (7)

where DD, RR, and DR are counts of galaxy–galaxy, random–

random, and galaxy–random pairs within a physical separation

bin centred on r. For this calculation we use 20 logarithmically

spaced bins in the range r = 0.1 − L/3 h−1 Mpc, where L is

the simulation box size (100 and 75 for MASSIVEBLACK-II and

ILLUSTRIS-1, respectively). For the purposes of validation, where

possible, we compared our results against analogous measurements

performed using TREECORR
7 (Jarvis, Bernstein & Jain 2004). For

galaxy–galaxy correlations we find sub-percentage level agreement

between the two codes on all scales (ranging from ∼ 0.01 per cent

on the smallest scales to ∼ 0.4 per cent in the two-halo regime with

the default accuracy setting (bin slop = 0.1); the discrepancy is seen

to vanish when the computational approximations of TREECORR are

deactivated.

When considering the impact of alignments on cosmological

observables (ξ±, γ t, and the like), it is natural to consider two-

point functions of IA. Beyond this broad statement, however, it

is not trivial which measurement is optimal for our interests. We

start by considering the most conceptually simple statistics, or the

three-dimensional orientation correlations. We can define two such

terms

EE =
〈

|ê(x) · ê(x + r)|2
〉

−
1

3
, (8)

where ê is a unit eigenvector obtained from the inertia tensor,

pointing along the major axis of the galaxy ellipsoid, and the

angle brackets indicate averaging over galaxy pairs. Intuitively very

simple, a positive EE correlation denotes a tendency for the major

axes of galaxies to align with those of other physically close-by

objects in comoving three-dimensional space. Similarly

ED =
〈

|ê(x) · r̂|2
〉

−
1

3
. (9)

Here r̂ is the unit vector pointing from one galaxy to the other. In

the case of ED positive values indicate radial shearing (that is, a

6v0.6; https://halotools.readthedocs.io
7v3.3.7; https://github.com/rmjarvis/TreeCorr

tendency for the major axis of a galaxy to align with the direction

of a neighbouring galaxy).

Though three-dimensional correlations are illustrative for eluci-

dating the mechanisms at play in the simulation they carry a number

of obvious problems. Not least, they are ‘unobservable’ in any real

sense. Typically lensing studies rely on broad photometric filters

and thus do not have a detailed reconstruction of where galaxies lie

along the line of sight. Even with such information, reconstructing

the shape of a galaxy in three dimensions is difficult to impossible.

We now consider ‘projected’ correlation functions, as a closer

analogue to real observable quantities. We do not, however,

have access to light-cones and ray-tracing information for the

MASSIVEBLACK-II simulations. In the absence of the tools for a

more sophisticated approach, we obtain real-space two-dimensional

statistics, rather, by projecting along the length of the simulation

box.

We define the correlation function of galaxy positions and ellip-

ticities, ξ g+(rp, �) as a function of 2D perpendicular separation rp

and separation along the line-of-sight �. This statistic is constructed

using a modified Landy–Szalay estimator of the form

ξg+(rp, �) =
S+D − S+R

RR
(10)

(see Mandelbaum et al. 2011). By analogy one can construct a

shape–shape correlation function

ξ++(rp, �) =
S+S+

RR
. (11)

In both cases above, R represents the positions of a set of randomized

positions thrown down within the simulation volume. The terms in

the numerator represent shape correlations and are defined as

S+D ≡
1

2

∑

i �=j

e+(j |i), S+S+ ≡
1

4

∑

i �=j

e+(i|j )e+(j |i), (12)

where the indices i, j run over galaxies and e+(j|i) is the tangential

ellipticity of galaxy j, rotated into the coordinate system defined by

the separation vector with galaxy i. With these three-dimensional

correlations in hand, obtaining the two-dimensional versions is

simply a case of integrating along the line of sight. One has

wg+(rp) =
∫ �max

−�max

d�ξg+(rp, �) (13)

and analogously

w++(rp) =
∫ �max

−�max

d�ξ++(rp, �). (14)

Here �max is an integration limit, which is set by the simulation

volume or the depth of the data set in the case of real data. For this

study we adopt a value equal to a third of the simulation box size, or

�max = 33 h−1 Mpc for MASSIVEBLACK-II and �max = 25 h−1 Mpc

for ILLUSTRIS-1. The question of how strongly and on which scales

galaxy two-point functions are affected by finite simulation limits

has been discussed extensively in the literature (see e.g. Power &

Knebe 2006’s fig. 4; also Bagla, Prasad & Khandai 2009 and the

references therein). We also test the impact of this choice directly

using a theory calculation in Appendix C. As seen there, the impact

of missing large-scale modes on IA and galaxy clustering projected

correlation functions is subdominant to statistical error on scales

rp < 33 h−1 Mpc.
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Table 3. Best-fitting parameters for

power-law fits to the anisotropy bias,

obtained from the MASSIVEBLACK-

II galaxy catalogue without splitting

by galaxy type. The fits are performed

on the absolute residual between mea-

surements on the symmetrized and

unsymmetrized correlation functions,

and have the form �α = b�r−a� .

Correlation a� b�

ED 0.809 0.007

EE 1.361 0.002

wg+ 0.782 0.060

w++ 1.265 0.004

3.4 Quantifying the impact of halo anisotropy

To properly assess the impact of a feature in the simulations (and

thus whether it is incumbent on model builders to account for it) it is

useful to have numerical metrics. To this end, we define a quantity

referred to as fractional anisotropy bias

fα(r, z) ≡
[

α(r, z) − α′(r, z)
]

α(r, z)
, (15)

where α refers to a specific two-point function α ∈ (ξ gg, ED, EE,

wg+, w++) and α
′
is its analogue, as measured on the symmetrized

catalogues. This quantity, then, encapsulates the fractional shift in

a given observable due to symmetrization, or equivalently the level

of error introduced by assuming spherical halo geometry when

building one’s IA model.

The reader might note here that while the numerator in equa-

tion (15) might benefit somewhat from correlated noise cancellation,

division by a noisy quantity can reintroduce it. We seek to minimize

this effect by assessing the fractional impact on each correlation

function using smooth fits rather than the measured correlation

functions directly. Power-law relations of the form EE = br−a (and

the equivalent for ED, wg+, and w++) are fit independently to each

correlation function. Visually assessing each of these fits gives us

no reason to believe additional degrees of freedom are warranted by

any of the measurements. We obtain a fractional change in each of

the alignment correlation function of the form fα = (α − α
′
) × xa/b,

where x is the relevant separation (three-dimensional Euclidean r or

projected perpendicular rp) in units of h−1 Mpc. In addition to this,

we also fit a power law to each of the anisotropy bias measurements

of the form fα = b�x−a� . This exercise gives us the fit parameters

presented in Table 3.

3.5 Errors and covariance

For all of the correlations discussed above we estimate the mea-

surement uncertainties using a jackknife algorithm; this entails

splitting the cubic simulation box into three along each axis, then

remeasuring the statistic in question repeatedly with one of the

nine subvolumes removed. The variance of these measurements is

calculated as

〈�α�β〉 =
Njk − 1

Njk

Njk
∑

i=1

[αi − ᾱ]
[

βi − β̄
]

, (16)

where Njk is the number of jackknife volumes and αi and β i represent

generic correlation functions, as measured from the full simula-

tion volume minus subvolume i. For statistics involving random

Figure 2. Upper panel: The galaxy–galaxy correlation function, as a

function of three-dimensional comoving separation before and after halo

symmetrization. The purple and black points are offset horizontally left and

right by the same small interval to aid clarity. Lower panel: The fractional

difference between the symmetrized and unsymmetrized measurements in

the full sample, without satellite–central splitting. The shaded purple region

shows the 1σ variance, as estimated by jackknife resampling the simulation

volume.

points, we generate the appropriate number of samples in the full

100 × 100 h−1 Mpc box and apply the jackknife excision to this

volume before making the measurement. The jackknife technique

provides an approximation for the true variance, the performance

of which is heavily dependent on the survey characteristics and

which of the terms contributing to the covariance are dominant (see

Singh et al. 2017 and Shirasaki et al. 2017 for a demonstration of

this using SDSS mock catalogues). Given that we do not attempt

likelihood calculations or similar exercises where the outcome

depends sensitively on the accuracy of the error estimates, such

methods are considered sufficient for the scope of this study.

Uncertainties on the anisotropy bias fα(r, z) are obtained analo-

gously by measuring α and α
′

with the same subvolume removed

from the symmetrized and unsymmetrized simulations. Note that

some level of bin shifting can be induced by the symmetrization

process, such that the galaxy samples used to measure α and α
′
are

non-identical. Although this is expected to be a subdominant effect,

we test its impact as follows. We repeat the jackknife calculation,

this time using selection masks defined using the unsymmetrized

simulation. That is, the galaxies excluded in each jackknife re-

alization are identical for measurements on the symmetrized and

unsymmetrized simulations. We find the jackknife errors obtained

from this exercise are consistent with the fiducial versions to the

level of ∼1–3 per cent.

4 R ESULTS

4.1 The impact of halo anisotropy on two-point correlation

functions

As a first exercise we present the three-dimensional galaxy–galaxy

correlation ξ gg. There is some amount of existing literature on

such measurements, which provides a useful consistency check

for our analysis pipeline. The results, as measured before and

after symmetrization, are shown in the upper panel of Fig. 2.

The fractional difference, or fractional anisotropy bias, is shown

MNRAS 491, 5330–5350 (2020)
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Modelling IAs: impact of aspherical satellite dsbtns 5337

Figure 3. Two-point alignment correlation functions, as measured from our

fiducial MASSIVEBLACK-II galaxy catalogue. The horizontal axis shows the

separation between galaxy pairs, either in three-dimensional comoving space

(in the case of EE and ED) or as projected into a plane perpendicular to the

line of sight (for wg+ and w++). Purple filled points show measurements on

the unsymmetrized catalogue, which includes the effects of halo anisotropy.

The open blue points show the same measurements on an artificially

symmetrized catalogue, in which satellite galaxies are spherically distributed

around the centre of mass of their host halo. The four statistics shown here

are defined algebraically in Section 3.

in the lower panel. Consistent with the reported findings of van

Daalen, Angulo & White (2012) in the Millennium Simulation, we

find the impact to be at the level of a few per cent on one-halo

scales (r < 1 h−1 Mpc), asymptoting to zero on large scales. One

obvious physical manifestation of halo anisotropy is as a boosted

clustering signal between satellite galaxies. Given that anisotropy is

a property of how satellites sit within their haloes, it is expected (and

observed) that the bias in Fig. 2 should enter primarily at separations

corresponding to the one-halo regime.

Measuring the four IA correlations using the full catalogue we

obtain the measurements shown in Fig. 3. The broad trends here

appear to fit with the simple physical picture. At the most basic

level, where halo symmetrization has an impact, it is to reduce

the amplitude of the IA measurements. The process always acts

to wash out pre-existing signal, and cannot add power. We see

all correlations, but particularly the shape–position type statistics

are most strongly affected on small scales; modifying the internal

structure of haloes primarily affects small-scale alignments, which

is also intuitively correct. It is worth remarking, however, that even

on large scales (> 10 h−1 Mpc), we see some decrement in signal,

which implies halo structure is not entirely irrelevant to large-scale

IAs, a principle supported by some previous studies (e.g. Ragone-

Figueroa & Plionis 2007).

The differences here are non-trivial and there are a number of

competing physical effects at play; to assist in unravelling these

effects we impose a catalogue-level split into central and satellite

galaxies (using the hybrid central flag, as described in Section 2.3.2).

The various permutations of the ED and EE correlation functions

using these two subsamples are shown in Fig. 4. The signal to noise

on wg+ and w++ is sufficiently low that the raw correlation functions

are relatively unenlightening; for completeness they are presented

in Appendix A, but the statistical error makes it difficult to draw

conclusions. Though less useful in the sense of not having a direct

analytic mapping on to the IA contribution to cosmic shear, the

relatively high signal-to-noise and three-dimensional nature of EE

and ED help to build an intuitive understanding of the mechanisms

at work here. In each panel we show four sets of measurements,

corresponding to all possible combinations of satellite and central

galaxies. Note that for the symmetric correlations (EE and w++)

reversing the order of the two samples does not change the

calculation (and so gives identical measurements in the upper right

and upper left subpanels). By construction the cc correlations are

unchanged by symmetrization; we show them here for reference

because they contribute to the total measured signal shown in Fig. 3.

As one might expect, the ED sc correlation (satellite galaxy

shapes, central galaxy positions) is unchanged on the smallest

scales; satellites point towards the centre of their host halo and

the symmetrization preserves that relative orientation. On larger

scales the signal is weakened, eventually reaching a level consistent

with zero, as the shapes of satellites become effectively randomized

relative to the position of external haloes. On scales of a few h−1

Mpc the unsymmetrized measurements represent a combination of

one- and two-halo contributions. When the latter is removed the

signal is diluted but not nulled entirely.

In the case of ED cs (central shapes, satellite positions) we

see a persistent residual signal in the deep one-halo regime after

symmetrization. Though not immediately predicted by the naive

central/satellite picture, such residual correlations could conceiv-

ably arise due to small offsets between central galaxies and the

halo centroid. The symmetrization, then, randomizes the satellite

positions relative to the centroid but leaves some preferred direction

relative to the central galaxy (which is still oriented towards the

former). We test this first by explicitly separating the one-halo

and two-halo contributions to ED to verify that the correlation in

the smallest scale bin is indeed a purely one-halo effect. Second,

we artificially shift galaxies such that the central galaxy’s centroid

coincides exactly with that of its host halo. Remeasuring ED cs

from this counterfactual catalogue, we see the residual small-scale

signal vanishes. More intuitively, on large scales the underlying

tidal field will tend to align central shapes with the positions of

other haloes (and hence their satellites). Tweaking the positions

of satellites within their haloes does nothing to this large-scale

signal.

In the EE sc correlation, symmetrization eliminates correlations

on the very small and large scales, as naively expected. We note

there is a residual signal after symmetrization at intermediate scales,

which is thought to result from interactions between neighbouring

haloes (i.e. a massive halo will cause satellites within it to orient

themselves radially towards it, but also distort the shapes of galaxies

in neighbouring haloes). In principle this should also be seen in EE

ss, but the statistical power of the simulation limits our ability to

detect such effects.
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5338 S. Samuroff, R. Mandelbaum, and T. Di Matteo

Figure 4. Three-dimensional alignment correlation functions, as measured within the MASSIVEBLACK-II simulation volume before and after halo

symmetrization. The upper panel shows the two-point correlation of galaxy shapes and directions, while the lower shows the analogous shape–shape

measurements. The definitions of these correlations can be found in equations (8) and (9). All are shown as a function of comoving distance at redshift zero.

Each of the four subpanels shows a different combination of central and satellite samples (indicated by the letters in the top right; ED sc, for example, indicates

the correlation of the shapes of central galaxies with the relative positions of satellites). In each case, the filled purple points show the fiducial unsymmetrized

measurements and the open blue diamonds show the result of symmetrization by rotating satellites within each halo about the dark matter centre of mass. Note

that the third point in the EE ss correlation is negative (∼ −0.0012 ± 0.0008), and so not visible on a log scale.
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Figure 5. The contribution of halo anisotropy to various alignment

correlation functions. Upper: the absolute difference between the two-

point measurements made on the same simulation volume before and

after halo symmetrization. The solid lines show smooth power-law fits to

each residual. Lower: The fractional residual between symmetrized and

unsymmetrized measurements, as estimated using power-law fits to the

unsymmetrized correlation function. The difference is defined such that

f = (symmetrized−unsymmetrized)/unsymmetrized, and so positive values

indicate an increase in power at a particular scale relative to the idealized

treatment with perfect spherical symmetry.

As is clear from Figs 3 and 4 (and even more so in the additional

measurements shown in Appendix A), lack of statistical power

ensures the errorbars on virtually all of the correlation functions

based on MASSIVEBLACK-II are significant. Comparisons of the sort

attempted here benefit at some level from the fact that the shape

noise properties of the simulated data set are largely unaffected

by symmetrization. Modulo low-level bin shifting in the one-halo

regime, then, one might expect the statistical significance of the

difference between symmetrized and unsymmetrized correlation

functions to be greater than that on either of the measurements in

isolation. As discussed in the previous section, we seek to minimize

the impact of noise by evaluating fα using smooth fits rather than the

measured correlation functions in the denominator of equation (15).

We show the fractional bias in the lower panel of Fig. 5, along with

the absolute residual in the upper panel.

4.2 Robustness of results

4.2.1 Central flagging and choice of symmetrization pivot

In this section we seek to test the explicit choices made during

the course of this analysis, with the aim of demonstrating the

robustness of our results. The most obvious (and controllable)

such choices regard the halo symmetrization process; we chose to

spin galaxies about the dark matter potential minimum. Similarly,

the galaxies labelled as ‘centrals’ are chosen by defining a fixed

boundary at 0.1 R and identifying the most massive galaxy within

that sphere (see Section 2.3.2). This quantity has no clear mapping

Figure 6. The change in the fractional anisotropy bias in the four alignment

correlations discussed in this paper due to various analysis choices. The pink

points show the shift due to symmetrizing satellite galaxies about the central

galaxy instead of the halo centre of mass. The filled green diamonds show

the impact of using a simple geometric definition for ‘central’ galaxies, as

opposed to the combined definition (iii) in Section 2.3.2. The open blue

diamonds show the change induced by using ellipticities and orientations

derived from the underlying dark matter subhalo of each galaxy instead of

the visible component. The reduced χ2/ν, where ν = 5 is the number of data

points in the measurement, is shown in the legend for each measurement. A

small horizontal offset is applied to the points in each bin to aid visibility.

on to observables, and the correspondence to the objects classified

as centrals in real data is non-trivial. We thus rerun our pipeline

twice using slight modifications to these features. That is, we (i)

perform the symmetrization of satellites using the central galaxy of

a halo as the pivot instead of the potential minimum and then (ii)

flag central galaxies by minimizing the Euclidean distance from

the potential minimum within each halo, rather than the more

complicated definition described. The results are shown by the pink

and green points (circles and filled diamonds) in Fig. 6, which

quantify the difference in anisotropy bias when switching to the

modified analysis configuration.

As is apparent here, neither choice has a significant impact on

our results. The reduced χ2 values, shown in each panel, give us

no reason to suspect the deviations from zero are anything more

systematic than statistical noise. We also test the impact of switching

from the basic inertia tensor to a reduced version, wherein the stellar

particles used to compute the moments of a subhalo are weighted

by the inverse square of the radial distance from the centre of mass.

This induces a more significant difference, at the level of δf ∼
−0.4. The interpretation of this result is not totally straightforward.

Dividing by the radial distance in effect imposes circular weighting,

which will bias the resulting projected ellipticity low. Although

the difference in the weight of the wings of a galaxy relative to

its core impacts how strongly it is affected by symmetrization,

differences in the effective shape bias will also produce such effects.
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5340 S. Samuroff, R. Mandelbaum, and T. Di Matteo

The magnitude and direction of the shift noted here is approximately

the same as that seen across several mass bins by Tenneti et al.

(2015a, see their fig. 5; compare black and blue solid lines). This,

while not definitive, does suggest that other factors contributing

to the difference in the fα are likely subdominant to the shape

bias.

4.2.2 Comparing MASSIVEBLACK-II and ILLUSTRIS

Though grouped under the umbrella term ‘hydrodynamical sim-

ulations’, the choices that go into building a data set such as

MASSIVEBLACK-II can significantly affect its observable properties.

A small handful of comparable simulations exist in the literature,

most notably HORIZON-AGN (Dubois et al. 2016), ILLUSTRIS (Vogels-

berger et al. 2014; and as of 2018 December also ILLUSTRISTNG,

Nelson et al. 2018), EAGLE (Schaye et al. 2015), and COSMO-OWLS

(Le Brun et al. 2014).

In the recent past a number of studies have set out to explore

the behaviour of IA between galaxies in these mock universes

(see Chisari et al. 2015; Codis et al. 2015a; Velliscig et al. 2015;

Chisari et al. 2016; Tenneti, Mandelbaum & Di Matteo 2016) with

not entirely consistent results. Chisari et al. (2015), for example,

report a dual IA mechanism in early-type and late-type galaxies,

with the latter aligning tangentially about the former, and early-

type (spheroidal) galaxies tending to point towards each other. Ad-

dressing the same question using the public MASSIVEBLACK-II and

ILLUSTRIS data, however, Tenneti et al. (2016) find no such duality

in either simulation. No conclusive answer has been provided as to

why these data sets disagree, although there has been speculation

(Chisari et al. 2016) that it is a product of differing prescriptions for

small-scale baryonic physics (see also Soussana et al. 2019, whose

findings appear to support this idea). Similarly, it has been noted

in HORIZON-AGN that as the mass of the host halo declines, there is

a transition from parallel alignment between galaxy spins and the

direction of the closest filament to anti-alignment. Such a shift is

expected based on observational data (Tempel & Libeskind 2013)

and tidal torque theory (Codis, Pichon & Pogosyan 2015b), but has

not been reported in MASSIVEBLACK-II (Chen et al. 2015). More

recently, and somewhat in tension with earlier results, Krolewski

et al. (2019) report a transition from alignment to anti-alignment in

dark matter subhalo shapes in both ILLUSTRIS and MASSIVEBLACK-

II. Notably, in the former case a very similar sign flip is seen in

stellar shapes, but this feature is not seen in the latter. Though

we highlight the discrepancies here, it is worth bearing in mind

that despite differing considerably in aspects of their methodology

there is consistency between the bulk of IA measurements on

hydrodynamical simulations, at least up to a constant amplitude

offset.

Given that we have no prima facie reason to believe one simu-

lation over another, we will consider such variation as a source of

systematic uncertainty and seek to constrain it as best we can. To this

end we apply our pipeline to the public ILLUSTRIS-1 data set. This

requires some small changes in our treatment of cuts and periodic

boundary conditions to account for differences in mass resolution

and box size, but the comparison is otherwise straightforward.

We show the fractional anisotropy bias in the resulting correlation

functions in Fig. 7.

The simplest case, that of galaxy–galaxy clustering, is shown in

the upper left-hand panel. The two measurements are consistent to

within statistical precision. It is worth bearing in mind here that we

should not expect the two to be identical as the galaxy samples differ

Figure 7. A comparison of anisotropy bias entering various correlation

functions, as measured on the MASSIVEBLACK-II and ILLUSTRIS-1 galaxy

catalogues. We show here (from top) 3D galaxy–galaxy, 3D ED, and

projected galaxy-tangential shape (wg+). In each panel the purple di-

amonds indicate MASSIVEBLACK-II, while the pink crosses show mea-

surements based on ILLUSTRIS-1. Note that we omit the EE and w++
correlations here; though these measurements were made on ILLUSTRIS-

1, the signal to noise is sufficiently low as to make the comparison

unenlightening.
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Modelling IAs: impact of aspherical satellite dsbtns 5341

slightly in comoving number density and background cosmology.

Within the bounds of our jackknife errorbars the impact of halo

symmetrization is likewise consistent in the IA correlations and

enters on the same scales in the two data sets. Though one can see

minor differences in the alignment correlation functions themselves

(not shown here) our results do not indicate any clear discrepancy

in the anisotropy bias between MASSIVEBLACK-II and ILLUSTRIS-1.

There are known issues with the two simulations; the AGN feedback

prescription in ILLUSTRIS-1, for example, is known to overestimate

the magnitude of the effect (Vogelsberger et al. 2014). Likewise the

absolute alignment amplitude in MASSIVEBLACK-II has been shown

to be overpredicted relative to data (Tenneti et al. 2016). Such flaws

affect the stellar mass function and other basic sample statistics but,

notably, do not translate into differences in anisotropy bias.

4.2.3 Stellar versus dark matter shapes

As discussed in Section 3.1, use of the stellar component for

measuring galaxy shapes is a well-motivated analysis choice, obser-

vationally speaking; however advanced the measurement algorithm,

we are constrained to measuring the shear field using luminous

matter at the positions of galaxies. A natural question, however, is

whether the IA signal (and indeed the anisotropy bias) imprinted in

galaxy shapes accurately reflects the properties of the underlying

dark matter subhaloes. We test this by rerunning our measurements

using orientations and ellipticities derived from the dark matter

particles associated with each galaxy. The resulting shift δfα is

shown by the open blue points in Fig. 6. For each statistic the reduced

χ2 per degree of freedom is, again, shown in the legend. As with

the other tests in this section we report no statistically significant

shift. That is, though the raw alignment statistics measured with

visible galaxy shapes and dark matter subhalo ellipticities differ,

the anisotropy bias does not. This is intuitively understandable,

given that the positions and orientations of dark matter subhaloes

mirrors relatively closely that of visible satellite galaxies.

4.3 Dependence on halo mass

Though motivated by simulation convergence, the precise cuts

applied to the fiducial catalogue (nm < 1000, nst < 300; see

Section 2.3) are somewhat arbitrary. Given the constraints of the data

set (no ray-tracing or shape measurements, no reliable photometric

fluxes, and galaxies sitting in a limited number of well-spaced

redshift slices) constructing a realistic sample representative of

a real lensing survey is not straightforward. One factor we can,

however, test is the dependence on galaxy (subhalo) mass. This

is useful in the sense that in real data the finite flux limit will in

effect impose a lower mass cut-off at fixed redshift; if our results are

robust to the exact cut-off, it suggests more general applicability in

the practically useful context of a shape sample in a modern lensing

survey.

To test this we construct a supersample of the fiducial catalogue

with a lower dark matter mass cut (300 particles). The IA corre-

lations are remeasured repeatedly with a series of increasing mass

thresholds. The resulting fractional anisotropy biases are shown in

the upper panel of Fig. 8. The measurements here are designed to

illustrate the evolution of the large-scale anisotropy bias, and so are

limited to scales larger than 1 h−1 Mpc, where fα is approximately

constant (see the lower panel of Fig. 5). The lack of a strong

correlation here is worth remarking on; given the unrepresentative

nature of our data, it offers some indication that our results might

be applicable beyond this particular simulated galaxy sample.

Figure 8. Upper panel: Fractional anisotropy bias as a function of the

lower subhalo mass threshold applied to the catalogue. The different point

styles show the four alignment statistics discussed in this work. In order to

reduce fα(r) into a single number, the measured fractional difference in the

correlation functions is averaged on scales larger than 1 h−1 Mpc, in which

regime it is approximately constant. The grey shaded region corresponds

to the fiducial cut at 1.1 × 1010 h−1 M�, or 1000 dark matter particles.

Subhaloes below this threshold are discarded to ensure convergence in

the three-dimensional inertia tensor calculations. A small horizontal offset

has been applied to aid visibility. The underlain histogram shows the

distribution of galaxy masses in the uncut catalogue. Lower panel: The

variation in satellite fraction with lower mass cut. The purple line show the

fiducial central flag definition and the shaded band shows the 1σ jackknife

uncertainty.

To examine the evolution of the small-scale anisotropy bias with

halo mass we perform a similar exercise as the above; where before

we averaged fα(r) on large scales to obtain a single number, our

summary statistic is now the best-fitting power-law slope ∂lnf/∂lnr,

fit on scales below 3 h−1 Mpc. We have seen that the large-scale

amplitude of the anisotropy bias is relatively stable to the sample

selection. The idea now is to test whether the shape of the scale-

dependent bias is similarly stable. This is shown in the left-hand

panel of Fig. 9. In contrast to the previous result, we now see hints

of a correlation. All four of the correlations show a gradual but

consistent increase in the slope of the anisotropy bias as the mass

threshold is raised. This can be interpreted as follows. There is

evidence in the literature that the three-dimensional dark matter

distribution of massive haloes tends to flatter that of smaller haloes

MNRAS 491, 5330–5350 (2020)
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5342 S. Samuroff, R. Mandelbaum, and T. Di Matteo

Figure 9. Gradient of the small-scale fractional anisotropy bias ∂lnf(r)/∂lnr, as a function of minimum subhalo mass (left) and of redshift (right). As above,

the four point styles indicate different alignment correlations. The shaded band in the left-hand panel shows the fiducial mass cut used in this paper. Note that

the points are slightly offset from each other along the horizontal axis to aid visibility.

(Jing & Suto 2002; Springel, White & Hernquist 2004; Allgood

et al. 2006; Schneider, Frenk & Cole 2012). It follows, then, that

the satellite distributions should be more concentrated at small

azimuthal angles (also borne out in the literature; see Huang et al.

2016; van den Bosch et al. 2016), and so the small-scale ED cs

signal is stronger. This signal is strongly scale dependent, and is

also washed out entirely by symmetrization. This competes with

ED sc on small scales; in massive haloes ED cs makes up a larger

fraction of the overall alignment signal, and so the anisotropy bias

is exhibits a stronger scale dependence.

One can also think about the question in terms of one- and two-

halo contributions. At high masses, the small scale anisotropy bias

is dominated by intra halo central–satellite interactions, which fall

off rapidly with separation. As the mass cut shifts downwards,

one is preferentially including galaxies in low-mass haloes, which

induces a net reduction of the mean satellite fraction. Since the host

haloes of low-mass galaxies contain very few satellites, the impact

of the symmetrization process enters only at the level of two-halo

interactions, which scale more gradually with separation. This is

true for both shape–shape and shape–position correlations.

The above arguments provide, at least in part, an explanation for

the apparent mass dependence seen in Fig. 9.

4.4 Redshift dependence

The results presented in the earlier sections of this paper are based

exclusively on the lowest simulation snapshot, at z = 0.062. We

now explore how our findings change as one approaches redshifts

more typically used for cosmic shear measurements.

The catalogue building and symmetrization pipeline is applied

independently to three snapshots at redshifts z = [0.300, 0.625,

1.000], in addition to the fiducial data set at z = 0.062. Though this

will not capture correlations between measurements at different

redshifts, it allows us to make a simple comparison of the relative

importance of satellite anisotropy in different epochs. The result

is shown in Fig. 10. Note that in order to condense a fractional

anisotropy bias, naturally measured as a function of scale, into

a single number we again average f(r) on scales r > 1 h−1 Mpc.

This cut is intended to isolate the two-halo regime, within which

the effect of symmetrization is roughly constant. As before, our

Figure 10. The redshift evolution of large-scale anisotropy bias. Each

bias point for a specific correlation function at given redshift is the mean

over comoving scales larger than 1 h−1 Mpc, where f(r) is approximately

constant. Note that we do not show binned values here; the discrete redshifts

are defined by the four simulation snapshots (see Table 2) and are exact and

known precisely, meaning the horizontal errorbar is effectively zero. The

points at each redshift are offset slightly from one another along the x-axis

to aid visibility.

conclusions here are limited by the statistical power of the data set.

The ED correlation and, to a lesser extent, wg+ do however offer

a meaningful constraint. In these cases we find a potential weak

positive redshift dependence over the range in question. Linear

fits to the four points shown in Fig. 10 give slopes of mED =
0.05 ± 0.03 and mg+ = 0.20 ± 0.03 for ED and wg+, respectively.

No clear evolution is seen in fEE and f++, though the errorbars are

also consistent with a moderate correlation (of either sign).

We also fit a power law to the small-scale fractional anisotropy

bias fα(r|r < 3h−1 Mpc) at each redshift. This exercise is entirely

analogous to the earlier test for dependence on the shape of f(r) on

the halo mass threshold. The result is shown in the right-hand panel

of Fig. 9. As in Fig. 10, we see no evidence of coherent evolution

in the scale dependence of the bias with redshift.

MNRAS 491, 5330–5350 (2020)
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It is worth remarking here that the catalogue selection mask is

applied independently in each redshift. That is, the composition of

the sample changes between snapshots, and so apparent redshift

dependence in the anisotropy bias can arise either from genuine

evolution in a fixed set of objects or from differences in the ensemble

properties of the galaxies surviving mass cuts. Disentangling these

two effects would require access to MASSIVEBLACK-II’s merger

history (in order to track individual subhaloes between snapshots)

and is considered beyond the scope of the current analysis.

5 IM P L I C AT I O N S F O R C O S M O L O G Y

Though assessing the impact of symmetry on the alignment

correlation functions is qualitatively useful for demonstrating a

physical effect, it says nothing about the penalties for failing to

model that effect. That is, what we ultimately wish to know is

how biased would future cosmology surveys be were they to rely

on a spherically symmetric model for IAs. If a spherical model

inaccurately describes reality, but does not significantly bias the

cosmological information in small-scale shear correlations, then

most cosmologists would consider it sufficient. It is to this question

we turn in the following section. To this end we perform a simulated

likelihood analysis along the lines of Krause et al. (2017) using

mock lensing data designed to mimic a future LSST-like lensing

survey. The key ingredients are detailed below. Where it is necessary

to assume a fiducial cosmology, we adopt the best-fitting Planck

2018 �CDM constraints (Planck Collaboration VI 2018), pcos =
(�m, As, ns, �b, h) = (0.311, 2.105 × 10−9, 0.967, 0.049, 0.677).

5.1 Mock cosmic shear data

We set-up our synthetic data vector as follows. We first use the

public Core Cosmology Library8 (CCL; Chisari et al. 2018a) to

construct source redshift distributions. We assume eight redshift

bins over the range z = 0.20–2.75 with Gaussian photo-z dispersion

σ z = 0.05. In addition, we superpose Gaussian outlier islands

centred on random points drawn from the initial smooth p(z) in each

bin. One should note that this is not a rigorous quantitative error

prescription (though it is conceptually similar to the catastrophic

outlier implementation of Hearin et al. 2010). The point, however, is

to generate qualitatively realistic p(z) with overlapping non-analytic

tails, which may be salient when considering the impact of IAs.

The resulting distributions are shown in Fig. 11. We then use the

Boltzmann solver CAMB (Lewis, Challinor & Lasenby 2000) to

generate a matter power spectrum at the fiducial cosmology. Non-

linear corrections are calculated using HALOFIT (Takahashi et al.

2012). With the mock p(z), this is propagated through the relevant

Limber integrals to generate C(�)s and then Hankel transformed to

correlation functions ξ±(θ ). To model the covariance of these data

we use a public version of the COSMOLIKE
9,10 code (Krause & Eifler

2017), assuming a constant shape dispersion σ e = 0.25 per bin and

a total area of 18 000 square degrees. Given the limited aims of this

exercise we consider a (real-space) Gaussian covariance matrix to be

sufficient. Omitting higher order covariance contributions (e.g. non-

Gaussian and supersample terms, and the impact of survey masks;

see Takada & Hu 2013; Krause et al. 2016; Barreira, Krause &

Schmidt 2018; Troxel et al. 2018b) is expected to translate into an

8v1.0.0; https://github.com/LSSTDESC/CCL
9https://github.com/CosmoLike/lighthouse cov
10https://github.com/CosmoLike/cosmolike light

Figure 11. The mock photometric redshift distributions used in our simu-

lated likelihood analysis. The sample is distributed among eight bins in the

range z = [0.20–2.75] with number densities ng = (3.3, 3.1, 3.0, 1.5, 1.5,

1.0, 0.5, 0.5). The bounds of these bins are shown by the coloured bands.

underestimation of one’s sensitivity to the smallest scales. This in

turn will reduce the impact of small-scale mismodelling. In this

sense, the results presented in the following should be treated more

as a lower bound on the possible bias than a rigorous numerical

prediction.

To produce the IA contribution to these data we first compute

the GI and II power spectra according to the NLA Model. This

prescription is assumed to capture the large-scale IA correlations

well; we modify it on small scales using a simple procedure designed

to mimic the impact of erroneously assuming halo symmetry. The

measurements of wg+ and w++ on the simulations are transformed

into IA power spectrum using the relation

PδgI(k) = −
∫

drp2πrpJ2(krp)wg+(rp), (17)

and analogously

PII(k) =
∫

drp2πrp

[

J0(krp) + J4(krp)
]

w++
(

rp

)

, (18)

where w++ and wg+ are the (noisy) measured correlation functions

from MASSIVEBLACK-II and Jν is a Bessel function of the first

kind of order ν (see appendix A of Joachimi et al. 2011 and

Mandelbaum et al. 2011’s equation 7). These spectra are computed

twice: first using the unsymmetrized measurements of w++ and

wg+, and then using shifted versions corresponding to the maximum

difference allowed by the jackknife errorbars on f++ and fg+.

This yields difference templates �PGI(k) and �PII(k), which are

applied to the NLA GI and II power spectra generated from theory.

Note that we use the templates derived from the lowest redshift

snapshot to modify the IA spectra at all redshifts. Given the lack

of systematic variation seen in Figs 9 and 10 we consider this

a reasonable decision. The resulting modified power spectra are

shown in Fig. 12. It is worth reiterating here: these templates are

not accurate prescriptions for small-scale IA suitable for forward

modelling, but simply a quantification of the maximum impact this

systematic could have, given our results from the previous section.

MNRAS 491, 5330–5350 (2020)
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5344 S. Samuroff, R. Mandelbaum, and T. Di Matteo

Figure 12. Theory power spectra at z = 0 used for constructing our mock

lensing data. The dashed lines show the baseline non-linear alignment model

prediction at the fiducial cosmology. The combined power spectra including

a modification at high k to account for the worst-case impact of assuming a

spherical halo model are shown by the dotted lines. For reference we show

the z = 0 matter power spectrum at the same cosmology in purple (solid).

Table 4. Priors and parameter biases derived from the mock analysis

described in this section. The rightmost two columns show the bias in

the mean value of each parameter, as a fraction of the 1σ width of the

marginalized 1σ posterior distribution, using two sets of scale cuts. The

rows in the lower part of the table are nuisance parameters (from the top,

photometric redshift error, shear calibration bias, IA amplitude, and IA

redshift power-law index).

Parameter Prior �p/σ p �p/σ p

(Conservative) (Optimistic)

As U(1.1, 3.0 × 10−9) 0.00(4) 0.84

ns U(0.5, 1.5) −0.29 −3.42

h U(0.4, 0.9) 0.18 −1.60

�m U(0.25, 0.40) −0.16 0.22

�b U(0.01, 0.10) −0.11 −1.96

w U(− 4.00, −0.33) −0.01 1.42

�ν h2 δ(0.0006155) 0 0

�zi N (0.001, 0.012) see text see text

mi N (0.001, 0.012) see text see text

AIA U(− 6, 6) −0.33 −1.38

ηIA U(− 6, 6) −0.13 −2.10

5.2 Simulated likelihood analysis

We perform a mock likelihood analysis on the contaminated data

(constructed using the ‘NLA + HM Worst’ spectra from Fig. 12).

The baseline analysis includes 18 nuisance parameters, in addition

to six cosmological parameters pcos = (As, ns, �m, �b, h,w), fol-

lowing the broad methodology set out by Krause et al. (2017). We

adopt priors, as set out in Table 4, which are designed to mimic the

specifications of a future LSST-like lensing survey.

The matter power spectrum is computed at each point in pa-

rameter space using CAMB, with non-linear modifications from

HALOFIT. To explore the posterior surface we use the EMCEE
11

(Foreman-Mackey et al. 2013) Metropolis–Hastings algorithm, as

11dfm.io/emcee

implemented in COSMOSIS12 (Zuntz et al. 2015). To ensure the chains

presented in this work are fully converged (after burn in) we apply

the following criteria: (i) the parameter values, plotted in order of

sampling, appear visually to be random noise about constant mean

(i.e. with no residual direction or systematic variation in scatter)

(ii) if the chain is split into equal halves, the projected 1D posterior

distributions evaluated using the two pieces do not significantly

differ. Each of the chains used has a total of 1.5–2.0 M samples, of

which approximately 15 per cent survive burn in.

The IA signal is modelled using the two-parameter NLA model

implemented by Troxel et al. (2018a), which differs from the input

IA model due to the small-scale modifications described in the

previous section. Note that this model includes a redshift scaling

of the form [(z + 1)/(z0 + 1)]−ηIA , with a fixed pivot redshift z0 =
0.62.

The scale cuts used in this analysis follow the basic methodology

of Troxel et al. (2018a). That is, we compute our shear data vectors

at a fiducial cosmology first using HALOFIT alone, and then using

the same matter power spectrum, but rescaled to mimic the most

extreme scenario of baryonic feedback in a suite of OWLS AGN

simulations (van Daalen et al. 2011). The minimum angular scale to

use in our analysis for each correlation function is set to ensure the

fractional difference in the two simulated versions of the data vector

|�ξ
ij
± |/ξ halofit,ij

± < 0.01.13 This value is calculated for each bin pair

ij and results in θmin
+ = 2.69 arcmin and θmin

− = 39.91 arcmin in

the uppermost autobin correlations of ξ+ and ξ−, respectively. For

the purposes of forecasting, we will consider a second scenario

in which more (but not all) of the shear–shear data are included.

In this scenario, the minimum angular separation is rescaled such

that θ
min,ij
± → 1

4
θ

min,ij
± . In the analysis configuration described, with

eight redshift bins and 50 angular bins per correlation, this increases

the number of data points included in the analysis from 1252 to 1879.

We refer to the two sets of scale cuts respectively as ‘conservative’

and ‘optimistic’ cases.

For reference, the first scenario we will consider is one in which

we neglect to model the impact of IAs on any scale. With the

contaminated data described above and the optimistic scale cuts,

this results in the blue contours in Fig. 13. Though it has been

demonstrated elsewhere that neglecting IAs causes non-negligible

parameter biases (Krause et al. 2016; Blazek et al. 2017; Troxel

et al. 2018a), and this is clearly not a realistic analysis option, it is

illuminating as a simple baseline case, with which to compare the

size and direction of the biases in the following.

We next imagine a slightly more realistic scenario in which

the optimistic cuts described above are employed. In this (purely

hypothetical) set-up, we assume that we can model baryonic physics

and non-linear structure formation perfectly; for small-scale IAs

we imagine that we are using a halo model that assumes spherical

symmetry, in a way analogous to the way HALOFIT has been used for

non-linear growth in the past. This, again, is not an exact prescription

but rather an illustration of the (potentially biased) information

content of the small-scale shear correlations. The forecast results

of such an analysis are shown by the solid purple contours in

Fig. 13. Unfortunately the small-scale IA error in this scenario

is sufficiently large to induce cosmological biases of >1σ (see

12https://bitbucket.org/joezuntz/cosmosis
13This tolerance differs slightly from the value of 2 per cent chosen by Troxel

et al. (2018a) for DES Y1. The greater stringency of the value adopted here is

intended to reflect the improvement in statistical precision of future surveys

relative to the current generation.
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Figure 13. Constraints from artificially contaminated shear data, under

different analysis configurations. The same mock data are used in all cases,

modified in such a way to mimic the error caused by using a model for

small-scale IAs that neglects satellite anisotropy. The blue contours show a

case in which no attempt is made to model IAs (i.e. AIA is fixed at zero).

The purple contours show the same analysis, but also marginalizing over a

free IA amplitude and redshift power-law index. In green (unfilled) we show

the same result using stringent scale cuts, derived from baryonic simulations

(discussed in Section 5.2), to mitigate the impact of the insufficient IA model

on small scales.

the ‘optimistic’ column in Table 4). Most notably, we see shifts

in the best constrained parameters �S8 = 1.4σ , �w = 1.5σ .

Although such marginal shifts might be dismissed in comparison

with other potentially larger systematics, it is worth bearing in mind

that this is an idealized model. Indeed, for a single systematic,

a ∼1σ shift is a non-trivial portion of the allowed error budget

for an experiment like LSST. It is also worth remembering that

this toy model neglects features such as non-Gaussian covariances,

which will increase rather than reduce sensitivity to small-scale

mismodelling. Interestingly, in the 24-dimensional parameter space

the bias is not entirely (or even predominantly) absorbed into the IA

model; significant (several σ ) compensatory shifts in the photo-z

nuisance parameters are seen, particularly in the lowest redshift bin.

It is worth remarking here that this is precisely why interpretation

of IA constraints is almost always non-trivial; the interplay with

photo-z error is often complex and one form of mismodelling can

very easily mimic the other. We reiterate that IAs are being modelled

here, but that the two-parameter NLA model neither matches the

input IA signal exactly nor is flexible enough to compensate fully

for the discrepancy by absorbing it into an effective amplitude.

Finally, we consider the case in which IAs are again mismodelled,

but in combination with more stringent set of scale cuts. Under such

an analysis we obtain the green (unshaded) contours in Fig. 13.

The IA-induced parameter biases are seen to dwindle to semi-

acceptable levels (<1σ , see the first column of Table 4). This

result is reassuring, but somewhat expected, given that these cuts

are conservative by construction, and designed to compensate for

what is known to be an incomplete model of the physics entering

the small-scale matter power spectrum. One should note that the

elimination (or, at least in large part, mitigation) of bias comes

with a concurrent loss of cosmological information. The naive gain,

evidenced by the visual comparison of the purple and green contours

in Fig. 13 in this case is relatively small. To more meaningfully

assess the degradation in a multidimensional parameter space we

evaluate the ratio R = (|C′
cos|0.5 − |Ccos|0.5)/|Ccos|0.5, where Ccos

and C′
cos are the (6 × 6) covariance matrices of cosmological

parameters from the two Monte Carlo chains. This gives a value

of R = 17.7, which is suggestive of a greater value in the small

scales than suggested from the projected contours in Fig. 13.

6 D I SCUSSI ON AND C ONCLUSI ONS

We have used 113 560 galaxies from the MASSIVEBLACK-II sim-

ulation to test the impact of halo anisotropy on the galaxy IA

signal. MASSIVEBLACK-II is one of a handful of high-resolution

hydrodynamical simulations in existence to date and encompasses

a comoving cubic volume of length 100 h−1 Mpc. Using artificially

symmetrized copies of the galaxy catalogues, we have found a

reduction in power in the galaxy–galaxy correlation of a few per cent

on scales ∼ 1 h−1 Mpc, increasing to ∼ 10 − 15 per cent in the

deep one-halo regime. We have shown the impact on alignment

correlations to be significantly greater on all physical scales. Though

our ability to quantify this effect is severely limited by the statistical

precision afforded by the finite simulation volume, our results point

to a difference in measured alignment correlations of the order of

tens of per cent or more, well into the two-halo regime.

An IA model built on the assumption of spherical satellite

distributions within dark matter haloes would, then, underestimate

the strength of both GI and II IA correlations considerably. This

clearly has implications if we wish to use such a model to unlock

the cosmological information on small scales in future lensing

surveys, below the regime for which marginalizing over an unknown

amplitude parameter would be sufficient. We have described a series

of robustness tests, designed to demonstrate the validity of our

results beyond the immediate context of this analysis. To the best

of our ability we have shown that our findings are independent

of the various choices made in building our galaxy catalogues

and the subsequent investigation based on them. In an additional,

higher level, validation exercise we have also demonstrated that

applying the same analysis pipeline to two different hydrodynamical

simulations with different baryonic prescriptions yields consistent

results within the level of statistical precision. We have further

tested for dependence on redshift of this effect, and found no

statistically significant variation across four snapshots in the range

z ∈ [0.062–1.000]. Although this is shallower than contemporary

lensing surveys, it is a sufficient range to allow detection of even a

relatively slow systematic evolution were it to be present. Testing

the impact of the lower dark matter mass cut-off the galaxy sample,

we have found no clear systematic change in anisotropy bias as the

lower threshold is raised.

In a final strand of this analysis we have propagated the impact

of halo anisotropy into a set of mock cosmic shear data. These

simulated data are ‘contaminated’ in such a way to mimic the

impact of mismodelling the IA signal using a spherically symmetric

halo model. Assuming a lensing survey with LSST-like number

densities, and applying optimistic scale cuts, somewhat looser

than those used in the Dark Energy Survey Y1 cosmic shear

cosmology analysis, we have found biases in S8 and w of 1.4σ

and 1.5σ , respectively. Adopting more stringent cuts following the

prescription of DES Y1 (adjusted for differences in the redshift

MNRAS 491, 5330–5350 (2020)
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distributions) the cosmological bias is seen to reduce to less than

1σ on all parameters, but at the cost to the volume of the constraints

in the six-dimensional cosmological parameter space of a factor R =
17.7. It is worth noting that this is a simplified toy model scenario,

intended to illustrate the effects of IA mismodelling alone.

Though the analysis presented here focuses on cosmic shear,

ξ+ and ξ− are not the only statistics affected by IAs. Future

cosmology studies will likely use shear as part of a joint analysis

alongside galaxy–galaxy lensing and, potentially, cluster lensing.

The extrapolation of our findings to such an analysis is non-trivial,

and a more comprehensive forecasting project would be required

to quantify the impact of halo anisotropy. Given the scope of this

paper, however, it is sufficient to demonstrate that modelling errors

of this sort induce a non-negligible cosmological bias for at least

one commonly used cosmological probe. Our analysis does not

include non-Gaussian (trispectrum) contributions to the covariance

matrix, which become significant on small scales. This will affect

the exact size of the biases presented in the previous section, but is

not expected to alter the broad conclusions of the work.

It is also worth bearing in mind that a number of other poorly

understood effects become relevant on the smallest scales, including

non-linear growth, baryonic feedback, and beyond first-order galaxy

bias. Even if one were to build a sufficiently accurate small-scale

IA model, advances must be made in modelling or mitigating these

other systematics if we are to successfully access the informa-

tion in small-scale shear and galaxy–galaxy lensing correlations.

Moreover, even given accurate models for all small-scale effects,

it is quite possible that parameter degeneracies would emerge that

mimic power in the small-scale IA correlations. As with all high-

dimensional inference problems, this is a complicated subject that

requires careful consideration before any cosmological analysis that

includes small angular scales can proceed.
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A P P E N D I X A : A D D I T I O NA L A L I G N M E N T C O R R E L AT I O N FU N C T I O N S

In this appendix we present some additional correlation functions; these were not included in the main body of the paper due to the low

signal to noise of the measurements and qualitative agreement with their (simpler) ED and EE counterparts. They are shown in Fig. A1 for

completeness.

As in the EE case, w++ is symmetric, and as such the two upper panels of the bottom section of this figure are identical by construction.

Likewise, the purple and blue points in the cc (bottom right) panels are numerically identical (since symmetrization leaves the positions and

shapes of central galaxies unchanged).

Figure A1. Projected alignment correlation functions, as measured within the MASSIVEBLACK-II simulation volume before and after halo symmetrization. The

two panels show (left) galaxy–shape and (right) shape–shape measurements as a function of comoving separation perpendicular to the line of sight. Each of

the four subpanels shows a different combination of central and satellite samples. In each case, the purple dots show the fiducial unsymmetrized measurements

and the open blue diamonds show the result of symmetrization by rotating satellites within each halo about the dark matter potential minimum.

MNRAS 491, 5330–5350 (2020)
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APP ENDIX B: A N A LGORITHM FOR ISOTRO PI ZI NG THREE-DI MENSI ONAL POSI TI ONS

The task of isotropizing objects in three-dimensional space, though apparently trivial at first glance, is very easy to mishandle. Beyond the

mathematics of the per-object rotation itself, one must be careful that the rotation itself does not imprint some preferred direction in the

resulting distribution of object positions. Defining a random rotation axis direction φ, θ and a random rotation about that axis α, will leave

one with a non-isotropic distribution of points (since the process favours small rotation angles). This is true even if φ and θ are correctly

defined θ = 2πu2 and φ = arccos(2u1 − 1), where u1 and u2 are random draws from uniform distributions ui ∈ [0, 1]. In the following we

present a recipe for transforming a distribution of points with some preferred direction into an isotropic distribution about a centroid position

rcent. A schematic diagram of this operation is shown in Fig. B1.

As described in the main text of this paper, we first define a new position r′ = (R, φ′, θ ′), where φ
′
and θ

′
are drawn from the distribution

U(0, 2π ). From these two positions, prior to and post-rotation, one can calculate an orthogonal three vector

V = r × r′/N, (B1)

where N = |r × r′| is a normalization constant. This defines an axis, about which a rotation can be defined to carry a point from r to position

r′. That angle in the two-dimensional plane defined by r and r′ is given by

α = arccos

(

r · r′

|r||r′|

)

. (B2)

With the vector V = (vx, vy, vz) and angle α we have the ingredients necessary to construct a rotation matrix. In three dimensions this is

given by

Rθ =

⎛

⎝

cos α + uxux(1 − cos α) uxuy(1 − cos α) − uz sin α uxuz(1 − cos α) + uy sin α

uyux(1 − cos α) + uz sin α cos α + uyuy(1 − cos α) uyuz(1 − cos α) − ux sin α

uzux(1 − cos α) − uy sin α uzuy(1 − cosα) + ux sin α cos α + uzuz(1 − cos α)

⎞

⎠ (B3)

This rotation matrix can then be applied identically to rotate the shape vectors of a galaxy, such that the orientation relative to the centre of

rotation is maintained: a′ = Rθ · a. An implementation of this algorithm and simple numerical examples of its application can be found at

https://github.com/McWilliamsCenter/ia modelling public.

Figure B1. Schematic diagram illustrating the symmetrization algorithm described in Appendix B, as applied to a single galaxy. The galaxy with initial

position r (the rightmost blue oval) is assigned a new position r′ at the same distance from the halo centre. The two position vectors r and r′ define a rotation

angle α in their two-dimensional plane (shown in purple) and an orthogonal rotation axis V. These in turn can be used to calculate the rotation matrix that

describes the mapping between the old and the new positions.
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APPEN D IX C : IMPAC T O F FINITE SIMULATI ON VOLUME

It is widely recognized in the literature that for a cosmological simulation of finite volume, measurements on certain scales are unreliable.

In general, the imposition of a sharp cut-off at the edges of the box is equivalent to systematically cutting out small-k modes; on the largest

scales, then, we expect to see a deficit in power in the measured two-point functions. In this work, in order to mitigate the impact of this

effect, we adopt a maximum scale of rp = 33 h−1 Mpc, or a third of the MASSIVEBLACK-II box length. We test the validity of this choice

as follows: theory IA and galaxy clustering power spectra are first generated using CAMB at a fiducial cosmology. We then truncate those

power spectra at a given kmin, before propagating them through the appropriate Bessel integrals to given theory predictions for wg+, w++, and

wgg. The difference between these theory correlation functions with a kmin corresponding to the simulation box size, and those extending to

k = 10−5 h−1 Mpc then gives us an estimate for the impact of this truncation on different projected scales. The results for the lowest redshift

snapshot are shown in Fig. C1. The three coloured lines here show the three different types of correlation function. Naturally, given that they

have different Bessel kernels, we expect the scales on which the truncation impacts to differ slightly. As one might expect, the impact of the

missing k modes is to suppress the correlation functions, and the impact is greatest on the largest scales. Strikingly, due to the Bessel kernels

used in converting the ++ correlation into physical space, the impact is relatively large even on scales ∼ a few Mpc. The impact on wg+
appears to be significantly smaller, at the level of one per cent or less on scales rp < 33 h−1 Mpc.

That the impact is clearly non-vanishing is not greatly surprising, given the relatively small box size of MASSIVEBLACK-II. It is, however,

reassuring that the suppression of the both IA correlation functions is comfortably less than the 1σ errorbar on all scales considered.

Figure C1. Upper: Fractional change in the projected correlation functions due to truncation at kmin = 2π/100 h−1 Mpc. The grey shaded region shows the

scales discarded in this analysis. The sign convention here is such that negative values translate into a suppression of power in the truncated measurement.

Lower: The change as a fraction of the jackknife 1σ error on each correlation function, as measured from MASSIVEBLACK-II.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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