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ABSTRACT

Basic Linear Algebra Subprograms (BLAS) is a core library in scien-

tific computing andmachine learning. This paper presents FT-BLAS,

a new implementation of BLAS routines that not only tolerates soft

errors on the fly, but also provides comparable performance to mod-

ern state-of-the-art BLAS libraries on widely-used processors such

as Intel Skylake and Cascade Lake. To accommodate the features of

BLAS, which contains both memory-bound and computing-bound

routines, we propose a hybrid strategy to incorporate fault tolerance

into our brand-new BLAS implementation: duplicating computing

instructions for memory-bound Level-1 and Level-2 BLAS routines

and incorporating an Algorithm-Based Fault Tolerance mechanism

for computing-bound Level-3 BLAS routines. Our high performance

and low overhead are obtained from delicate assembly-level opti-

mization and a kernel-fusion approach to the computing kernels.

Experimental results demonstrate that FT-BLAS offers high reliabil-

ity and high performance – faster than Intel MKL, OpenBLAS, and

BLIS by up to 3.50%, 22.14% and 21.70%, respectively, for routines

spanning all three levels of BLAS we benchmarked, even under

hundreds of errors injected per minute.
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1 INTRODUCTION

Processor chips are more susceptible to transient faults than ever

before due to common performance-enhancing technologies such

as shrinking transistor width, higher circuit density, and lower near-

threshold voltage operations [29, 36, 39]. Transient faults can alter

a signal transfer or corrupt the bits within stored values instead

of causing permanent physical damage [21, 30]. As a consequence,

reliability has been identified by U.S. Department of Energy officials

as one of the major challenges for exascale computing [34].

Since Intel observed the first transient error and resulting soft

data corruption in 1978 [37], transient faults have had a significant

impact on both academia and industry in the following years. Sun

Microsystems reported in 2000 that server crashes caused by cosmic

ray strikes on unprotected caches were responsible for the outages

of random customer sites including America Online, eBay, and oth-

ers [6]. In 2003, Virginia Tech demolished the newly-built Big Mac

cluster of 1100 Apple Power Mac G5 computers into individual com-

ponents and sold them online because the cluster was not protected

by error correcting code (ECC) and fell prey to cosmic ray-induced

partial strikes, causing repeated crashes and rendering it unusable

[20]. Transient faults can still threaten system reliability even if a

cluster is protected by ECC: Oliveira et al. simulated an exascale

machine with 190,000 cutting-edge Xeon Phi processors that could

still experience daily transient errors under ECC protection [43].

If an affected application crashes when a transient fault occurs,

we call it a fail-stop error. If the affected application continues but

produces incorrect results, we call it a fail-continue error. Fail-stop

errors can often be protected by checkpoint/restart mechanisms

(C/R) [2, 45, 46, 57] and algorithmic approaches [10, 13, 25]. Fail-

continue errors are often more dangerous because they can corrupt

application states without any warning from the system, and lead

to incorrect computing results [7, 15, 19, 38, 53], which can be

catastrophic under safety-critical scenarios [31]. In this paper, we

restrict our scope to fail-continue errors from computing logic

units (e.g., 1+1=3), assuming fail-stop errors are protected by check-

point/restart and memory errors are protected by ECC. In what

follows, we will use soft errors to denote such fail-continue errors

from computing logic units.

Soft errors can be handled by dual modular redundancy (DMR).

DMR approaches, typically assisted by compilers, duplicate com-

puting instructions and insert check instructions into the original

programs [14, 40, 41, 48, 68]. DMR is very general and can be applied
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to any application, but it introduces high overhead especially for

computing-bound applications because it duplicates all computa-

tions. In order to reduce fault tolerance overhead, algorithm-based

fault tolerance (ABFT) schemes have been developed for many

applications in recent years. Huang and Abraham proposed the

first ABFT scheme for matrix-matrix multiplication [27]. Sloan et

al. proposed an algorithmic scheme to protect conjugate gradient

algorithms of sparse linear systems [51]. Sao and Vuduc explore a

self-stabilizing FT scheme for iterative methods [49]. Di and Cap-

pello proposed an adaptive impact-driven FT approach to correct

errors for a series of real-world HPC applications [18]. Chien at

al. proposed the Global View Resilience system, a library which

enables applications to add resilience efficiently [16]. Many other

FT schemes have been developed for widely-used algorithms such

as sorting [32], fast Fourier transforms (FFT) [5, 33, 58], iterative

solvers [9, 11, 59], and convolutional neural networks [70]. Re-

cently, the interplay among resilience, power and performance is

studied [54, 55, 69], revealing the strong correlation among these

key factors in HPC.

Although numerous efforts have been made to protect scien-

tific applications from soft errors, most routines in the Basic Lin-

ear Algebra Subprograms (BLAS) library remain unprotected. The

BLAS library is a core linear algebra library fundamental to a broad

range of applications, including weather forecasting[50], deep learn-

ing [2, 45], molecular dynamics simulation[46] and quantum com-

puter simulation [56]. Because of this pervasive usage, academic

institutions and hardware vendors provide a variety of BLAS li-

braries such as Intel MKL [1], AMD ACML, IBM ESSL, ATLAS [63],

BLIS [60], and OpenBLAS [61] to pursue extreme performance

on a variety of hardware platforms. BLAS routines are organized

into three levels: Level-1 (vector/vector), Level-2 (matrix/vector),

and Level-3 (matrix/matrix). [62]. Except for the general matrix-

matrix multiplication (GEMM) routine, which has been extensively

studied[12, 24, 27, 52, 65], minimal research has concentrated on

protecting the rest of the BLAS routines.

For the general matrix-matrix multiplication routine, several

fault tolerance schemes have been proposed to tolerate soft errors

with low overhead [24, 27, 52, 65]. The schemes in [27] and [24] are

much more efficient than DMR. However, these two schemes are

offline schemes which cannot correct errors in the middle of the

computation in a timely manner. In [65], Wu et al. implemented

a fault tolerant GEMM that corrects soft errors online. However,

built on third-party BLAS libraries, this ABFT scheme becomes less

efficient when using AVX-512-enabled processors because the gap

between computation andmemory transfer speed today becomes so

large that the added memory-bound ABFT checksum computation

is no longer negligible to the original computing-bound GEMM

routine. In [52], Smith et al. proposed a fused ABFT scheme for

BLIS GEMM at assembly level to reduce the overhead for checksum

calculation. An in-memory checkpoint/rollback scheme is used to

correct multiple simultaneous errors online. Although this scheme

provides wider error coverage, it presents a moderate overhead “in

the range of 10%”[52].

In this paper, we develop FT-BLAS—the first BLAS implemen-

tation that not only corrects soft errors online, but also provides

at least comparable performance to modern state-of-the-art BLAS

libraries such as Intel MKL, OpenBLAS, and BLIS. FT-BLAS not only

protects the general matrix-matrix multiplication routine GEMM,

but also protects other Level-1, Level-2, and Level-3 routines. BLAS

routines are widely-used in many applications from an extensive

range of fields; therefore, improvements to the BLAS library will

benefit not only a large number of people but also a broad cross-

section of research areas. The main contributions of this paper

include:

• We develop a brand-new implementation of BLAS using AVX-

512 assembly instructions that achieves comparable or better

performance than the latest versions of OpenBLAS, BLIS, and

MKL on AVX-512-enabled processors such as Intel Skylake and

Cascade Lake.

• We benchmark our hand-tuned BLAS implementation on an

Intel Skylake processor and find that it is faster than the open-

source librarues OpenBLAS and BLIS by 3.85%-22.19% for DSCAL,

DNRM2, DGEMV, DTRSV, and DTRSM, and comparable (±1.0%)
for the remaining selected routines. Compared to closed-source

IntelMKL, our implementation is faster by 3.33%-8.06% for DGEMM,

DSYMM, DTRMM, DTRSM, and DTRSV, with comparable per-

formance in the remaining benchmarks.

• We build FT-BLAS, the first fault-tolerant BLAS library, on our

brand-new BLAS implementation by leveraging the hybrid fea-

tures of BLAS: adopting a DMR strategy for memory-bound

Level-1 and Level-2 BLAS routines and ABFT for computing-

bound Level-3 BLAS routines. Our fault-tolerant mechanism is

capable of not only detecting but also correcting soft errors online,

during computation. Through a series of low-level optimizations,

we manage to achieve a negligible (0.35%-3.10%) overhead.

• We evaluate the performance of FT-BLAS under error injection on

both Skylake and Cascade Lake processors. Experimental results

demonstrate FT-BLAS maintains a negligible performance over-

head under hundreds of errors injected per minute while outper-

forming state-of-the-art BLAS implementations OpenBLAS, BLIS,

and Intel MKL by up to 22.14%, 21.70% and 3.50% , respectively—

all of which cannot tolerate any errors.

The rest of the paper is organized as follows: We introduce

background and related works in Section II, and then detail how

we achieve higher performance than the state-of-the-art BLAS

libraries in Section III. Section IV and Section V present the design

and optimization of our fault-tolerant schemes. Evaluation results

are given in Section VI. We present our conclusions and future

work in Section VII.

2 RELATEDWORK AND BACKGROUND

2.1 Algorithm-Based Fault Tolerance

Algorithmic approaches to soft error protection for computing-

intensive or iterative applications have achieved great success [8, 11,

12, 33, 52, 64, 66, 67], ever since the first algorithmic fault tolerance

scheme for matrix/matrix multiplication in 1984 [27]. The basic

idea is that for a matrix-matrix multiplication 𝐶 = 𝐴 · 𝐵, we first
encode matrices into checksum forms. Denoting 𝑒=[1, 1, . . . , 1]𝑇 ,

we have 𝐴
𝑒𝑛𝑐𝑜𝑑𝑒
−−−−−−→ 𝐴𝑐 :=

[
𝐴

𝑒𝑇𝐴

]
and 𝐵

𝑒𝑛𝑐𝑜𝑑𝑒
−−−−−−→ 𝐵𝑟 :=

[
𝐵 𝐵𝑒

]
.
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With 𝐴𝑐 and 𝐵𝑟 encoded, we automatically have:

𝐶 𝑓 = 𝐴𝑐 · 𝐵𝑟 =

[
𝐶 𝐶𝑒
𝑒𝑇𝐶

]
=

[
𝐶 𝐶𝑟

𝐶𝑐

]

The correctness of the multiplication can be verified by check-

ing the matrix 𝐶 against 𝐶𝑟 and 𝐶𝑐 . Any disagreements, that is,

if the difference exceeds the round-off threshold, indicate errors

occurred during the computation. The cost of checksum encoding

and verification is 𝑂 (𝑛2), negligible compared to the 𝑂 (𝑛3) of ma-
trix multiplication algorithms and thus ensures lightweight soft

error detection for matrix multiplication. For any arbitrary matrix

multiplication algorithm, correctness can be verified at the end of

the computation (offline) via the checksum relationship.

The previous ABFT scheme can be extended to outer-product

matrix-matrix multiplication and the checksum relationship can be

maintained during the middle of computation:

𝐶 𝑓 =
∑
𝑠

𝐴𝑐 (:, 𝑠) · 𝐵𝑟 (𝑠, :) =
∑
𝑠

[
𝐶𝑠 𝐶𝑠𝑒
𝑒𝑇𝐶𝑠

]

where 𝑠 is the step size of the outer-product update on matrix

𝐶 , and 𝐶𝑠 represents the result of each step of the outer-product
multiplication𝐴𝑐 (:, 𝑠) ·𝐵𝑟 (𝑠, :). Noting this outer-product extension,
Chen et al. proposed correcting errors for GEMM online with a

double-checksum scheme [12]. The offline version of the double-

checksum scheme can only correct a single error in a full execution,

while the online version, which corrects a single error for each

step of the outer-product update, is able to handle multiple errors

for the whole program. A checkpoint-rollback technique can also

be added to overcome a many-error scenario. In [52], once errors,

regardless how many, are detected via the checksum relationship,

the program restores from a recent checkpoint to correct the error.

In this paper, we target a more light-weight error model and correct

one error in each verification interval using online ABFT without

checkpoint/rollback for the sake of performance.

2.2 Duplication-Based Fault Tolerance

Known as dual modular redundancy (DMR), duplication-based fault

tolerance is rooted in compiler-assisted approaches and has been

widely studied [14, 40, 41, 48, 68]. Classified by the Sphere of Repli-

cation (SoR), that is, the logical domain of redundant execution [47],

previous duplication-based fault-tolerant work can be grouped into

one of three cases:

• Thread Level Duplication (TLD). This approach duplicates the

entire processor and memory system: Everything is loaded twice,

computed twice, and two copies are stored [40, 41].

• TLDwith ECC assumption (TLD+ECC). In this approach, operands

are loaded twice, but from the same memory address. All other

instructions are still duplicated. [48].

• DMR only for computing errors. Only the computing instructions

are duplicated and verified to prevent a faulty result from being

written back to memory [14, 68].

Different SoRs target different protection purposes and errormodels.

TLD and TLD+ECC lead to the worst performance and memory

overheads, but provide the best fault coverage without requiring

any other fault-tolerance support such as checkpoint/restarting.

Duplicating only the computing instructions shrinks the SoR to soft

errors but almost halves the performance loss compared with TLD.

We adopt the third SoR, duplication and verification of computing

instructions only, in this work.

Since compiler front ends never intrude into the assembly ker-

nels of performance-oriented BLAS libraries, in the few cases that

can be found in compiler literature relating to soft error resilience

in BLAS routines [14], the performance is never compared against

OpenBLAS or Intel MKL, but only to LAPACK [4], a reference

implementation of BLAS with much slower performance on mod-

ern processors. In this work, we manually insert FT instructions

into self-implemented assembly computing kernels for Level-1 and

Level-2 BLAS, and then hand-tune them for highest performance.

3 OPTIMIZING LEVEL-1, LEVEL-2 AND

LEVEL-3 BLAS ROUTINES

Before adding FT capabilities to BLAS, we first create a brand new

library that provides comparable or better performance to modern

state-of-the-art BLAS libraries. We introduce the target instruction

set of our work, as well as a sketch of the overall software organiza-

tion. We then dive into our detailed optimization strategies for the

assembly kernel to illustrate how we push our performance from

the current state-of-the-art closer to the limits of hardware.

3.1 Optimizing Level-1 BLAS

Level-1 BLAS contains a collection of memory-bound vector/vector

dense linear algebra operations, such as vector dot products and

vector scaling.

3.1.1 Opportunities to Optimize Level-1 BLAS. Software strategies

to optimize serial Level-1 BLAS vector routines are typically no

more than exploiting data-level parallelism using vectorized in-

structions: processing multiple packed data via a single instruction,

loop unrolling to benefit pipelining and exploit instruction-level

parallelism, and inserting prefetching instructions. In contrast to

computing-bound Level-3 BLAS routines, where performance can

reach about 90% of the theoretical limit, sequential memory-bound

routines usually reach 60%-80% saturation because throughput is

not high enough to hide memory latency. This fluctuating satura-

tion range makes experimental determination of underperforming

routines difficult. We therefore survey open-source BLAS library

Level-1 routines source code with regard to three key optimiza-

tion aspects: single-instruction multiple-data (SIMD) instruction

set support, loop unrolling, and software prefetching. We include

double-precision routines in Table 1 for analytical reference.

As seen in Table 1, all Level-1 OpenBLAS routines have been

implemented with support for loop unrolling. We also observe the

interesting fact that software prefetching, an optimization strat-

egy as powerful as increasing SIMD width for Level-1 routines, is

only adopted in legacy implementations of x86 kernels in Open-

BLAS. Based on the results of this optimization survey, we opti-

mize two representative routines: we upgrade DNRM2 with AVX-

512 support and enable prefetching for DSCAL. In the evaluation

section, we show that the performance of our AVX-512-enabled

DNRM2 with software prefetching surpasses OpenBLAS DNRM2

(SSE+prefetching) by 17.89%, while our DSCAL with data prefetch

enabled via prefetcht0 obtains a 3.85% performance improvement

over OpenBLAS DSCAL (AVX-512 with no prefetch).
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AVX-512/AVX2 DDOT, DSCAL, DAXPY, DROT

AVX or earlier DNRM2, DCOPY, DROTM, IDAMAX, DSWAP

Loop Unrolling all routines

Prefetching DNRM2, DCOPY, DROTM, IDAMAX, DSWAP

Table 1: Survey of Selected OpenBLAS Level-1 Routines

3.2 Optimizing Level-2 BLAS

Level-2 BLAS performs various types of memory-bound matrix/vec-

tor operations. In contrast to Level-1 BLAS, which never re-uses

data, register-level data re-use emerges in Level-2 BLAS. We choose

the two most typical routines, DGEMV and DTRSV, as examples

to explain the theoretical underpinnings of our Level-2 BLAS opti-

mization strategies.

3.2.1 Optimizing DGEMV. DGEMV, double-precision matrix/vec-

tor multiplication, computes𝑦 = 𝛼𝑜𝑝 (𝐴)𝑥 +𝛽𝑦, where𝐴 is an𝑚×𝑛
matrix and 𝑜𝑝 (𝐴) can be𝐴,𝐴𝐻 or𝐴𝑇 . The cost of vector scaling 𝛽𝑦
and 𝛼 · (𝐴𝑥) is negligible compared with 𝐴 · 𝑥 , therefore it suffices
for us to consider 𝛽 = 1, and 𝛼 = 1, and restrict our discussion to

the case 𝑦 = 𝐴𝑥 + 𝑦, where 𝐴 is an 𝑛 × 𝑛 square matrix. The naive
implementation can be summarized as

∑𝑛
𝑖 (𝑦𝑖 =

∑𝑛
𝑗 𝐴𝑖 𝑗𝑥 𝑗 + 𝑦𝑖 ).

Since DGEMV is a memory-bound application, the most efficient

optimization strategy is to reduce unnecessary memory transfers. It

is clear that the previous naive implementation requires 𝑛2 loads for
𝐴, 𝑥 and 𝑛2 loads + stores for 𝑦. No memory transfer operations can
be eliminated on matrix 𝐴 because each element must be accessed

at least one time. We must focus on register-level re-use for vectors

𝑥 and 𝑦 to optimize DGEMV. We notice that index variable 𝑖 in
𝐴(𝑖, 𝑗) is partially independent of the index 𝑗 of the j-loop, and we
can unroll the i-loop 𝑅𝑖 times to exploit loading 𝑥 𝑗 into registers
for re-use. Now each load of 𝑥 𝑗 is reused 𝑅𝑖 times within a single

register, so the total load operations for 𝑥 improves from 𝑛2 to 𝑛2/𝑅𝑖 .
In practice, 𝑅𝑖 is typically between 2-6, because accessing too many
discontinuous memory addresses increases the likelihood of trans-

lation lookaside buffer (TLB) and row buffer thrashing. We adopt

𝑅𝑖=4 because the longest SIMD ALU instruction (VFMA) latency in
this loop is 4 cycles [3].

DGEMV

For = 0; < ; += 4
// set 0, 1, 2, 3 as all-0s
For = 0; < ; += 8{ … +7}0 { , … , +7}1 { +1, … +1, +7}2 { +2, … +2, +7}3 { +3, … +3, +7}vr0 0 + 0vr1 1 + 1vr2 2 + 2vr3 3 + 3
End For
// horizontally reduce {0,1,2,3}
// to scalars {0,1,2,3}yi + 0, yi+1 +1 + 1yi+2 +2 + 2yi+3 +3 + 3

End For

SIMD 
assembly 
computing 
kernel

For = 0; < ; += 
= + 1;

// call DGEMV (Level-2 BLAS)( : ) = : , 1: 1 (1: 1)
For = ; < 1; ++

// move _ to ’s row_ = & , 0 ;
// call DDOT (Level-1 BLAS)

= = _ ( );
// set the diagonal index 

= + 1;
= ;

= / , ;
End For

End For

DTRSV

Compute the
diagonal BxB
block via Level-1 
BLAS

Cast the majority
of computation 
to Level-2 BLAS

Figure 1: Optimization schemes of DGEMV and DTRSV.

Unrolling the inner loop (j-loop) improves nothing in terms of

load/store numbers, but will benefit a SIMD implementation (vector-

ization). Because both an AVX-512 SIMD register and a cache line

of the Skylake microarchitecture accommodate 8 doubles, we unroll

the j-loop 8 times. Before entering the j-loop, four SIMD registers

𝑣𝑟 {0,1,2,3} are initialized to zero. Within the innermost loop body,

each 𝑥 element is still reused 𝑅𝑖 times (shown as 4 in Figure 1). We

load 8 consecutive 𝑥 elements into a single SIMD AVX-512 register

𝑣𝑟𝑥 𝑗 , load the corresponding 𝐴 elements into SIMD registers 𝑣𝑟𝐴𝑖∗,

and conduct vectorized fused multiplication/addition operations to

update 𝑣𝑟∗. After exiting the j-loop, vectorized registers 𝑣𝑟∗ hold-
ing temporary results are reduced horizontally to scalar registers,

added onto the corresponding 𝑦𝑖 , and stored back to memory. Some
previous literature [61, 62] suggests blocking for cache level re-use

of vector elements. However, this may break the continuous access

of the matrix elements, which is the main workload of the DGEMV

computation. Hence, we do not adopt a cache blocking strategy in

our DGEMV implementation: experimental results validating our

DGEMV obtain a 7.13% performance improvement over OpenBLAS.

3.2.2 Optimizing DTRSV. Double-precision triangular matrix/vec-

tor solver (DTRSV) solves 𝑥 = 𝑜𝑝 (𝐴)−1𝑥 , where A is an 𝑛×𝑛 matrix,
𝑜𝑝 (𝐴) can be𝐴,𝐴𝐻 or𝐴𝑇 , and either the lower or upper triangular
part of the matrix is used for computation due to symmetry. We

restrict our discussion to 𝑥 = 𝐴−1𝑥 using the lower triangular part
of 𝐴. Since Level-2 BLAS routines are more computationally inten-
sive than Level-1 BLAS routines, we introduce a paneling strategy

for DTRSV to cast the majority of the computations — (𝑛2 − 𝑛𝐵)/2
elements — to the more computationally-intensive Level-2 BLAS

routine DGEMV. The minor 𝐵 × 𝐵 diagonal section is handled with

the less computationally-intensive Level-1 BLAS routine DDOT.

Given that DGEMV is more efficient, adopting a smaller block size

𝐵 is preferable since it allows more computations to be handled

by DGEMV. Considering the practical implementation of DGEMV,

where we unroll the j-loop 4 times for register re-use (shown in

Figure 1), the minimal, and also the optimal, block size 𝐵 should

then be 4. In fact, OpenBLAS adopts block size 𝐵=64 for DTRSV
[44], resulting in more computations handled by the less efficient di-

agonal routine; this is the major reason our performance supersedes

that of OpenBLAS by 11.17%.

3.3 Optimizing Level-3 BLAS

3.3.1 Overview of Level-3 BLAS. Level-3 BLAS routines are ma-

trix/matrix operations, such as dense matrix/matrix multiplication

and triangular matrix solvers, where extreme cache and register

level data re-use can be exploited to push the performance to the

peak computation capability. We choose two representative rou-

tines, DGEMM and DTRSM to illustrate our implementation and

optimization strategies for Level-3 BLAS.

3.3.2 Implementation of DGEMM. We adopt packing and cache

blocking frames similar to OpenBLAS and BLIS. The outermost

three layers of the for loop are partitioned to allow submatrices of

𝐴 and 𝐵 to reside in specific cache layers. The step sizes of these

three for loops,𝑀𝐶 , 𝑁𝐶 , and 𝐾𝐶 , define the size and shape of the
macro kernel, which are determined by the size of each layer of

the cache. A macro kernel updates an𝑀𝐶 × 𝑁𝐶 submatrix of C by
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iterating over𝐴 (𝑀𝑅×𝐾𝐶 )multiplying𝐵 (𝐾𝐶×𝑁𝑅) inmicro kernels.

Since our implementation contains no major update on the latest

version of OpenBLAS other than selecting different micro kernel

parameters𝑀𝑅 and 𝑁𝑅 , nor on the performance (< ±0.5%), we do
not present a detailed discussion of the DGEMM implementation

here but instead refer readers to [60] for more details.

3.3.3 Optimizing DTRSM. DTRSM, double-precision triangular

matrix/matrix solver, solves 𝐵 = 𝛼 · 𝑜𝑝 (𝐴)−1𝐵 or 𝐵 = 𝛼𝐵 · 𝑜𝑝 (𝐴)−1,
where 𝛼 is a double-precision scalar, 𝐴 is an 𝑛 × 𝑛 matrix, 𝑜𝑝 (𝐴)
can be 𝐴, 𝐴𝐻 , or 𝐴𝑇 , and either the lower or upper triangular part
of the matrix is used for computation due to symmetry. We restrict

our discussion to 𝐵 = 𝐴−1𝐵 in the presentation of our optimization

strategy. We adopt the same cache blocking and packing scheme as

DGEMM, but with the packing routine for 𝐴 and the macro kernel

slightly modified. For DTRSM, the packing routine for matrix𝐴 not

only packs the matrix panels into continuous memory buffers to

reduce TLB misses, but also stores the reciprocal of the diagonal ele-

ments during the packing to avoid expensive division operations in

the performance-sensitive computing kernels. When the 𝐴𝑏𝑙𝑜𝑐𝑘 to

feed into the macro kernel is on the diagonal, macro_kernel_trsm
is called to solve 𝐵𝑏𝑙𝑜𝑐𝑘 := 𝐴̃

−1 · 𝐵̃, where 𝐴̃ and 𝐵̃ are packed matri-

ces. Otherwise, the corresponding 𝐵𝑏𝑙𝑜𝑐𝑘 is updated by calculating

𝐵𝑏𝑙𝑜𝑐𝑘 -= 𝐴̃ · 𝐵̃, using the highly-optimized GEMM macro kernel.

We see that the performance of the overall routine is affected by

both macro kernels, and to ensure overall high performance, we

must ensure the TRSM kernel is near-optimal as well.

Inside macro_kernel_trsm, the 𝐵𝑏𝑙𝑜𝑐𝑘 is calculated by updating
a small 𝑀𝑅 × 𝑁𝑅 𝐵𝑠𝑢𝑏 block each time. The 𝐵𝑠𝑢𝑏 block is calcu-

lated by 𝐵𝑠𝑢𝑏 -= ˜𝐴𝑐𝑢𝑟𝑟 · ˜𝐵𝑏𝑙𝑜𝑐𝑘 until 𝐴𝑐𝑢𝑟𝑟 reaches the diagonal

block. Temporary computing results are held in registers instead

of being saved to memory during computation. When 𝐴𝑐𝑢𝑟𝑟 is on

the diagonal, we solve 𝐵𝑠𝑢𝑏 := ˜𝐴𝑐𝑢𝑟𝑟
−1

· ˜𝐵𝑏𝑙𝑜𝑐𝑘 using an AVX-512-
enabled assembly kernel. It should be noted that the packed buffer 𝐵̃
needs to be updated during the solve because DTRSM is an in-place

update and the corresponding elements of the buffer should be

updated during computation. Our highly-optimized TRSM macro

kernel grants us 22.19% overall performance gain on DTRSM over

OpenBLAS, where the TRSM macro kernel is an under-optimized

prototype.

for = 0; < ; += _ = ( - > )? : - ;
for = 0; < ; += _ = ( - > )? : - ;

pack ( : + _ -1, : + _ -1) 
for = 0; < ; += _ = ( - > )? : - ;

pack* ( : + _ -1, : + _ -1) 
// _ = ( : +p_ -1, : + _ -1) 
if (A_block is diagonal block) call macro_kernel_trsm
else call macro_kernel_gemm // _ -= * 

macro_kernel_trsmLayout of TRSM routine

// to solve _ := inv( ) * ;
for = ; < + _ ; += 

for = ; < + _ ; += 
= ( : + -1, 0: _ -1)

clear registers _ to 0._ -= * (0: _ -1, : + -1)
= ( : + -1, _ : )

solve _ =
1
* ( _ : , : + -1)

update ( : + -1, : + -1) _ ;
store _ ( : + -1, : + -1); _ += ;

macro_kernel_trsmmacro_kernel_trsm

Figure 2: DTRSM optimization layout.

4 OPTIMIZING FAULT TOLERANT LEVEL-1

AND LEVEL-2 BLAS

We first outline our assembly code syntax and duplication scheme.

We then show our step-wise assembly optimization of DMR to

decrease fault tolerance overhead from 50.8% in the scalar version

to our 0.35% overhead. After the optimization, the performance of

both our FT and non-FT versions surpasses both current state-of-

the-art BLAS implementations.

4.1 Assembly Syntax and Duplication Scheme

In this paper, all assembly examples follow AT&T syntax; that is,

the destination register is in the right-most position. We adopt the

most common duplication scheme, DMR [41, 48, 68]. Our chosen

sphere of reduction dictates that we duplicate and verify computing

instructions instead of memory instructions. More specifically, in

our case, most ALU operations are floating point operations. Integer

addition/subtraction are used to check whether the loop terminates.

We only use two integer registers (%0, %1) throughout our assembly

kernels.

4.2 Scalar DMR versus Vectorized DMR

We use DSCAL, one of the most important routines in Level-1 BLAS,

to show how even though DMR is labeled “slow", it can actually be

“fast". DSCAL computes 𝑥 := 𝛼 · 𝑥 , where 𝑥 is a vector containing 𝑛
DPs. DP represents a double-precision data type, so 𝛼 is also a DP.

4.2.1 Scalar scheme. The scalar implementation of DSCAL per-

forms a load (movsd), multiplication (mulsd), and then a store (movsd)
operation on scalar elements. The scalar 𝛼 is invariant within the

loop body, so we load it before entering the loop. The array index

(stored in register %0) to access array elements is incremented by

$1 before starting the next iteration. Meanwhile, register %1 (initial-

ized by the array length 𝑛) is decremented by one to test whether
the loop terminates. Once register %1 reaches zero, the EFLAG ZF

is set to 1, branch instruction jnz will not be taken, and the loop
terminates. Because scalar multiplication mulsd only supports two-
operand syntax—that is, mulsd, src, destmultiplies values from
two operands and stores the result in the dest register—the value
in the dest register will be overwritten when the computation

finishes. Therefore, we should back up a copy of the loaded value

of 𝑥 [𝑖] into an unused register for use in our duplication to avoid
an extra load from memory. After both the original and duplicated

computations finish, we check for correctness and set the EFLAGs

via ucomsid. If two computing results (xmm1 and xmm2) are different,
the EFLAG is set as ZF=1 and the branch jne ERROR_HANDLER will
redirect the control flow to activate a resolving procedure, a self-

implemented error handling assembly code. When the correctness

of computing is confirmed or an erroneous result is recovered by

the error handler, the result 𝛼 · 𝑥 [𝑖] is stored into memory.

4.2.2 AVX-512 vectorized scheme. Our AVX-512 vectorized dupli-

cation scheme differs from the scalar version in two ways. First,

vectorizedmultiplication supports a three operand syntax, so source

operand registers are still live after computing and an in-register

backup is no longer needed. Second, comparison between SIMD

registers cannot set EFLAGs directly. Therefore, we set EFLAGs

indirectly: The comparison result is first stored in an opmask regis-

ter k0, and then k0 is tested against another pre-initialized opmask
register k1 to set EFLAGs. If two 512-bit SIMD registers with 8

packed DPs are confirmed equal, opmask register k0, updated by
vpcmpegd, will be eight consecutive ‘1’s corresponding to the eight
DPs in the comparison. If one (or more) DP(s) from two source

operands in comparison are different, the corresponding bit(s) of
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the opmask register is set to 0, indicating the erroneous position.
We test the comparison result opmask, k0, with another opmask,
k1, pre-initialized to 00000000 via kortestw. EFLAG is set to CF=0

first, and updated to CF=1 only if the results of OR-ing both source

registers (k0, k1) are all ‘1’s. Any detected errors will leave CF=0,
and the control flow is branched to the error handler by jnc.

4.2.3 Performance gain due to vectorization. Our vectorized FT

enlarges the verification interval compared to the scalar implemen-

tation: The scalar scheme gives a computing/comparison+branch

ratio of 1:1, while the vectorized scheme expands this ration to

8:1, which significantly ameliorates the data hazards introduced by

duplication and verification. Experimental results confirm that vec-

torization improves the overhead from 50.8% in the scalar scheme

to 5.2% in the vectorized version.

4.3 Adding More Standard Optimizations

The peak single-core performance of an Intel processor that sup-

ports AVX-512 instructions is 30-120 GFLOPS, while the perfor-

mance of DSCAL is less than 2 GFLOPS. Since CPU utilization is

severely bounded by memory throughput, the inserted FT instruc-

tions, which do not introduce extra memory queries, should ideally

bring a near-zero overhead if computations and memory transfers

are perfectly overlapped. This underutilization of CPU performance

motivates us to explore optimization strategies to further bring the

current 5% overhead to a negligible level.

4.3.1 Step 1: Loop unrolling. Loop unrolling is a basic optimization

strategy for loop-based programs. However, it can only reduce a few

branch and add/sub integer instructions in practice because CPUs

automatically predict branches and unroll loops via speculative ex-

ecution. Possible data hazards caused by speculative execution can

be ameliorated by out-of-order execution mechanisms in hardware.

Experiments show that the performance of both our FT and non-FT

versions only slightly improves after unrolling the loop 4 times:

The overhead decreases from 5.2% to 4.9%.

4.3.2 Step 2: Adding comparison reduction. Inspired by the previ-

ous ten-fold improvement on overhead due to the enlargement of

the verification interval, this optimization is naturally focused on

the reduction of branch instructions for comparison and diverging

to the error handler by leveraging features of the AVX-512 instruc-

tion set. Intermediate comparison results are stored in opmask

registers and a correct comparison result is stored as “11111111"
in an opmask register, so we can propagate the comparison results

via kandw k1, k2, k3, AND-ing the two intermediate comparison
results (k1,k2), and storing into the third opmask register k3. The
AND operation ensures that any detected incorrectness marked by

“0" in source opmask registers will pollute bit(s) in the destination

register during reduction and will be kept. Instead of inserting a

branch to the error handler for each comparison, only one branch

instruction is needed for every 4 comparisons in a loop iteration.

This enlargement of the verification interval further decreases the

overhead from 4.9% to 2.7%.

4.4 Optimizations Underrepresented in Main

Libraries

We have still not reached optimality at this time. We review possible

performance concerns left from the previous step:

• Data hazards. A read-after-write hazard is a true data dependency,

and severely impacts this version of the code.

• Structural hazards. Four consecutive store instructions all de-

mand specific AVX-512 units, but there are only two in SkylakeX

processors; the instructions stall until hardware becomes avail-

able.

Although out-of-order execution performed by a CPU can avoid

unnecessary stalls in the pipeline stage, it consumes hardware

resources and those resources are not unlimited. Therefore, we

optimize instruction scheduling manually, assuming no hardware

optimizations.

4.4.1 Heuristic software pipelining. We perform software pipelin-

ing to reschedule the instructions across the boundary of basic

blocks in order to reduce structural and data hazards. Unfortunately,

finding an optimal software pipelining scheme is NP-complete [26].

To simplify the issue, we design the software pipelining heuristically

by not considering the actual latency of each type of instruction.

To scale eight consecutive elements that can be packed and pro-

cessed in a AVX-512 SIMD register, we should first load them from

memory (L), multiply with the scalar (M1), duplicate multiplication

for verification (M2), compare between the original and duplicated

results (C), and store back to memory (S) if correct. Stacking these

five stages within the loop body causes a severe dependency chain

because they all work on the same data stream. To deal with this

issue, we first write down the required five stages for a single it-

eration (L, M1, M2, C, S) vertically and issue horizontally with a

one-cycle latency for two adjacent instruction streams.

Figure 3: Software pipelining design. Each letter represents a vec-

torized instruction. L: Load; M1: Mul; M2: Duplicated Mul; C: Vectorized Com-

parison; S: Store; BS: Checkpoint original value before scaling into an unused

register, then Store the computing result back to memory; R: Restore from a

checkpoint register.

4.4.2 Verification reduction and in-register check-pointing. Since

the loop is still unrolled four times, comparison results can be re-

duced via kandw between opmask registers. The next loop iteration
will start to execute only if the loop does not terminate and the
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correctness of the current iteration is verified. With cross-boundary

scheduling, we compute for iterations 2, 3, 4, 5 but verify iterations

1, 2, 3, 4. The comparison result of the fifth iteration is only stored,

and then verified in the next iteration or in the epilogue. Because

the memory is updated before computing results are verified, we

checkpoint original elements loaded from memory in an unused

register. This operation coalesces the “in-register checkpoint" (B)

followed by a store (S), and is denoted by BS when designing our

software pipelining. Once an error is detected in the loop body and

the recovery procedure is activated, the error handler restarts the

computation from a couple of prologue-like instructions where the

load is substituted with recovery from the backup registers. The

corruption is recovered by a third calculation with duplication so

the results must be verified again. If the disagreement still exists,

the program is terminated and signals that it is unable to recover.

If recovered computing results reach consensus, the control flow

returns back to the end of corrupted loop iteration and continues

as normal.

4.4.3 Effectiveness of scheduling. Experimental benchmarks report

the latencies of vmulpd, vcmpeqpd, and vmovpd (both store and

load) are 4, 3, and 3 cycles (under a cache hit), respectively [3].

After scheduling, operands are consumed after 3 instructions; be-

fore our scheduling these operands are consumed immediately by

the following instruction. For structural hazards, according to the

Intel official development manual [17], two adjacent vectorized

multiplications (M2, M1) can be executed by Port 0 and Port 1, and

Port 5 accommodates the following comparison (C) simultaneously.

Therefore, three consecutive ALU operations 𝐶,𝑀2, 𝑀1 within the

loop body produce no structural hazard concerns. Additionally, Sky-

lake processors can execute two memory operations at the same

time so the structural hazard concerns on load and store are also

eliminated. Therefore, we confirm that our heuristic scheduling

strategy on DSCAL effectively ameliorates the hazards introduced

by fault tolerance. We optimize the non-FT version using the same

method and compare with our FT version. Experimental result

demonstrates that software pipelining improves FT overhead from

2.7% to 0.67%.

4.4.4 Adding software prefetching. Prefetching data into the cache

before it is needed can lower cache miss rates and hide memory la-

tency. Dense linear algebra operations demonstrate high regularity

on their memory access patterns, enabling performance improve-

ment via accurate cache prefetching. We can send a prefetch signal

before data is needed by a proper prefetch distance. When the data

is actually needed, it has been prefetched into cache instead of

waiting the approximately 100 ns required to load it from DRAM.

Accurate prefetching distance is important. If data is prefetched

too early or too late, the cache is polluted and performance can

degenerate. Here we select the prefetch distance to be 1024 bits: We

prefetch 128 elements in advance into the L1 cache using the instruc-

tion prefetcht0. Instead of prefetching for all load operations, we
only prefetch half of them in the loop body to avoid conflicts with

hardware prefetching. Prefetching improves the performance of

both our non-FT and FT versions by ~4%, and the overhead further

decreases from 0.67% to 0.36%.

5 OPTIMIZING FAULT TOLERANT LEVEL-3

BLAS

Since Level-3 BLAS routines are computing-bound routines, adopt-

ing the same DMR strategy as Level-1 and Level-2 BLAS, which

doubles the computing instructions, will consequently double the

performance overhead. Considering the limited registers in a single

core, DMR will also increase the register pressure in the comput-

ing kernels, which will further hinder the performance. Therefore,

we adopt the classic checksum-based ABFT scheme for our fault-

tolerant functionality, introducing 𝑂 (𝑛2) computational overhead
over the original 𝑂 (𝑛3) computation.

5.1 First trial: building online ABFT on a

third-party library

Building ABFT on a third-party library is not a new topic [65]. As

shown in the left side of Figure 4, we first encode checksums for

matrices 𝐴, 𝐵, and 𝐶 before starting matrix multiplication. The

checksums 𝐶𝑐 and 𝐶𝑟 are updated asynchronously with the rank-k

outer-product update of matrix 𝐶 with a step size 𝑘=𝐾𝑐 . In every
completed rank-k update, we verify the checksum relationship by

first computing the reference row checksum 𝐶𝑟
𝑟𝑒 𝑓

according the

current matrix𝐶 and comparing it against𝐶 𝑓 . If an error is detected,

we continue to compute the reference column checksum 𝐶𝑐
𝑟𝑒 𝑓

and

compare against 𝐶𝑐 to locate the erroneous row index 𝑖𝑒𝑟𝑟 of 𝐶 .
If there is no error detected when comparing the row checksum

vectors, we do not need to verify the column checksum vectors.

The total cost of the ABFT overhead consists of the initial check-

sum encoding, online checksum updating, and reference check-

sum computing–all of which are matrix-vector multiplications

(DGEMV). 𝑇𝑒𝑛𝑐 includes the costs of encoding for four checksums
(𝐶𝑐 ,𝐶𝑟 ,𝐴𝑟 ,𝐵𝑐 ).𝑇𝑢𝑝𝑑𝑎𝑡𝑒 includes the costs of updating on two check-
sums (𝐶𝑐 ,𝐶𝑟 ). Denoting the time of an 𝑛 × 𝑛 DGEMV as 𝑡𝑚𝑣 , the

total cost of ABFT 𝑇𝑜𝑣ℎ𝑑 is:

𝑇𝑜𝑣ℎ𝑑 = 𝑇𝑒𝑛𝑐 +𝑇𝑢𝑝𝑑𝑎𝑡𝑒 +
𝐾

𝐾𝑐
· (𝑇𝐶𝑟

𝑟𝑒𝑓
+𝑇𝐶𝑐

𝑟𝑒𝑓
) = (6 +

2𝐾

𝐾𝑐
)𝑡𝑚𝑣

We further denote the performance of DGEMV and DGEMM as

𝑃𝑚𝑣 and 𝑃𝑚𝑚 , both in the unit of GFLOPS. Then the total execution

times of 𝑛 × 𝑛 DGEMM and DGEMV are 𝑇𝐺𝐸𝑀𝑀=2𝑒−9𝑛3/𝑃𝑚 and

𝑡𝑚𝑣=2𝑒
−9𝑛2/𝑃𝑚𝑣 . Therefore, we have:

𝑇𝑜𝑣ℎ𝑑
𝑇𝐺𝐸𝑀𝑀

=
(6 + 2𝐾

𝐾𝑐 )𝑡𝑚𝑣

2𝑒−9𝑛3/𝑃𝑚𝑚
=

(6 + 2𝐾
𝐾𝑐 )𝑃𝑚𝑚

𝑛 · 𝑃𝑚𝑣

As shown in the above derivation, the real influence of ABFT is

not simply 𝑂 (1/𝑛) computationally negligible to the baseline, but
dependent on the relative performance between the memory-speed-

determined 𝑃𝑚𝑣 and the computing-capability-determined 𝑃𝑚𝑚 as

well. On non-AVX-512-enabled CPUs, 𝑃𝑚𝑚/𝑃𝑚𝑣 ranges from 5 to

20, while on AVX-512-enabled CPUs, this ratio can be as large as

35, exaggerating the overhead up to 7-fold over old processors. The

ABFT overhead reported for an older CPU [65] is around 2%, while

the overhead on an AVX-512-enabled processor, measured by our

benchmark in Section VI, is 15.27% — much larger than on old

processors.
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scale to ;
compute = , = ;
encode = ;
for = 0; < ; += _ = ( - > )? : - ;

for = 0; < ; += _ = ( - > )? : - ;
pack ( : + _ -1, : + _ -1) 
compute = ( : + _ -1, : + _ -1)
update ( : + _ -1) += ( : + _ -1, : + _ -1)
for = 0; < ; += _ = ( - > )? : - ;

pack ( : + _ -1, : + _ -1) 
update ( : + _ -1) += ( : + _ -1, : + _ -1)_ = ( : + _ -1, : + _ -1) 
call macro_kernel_gemm for two purposes:
1. _ += * , 
2. ( : + _ -1)+= _ ; ( : + _ -1)+=

p-loop: verify { , } and { , }; correct error if necessary;

macro_kernel_trsm ABFT-GEMM with kernel fusionABFT-GEMM baseline

// call DGEMV for encoding
compute = , = ;
encode = ; = ;
for = 0; < ; += _ = ( - > )? : - ;

// call DGEMM
+= (:, : + _ -1) ( : + _ -1,:)

// call DGEMV
+= ; += ;

verify { , }
if (incorrect) // located by { , }

+= ; += ;
verify { , }; // located 
correct error at ( , );

Fuse to re-use 

Fuse to re-use 

Fuse to re-use 

Fuse to re-use 

Figure 4: outer-product online ABFT DGEMM optimization
layout. The ABFT-related operations are marked in red.

5.2 Reducing the memory footprint: fusing

ABFT into DGEMM

As discussed in the previous section, the huge gap between mem-

ory transfer and floating-point computation is the reason why the

𝑂 (𝑛2) checksum-related operations can no longer be amortized by
𝑂 (𝑛3) GEMM. We therefore design a fused ABFT scheme to min-

imize the memory footprint of checksum operations. To be more

specific, the encoding of𝐶𝑐 and𝐶𝑟 is fused with the matrix scaling

routine𝐶=𝛽𝐶 . When we load 𝐵 to pack it to the continuous memory
buffer 𝐵̃, checksum 𝐵𝑐 is computed and checksum 𝐶𝑟 is computed

simultaneously by reusing 𝐵. In this fused packing routine, each 𝐵
element is reused three times for each load. Similarly, each element

of 𝐴 loaded for packing is reused to update the column checksum

𝐶𝑐 . In the macro kernel, which computes 𝐶𝑏𝑙𝑜𝑐𝑘+=𝐴̃ · 𝐵̃, we reuse
the computed 𝐶 elements at register level to update the reference

checksums 𝐶𝑟
𝑟𝑒 𝑓

and 𝐶𝑐
𝑟𝑒 𝑓

in order to verify the correctness of the

computation. By fusing the ABFT memory footprint into DGEMM,

the FT overhead becomes purely computational, decreasing from

about 15% to 2.94%.

6 EXPERIMENTAL EVALUATION

To validate the effectiveness of our optimizations, we compare the

performance of FT-BLAS with three state-of-the-art BLAS libraries,

Intel oneMKL (2020.2, abbreviated as MKL in this Section), Open-
BLAS (0.3.13), and BLIS (0.8.0), on a machine with an Intel Gold
5122 Skylake processor at 3.60 GHz, equipped with 96 GB DDR4-

2666 RAM. We also compare the performance of FT-BLAS under

error injection with references on an Intel Xeon W-2255 Cascade

processor. This Cascade Lake machine has a 3.70 GHz base fre-

quency and 32 GB DDR4-2933 RAM. Hardware prefetchers on both

machines are enabled according to the Intel BIOS default [28]. We

repeat each measurement twenty times and then report the aver-

age performance. For Level-1 BLAS routines, the performance is

averaged from array lengths ranging from 5 × 106 to 7 × 106. For

Level-2 and Level-3 BLAS routines, the performance is averaged

for matrices ranging from 20482 to 102402. We compile the code

with icc 19.0 and the optimization flag -O3.

6.1 Performance of FT-BLAS without FT

Capability

We provide a brand-new BLAS implementation, comparable or

faster than the modern state-of-the-art, before embedding FT ca-

pability. We abbreviate this BLAS implementation FT-BLAS: Ori in

the figures.

6.1.1 Optimizing Level-1 BLAS. For memory-bound Level-1 BLAS,

the optimization strategies employed are: 1) exploiting data-level

parallelism using the latest SIMD instructions, 2) assisting pipelin-

ing by unrolling the loop, and 3) prefetching. As seen in Table

1, OpenBLAS has under-optimized routines, such as DSCAL and

DNRM2, with respect to prefetching and AVX-512 support. We

add prefetching for DSCAL, obtaining 3.85% and 5.61% speed-up

over OpenBLAS and BLIS. DNRM2 is only supported with SSE2

by OpenBLAS, so our AVX-512 implementation provides a 17.89%

improvement over OpenBLAS, while reaching 2.25-fold speedup

on BLIS. Our implementations for both routines reach comparable

performance to closed-source MKL, as seen in Figure 5.

6.1.2 Optimizing Level-2 BLAS. Register-level data re-use enters

the picture in Level-2 BLAS routine optimization. Following the

optimization schemes described in Section II, we see in Figure 5 that

our DGEMVobtains a 7.13% speed-up over OpenBLAS by discarding

cache blocking on matrix𝐴 over concerns about the potential harm

of discontinuous memory accesses regarding TLB thrashing and the

corresponding performance of hardware prefetchers. Because BLIS

adopts the same strategy as OpenBLAS on DGEMV, our DGEMV

is 6.16% faster than BLIS, while achieving nearly indistinguishable

performance with MKL. For DTRSV, our strategy of minimizing

the blocking parameter to cast the maximized computations to the

more efficient Level-2 BLAS DGEMV grants us higher performance

than all baselines, surpassing MKL, OpenBLAS, and BLIS by 3.76%,

11.17%, and 6.98%, respectively.
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Figure 5: Comparisons of selected Level-1/2 BLAS routines.

6.1.3 Optimizing Level-3 BLAS. Adopting the traditional cache

blocking and packing scheme, our DGEMM performs similarly to
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Figure 6: Comparisons of selected Level-3 BLAS routines.

OpenBLAS DGEMM. As seen in Figure 6, both of these DGEMM

implementations outperform MKL and BLIS by 7.29-11.75%. For

the Level-3 BLAS routine DTRSM, we provide a highly-optimized

macro kernel to solve for the diagonal block and cast the majority of

the computation to the near-optimal DGEMM. Because OpenBLAS

and BLIS simply provide an unoptimized scalar implementation for

the diagonal solver, our DTRSM outperforms OpenBLAS and BLIS

by 22.19% and 24.77%, and surpasses MKL by 3.33%.

6.2 Performance of FT-BLAS with Fault

Tolerance Capability

Having achieved comparable or better performance than the cur-

rent state-of-the-art BLAS libraries without fault tolerance, we now

add on fault tolerance functionalities. For memory-bound Level-1

and Level-2 BLAS routines, we propose a novel DMR verification

scheme based on the AVX-512 instruction set and then further

reduce the overhead of fault tolerance to a negligible level via as-

sembly optimization. For computing-bound Level-3 BLAS, we fuse

the checksum calculations into the packing routines and assembly

kernels to reduce data transfer between registers and memory. The

results in this section were obtained with fault tolerant DMR and

ABFT operating, but not under active fault injection—see subsection

C for injection experiments.
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Figure 7: Optimizing DSCAL with/without FT.

6.2.1 Reducing DMR overhead for memory-bound routines. Figure

7 presents the performance and overhead of DSCAL with step-wise

assembly level optimization. In each step, the assembly optimiza-

tion described in Sections III and IV are applied to the FT version

and its baseline, our non-FT version evaluated above. The perfor-

mance of the most naive baseline, a scalar implementation, is 1.15

GFLOPs. Duplicating computing instructions and verifying cor-

rectness for this baseline halves the performance to 0.56 GFLOPS,

bringing a 50.83% overhead. A vectorized implementation based

on AVX-512 instructions decreases overhead by 9.8-fold compared

to the scalar duplication/verification scheme. A vectorized imple-

mentation with fault-tolerance capability increases performance to

1.36 GFLOPs, 2.42-fold of the scalar FT version. After this vectoriza-

tion, simply unrolling the loop gains 1.55% and 1.87% improvement

on the non-FT (vec-unroll-ori) and FT (vec-unroll-naive) versions

respectively, while the overhead is now 4.9%. It is at this point
that our non-FT version reaches OpenBLAS. Our novel verification

scheme involving opmask registers improves the overhead to 2.7%.
We then schedule instructions via heuristic software pipelining,

improving the performance of the non-FT (sp-unroll-ori) and FT

(sp-unroll-FT) implementations to 1.48 GFLOPs and 1.47 GFLOPs

respectively. The overhead improves to 0.67% in this step. We add

prefetch instructions as a final step, and the overhead settles at

0.36%.
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Figure 8: Optimizing DGEMM with FT.

6.2.2 Reducing ABFT overhead for computing-bound routines. Fig-

ure 8 (a) presents the performance of two methods of implementing

ABFT for GEMM: building upon MKL (FT-MKL) and fusing into

the GEMM routine (FT-BLAS: FT fused). FT-MKL under error in-

jection leads to 15% overhead compared with baseline MKL. When

there is no error injected, we no longer compute and verify the

checksum𝐶𝑟 so the overhead decreases to 9%. In contrast, the fused

implementation (2.9% overhead) of ABFT does not generate an ex-

tra cost when encountering errors because its reference checksum

computation is fused into the assembly computing kernel and is

computed regardless of whether an error is detected. As shown in

Figure 8 (b), the overhead of building ABFT on a third-party library

slightly varies when linking to different libraries but the trend is

clear: reference checksum construction generates the majority of

the ABFT overhead, which is eliminated by the fusing strategy. The

overhead can be up to 5.35-fold that of fusing ABFT into DGEMM.

Our overhead is also lower than Smith et al’s work in 2015 [52],

where checkpoint/rollback recovery is used to tolerate errors. Their

checkpoint/rollback recovery has a wider error coverage, but the

overhead is “in the range of 10%"[52].

6.2.3 Generalizing to other routines. Figure 9 compares the per-

formance of FT-BLAS with FT capability (FT-BLAS: FT) against its

baseline: our implementation without FT capability (FT-BLAS: Ori)

and reference BLAS libraries on eight routines of all three levels

of BLAS. The DMR-based FT implementations for the Level-1 and

Level-2 BLAS routines (DSCAL, DNRM2, DGEMV, DTRSV) gen-

erate 0.34%-3.10% overhead over baseline. For the Level-3 BLAS

routines, DGEMM, DSYMM, DTRMM and DTRSM, our strategy

to fuse memory-bound ABFT operations with matrix computation

generates overhead ranging from 1.62% to 2.94% on average. Our
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Figure 9: Comparisons of selected BLAS routines with FT.

implementation strategy for DSYMM in both FT-BLAS: Ori and

FT-BLAS: FT is similar to the DGEMM scheme, with moderate mod-

ification to the packing routines. For DTRMM, we use the same

strategy with some additional modifications to the computing ker-

nel, similar to the methods in [22]. With these negligible overheads

added to an already high-performance baseline, our FT-BLAS with

FT capability remains comparable to or faster than the reference

libraries.

6.3 Error Injection Experiments

We validate the effectiveness of our fault-tolerance scheme by inject-

ing multiple computing errors into each of our computing kernels

and verifying our final computation results against MKL. Exter-

nal error injection tools often significantly slow down the native

program[23, 35, 42], therefore, we inject errors from a source code

level to minimize the performance impact on native programs.

We inject 20 errors into each routine. The length of the injection

interval 𝑘 is determined based on the number of errors to inject,
that is, we inject one error every 𝑘 iterations. For ABFT-protected
Level-3 BLAS routines, the error injection is straightforward be-

cause we can directly operate in C code. An element of matrix 𝐶
is randomly selected for modification when an injection point is

reached. This injected error will lead to a difference in the checksum

relationship, and the erroneous element and error magnitude will

be computed accordingly. This detected error is then corrected by

subtracting the error magnitude from the erroneous position. For

DMR-protected Level-1 and Level-2 BLAS routines, the injection is

more complicated since the loop body is implemented purely using

assembly codes. Therefore, providing an assembly-level error in-

jection mechanism becomes necessary. Once the program reaches

an injection point, we redirect the control flow to a faulty loop

body to generate an error. This generated error is then detected via

comparison with the computed results of the duplicated instruc-

tion. After the error is detected, a recovery procedure is activated

to recompute the corrupted iteration immediately. In all cases we

validate the correctness our final computations by comparing with

MKL to ensure all injected errors were truly corrected.
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(c) DGEMM with error injection
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Figure 10: Performance under error injection.

Figure 10 compares the performance of four routines under

error injection. For both DMR-protected (DGEMV, DTRSV) and

ABFT-protected (DGEMM, DTRSM) routines, we maintain negligi-

ble (2.47%-3.22%) overhead and the overall performance under error

injection remains comparable or faster than reference libraries. In

particular, our DTRSM outperforms OpenBLAS, BLIS, and MKL by

21.70%, 22.14%, and 3.50% even under error injection. Experimental

results confirm that our protection schemes do not require signifi-

cant extra overhead to correct errors. This is because our correction

methods—either to recompute the corrupted iteration or to subtract

an error magnitude from the incorrect position—generate only a

few ALU computations instead of expensive memory accesses.

We further test FT-BLAS under error injection using another

processor, the Intel Cascade Lake W-2255. As shown in Figure 11,
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Figure 11: Performance under error injection on Cascade

Lake.

our protection scheme is as lightweight as it was on the Skylake

processor, and is still able to surpass open-source OpenBLAS and

BLIS by 22.89% and 21.56% and the closed-source MKL by 4.98%

even while tolerating 20 injected errors. The execution time of

DTRSM and DTRSV for 5122 to 102402 matrices ranges from 2 ms

to 20 seconds. Therefore, injecting 20 errors into these two routines

is equivalent to injecting 1 to 10,000 errors per second. Hence, FT-

BLAS is able to tolerate up to thousands of errors per second with

comparable and sometimes faster performance than state-of-the-art

BLAS libraries—and none of them can tolerate soft errors. Error

injection results for other routines are similar, but due to page limits

these results are skipped here.

7 CONCLUSIONS

We present a fault-tolerant BLAS implementation that is not only

capable of tolerating soft errors, but also achieves comparable or

superior performance over the current state-of-the-art libraries,

OpenBLAS, BLIS, and Intel MKL. Future work will focus on ex-

tending FT-BLAS to more architectures with parallel support and

open-sourcing the code.

8 ACKNOWLEDGEMENTS

This work was supported by National Science Foundation (NSF)

CAREER Award 1305624 and University of California, Riverside

Academic Senate Committee on Research (CoR) Grant. We thank

the anonymous reviewers for their insightful comments.

REFERENCES
[1] 2009. Intel Math Kernel Library. Reference Manual. Intel Corporation, Santa

Clara, USA. ISBN 630813-054US.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[3] AGNER. 2019. https://www.agner.org/optimize/instruction_tables.pdf. Online.
[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.

Greenbaum, S. Hammarling, A.McKenney, andD. Sorensen. 1999. LAPACKUsers’
Guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia,
PA.

[5] Anna Antola, Roberto Negrini, MG Sami, and Nello Scarabottolo. 1992. Fault
tolerance in FFT arrays: time redundancy approaches. Journal of VLSI signal
processing systems for signal, image and video technology 4, 4 (1992), 295–316.

[6] Robert Baumann. 2002. Soft errors in commercial semiconductor technology:
Overview and scaling trends. IEEE 2002 Reliability Physics Tutorial Notes,
Reliability Fundamentals 7 (2002).

[7] Jon Calhoun, Marc Snir, Luke N Olson, and William D Gropp. 2017. To-
wards a more complete understanding of sdc propagation. In Proceedings of the
26th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 131–142.

[8] Jieyang Chen, Xin Liang, and Zizhong Chen. 2016. Online algorithm-based fault
tolerance for cholesky decomposition on heterogeneous systems with gpus. In
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 993–1002.

[9] Longxiang Chen, Dingwen Tao, Panruo Wu, and Zizhong Chen. 2014. Extending
checksum-based ABFT to tolerate soft errors online in iterative methods. In
2014 20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 344–351.

[10] Zizhong Chen. 2008. Extending algorithm-based fault tolerance to tolerate
fail-stop failures in high performance distributed environments. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE, 1–8.

[11] Zizhong Chen. 2013. Online-ABFT: An online algorithm based fault tolerance
scheme for soft error detection in iterative methods. In ACM SIGPLAN Notices,
Vol. 48. ACM, 167–176.

[12] Zizhong Chen and Jack Dongarra. 2008. Algorithm-based fault tolerance for
fail-stop failures. IEEE Transactions on Parallel and Distributed Systems 19, 12
(2008), 1628–1641.

[13] Zizhong Chen and Jack Dongarra. 2008. A scalable checkpoint encoding algo-
rithm for diskless checkpointing. In 2008 11th IEEE High Assurance Systems
Engineering Symposium. IEEE, 71–79.

[14] Zhi Chen, Alexandru Nicolau, and Alexander V Veidenbaum. 2016. SIMD-based
soft error detection. In Proceedings of the ACM International Conference on
Computing Frontiers. ACM, 45–54.

[15] Chen-Yong Cher, Meeta S Gupta, Pradip Bose, and K Paul Muller. 2014. Un-
derstanding soft error resiliency of blue gene/q compute chip through hard-
ware proton irradiation and software fault injection. In SC’14: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 587–596.

[16] Andrew Chien, Pavan Balaji, Peter Beckman, Nan Dun, Aiman Fang, Hajime
Fujita, Kamil Iskra, Zachary Rubenstein, Ziming Zheng, Rob Schreiber, et al. 2015.
Versioned distributed arrays for resilience in scientific applications: Global view
resilience. Procedia Computer Science 51 (2015), 29–38.

[17] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation, Sept (2019).

[18] Sheng Di and Franck Cappello. 2016. Adaptive impact-driven detection of
silent data corruption for HPC applications. IEEE Transactions on Parallel and
Distributed Systems 27, 10 (2016), 2809–2823.

[19] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio,
Jean-Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand
Braunschweig, et al. 2011. The international exascale software project roadmap.
International Journal of High Performance Computing Applications 25, 1 (2011),
3–60.

[20] Al Geist. 2016. Supercomputing’s monster in the closet. IEEE Spectrum 53, 3
(2016), 30–35.

[21] Leonardo Arturo Bautista Gomez and Franck Cappello. 2015. Detecting and cor-
recting data corruption in stencil applications through multivariate interpolation.
In 2015 IEEE International Conference on Cluster Computing. IEEE, 595–602.

[22] Kazushige Goto and Robert Van De Geijn. 2008. High-performance implementa-
tion of the level-3 BLAS. ACM Transactions on Mathematical Software (TOMS)
35, 1 (2008), 1–14.

[23] Qiang Guan, Nathan Debardeleben, Sean Blanchard, and Song Fu. 2014. F-sefi: A
fine-grained soft error fault injection tool for profiling application vulnerability.
In 2014 IEEE 28th International Parallel and Distributed Processing Symposium.
IEEE, 1245–1254.

[24] John A Gunnels, Daniel S Katz, Enrique S Quintana-Orti, and RA Van de Gejin.
2001. Fault-tolerant high-performancematrix multiplication: Theory and practice.
In 2001 International Conference on Dependable Systems and Networks. IEEE,
47–56.

[25] Doug Hakkarinen, Panruo Wu, and Zizhong Chen. 2014. Fail-stop failure
algorithm-based fault tolerance for cholesky decomposition. IEEE Transactions
on Parallel and Distributed Systems 26, 5 (2014), 1323–1335.

[26] P YT Hsu and Edward S Davidson. 1986. Highly concurrent scalar processing.
ACM SIGARCH Computer Architecture News 14, 2 (1986), 386–395.

[27] Kuang-Hua Huang and Jacob A Abraham. 1984. Algorithm-based fault tolerance
for matrix operations. IEEE transactions on computers 100, 6 (1984), 518–528.

[28] Intel. 2014. https://software.intel.com/content/www/us/en/develop/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.html. Online.

[29] Jean-Claude Laprie. 1985. Dependable computing and fault-tolerance. Digest of
Papers FTCS-15 (1985), 2–11.

[30] Dong Li, Jeffrey S Vetter, andWeikuan Yu. 2012. Classifying soft error vulnerabili-
ties in extreme-scale scientific applications using a binary instrumentation tool. In

137



ICS ’21, June 14–17, 2021, Virtual Event, USA Yujia Zhai, Elisabeth Giem,Quan Fan, Kai Zhao, Jinyang Liu, and Zizhong Chen

Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press, 57.

[31] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and StephenWKeckler. 2017. Understanding error prop-
agation in deep learning neural network (DNN) accelerators and applications. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 8.

[32] Sihuan Li, Hongbo Li, Xin Liang, Jieyang Chen, Elisabeth Giem, Kaiming Ouyang,
Kai Zhao, Sheng Di, Franck Cappello, and Zizhong Chen. 2019. FT-iSort: efficient
fault tolerance for introsort. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, 71.

[33] Xin Liang, Jieyang Chen, Dingwen Tao, Sihuan Li, Panruo Wu, Hongbo Li,
Kaiming Ouyang, Yuanlai Liu, Fengguang Song, and Zizhong Chen. 2017.
Correcting soft errors online in fast fourier transform. In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 30.

[34] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,
Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra,
et al. 2014. DOE advanced scientific computing advisory subcommittee (ASCAC)
report: top ten exascale research challenges. Technical Report. USDOE Office of
Science (SC)(United States).

[35] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[36] Robyn R Lutz. 1993. Analyzing software requirements errors in safety-critical,
embedded systems. In [1993] Proceedings of the IEEE International Symposium
on Requirements Engineering. IEEE, 126–133.

[37] Timothy C May and Murray H Woods. 1979. Alpha-particle-induced soft errors
in dynamic memories. IEEE Transactions on Electron Devices 26, 1 (1979), 2–9.

[38] Subhasish Mitra, Pradip Bose, Eric Cheng, Chen-Yong Cher, Hyungmin Cho,
Rajiv Joshi, Young Moon Kim, Charles R Lefurgy, Yanjing Li, Kenneth P Rodbell,
et al. 2014. The resilience wall: Cross-layer solution strategies. In Proceedings of
Technical Program-2014 International SymposiumonVLSI Technology, Systems
and Application (VLSI-TSA). IEEE, 1–11.

[39] Michael Nicolaidis. 1999. Time redundancy based soft-error tolerance to rescue
nanometer technologies. In Proceedings 17th IEEE VLSI Test Symposium (Cat.
No. PR00146). IEEE, 86–94.

[40] Nahmsuk Oh, Philip P Shirvani, and McCluskey. 2002. Control-flow checking by
software signatures. IEEE transactions on Reliability 51, 1 (2002), 111–122.

[41] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. 2002. Error detection
by duplicated instructions in super-scalar processors. IEEE Transactions on
Reliability 51, 1 (2002), 63–75.

[42] Daniel Oliveira, Vinicius Frattin, Philippe Navaux, Israel Koren, and Paolo Rech.
2017. Carol-fi: an efficient fault-injection tool for vulnerability evaluation of
modern hpc parallel accelerators. In Proceedings of the Computing Frontiers
Conference. 295–298.

[43] Daniel Oliveira, Laércio Pilla, Nathan DeBardeleben, Sean Blanchard, Heather
Quinn, Israel Koren, Philippe Navaux, and Paolo Rech. 2017. Experimental
and analytical study of xeon phi reliability. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 28.

[44] OpenBLAS. Retrieved in 2021. https://github.com/xianyi/OpenBLAS/blob/
develop/common.h#L530. Online.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[46] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-
shid, Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and
Klaus Schulten. 2005. Scalable molecular dynamics with NAMD. Journal of
computational chemistry 26, 16 (2005), 1781–1802.

[47] Steven K Reinhardt and Shubhendu S Mukherjee. 2000. Transient fault de-
tection via simultaneous multithreading. In Proceedings of 27th International
Symposium on Computer Architecture (IEEE Cat. No. RS00201). IEEE, 25–36.

[48] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I
August. 2005. SWIFT: Software implemented fault tolerance. In Proceedings of the
international symposium on Code generation and optimization. IEEE Computer
Society, 243–254.

[49] Piyush Sao and Richard Vuduc. 2013. Self-stabilizing iterative solvers. In
Proceedings of the Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems. 1–8.

[50] William C Skamarock, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker,
Wei Wang, and Jordan G Powers. 2008. A description of the Advanced Research
WRF version 3. NCAR Technical note-475+ STR. (2008).

[51] Joseph Sloan, Rakesh Kumar, and Greg Bronevetsky. 2012. Algorithmic ap-
proaches to low overhead fault detection for sparse linear algebra. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012).
IEEE, 1–12.

[52] Tyler M Smith, Robert A van de Geijn, Mikhail Smelyanskiy, and Enrique S
Quintana-Ortı. [n.d.]. Toward ABFT for BLIS GEMM.

[53] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al.
2014. Addressing failures in exascale computing. The International Journal of
High Performance Computing Applications 28, 2 (2014), 129–173.

[54] Li Tan, Shashank Kothapalli, Longxiang Chen, Omar Hussaini, Ryan Bissiri, and
Zizhong Chen. 2014. A survey of power and energy efficient techniques for high
performance numerical linear algebra operations. Parallel Comput. 40, 10 (2014),
559–573.

[55] Li Tan, Shuaiwen Leon Song, Panruo Wu, Zizhong Chen, Rong Ge, and Darren J
Kerbyson. 2015. Investigating the interplay between energy efficiency and re-
silience in high performance computing. In 2015 IEEE International Parallel and
Distributed Processing Symposium. IEEE, 786–796.

[56] Wei Tang, Teague Tomesh, Jeffrey Larson, Martin Suchara, and Margaret
Martonosi. 2020. CutQC: Using Small Quantum Computers for Large Quan-
tum Circuit Evaluations. arXiv preprint arXiv:2012.02333 (2020).

[57] Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello.
2018. Improving performance of iterative methods by lossy checkponting. In
Proceedings of the 27th international symposium on high-performance parallel
and distributed computing. 52–65.

[58] DL Tao andCarlos RPHartmann. 1993. A novel concurrent error detection scheme
for FFT networks. IEEE Transactions on Parallel and Distributed Systems 4, 2
(1993), 198–221.

[59] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin
Liang, Eddy Z Zhang, Darren Kerbyson, and Zizhong Chen. 2016. New-sum: A
novel online abft scheme for general iterative methods. In Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 43–55.

[60] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for Rapidly
Instantiating BLAS Functionality. ACM Trans. Math. Software 41, 3 (June 2015),
14:1–14:33. http://doi.acm.org/10.1145/2764454

[61] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: auto-
matically generate high performance dense linear algebra kernels on x86 CPUs.
In SC’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–12.

[62] R Clinton Whaley and Jack J Dongarra. 1998. Automatically tuned linear al-
gebra software. In SC’98: Proceedings of the 1998 ACM/IEEE conference on
Supercomputing. IEEE, 38–38.

[63] R Clint Whaley, Antoine Petitet, and Jack J Dongarra. 2001. Automated empirical
optimizations of software and the ATLAS project. Parallel computing 27, 1-2
(2001), 3–35.

[64] Panruo Wu and Zizhong Chen. 2014. FT-ScaLAPACK: Correcting soft er-
rors on-line for ScaLAPACK Cholesky, QR, and LU factorization routines. In
Proceedings of the 23rd international symposium on High-performance parallel
and distributed computing. ACM, 49–60.

[65] Panruo Wu, Chong Ding, Longxiang Chen, Teresa Davies, Christer Karlsson, and
Zizhong Chen. 2013. On-line soft error correction inmatrix–matrixmultiplication.
Journal of Computational Science 4, 6 (2013), 465–472.

[66] Panruo Wu, Qiang Guan, Nathan DeBardeleben, Sean Blanchard, Dingwen Tao,
Xin Liang, Jieyang Chen, and Zizhong Chen. 2016. Towards practical algo-
rithm based fault tolerance in dense linear algebra. In Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and Distributed
Computing. 31–42.

[67] Panruo Wu, Dong Li, Zizhong Chen, Jeffrey S Vetter, and Sparsh Mittal. 2016.
Algorithm-directed data placement in explicitly managed non-volatile memory.
In Proceedings of the 25th ACM International Symposium onHigh-Performance
Parallel and Distributed Computing. 141–152.

[68] Jing Yu, Maria Jesus Garzaran, and Marc Snir. 2009. Esoftcheck: Removal of
non-vital checks for fault tolerance. In 2009 International Symposium on Code
Generation and Optimization. IEEE, 35–46.

[69] Hadi Zamani, Yuanlai Liu, Devashree Tripathy, Laxmi Bhuyan, and Zizhong Chen.
2019. GreenMM: energy efficient GPU matrix multiplication through undervolt-
ing. In Proceedings of the ACM International Conference on Supercomputing.
308–318.

[70] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming
Ouyang, Franck Cappello, and Zizhong Chen. 2020. Algorithm-based fault tol-
erance for convolutional neural networks. IEEE Transactions on Parallel and
Distributed Systems (2020).

138


