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mCRF and mRD: Two Classification Methods based
on a Novel Multiclass Label Noise Filtering
Learning Framework.
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Abstract—Mitigating label noise is a crucial problem in classi-
fication. Noise filtering is an effect method of dealing with label
noise which does not need to estimate the noise rate or rely on
any loss function. However, most filtering methods focus mainly
on binary classification, leaving the more difficult counterpart
problem of multiclass classification relatively unexplored. To
remedy this deficit, we present a definition for label noise in a
multiclass setting and propose a general framework for a novel
label noise filtering learning method for multiclass classification.
Two examples of noise filtering methods for multiclass classifica-
tion, multiclass complete random forest (mCRF) and multiclass
relative density, are derived from their binary counterparts
using our proposed framework. In addition, to optimize the
NI _threshold hyperparameter in mCRF, we propose two new
optimization methods: a new voting cross-validation method
and an adaptive method which employs a 2-means clustering
algorithm. Furthermore, we incorporate SMOTE into our label
noise filtering learning framework to handle the ubiquitous
problem of imbalanced data in multiclass classification. We report
experiments on both synthetic data sets and UCI benchmarks to
demonstrate our proposed methods are highly robust to label
noise in comparison with state-of-the-art baselines. All code and
data results are available at https://github.com/syxiaa/Multiclass-
Label-Noise-Filtering-Learning.

Index Terms—Label noise, multiclass classification, complete
random forest, relative density.

I. INTRODUCTION

LASSIFICATION in the presence of label noise is a well-

studied problem with a worldwide body of contributing
literature. Label noise usually refers to labels that are cor-
rupted; this corruption may be caused by insufficient tagging
information, errors during expert tagging, subjectivity in the
tagging process, and data coding or communication issues [1].
Label noise can deteriorate the performance of classifiers in
many cases [2], [3], [4], [5]. The ubiquity of label noise in
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real world has prompted the development of various methods
to eliminate this performance attrition.

A common approach for mitigating label noise is to remove
the noisy instances in the training set by filtering or by
relabeling the corrupted labels before the training process [0],
[7], [8]. These methods make use of different characteristics
to detect label noise by pre-defining an index and presetting
a threshold to identify the noisy instances. For instance, in
[9], the entropy of the conditional distribution P(Y|X) is
estimated using the probabilities obtained by the Bayesian
classifier. Instances with low entropy and error prediction re-
sults are identified as mislabeled instances and then relabeled.
In [10], a rank pruning algorithm is proposed to solve the
PN learning problem and the open problem of estimating
noise rates. The accuracy of these types of methods greatly
depends on the predicted probabilities of a specified classifier
[11]. In [12], the relative density, defined as the ratio of the
distances between the k-nearest homogeneous neighbors and
the k-nearest heterogeneous neighbors, is estimated to identify
noisy data. Instances with relative density greater than one are
identified as mislabeled instances and are removed from the
training set. However, the threshold value can be ineffective
in an asymmetric data set, allowing Y. Liu et al. to improve
the relative density by performing an automatic search for
an optimal threshold [13]. In [14], X. Liang et al. improved
algorithmic efficiency by calculating the distance ratio of each
instance between homogeneous and heterogeneous centers,
significantly reducing computational frequency. In [15], the
novel completed random forest (CRF) method is proposed
to detect class noise. The noise intensity (NI) in CRF is
predefined to measure the stability of each instance; any
instance with a label different from that of its closest ancestor
node and which remains invariant during a backward trace of
NI_threshold length is identified as a noisy sample. A distinct
advantage of CRF is that the division process does not rely on
any classifier or linear distribution, and is not influenced by d-
ifferent weightings of the features. In addition to these method-
s, some algorithms derived from the complexity of label noise,
such as the Outlier Removal Boosting (ORBoost) method [16],
the Classification-stability (CL-stability) algorithm, and the
Leave-one-out-error-sensitivity (LOOE-sensitivity) algorithm
based on the leave-one-out perturbed classification (LOOPC)
matrix, were designed to detect label noise [17]. Ensemble
classifiers also have excellent performance in classification
tasks, and some ensemble-based noise detection methods
have therefore been developed to solve noise-containing label
classification [18], [19], [20], [21]. It is possible that editing
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the training set can reduce model complexity and alleviate
overfitting engendered by label noise, but such editing may
lead to over-cleansing, especially for unbalanced data sets [22],
(23], [24], [25], [26].

Another approach is which obtains mixed results is convex
potential loss functions in the presence of label noise. It has
been demonstrated that any approach based on convex risk
minimization is required to modify the loss function in order
to obtain the same optimal classifier on a corrupted data set
as it would on the corresponding clean set [27]. Based on this
fact, a series of loss function modification algorithms have
been developed. Natarajan, Dhillon, Ravikumar, and Tewari
developed two approaches to modify the loss functions. The
first approach employs an unbiased estimator of surrogate
loss functions for empirical risk minimization, but it may be
non-convex even when the original loss function is convex,
except when the original loss satisfies a symmetric condition.
The second approach constructs a cost-sensitive surrogate
loss, which depends on a parameter that assumes a priori
knowledge and is defined in terms of noise rates [28]. Because
in most real cases noise rates cannot be known in advance,
Scott proposed a method based on the mutually irreducible
assumption to estimate the noise rate as a mixed proportion
estimation (MPE) by calculating the minimized slope between
the points of an induced receiver operating characteristic
(ROC) curve and the point (1, 1). However, this method has the
drawback that the convergence speed can be arbitrarily slow
[29]. Yu, Liu, Gong, Batmanghelich, and Tao introduced an
independence assumption to estimate the noise rate by using
only a small number of examples from the components. This
approach easily estimates the class priors by solving simple
convex quadratic programming, and the convergence speed is
guaranteed [30]. However, kernel parameter estimation may
be difficult during the kernel mean embedding of distributions,
which can greatly affect the eventual proportion estimation.

Another design approach researchers have investigated is
developing naturally robust loss functions for learning with
label noise. Ghosh, Manwani, and Sastry investigate how
to create a risk minimization robust to label noise, and
prove a sufficient condition on loss function in order to be
tolerant to label noise [31]. This condition is expressed as
l(xz,1)+I(z,—1) = C, where I(z, 1) denotes the loss function
of a sample x when it is predicted as 1. This implies that
once the sum of a loss of an example to be classified as
each class is equivalent to a constant C, the loss function
[ becomes noise-tolerant under uniform noise. This work was
the foundational scientific theoretical basis for much of the
following literature. To develop it further into symmetric label
noise (SLN), Van Rooyen, Menon, and Williamson introduced
a convex classification-calibrated loss [32]. This unhinged
loss can be easily proven to be SLN-robust. T. Liu and Tao
employed the abundant surrogate loss functions for importance
reweighting in classification with label noise and consistently
found that the label noise would not prevent the search for
an optimal classifier for the noise-free samples [33]. This
approach also provided a new method of obtaining the noise
rate, and the upper bound of the noise rate was proven to be
the conditional probability of a noise sample. Patrini, Nielsen,

Nock, and Carioni proposed a simple loss factorization method
to decompose a loss function into an even function and an odd
function, and this makes it suitable for processing asymmetric
label noise [34].

The approaches discussed above are primarily designed for
binary classification; however, some algorithms have been
developed for noise-containing multiple label classification.
In [35], D. Hernandez-Lobato, J. M. Hernandez-Lobato, and
Dupont introduced binary latent variables that indicate whether
a given instance is considered to be an outlier (a wrongly-
labeled instance) or not, and developed a robust multiclass
Gaussian process classifier to alleviate the noisy label influence
by neglecting the distances of wrongly-labeled samples to
the decision boundaries. Based on a Gaussian assumption
on class conditional distributions, Bootkrajang and Kaban
developed a model-based approach that extends the multiclass
quadratic normal discriminant analysis with a model of the
mislabeling process [36]. Sukhbaatar et al. studied the per-
formance of discriminatively-trained ConvNets trained with
large scale noisy labels on ImageNet, introducing an extra
noise layer into the network to adapt the network outputs to
match noisy label distribution [37]. Decomposing strategies,
which have proven to be successful in improving classification
performance in multiclass classification problems, have also
been used in noise filtering to simplify the noise identification
process [38], [39], [40], [41]. A robust multiclass AdaBoost
algorithm, Rob_MulAda, was developed in [42], where a
noise-detection based multiclass loss function is formally
designed and a new weight updating scheme is presented to
mitigate the harmful effect of noisy examples. Learning on
noisy data can closely reflect the results on noise-free data if
the widely-used importance reweighting strategy is employed,
which is applicable to any traditional surrogate loss function
and many different multiclass classification settings [43]. In
practical application, label noise is more common in multi-
class classification, such as text classification [44], medical
diagnosing [45], intrusion detection [46], and collaborative
recommendation systems [47]. However, the above methods
are all designed based on a specific algorithm for noise-
containing multiclass label classification. Our work is focused
on creating more generalized methods for processing noise-
containing multiclass label classification problems, and the
main contributions of this work can be summarized as follows:

1) We propose a general framework for label noise filtering
in learning methods for multiclass classification. We first
give the definition of label noise in multiclass scenarios,
and develop noise-filtering methods from binary to mul-
ticlass classification.

2) We develop the multiclass versions of two state-of-the-
art label noise-filtering methods for binary classification:
the Complete Random Forest Model (CRF) and the
Relative Density Model (RD). We call our multiclass
versions multiclass Complete Random Forest Model
(mCRF) and multiclass Relative Density Model (mRD).

3) We propose two methods, a novel voting cross-validation
(VCV) method and an adaptive method, to improve the
optimization of the NI_threshold parameter for mCRF.
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The voting mechanism allows the methods to achieve
higher classification accuracy because it leads to more
stability in detecting noisy samples.

4) Our label noise-filtering learning framework can be eas-
ily incorporated into the current prevalent oversampling
method to handle class-imbalance problems with label
noise in multiclass classification, and can be easily
combined with different classifiers, including Logistic
Regression (LR), Decision Tree (DT), Support Vector
Machine (SVM), Adaboost, LightGBM, Xgboost, and
others. Experimental results on both synthetic and real
data sets demonstrate the effectiveness of our proposed
methods.

The rest of the paper is organized as follows. In Section II,
two typical filtering-based methods in binary classification are
introduced. We present the formulation of multiclass classifi-
cation with label noise in Section III. In Sections IV and V,
two instantiations of the noise-filtering methods, that is, mCRF
and mRD, in multiclass classification are discussed in detail,
and two methods to optimize the NI_threshold parameter in
mCRF are also detailed. Experimental results are shown in
Section VI, with our conclusions drawn in Section VII.

II. RELATED WORK

In this section we introduce two excellent label noise-
filtering methods—the complete random forest method and
the relative density method—which have been theoretically
and empirically proven to be effective in filtering label noise
in binary classification scenarios.

A. Complete Random Forest Filtering Method

It is well known that the complete random forest method,
inspired by simulating grid generation and expansion, is
the most effective label noise detection method in binary
classification. CRF does not rely on any specific classifiers,
distance measures, or global distribution measurements. This
allows CREF to effectively detect label noise in a complex data
environment, even for high-dimensional data sets corrupted by
label noise [15]. We therefore select CRF as our first model
to extend into multiclass classification.

CRF filtering in a decision tree consists mainly of two
steps. First, a complete random forest F' is generated. Let
Ntree denote the number of trees generated in F. In F|,
each tree is a binary tree. Contrary to the generation of a
conventional random forest, the split points in F' are designed
to be a random value of a randomly selected feature instead of
calculating the Gini Coefficient for each feature, a construction
detail that boosts algorithmic time efficiency significantly,
especially for high-dimensional data. When F' is constructed,
the label of each node is marked with the label of the majority
of samples in each node. The second step is to detect label
noise. Before detecting noisy samples, the noise intensity (NI)
is defined to measure the level of a sample surrounded by
heterogeneous samples. When traversing upward from a leaf
node to the root or to a node with the same label as that of
the leaf node, the NI value of each sample in the leaf node is
determined by counting the number of successively different
labels between the leaf node and its predecessor nodes. Thus,

the greater the value of NI, the more likely a point is to be
recognized as a noisy label, and vice versa. When a complete
random forest is constructed, we can easily determine the
NI value of each sample in each binary tree. To obtain an
optimized value of NI_threshold, noisy samples can simply
be identified with a majority voting mechanism.

CRF does not rely on any probabilistic classifiers, distance
measures, or distribution of the data. Compared with existing
noise detection approaches, it does not suffer from changing
feature weights to different values or any disadvantage of
specific classifier, resulting in an improvement in generaliz-
ability to a complex data environment. However, there is a
hyperparameter, NI_threshold, in the algorithm. In [15], an
optimal NI_threshold is specified according to the highest
classification accuracy, with NI_threshold ranging from 2 to
11 with an interval of 1. In this paper, we not only develop
CRF from binary classification to multiclass classification, but
also propose a novel votingcross-validation method as well as
an adaptive method to optimize the NI_threshold parameter.

B. Relative Density Filtering Method

The relative density model is inspired by the idea that
samples surrounded by more heterogeneous points than homo-
geneous points are more likely to be noisy [2]. The relative
density is based on the absolute density, and is calculated
by the ratio of distances between the k-nearest heterogeneous
neighbors and k-nearest homogeneous neighbors of each sam-
ple. RD performs very well on uniformly distributed data
sets by utilizing the contrast characteristics. We review the
following three classic definitions, which we will need later.

Definition 1: Absolute density.

Let D € R? be a data set. For any two samples p € D and
q € D, d(p,q) represents the distance between points p and
g. The k nearest neighbors of p are given by Ny (p) , where
Ni(p) = {q € D | d(p,q) < k—distance(p)}. Then, the
absolute density of p is given by:

AbsoluteDensity(p) = L, for ¢ € Ni(p). (1)

> d(p,q)

Definition 2: Heterogeneous and homogeneous k-nearest
neighbors.

Let D € R? be a data set, where D consists of two sets
of samples: D+ and D—. For a sample point p € D+,
the k-nearest homogeneous neighbors of k are defined as
HONk(p) = {ql¢ € D + |d(p,q) < k — distance(p)},
and k-nearest heterogeneous neighbors of p are defined as
HENEK(p) ={qlq € D — |d(p, q) < k — distance(p)}.

Definition 3: Relative density.

Let D € R? be a data set, where D consists of two sets
of samples: D+ and D—. For a sample point 0 € D+, its
relative density is defined as:

_ Absolutedensity(o, D—)

 Absolutedensity(o, D+)

B/ X(0,0)(a € HENK(o)
k/>2(0,p)(p € HONE(0))’
2_(0,p)(p € HONk(0))

= S (0,q)(q € HENk(0)) (2)

Relative Density(o)
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For a point o € D , if Relative Density(o) is greater than
1, the point o will be identified as noise.

III. MULTICLASS LABEL NOISE FILTERING LEARNING

Following common convention, let data set {(X;, Y;)}_, be
independently and identically drawn from the underlying true
distribution D, with X; € R% and Y = [V, V2,...,y™]"
S, Yk = 1, where n denotes the number of training
samples, m denotes the number of classes, and d denotes
the number of dimensions. Y* = 1 when the corresponding
example X; belongs to the k' class; otherwise Y* = 0. A
proportion v € (0,0.5) of sample labels are randomly flipped,

{(XZ,YL)} - is obtained,

where ffl represents the label of X; in D’.

Let D, denote the distribution of the corrupted data set, and
fx (X;,w) areal-valued decision function with w representing
)

7

and a corrupted data set D' =

the parameters in the function. 1 ( e (X, w), represents

the surrogate loss function, where Yf € {0,1}. The objective
of multiclass classification is to find an optimal function
fi(X;,w) to distinguish the samples into m classes by
leveraging n training samples. To make this goal quantitative,
the label noise-filtering objective function is defined as:

: Ok
e B, () = %Z ( Z A (e (Ko ))
3)
where v = [v1,v9,...,00] . v 0 when a sample is
identified as a noise; otherwise, v; = 1.

To extend a learning method designed for binary classi-
fication (such as the label noise detection methods in this
paper) into multiclass classification, a common scheme is
to use a one-vs-rest [39] or a one-vs-one [48] mechanism.
Here, M = m when the one-vs-rest strategy is adopted, and
M = m(m — 1)/2 when the one-vs-one strategy is adopted.
However, both of these strategies will generate many median
classifiers and increase computational overhead. In addition,
the one-vs-rest strategy is likely to lead to an imbalanced prob-
lem. To address these problems, we give a general definition
of label noise in multiclass classification and provide a general
framework for label noise filtering learning methods that can
be directly applied to multiclass classification tasks.

Definition 4: Label noise in multiclass classification.

Let D' = { (Xl7 )A/) } ~ be a corrupted data set, where D’

consists of m classes of samples D}, Db, D, ..., D . Y; is
the observed label of the sample X;, and Y; is the underlying
true label of X;. For any sample X; € Dy, k € {1,2,...,m},
X is defined as a noisy sample when the observed label of
X; is different from the underlying true label, i.e., Y; £Y;.

Definition 4 implies that, once the observed label of a
sample is different from its true label, it will be regarded as
a noisy sample, regardless of what class the observed label
Y; belongs to. Based on this definition, we expand the label
noise detection measurement from binary classification into
multiclass classification in Definition 5.

Definition 5: Multiclass extension of binary noise detection.

Let D' = { (XZ-, ﬁ) }n X be a corrupted data set, where D’
consists of m classes oflsamples D), Dy, Di,..., D Y; is
the observed label of the sample X;, and Y is the underlying
true label of X,. Let LN (X,) = f (X“Y;,Num Y))
be a label noise detection measurement for binary classifica-
Y; represents the number of opposite
labels of X; when judging whether X; is label noise or not
under the given mapping function f. The multiclass version

of LN is LN (X;) = f(XZ,nNum (Y ;AY))

N um(Yi #Y;) represents the number of samples whose labels
are contaminated, and f is used to judge whether a sample is
label noise or not.

By simply replacing opposing labels with heterogeneous
labels, Definition 5 presents a general framework which ex-
tends the label-noise filtering methods designed for binary
classification into multiclass classification. Accordingly, v; in
(3) can be directly calculated instead of decomposing the
multi-class problems into binary classification problems. Thus,
we may avoid generating the median classifiers altogether.

tion, where Num (—

, where

IV. MCRF: A MULTICLASS VERSION OF CRF NOISE
FILTERING

In this section, based on Definition 5, we develop the
Complete Random Forest filtering learning method from a
binary classification method into a multiclass classification
method.

A. Multiclass Complete Random Forest Filtering

We first give the definitions of noise intensity (NI) and a
measurement that identifies whether a sample is label noise or
not for multiclass classification.

Definition 6: Noise intensity.

Let D € R be a data set consisting of m classes of samples,
represented by D, Do, Ds, ..., D;,. A multiclass complete
random tree M is constructed on D. The noise intensity value
NI of each sample in a leaf node of M is defined as the number
of different labels between the leaf node and its ancestors.

Note that during the tree traversal process used to compute
the NI, the labels of the ancestors must always be different
from the label of the leaf node. The labels of the traversed
nodes can be either the same or different from each other,
but must be different from the label of the leaf node. If the
traversal process reaches either an ancestor node with the
same label as the leaf node or the root node, the traversal
is terminated. Figure 1 illustrates the process of constructing
a complete random tree. There are three classes labeled Y7,
Y5, and Y3, which respectively correspond to blue, orange, and
green nodes. Each node in the binary tree is marked by the
majority label of the node. The root point is recursively split
until it fulfills either of the following two conditions: the labels
in a node are all the same, or the number of samples in a node
is equal to 1. In Figure 1, we can see that the 20t", 28", and
29" points are more likely to be noisy samples as they are
more likely to be surrounded by heterogeneous points. When
traversing upward from a leaf node to the root or to a node with
the same label, the NI value of each sample in the leaf node is
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Fig. 1. Structure of the complete random tree.
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determined by counting the number of successively different
labels between the leaf node and its predecessor nodes. For
instance, the NI value of the 28" point is 3 as we traverse
upward towards the root, the NI value of the 20th point is
2, and the NI value of the 29*" point is 1 because we have
traversed upwards to a node with the same label as that of the
leaf node. The NI values of the remaining samples are zero as
their labels are identical to the labels of their parent nodes.

Definition 7: Multiclass label noise filtering.

Let D € R? be a data set consisting of m classes of
samples, represented by Dy, Dy, Ds, ..., Dy,. A multiclass
complete random tree M is constructed on D. For a given
NI_threshold in D, the points whose NI value are larger than
the NI _threshold are identified as label noise.

In contrast to the definition of label noise in binary classi-
fication, the labels of the predecessors of a node are likely to
span more than one class in multiclass classification. It is more
difficult to remain invariant than it is in binary classification.
The process of detecting multiclass label noise also consists of
two parts. First, a complete random forest must be constructed,
where each tree in the forest is generated by simple random
node-splitting. Second, label noise must be detected according
to the given threshold. Per Definition 6, the NI value for
each sample in the leaf nodes can be calculated easily once
the tree is constructed. Thus, samples with NI values greater
than the given NI_threshold will be identified as label noise
based on Definition 7. The detection results rely on the given
NI _threshold. In Figure 1, when NI_threshold is set to 2, the
28!" point and the 20*" point will be recognized as label
noise; when NI_threshold is set to three, only the 28th point
will be recognized as label noise. Therefore, we propose
two novel methods, a voting-cross-validation method and an
adaptive method, to optimize the NI_threshold parameter in
the following sections.

B. A Novel Voting Cross-Validation Method to Optimize
NI_threshold

As the label-noise points in each cross-training set are likely
to change, the traditional cross-validation method cannot be
used directly to detect label noise. We propose a novel cross-
validation method for label noise filtering which incorporates
a majority voting mechanism. We call our method the voting
cross-validation method. We show an example in Figure 2 with
5-fold cross-validation. The pseudocode for VCV is given in
Algorithm 1.

Given a corrupted training data set D). and
Max_NI_threshold (NI™), we split Dj. into 5 disjoint
subsets D1, ..., D, ..., D%, and let NI* range from 1, 2, ...,

Cross Training sets

f
| \ \ \ ,
' . ' ' D
D 5
1

NI, Validation Accuracy VA; VA;  Max {VA%}, -
NI, VA5 NI;,
NI, VA '5” Dhoise 5"

Generate final label
= noise set D50 by

voting {Dnnise,}'

H H * ok
VAy Nig, Dnoise4

D, ' g ' ' " -

D D D, D VA%, NI, D, ..

Validation 2L Pnoisey

Fig. 2. Example of identifying label-noise samples using the VCV method.

to [loga(N)], where ¢ = 1,2,...,m, [-] represents rounding
down the bracketed number, and N denotes the number
of the samples in Dj.. The VCV method consists of two
processes, validation and voting. In the validation process for

%, a multiclass complete random forest is constructed. Then,
for each NIi, i = 1,2,....,m, the corresponding validation
accuracy using mCRF-learning on DY is notated by VAL.
The highest validation accuracy among VAL, i = 1,2,....,m
is marked VAZ, and its corresponding NI_threshold and

detected noisy samples are respectively notated NI and
!
noises*

In the voting process, if a sample appears in over 50% of

noise,sT = 1,2,..., 5, the sample will be identified as a final
noisy sample. As shown in Figure 2, all final noisy samples
make up the final label noise set D) ;...

The VCV method is advantageous for label noise filtering
learning in particular because the voting mechanism can
enhance the reliability of detected label noise, mitigating over-
cleaning. In addition, since the distributions of different data

sets are not identical, using a fixed NI_threshold in mCRF is

Algorithm 1: Detection of label-noise samples using the
VCV method.

Input: A corrupted training data set D
Max_NI_threshold.
Output: D/ . . the optimal NI_threshold NI*.
1: Split Dy, into R disjoint subsets D, ..., D}, ..., D}-z;
2: for each split D, r=1, 2, .., R do
3: Construct a multiclass complete random forest using the remaining
(R-1) splits;
4: Calculate the NI value of each sample in the leaf nodes of each tree
using Definition 6;
for each NI_threshold NI¢, i=l, 2, ..., m do
Detect noisy samples using Definition 7 and mCRF;
Filter the noisy samples and obtain validation accuracy VAZ
using a classifier on D/.;
8: end for

/
tr>

splits R, Ntree,

Naw

9: VA¥ = the highest validation accuracy among VA%, i = 1,2, ..., m;
NI} = the corresponding NI_threshold,

rois e = the corresponding detected noisy samples;
10:  for each sample = do
11: if « appears in over 50% of D;wiser,r =1,2,..., R then
12: x will be identified as a final noisy sample and saved into

;zoise;
13: end if
14: end for
15: end for R
16: NI* = Moz%e {NI}}; // Mode: the most frequent value.
Joss

17: return D/ NI*.

noise’




IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Cross Training sets

NI

2-means,
2 2 * gk !
A_” A_/N[ NNIs . NI , Dnoi.v<'5
NI™ NNI™
Generate final label
' * - Lo '
Dy . NNIy, NIy, Dnoi.ve4 — noise set Ll)nuis'e by

i o
voting %D!‘IUI.YL‘,"

* * g
NNI; 'NII'Dnai.w[ J

Fig. 3. Example of identifying label-noise samples using our adaptive method.

not reasonable. Assembling a set of NI_thresholds during the
VCV method is likely to be better than using a fixed value.
This is demonstrated in our experimental results.

C. An Adaptive Method to Optimize NI_threshold

Inspired by the VCV method, we now develop an adaptive
method to optimize NI_threshold. In contrast to the previous
optimization of the NI_threshold parameter under the guidance
of validation accuracy, now NI_threshold is dependent on the
stable number of identified label-noise samples. The degree
of stability is difficult to quantify statistically. However, we
note that the number of samples identified as noisy when the
NI_threshold parameter is smaller than its optimal value is
observably different than the number of samples identified as
noisy when the parameter is larger than the optimal value.
This is due to the different characteristics of noisy and normal
samples. Based on this observation, we use 2-means clustering
to search for a stable number of samples identified as noisy.
Figure 3 shows an example of identifying label-noise samples
using our adaptive method. As in the VCV example, we split
the corrupted training data set Dj, into 5 disjoint subsets

s ., Dl ..., Di. Different cross training sets again result
in different constructed forests. Our adaptive method also
consists of two steps, clustering and voting. The clustering
process for Df begins with the construction of a multiclass
complete random forest. Then, for each NNIE,i = 1,2,....,m,
the corresponding label-noise samples are detected using Def-
inition 7 and mCRF. The number of detected label-noise
samples NNI: i = 1,2,...,m can be counted instantly for
each NI..

After this, we apply 2-means clustering to the set of
numbers NNI: i = 1,2,..,m. This set is naturally split
into two clusters, C; and C5. Assuming that C; is the
cluster with a bigger center ¢; and Cs is the cluster with
a smaller center cz, the maximum value NNIZ in cluster
(5 is selected as the stable number of label-noise samples,
and the corresponding NI_threshold is selected as the optimal
NIZ. A one-dimensional vector will be divided into two parts
immediately by the 2-means algorithm, greatly enhancing
the efficiency of optimizing the NI_threshold hyperparameter.
Additionally, keeping the R-fold splits and voting mechanism
in the optimization process maintains the effectiveness of
label-noise detection at a high level. More details are found
in Algorithm 2.

6
Algorithm 2: Detection of label-noise samples using our
adaptive method.
Input: A corrupted training data set Dj,., splits R, Ntree,
Max_NI_threshold.
Output: D/ . . the optimal NI_threshold NI*.
1: Split Dj,. into R disjoint subsets D7, ..., Dy., ..., Dy;
2: for each split D., r=1, 2, .., R do
3: Construct a multiclass complete random forest using the remaining
(R-1) splits;
4: Calculate the NI value of each sample in the leaf nodes of each tree

using Definition 6;

for each NI_threshold NT?, i=1, 2, ..., m do
Detect noisy samples using Definition 7 and mCRF;
Count the number NNI? of identified label-noise samples;

end for

Apply 2-means clustering algorithm to split NNI? i =1,2,...,m

into two clusters C1 and C2, where ¢; and cg represent the centers

of C'1 and Cg respectively, and ¢ > c2;

10: Set NNI; = the maximum of NNI% i = 1,2,...,m, in Cx (the
cluster with the smaller center c2) as the stable number of identified
label noise;

NI} = the corresponding NI_threshold,

R AN

D] ;s e = the corresponding detected noisy samples;
11: end for
12: for each sample x do
13: if = appears in over 50% of D;wiser,r =1,2,..., R then
14: x will be identified as a final noisy sample;
15: end if
16: end for

R
17: NI* = Mo%e {NI}}; // Mode: the most frequent value.
r=
18: return D’ NI*.

noise’

D. Time complexity

Our mCRF noise filtering learning framework consists of
two stages. Stage 1 constructs a multiclass random forest and
calculates the NI value for each sample. Stage 2 searches for
an appropriate NI_threshold to detect label noise. Assuming
that the training set contains /N samples which are split into
R folds, and the complete random forest contains ¢ trees,
the time complexity of Stage 1 is approximate O(tNlogN),
as analyzed in [I5]. In Stage 2, the time complexity of
the VCV method is dominated by the classifier used in the
validation process, the time complexity of which we label
T. Then the total time complexity of VCV-based mCRF
amounts to O(R * (tNlogN + T)). Under the guidance of
validation accuracy, VCV-based mCRF identifies label noise
stably and precisely. However, the validation process can be
time-consuming when applied to very large data sets. Our
proposed adaptive method remedies this shortcoming. By
using a 2-means clustering algorithm on single-dimensional
data, the time cost is negligible due to the fast convergence
speed of 2-means. Thus, the time complexity of adaptive-based
mCRF mainly lies in Stage 1, which is O(R x (tNlogN)).

E. Computing v; in mCRF
In the mCRF method, v; as seen in (3) is defined as:

V= {
(C))

where NT (F (X;; Ntree, NI_threshold*,w)) denotes the
number of trees recognizing X; as label noise. When the value
of NT( -) is greater than 50% of the trees in the forest of one

R
0, lesz(F(xi;Ntmee,NI_thresh,oLd* w) ,Yi)zso%*NtreeZR*50%7
=

1, otherwise
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split, the value of the indicator function I(-) is equal to 1;
when the sum of R indicators is over 50%* R, the instance will
be recognized as label noise. By introducing cross-validation
and the majority voting mechanism, this identification process
becomes more stable and precise.

V. MRD: A MULTICLASS VERSION OF RD NOISE
FILTERING

In this section, based on Definitions 4 and 5, we develop
the relative density filtering learning method from a binary
classification method into a multiclass classification method.

A. The Multiclass Relative Density Method

We first use Definition 5 to provide specific definitions of
multiclass relative denisity and the relevant k-nearest neigh-
bors for easy reference.

Definition 8: Multiclass k-nearest heterogeneous and ho-
mogeneous neighbors. .

Let D), = {(XY)}
ta set, where Dj,. consistsFolf m classes with n samples.
Let D’ represent the sth class, and D! represent the re-
maining (m-1) classes. For all p € D/, the k-nearest
homogeneous neighbors of p are defined as HONk(p) =
{¢qlq € D} d(p,q) < k — distance(p)}, and the k-nearest
heterogeneous neighbors of p are defined as HENk(p) =
{alq € Dy|d(p,q) < k — distance(p)}.

In a multiclass scenario, the heterogeneous neighbors of a
point refer to those neighbor samples that have differing labels,
instead of the opposing label as in binary classification. Based
on Definition 8, the multiclass relative density is defined as
follows.

Definition 9: Multiclass r;:lative density.

Let D), = {(XY)}
set, where Dj,. consists of m clzlasses with n samples. Let D/,
represent the s class, and D! represent the remaining (1m-1)
classes. For all p € D, the relative density of p is defined as:

_ Absolute density (p, Dy,)
~ Absolute density (p, D%,
_ k/Xd(p,0)(0 € HENk(p))
~ k/%d(p,q)(q € HONK(p))’

_ 2 dp,9)(p € HONE(0))
2 d(p;0)(g € HENK(0))

For each sample in each class, the RelativeDensity (RD)
is calculated by finding the k-nearest homogeneous neighbors
in the same class and the k-nearest heterogeneous neighbors
in the other m-1 classes, and then computing the RD value
using (5). Of significant note, the RD value of a noisy sample
is greater than 1; thus, here, the threshold to detect to label-
noise samples is set to one.

In Figure 4, there are samples from three classes represented
by circle, inverted triangle, and plus symbols, respectively;
label-noise samples are colored in red. Figure 4(a) shows the
underlying noise-free data set, where each point is close to
other points of the same class and far away from points in
different classes. Letting k=3, for queried point a;, we can
easily see that as, a3, and a4 are the 3-nearest homogeneous

be a corrupted training da-

be a corrupted training data

Relative Density(p)

®)

(a) Clean data set (b) Corrupted data set

Fig. 4. Tllustration of heterogeneous and homogeneous neighbors in clean
and corrupted data sets.

Algorithm 3: Detection of label-noise samples using the
mRD method.
Input: A corrupted training data set D'
k.
Output: D], . .
1: //1. Calculate the RD value for each point
2: for each class S do
3:  for each sample X; in S do
4: Calculate the Euclidean distance d(X;, X;) between i*" and the

/

-» Dumber of nearest neighbors

4t points;

S: Find the homogeneous k-nearest neighbors in the same class (X
€ 5);

6: Find the heterogeneous k-nearest neighbors in the remaining
m — 1 classes (X; ¢ 9);

7 Calculate the RD value RD; based on (5);

8: end for

9: end for

10: //2. Detect the label noise samples
11: for each sample x do
12: if RD; > 1 then

13: X; will be identified as a label-noise sample and saved into
;Loise;

14: end if

15: end for

16: return D’

noise’

neighbors, as they all belong to the circle class. Similarly,
as, ag, and ay are the 3-nearest heterogeneous neighbors, and
they belong to the triangle or plus classes. Obviously, the
sum of distances between a; and its 3-nearest heterogeneous
neighbors is greater than the sum of distances between a;
and its 3-nearest homogeneous neighbors. Similarly, in Fig-
ure 4(b) the 3-nearest homogeneous neighbors and 3-nearest
heterogeneous neighbors of the label noise sample by are bo,
bs, and b4, and b5, bg, and b7, respectively. However, the
sum of distances between b; and its 3-nearest heterogeneous
neighbors is smaller than the sum of distances between b;
and its 3-nearest homogeneous neighbors, indicating that this
is likely a noisy sample. We provide the fine details of the
algorithm design in Algorithm 3.

B. Time complexity

The time complexity of our mRD noise filtering learning
framework mostly depends on the calculation of the RD value
for each sample. Given N samples in the training set, we
must compute the Euclidean distances between each query
sample with every other sample; the time complexity of mRD
is therefore O(N?).
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C. Compute v; in the mRD
In mRD, we define v; from (3) by the equation:

Vi = { 1,RD (X;) > 1. ©)

This implies that the loss of noisy samples should be set
to zero to minimize the objective function. This multiclass
filtering framework can be combined with almost all types of
classifiers.

VI. EXPERIMENTAL RESULTS

We conduct a series of experiments to empirically evaluate
the performance of the proposed algorithms. We first test
on synthetic data sets to intuitively demonstrate the perfor-
mance of the filtering learning frameworks for multiclass
classification, showing examples of both mCRF and mRD.
We then select the state-of-the-art competitor method, the
importance reweighting method (mIW), as our baseline for
comparison. mIW leverages a reweighting strategy to mini-
mize the influence of label noise by assigning a low ratio to
incorrectly labeled samples in multiclass classification tasks;
this ratio is independent of any specific loss function. We
also run an experiment in which we incorporate the preva-
lent Synthetic Minority Oversampling Technique (SMOTE)
with our proposed label noise-filtering learning framework,
as well incorporating it with the state-of-the-art alternative, in
order to alleviate the class imbalance problem in multiclass
classification. We then run both SMOTE-enhanced methods
on imbalanced multiclass data sets with label noise. Finally,
we test the proposed adaptive method on several real-world
UCI data sets; in order to verify the proposed framework, we
combine it with a selection of traditional classifiers including
LR, DT, SVM, Adaboost, LightGBM, and XGboost.

Note that, in mCRF, in order to select the proper
NI_threshold parameter from the finite set of possible values
{2, 3, ...,Max_NI_Threshold}, a validation set of 10% training
data is randomly held back from the training set. Instead of
fixing the Max_NI_threshold at 11 as in [15], we provide a
reference value log2(n) as the Max_NI_threshold, where n
denotes the cardinality of the training data set Dj,.

The labels of the training samples are flipped stochastically
according to a noise rate vy, while the test partitions are noise-
free, as seen in the methodology of [43]. This allows one to
observe how noisy data affect the training process and how
the test results are degraded depending on the level of label
noise. In the experiments, to balance between the computa-
tional overhead and obtaining enough experimental results to
draw conclusions, the noise rates v under consideration are
{0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4}.

A. Synthetic Data

To intuitively show the effectiveness of the two proposed
methods, four 2-dimensional data sets are created using
the make_blobs, make_moons, make_circles, and
make_classification functions of the Python library
scikit—-learn. Each data set contains 1000 points and con-
sists of three classes, which we label circle, triangle_down, and
plus. The percentage of samples in each class is 20%, 35%,

and 45%, respectively. The noisy samples in the training set are
generated by flipping the labels according to a given noise rate
v, where v € {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4}. Six
traditional classifiers—LR, DT, SVM, Adaboost, LightGBM,
and XGboost—are chosen as basic classifiers. For fair com-
parison, the parameters of all classifiers are set to default. For
simplicity, only the results of the SVM with a default Gaussian
kernel width at the noise rate y=0.4 are presented in Figures 5
to 8 in this section. Some results with v € {0.1,0.2,0.3,0.4}
are presented in Figs. 10 to 101 in Appendix A; other results
are uploaded to Github using Git LFS as too many pictures will
make it difficult to read the paper. Though omitted, the results
of any other desired classifier or noise rate will not change
the conclusions drawn. Each figure consists of eight sub-
figures. The classification hyperplanes are colored in green,
yellow, and orange. Both noisy samples in the training sets
and misclassified samples in the test sets are colored in red.
Test accuracy is given in brackets. In each figure, (a) displays
the hyperplane trained with the true noise-free data, which
is used as the touchstone to measure the performance of the
label noise-filtering framework, and (b) shows the hyperplane
trained with the corrupted data with 40 percent of the labels
flipped stochastically, where the red-colored points denote the
synthetic label noise. It can be seen from Figures 5(b), 6(b),
7(b), and 8(b) that label noise disturbed the distribution of
the original noise-free data set, causing the hyperplane to
poorly separate the samples into three classes. The accuracies
of 0.904, 0.956, 0.956, and 0.916 in Figures 5(f), 6(f), 7(f),
and 8(f) are lower than those in Figures 5-8(e) respectively,
that is, 0.940, 0.980, 0.992, and 0.956. This indicates that the
predictive performance of the classifier was deteriorated in
the presence of label noise, making the separable data set
nonseparable. To mitigate the influence of label noise, we
apply the two proposed methods on the corrupted data set.
Figures 5-8(c) show the classification results of the mCRF-
SVM, where the noisy samples are detected and filtered by
mCRF. Similarly, Figures 5-8(d) illustrate the classification
results of the mRD-SVM. The hyperplanes in Figures 5-8(c)
and Figures 5-8(d) are quite close to the original hyperplanes,
and the corresponding accuracies are also better than the
non-filtered results. This indicates that the proposed label
noise filtering learning framework is effective in enhancing
the generalizability of the classifier. Similar conclusions can
also be drawn from Figures 10 to 101 in Appendix A. All
accuracies obtained from the four synthetic data sets are
summarized in Table V in Appendix A as well.

In summary, Figures 5-8 and Figures 10-101 demonstrate
the efficiency of our proposed label noise detection methods
and label noise filtering framework in multiclass scenarios.
The label noise detection methods can effectively detect and
filter label noise before the training process, thus minimizing
the influence of label noise and making the resulting hyper-
plane as similar to the noise-free hyperplane as possible to
improve the generalizability of classifiers. Even on a data set
with clusters of different and complex shapes, as shown in
Figure 8, mCREF still achieves good results.
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TABLE I
DATA SET INFORMATION

Data #Features #Classes #Instances Class distribution

iris 5 3 150 [50, 50, 50]

wine 14 3 178 [71, 59, 48]*

seeds 8 3 210 [70, 70, 70]

newthyroid 6 3 215 [150, 35, 30]*

vertebralColumn 7 3 310 [150, 100, 60]*

userknowledge 6 5 403 [129, 122, 102, 26, 24]*

balancescale 5 3 625 [288, 288, 49]*

PhishingData 10 3 1353 [702, 548, 103]*

segmentation 20 7 2310  [330, 330, 330, 330, 330,
330, 330]

satimage 37 6 3188  [788, 674, 597, 443, 391,
295]*

pendigits 17 10 7494 [780, 780, 780, 779, 778,
720, 720, 719, 719, 719]*

shuttle 10 7 43500 [34108, 6748, 2458, 132,

37, 11, 6]*

B. UCI Benchmarks

We conduct our experiments on 12 real data sets from
the UCI repository! to demonstrate the performance of our
proposed multiclass label noise filtering framework combined
with various classifiers across different noise rates. Some
reference metadata is presented in Table I, where # represents
‘number of’, and * indicates the data set is imbalanced. We
randomly divide each data set into five parts, and use each
testing data while the remaining 4 are training data. This
process is repeated five times. Thus, 25 testing accuracies are
obtained per data set, classifier, and noise rate. The average
value of these 25 test accuracies is our final test accuracy;
which mitigates the randomness arising from splitting data
sets and flipping the labels stochastically. Each accuracy has
3 dimensions—data set, classifier, and noise rate—on which
to compare the performance of our proposed methods against
our baseline. However, due to paper space limitations, we have
further averaged the results across the classifier and data set
in order to reduce dimensionality. Only the average accuracies
of all data sets for each pair (one noise rate ~, one data set)
and average accuracies of all classifiers for each pair (one
noise rate -, one classifier) are listed in Tables II to III,
respectively, with the highest two values in bold in each row
(relative improvement in parentheses). Relative improvement
is the average accuracy the label noise filtration method minus
the average score of the original method. The actual average
results for per data set, classifier, and noise rate across all 25
runs are summarized in Tables VI to LIII in Appendix B.

Here, we investigate the performances of the two proposed
methods to optimize NI_threshold in mCRF. To differentiate
the VCV and adaptive methods, we adopt the respective
notation VCV_mCRF and Adp_mCRF in the tables. Table
IT presents the average accuracies and improvements of the
selected noise-filtering algorithms on the UCI data sets with
a steadily-increasing noise rate . Reading across columns,
we see all four noise-filtering methods as well as the baseline
classifier report a drop in performance with the increase in
noise rate -y for all data sets. However, the performance deteri-
oration is lessened in our proposed algorithms, which manifest

Uhttps://archive.ics.uci.edu/ml/index.php
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TABLE II
COMPARISON OF AVERAGE ACCURACIES FOR SELECTED ALGORITHMS ON DIFFERENT DATA SETS AT VARYING NOISE RATES 7.

Data Original mIW VCV_mCRF Adp_mCRF mRD ~ Data Original mIW VCV_mCRF Adp_mCRF mRD
balancescale  0.8436 0.8374 (-0.0062) 0.8399 (-0.0037) 0.8627 (0.0191) 0.8916 (0.0480) 0.05 seeds 0.9106 0.9005 (-0.0101) 0.9206 (0.0100) 0.9206 (0.0100) 0.8844 (-0.0262)
0.8189 0.8141 (-0.0048) 0.8290 (0.0101) 0.8040 (-0.0149) 0.8209 (0.0020) 0.1 0.8989 0.8873 (-0.0116) 0.8981 (-0.0008) 0.8571 (-0.0418) 0.8981 (-0.0008)
0.8036 0.8042 (0.0006) 0.8210 (0.0174) 0.8467 (0.0431) 0.8116 (0.0080) 0.15 0.8603 0.8889 (0.0286) 0.9101 (0.0498) 0.9048 (0.0445) 0.8857 (0.0254)
0.7811 0.7847 (0.0036) 0.7949 (0.0138) 0.7827 (0.0016) 0.8111 (0.0300) 0.2 0.8495 0.8505 (0.0010) 0.8841 (0.0346) 0.9008 (0.0513) 0.8479 (-0.0016)
0.7768 0.7825 (0.0057) 0.7877 (0.0109) 0.8120 (0.0352) 0.7511 (-0.0257) 0.25 0.8153 0.8561 (0.0408) 0.8833 (0.0680) 0.8730 (0.0577) 0.8862 (0.0709)
0.7543 0.7649 (0.0106) 0.7746 (0.0203) 0.7387 (-0.0156) 0.7578 (0.0035) 0.3 0.7847 0.8299 (0.0452) 0.8574 (0.0727) 0.9246 (0.1399) 0.8513 (0.0666)
0.7329 0.7563 (0.0234) 0.7692 (0.0363) 0.7253 (-0.0076) 0.7387 (0.0058) 0.35 0.7728 0.8474 (0.0746) 0.8548 (0.0820) 0.9246 (0.1518) 0.8529 (0.0801)
0.7140 0.7585 (0.0445) 0.7497 (0.0357) 0.7867 (0.0727) 0.7634 (0.0494) 0.4 0.7386 0.8331 (0.0945) 0.8235 (0.0849) 0.8611 (0.1225) 0.8508 (0.1122)
Average 0.7781 0.7878 (0.0097) 0.7958 (0.0177) 0.7948 (0.0167) 0.7933 (0.0152) Average 0.8288 0.8617 (0.0329) 0.8790 (0.0502) 0.8958 (0.0670) 0.8697 (0.0409)
iris 0.9359 0.9052 (-0.0307) 0.9615 (0.0256) 0.9944 (0.0585) 0.9574 (0.0215) 0.05 segmentation 0.9172 0.7680 (-0.1492) 0.8723 (-0.0449) 0.8734 (-0.0438) 0.8749 (-0.0423)
0.9089 0.9074 (-0.0015) 0.9478 (0.0389) 0.9556 (0.0467) 0.9589 (0.0500) 0.1 0.9041 0.7521 (-0.1520) 0.8937 (-0.0104) 0.9152 (0.0111) 0.8603 (-0.0438)
0.8930 0.9096 (0.0166) 0.9389 (0.0459) 0.8611 (-0.0319) 0.9530 (0.0600) 0.15 0.8939 0.7593 (-0.1346) 0.9134 (0.0195) 0.8716 (-0.0223) 0.8677 (-0.0262)
0.8407 0.8904 (0.0497) 0.8815 (0.0408) 0.9056 (0.0649) 0.9556 (0.1149) 0.2 0.8803 0.7549 (-0.1254) 0.8909 (0.0106) 0.8745 (-0.0058) 0.8575 (-0.0228)
0.8367 0.8778 (0.0411) 0.9396 (0.1029) 0.9000 (0.0633) 0.9441 (0.1074) 0.25 0.8643 0.7514 (-0.1129) 0.8936 (0.0293) 0.8918 (0.0275) 0.8655 (0.0012)
0.8119 0.8681 (0.0562) 0.9267 (0.1148) 0.8667 (0.0548) 0.9415 (0.1296) 0.3 0.8427 0.7715 (-0.0712) 0.8804 (0.0377) 0.9044 (0.0617) 0.8593 (0.0166)
0.7770 0.8596 (0.0826) 0.8937 (0.1167) 0.9278 (0.1508) 0.8907 (0.1137) 0.35 0.8306 0.7522 (-0.0784) 0.8740 (0.0434) 0.8604 (0.0298) 0.8494 (0.0188)
0.7384 0.8584 (0.1200) 0.8853 (0.1469) 0.8778 (0.1394) 0.8602 (0.1218) 04 0.8036 0.7603 (-0.0433)  0.8718 (0.0682) 0.8709 (0.0673) 0.8402 (0.0366)
Average 0.8428 0.8846 (0.0418) 0.9219 (0.0791) 0.9111 (0.0683) 0.9327 (0.0899) Average 0.8671 0.7587 (-0.1084) 0.8863 (0.0192) 0.8828 (0.0157) 0.8594 (-0.0077)
newthyroid ~ 0.9189 0.9258 (0.0069) 0.9305 (0.0116) 0.9070 (-0.0119) 0.9269 (0.0080) 0.05 shuttle 0.9696 0.1128 (-0.8568) 0.9695 (-0.0001) 0.9791 (0.0095) 0.9552 (-0.0144)
0.9080 0.9080 (0.00000) 0.9083 (0.0003) 0.9186 (0.0106) 0.9194 (0.0114) 0.1 0.9561 0.1219 (-0.8342) 0.9668 (0.0107) 0.9567 (0.0006) 0.9513 (-0.0048)
0.8819 0.8997 (0.0178) 0.9152 (0.0333) 0.8798 (-0.0021) 0.9238 (0.0419) 0.15 0.9468 0.1580 (-0.7888) 0.9541 (0.0073) 0.9658 (0.0190) 0.9502 (0.0034)
0.8530 0.8726 (0.0196) 0.8775 (0.0245) 0.8953 (0.0423) 0.9165 (0.0635) 0.2 0.9348 0.1275 (-0.8073) 0.9612 (0.0264) 0.9726 (0.0378) 0.9644 (0.0296)
0.7848 0.8605 (0.0757) 0.8928 (0.1080) 0.9264 (0.1416) 0.8995 (0.1147) 0.25 0.9200 0.1302 (-0.7898) 0.9586 (0.0386) 0.9634 (0.0434) 0.9511 (0.0311)
0.8165 0.8390 (0.0225) 0.8742 (0.0577) 0.8953 (0.0788) 0.8773 (0.0608) 0.3 09117 0.0745 (-0.8372) 0.9591 (0.0474) 0.9576 (0.0459) 0.9650 (0.0533)
0.7646 0.8276 (0.0630) 0.8297 (0.0651) 0.8333 (0.0687) 0.8599 (0.0953) 0.35 0.8969 0.1113 (-0.7856) 0.9655 (0.0686) 0.9682 (0.0713) 0.9572 (0.0603)
0.7359 0.8178 (0.0819) 0.8394 (0.1035) 0.8566 (0.1207) 0.8725 (0.1366) 0.4 0.8867 0.1186 (-0.7681) 0.9628 (0.0761) 0.9574 (0.0707) 0.9493 (0.0626)
Average 0.8329 0.8689 (0.0360) 0.8834 (0.0505) 0.8890 (0.0561) 0.8995 (0.0666) Average 0.9278 0.1194 (-0.8084) 0.9622 (0.0344) 0.9651 (0.0373) 0.9555 (0.0277)
pendigits 0.9304 0.9171 (-0.0133) 0.8856 (-0.0448) 0.9184 (-0.0120) 0.8656 (-0.0648) 0.05 userknowledge  0.7974 0.7983 (0.0009) 0.7966 (-0.0008) 0.8436 (0.0462) 0.7852 (-0.0122)
0.9215 0.9117 (-0.0098) 0.8780 (-0.0435) 0.8932 (-0.0283) 0.8500 (-0.0715) 0.1 0.8151 0.8082 (-0.0069) 0.7968 (-0.0183) 0.8107 (-0.0044) 0.7960 (-0.0191)
0.9158 0.9104 (-0.0054) 0.8605 (-0.0553) 0.9067 (-0.0091) 0.8582 (-0.0576) 0.15 0.7970 0.7799 (-0.0171) 0.7932 (-0.0038) 0.8210 (0.0240) 0.8135 (0.0165)
0.9034 0.9075 (0.0041) 0.8685 (-0.0349) 0.8853 (-0.0181) 0.8523 (-0.0511) 0.2 0.7762 0.7686 (-0.0076) 0.7554 (-0.0208) 0.7531 (-0.0231) 0.7772 (0.0010)
0.8929 0.9100 (0.0171) 0.8844 (-0.0085) 0.9134 (0.0205) 0.8555 (-0.0374) 0.25 0.7322 0.7467 (0.0145) 0.7488 (0.0166) 0.7984 (0.0662) 0.7767 (0.0445)
0.8784 0.8997 (0.0213) 0.8934 (0.0150) 0.9075 (0.0291) 0.8559 (-0.0225) 0.3 0.7227 0.7495 (0.0268) 0.7643 (0.0416) 0.7695 (0.0468) 0.7575 (0.0348)
0.8661 0.8980 (0.0319) 0.8945 (0.0284) 0.9144 (0.0483) 0.8378 (-0.0283) 035 0.6925 0.7144 (0.0219) 0.7334 (0.0409) 0.7346 (0.0421) 0.7465 (0.0540)
0.8496 0.8989 (0.0493) 0.8932 (0.0436) 0.9207 (0.0711) 0.8352 (-0.0144) 0.4 0.6608 0.7196 (0.0588) 0.7299 (0.0691) 0.6667 (0.0059) 0.7516 (0.0908)
Average 0.8948 0.9067 (0.0119) 0.8823 (-0.0125) 0.9074 (0.0126) 0.8513 (-0.0435) Average 0.7492 0.7607 (0.0115) 0.7648 (0.0156) 0.7747 (0.0255) 0.7755 (0.0263)
PhishingData 0.8567 0.8564 (-0.0003) 0.8536 (-0.0031) 0.8807 (0.0240) 0.8574 (0.0007) 0.05 vertebralColumn 0.7980 0.8242 (0.0262) 0.8095 (0.0115) 0.8575 (0.0595) 0.7953 (-0.0027)
0.8394 0.8510 (0.0116) 0.8397 (0.0003) 0.8241 (-0.0153) 0.8560 (0.0166) 0.1 0.8047 0.8084 (0.0037) 0.8102 (0.0055) 0.8306 (0.0259) 0.8070 (0.0023)
0.8247 0.8435 (0.0188) 0.8327 (0.0080) 0.7749 (-0.0498) 0.8491 (0.0244) 0.15 0.7841 0.8102 (0.0261) 0.7996 (0.0155) 0.7823 (-0.0018) 0.8095 (0.0254)
0.8157 0.8300 (0.0143) 0.8241 (0.0084) 0.8266 (0.0109) 0.8433 (0.0276) 0.2 0.7484 0.8093 (0.0609) 0.7900 (0.0416) 0.7339 (-0.0145) 0.7844 (0.0360)
0.7990 0.8223 (0.0233) 0.8197 (0.0207) 0.8167 (0.0177) 0.8282 (0.0292) 0.25 0.7285 0.8029 (0.0744) 0.7916 (0.0631) 0.7661 (0.0376) 0.7987 (0.0702)
0.7825 0.8135 (0.0310) 0.8086 (0.0261) 0.8069 (0.0244) 0.8181 (0.0356) 0.3 0.7229 0.7937 (0.0708) 0.7858 (0.0629) 0.7392 (0.0163) 0.7185 (-0.0044)
0.7731 0.8003 (0.0272) 0.8001 (0.0270) 0.8198 (0.0467) 0.7956 (0.0225) 035 0.6862 0.7670 (0.0808) 0.7489 (0.0627) 0.8118 (0.1256) 0.7511 (0.0649)
0.7371 0.7836 (0.0465) 0.7908 (0.0537) 0.8063 (0.0692) 0.7754 (0.0383) 0.4 0.6535 0.7734 (0.1199) 0.7424 (0.0889) 0.7097 (0.0562) 0.7286 (0.0751)
Average 0.8035 0.8251 (0.0216) 0.8212 (0.0177) 0.8195 (0.0160) 0.8279 (0.0244) Average 0.7408 0.7986 (0.0578) 0.7848 (0.0440) 0.7789 (0.0381) 0.7741 (0.0333)
satimage 0.8567 0.8562 (-0.0005) 0.8205 (-0.0362) 0.8676 (0.0109) 0.8218 (-0.0349) 0.05 wine 0.9485 0.9475 (-0.0010) 0.9537 (0.0052) 0.9583 (0.0098) 0.8738 (-0.0747)
0.8463 0.8496 (0.0033) 0.8565 (0.0102) 0.8346 (-0.0117) 0.8102 (-0.0361) 0.1 0.9210 0.9172 (-0.0038) 0.9470 (0.0260) 0.9583 (0.0373) 0.8514 (-0.0696)
0.8354 0.8446 (0.0092) 0.8391 (0.0037) 0.8715 (0.0361) 0.8188 (-0.0166) 0.15 0.8942 0.9184 (0.0242) 0.9031 (0.0089) 0.9537 (0.0595) 0.8445 (-0.0497)
0.8169 0.8341 (0.0172) 0.8457 (0.0288) 0.8075 (-0.0094) 0.8224 (0.0055) 0.2 0.8712 0.9264 (0.0552) 0.9164 (0.0452) 0.8796 (0.0084) 0.8209 (-0.0503)
0.8027 0.8272 (0.0245) 0.8103 (0.0076) 0.7962 (-0.0065) 0.8055 (0.0028) 0.25 0.8448 0.8826 (0.0378) 0.8864 (0.0416) 0.9120 (0.0672) 0.8162 (-0.0286)
0.7934 0.8147 (0.0213) 0.8418 (0.0484) 0.8375 (0.0441) 0.8117 (0.0183) 0.3 0.7956 0.8713 (0.0757) 0.8656 (0.0700) 0.8704 (0.0748) 0.7953 (-0.0003)
0.7743 0.8058 (0.0315) 0.8367 (0.0624) 0.7986 (0.0243) 0.8110 (0.0367) 0.35 0.8041 0.8647 (0.0606) 0.8684 (0.0643) 0.8519 (0.0478) 0.7749 (-0.0292)
0.7570 0.7948 (0.0378) 0.8178 (0.0608) 0.8258 (0.0688) 0.8133 (0.0563) 0.4 0.7501 0.8747 (0.1246) 0.8223 (0.0722) 0.7546 (0.0045) 0.7350 (-0.0151)
Average 0.8103 0.8284 (0.0181) 0.8336 (0.0233) 0.8299 (0.0196) 0.8143 (0.0040) Average 0.8537 0.9003 (0.0466) 0.8954 (0.0417) 0.8924 (0.0387) 0.8140 (-0.0397)

a distinct advantage over the baselines. When v increases to
a high level—30% to 40% noise—the advantages of noise-
filtering often become more significant. This demonstrates the
effectiveness and necessity of label noise filtration methods.

From an average perspective, VCV_mCRF performs best
on balancescale, satimage, and segmentation with an average
improvement of 1.77%, 2.33% and 1.92%, respectively; Ad-
p_mCREF performs best on pendigits, seeds, and shuttle with an
average improvement of 1.26%, 6.70%, and 3.73%, respective-
ly. From the research metadata, we see that VCV_mCRF and
Adp_mCREF are better suited to midsize to larger data sets. For
smaller data sets, including iris, newthyroid, userknowledge,
wine, and vertebral, mCRF-based methods have difficulty
gathering enough information to detect label noise in the
multiclass complete random forest generated by the small
amount of data available. In contrast, mIW resorts to KLIEP
to estimate the conditional probability Pp_(Y|X), which is
effective on midsize data sets [43]. It achieves the best perfor-
mance on vertebralColumn and wine with the improvements
of 5.78% and 4.66% for each data set. However, on the data
set shuttle, mIW falls into invalidation as the minority sample
of the extremely imbalanced data could not provide enough
information to accurately estimate the probability. Because
it relies on the Euclidean distances of query samples from

homogeneous and heterogeneous neighbors to detect label
noise, mRD usually performs well on uniformly distributed
data sets [13]. mRD performs best on the data sets iris,
newthyroid, PhishingData, and userknowledge with the highest
average improvements of 8.99%, 6.66%, 2.44%, and 2.63%,
respectively. However, mRD depends on data distribution more
than mCRF-based methods, leading to weaker generalizability.
This can be observed from trends in bold for each method
in Table II. The overall statistics can be summarized by
the number of times a method achieves the bold number:
original classifier, 14; mIW, 36; VCV_mCREF, 59; Adp_mCRE,
68; and mRD, 41. This indicates that mCRF-based methods
outperform other comparable methods.

We compare the proposed methods from Section IV for
optimizing NI_threshold in mCRF with particular attention to
three details: classification accuracy, value of NI_threshold,
and time cost. We denote the NI_threshold value selected un-
der the guidance of the cross-validation result as vNI_threshold
and that selected by the adaptive method as aNI_threshold.
From Table II, we can see that Adp_mCRF is highly com-
petitive with VCV_mCRF as a filtering learning framework
in many cases. Adp_mCRF even outperforms VCV_mCRF
on the data sets pendigits, seeds, shuttle, and userknowledge
with improvements of 2.51%, 1.68%, 0.29%, and 0.99%
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over the VCV_mCRF method. To facilitate the comparison
of the different noise intensity values searched by the two
methods, we depict the values in line charts in Figures 103
to 114 in Appendix B. In the each line chart, blue square
points represent vNI_threshold, red triangle points represent
aNI_threshold, and green stars represent an overlap between
VNI _threshold and aNI_threshold. Analyzing this data, we find
that 80.03% of the differences between thresholds are within 3
intervals. We also find that vNI_threshold and aNI_threshold
generate differences in accuracies that are smaller than 5%
about 72.92% of the time, and 90.63% of the time generate
less than 10% difference in accuracy.

Time efficiency is a significant advantage of the adaptive
method. Because of the fast convergence speed of 2-means
clustering, one-dimensional data will converge to two clusters
almost instantly. Hence, the aNI_threshold value correspond-
ing to the maximum number in the smaller cluster will be
readily obtained. In contrast, the search for the vNI_threshold
value is dominated by many median classifiers used in the val-
idation process. Thus, the time cost may fluctuate depending
on which classifier is used. We use bar graphs to show the
amount of time require to search for the proper NI_thresholds
in Figure 102 in Appendix B. Figure 102 consists of 12 sub-
figures, and each sub-figure corresponds to a data set. The
green and orange bars respectively indicate the validation time
and the 2-means clustering time. The average time cost across
all data sets and classifiers for the two methods are 187.85s
and 0.39s, respectively; that is, the time VCV_mCREF searches
is 484 times longer than Adp_mCRF searches. We can also
observe that the time cost of VCV_mCRF largely depends on
the size of the data set and the selected classifier. On small
and midsize data sets, the time overhead of both methods
and all classifiers is tolerable. On large data sets, such as
shuttle, SVM is time-consuming. In summary, we find that
Adp_mCRF can achieve approximately the same excellent
performance as VCV_mCREF, but with a lower time cost.

Table III lists the average accuracies and improvements
of the selected multiclass classifiers combined with different
noise-filtration methods at varying noise rates. These average
scores are obtained across eleven UCI data sets; we exclude
shuttle, because the extreme imbalance of this data set results
in very poor performance in the baseline mIW method, result-
ing the lowest average mIW score and completely swamping
any benefit from mitigating label noise. We return to examine
imbalanced data sets in more detail later. The DT classifier
appears to profit the most from our noise-filtering learning
framework, with improvements to average scores reaching
14.03%, 15.00%, and 15.97% for VCV_mCRF, Adp_mCREF,
and mRD, respectively. The largest average score improvement
of 25.56% was also achieved using DT at v = 0.4 in the mRD
learning framework. We note poor performance of all four
methods in combination with Adaboost, and investigate the
issue on each data set at a different noise rate v in Tables VI
to LIII. Three data sets, pendigits, segmentation, and shuttle,
suffer particularly sharp decreases in accuracy, leading to the
overall low averages reported for our filtration methods in
combination with Adaboost. Excepting these data sets, mIW-
Adaboost performs best among the four methods, attaining

TABLE III
COMPARISON OF AVERAGE ACCURACIES FOR SELECTED MULTICLASS
CLASSIFICATION ALGORITHMS AT VARYING NOISE RATES 7.

CIf k% Original mIW VCV_mCRF Adp_mCRF mRD
Adaboost 0.05 0.8285 0.7970 (-0.0315) 0.7561 (-0.0724) 0.8397 (0.0112) 0.7112 (-0.1173)
0.1 0.8522 0.8046 (-0.0476) 0.7742 (-0.0780) 0.7861 (-0.0661) 0.7061 (-0.1461)
0.15 0.8426 0.8182 (-0.0244) 0.7769 (-0.0657) 0.7435 (-0.0991) 0.7322 (-0.1104)
0.2 0.8290 0.7910 (-0.0380) 0.7149 (-0.1141) 0.6905 (-0.1385) 0.6713 (-0.1577)
0.25 0.8008 0.8030 (0.0022) 0.7493 (-0.0515) 0.7693 (-0.0315) 0.7167 (-0.0841)
0.3 0.8083 0.7963 (-0.0120) 0.7653 (-0.0430) 0.7256 (-0.0827) 0.6644 (-0.1439)
0.35 0.7921 0.8025 (0.0104) 0.7429 (-0.0492) 0.7117 (-0.0804) 0.6380 (-0.1541)
0.4 0.7788 0.8077 (0.0289) 0.7360 (-0.0428) 0.7182 (-0.0606) 0.6864 (-0.0924)
Average 0.8165 0.8025 (-0.0140) 0.7520 (-0.0645) 0.7481 (-0.0684) 0.6908 (-0.1257)
DT 0.05 0.8474 0.8550 (0.0076) 0.8817 (0.0343) 0.9020 (0.0546) 0.8846 (0.0372)
0.1 0.7979 0.7914 (-0.0065) 0.8620 (0.0641) 0.8719 (0.0740) 0.8809 (0.0830)
0.15 0.7624 0.7777 (0.0153) 0.8518 (0.0894) 0.8479 (0.0855) 0.8693 (0.1069)
0.2 0.7032 0.7516 (0.0484) 0.8391 (0.1359) 0.8219 (0.1187) 0.8665 (0.1633)
0.25 0.6552 0.7000 (0.0448) 0.8289 (0.1737) 0.8397 (0.1845) 0.8426 (0.1874)
0.3 0.6348 0.6716 (0.0368) 0.8193 (0.1845) 0.8235 (0.1887) 0.8328 (0.1980)
0.35 0.5805 0.6335 (0.0530) 0.7970 (0.2165) 0.8330 (0.2525) 0.8268 (0.2463)
0.4 0.5455 0.6253 (0.0798) 0.7701 (0.2246) 0.7869 (0.2414) 0.8011 (0.2556)
Average 0.6909 0.7258 (0.0349) 0.8312 (0.1403) 0.8409 (0.1500) 0.8506 (0.1597)
LightGBM 0.05 0.9164 0.8999 (-0.0165) 0.9238 (0.0074) 0.9077 (-0.0087) 0.9069 (-0.0095)
0.1 0.8981 0.9000 (0.0019) 0.9100 (0.0119) 0.8890 (-0.0091) 0.8981 (0.0000)
0.15 0.8781 0.8922 (0.0141) 0.8983 (0.0202) 0.8934 (0.0153) 0.8929 (0.0148)
0.2 0.8603 0.8839 (0.0236) 0.8900 (0.0297) 0.8772 (0.0169) 0.8873 (0.0270)
0.25 0.8434 0.8753 (0.0319) 0.8834 (0.0400) 0.8825 (0.0391) 0.8691 (0.0257)
0.3 0.8096 0.8632 (0.0536) 0.8605 (0.0509) 0.8701 (0.0605) 0.8670 (0.0574)
0.35 0.7928 0.8579 (0.0651) 0.8517 (0.0589) 0.8730 (0.0802) 0.8669 (0.0741)
0.4 0.7436 0.8342 (0.0906) 0.8472 (0.1036) 0.8465 (0.1029) 0.8329 (0.0893)
Average 0.8428 0.8758 (0.0330) 0.8831 (0.0403) 0.8799 (0.0371) 0.8776 (0.0348)
LR 0.05 0.8814 0.8734 (-0.0080) 0.8828 (0.0014) 0.8997 (0.0183) 0.8830 (0.0016)
0.1 0.8855 0.8851 (-0.0004) 0.8897 (0.0042) 0.8927 (0.0072) 0.8719 (-0.0136)
0.15 0.8641 0.8712 (0.0071) 0.8761 (0.0120) 0.8854 (0.0213) 0.8646 (0.0005)
0.2 0.8554 0.8678 (0.0124) 0.8661 (0.0107) 0.8763 (0.0209) 0.8658 (0.0104)
0.25 0.8547 0.8699 (0.0152) 0.8688 (0.0141) 0.8791 (0.0244) 0.8565 (0.0018)
0.3 0.8426 0.8654 (0.0228) 0.8600 (0.0174) 0.8732 (0.0306) 0.8430 (0.0004)
0.35 0.8421 0.8642 (0.0221) 0.8478 (0.0057) 0.8520 (0.0099) 0.8352 (-0.0069)
0.4 0.8248 0.8720 (0.0472) 0.8357 (0.0109) 0.8551 (0.0303) 0.8192 (-0.0056)
Average 0.8563 0.8711 (0.0148) 0.8659 (0.0096) 0.8767 (0.0204) 0.8549 (-0.0014)
SVM 0.05 0.9121 0.8748 (-0.0373) 0.9040 (-0.0081) 0.9196 (0.0075) 0.9021 (-0.0100)
0.1 0.9035 0.8679 (-0.0356) 0.8993 (-0.0042) 0.9041 (0.0006) 0.8859 (-0.0176)
0.15 0.8979 0.8680 (-0.0299) 0.8985 (0.0006) 0.9059 (0.0080) 0.8863 (-0.0116)
0.2 0.8950 0.8777 (-0.0173) 0.8934 (-0.0016) 0.8957 (0.0007) 0.8806 (-0.0144)
0.25 0.8790 0.8668 (-0.0122) 0.8917 (0.0127) 0.8728 (-0.0062) 0.8750 (-0.0040)
0.3 0.8775 0.8705 (-0.0070) 0.8932 (0.0157) 0.8945 (0.0170) 0.8661 (-0.0114)
0.35 0.8581 0.8552 (-0.0029) 0.8746 (0.0165) 0.8903 (0.0322) 0.8366 (-0.0215)
0.4 0.8440 0.8734 (0.0294) 0.8628 (0.0188) 0.8719 (0.0279) 0.8377 (-0.0063)
Average 0.8834 0.8693 (-0.0141) 0.8897 (0.0063) 0.8943 (0.0109) 0.8713 (-0.0121)
xgboost 0.05 0.9126 0.9017 (-0.0109) 0.9122 (-0.0004) 0.9227 (0.0101) 0.9125 (-0.0001)
0.1 0.8918 0.8865 (-0.0053) 0.9039 (0.0121) 0.8937 (0.0019) 0.8996 (0.0078)
0.15 0.8734 0.8829 (0.0095) 0.8948 (0.0214) 0.8915 (0.0181) 0.9012 (0.0278)
0.2 0.8406 0.8622 (0.0216) 0.8852 (0.0446) 0.8810 (0.0404) 0.8953 (0.0547)
0.25 0.8093 0.8594 (0.0501) 0.8714 (0.0621) 0.8873 (0.0780) 0.8731 (0.0638)
0.3 0.7757 0.8507 (0.0750) 0.8595 (0.0838) 0.8644 (0.0887) 0.8598 (0.0841)
0.35 0.7567 0.8375 (0.0808) 0.8515 (0.0948) 0.8596 (0.1029) 0.8557 (0.0990)
0.4 0.7025 0.8271 (0.1246) 0.8388 (0.1363) 0.7959 (0.0934) 0.8370 (0.1345)
Average 0.8203 0.8635 (0.0432) 0.8772 (0.0569) 0.8745 (0.0542) 0.8793 (0.0590)
All_Average 0.8184 0.8347 (0.0163) 0.8498 (0.0314) 0.8524 (0.0340) 0.8374 (0.0190)

average scores of 82.27% across the nine data sets, with
1.35% improvement over unmodified Adaboost. We observe
that except for Adaboost, all other classifiers benefit more
from our filtering learning frameworks. LightGBM benefits
most with the highest average enhancement of 4.03% using
the VCV_mCRF learning framework. LR and SVM attain
maximum average enhancements of 2.04% and 1.09% using
the Adp_mCRF learning framework. DT and Xgboost achieve
maximum average improvements of 15.97% and 5.90% using
the mRD learning framework

Table III also reflects that the sensitivity to label noise
changes based on classifier. As « ranges from 5% to 40%,
the average accuracy decreases from 84.74% to 54.55%. The
greatest overall decrement, 30.19%, is observed for the DT
classifier, indicating that DT is the most sensitive to label
noise. Even a small amount of label noise in the data set
will have a disproportionately severe impact on classification
performance. This implies that DT retains a large margin of
improvement for predictive performance in the presence of
label noise. mRD attains 25.56% average improvement and
Adp_mCREF attains 25.25% average improvement over unmod-
ified DT, the highest observed. In contrast, the unmodified
classifiers LR and SVM show some resistance to label noise.
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TABLE IV
COMPARISON OF AVERAGE macro—F'1 ON IMBALANCED DATA SETS AT
VARYING NOISE RATES v USING LR.

Data ~  Original w mCRF S-Original SIW S-mCRF
balancescale 005 0.6051 06051 06040  0.7602 (0.1551)  0.7602 (0.1551)  0.7549 (0.1509)
0.1 06088 06088 06068  0.7026 (0.0938)  0.7026 (0.0938)  0.7008 (0.0940)
015  0.6019 06030  0.6030  0.6970 (0.0951)  0.6965 (0.0935)  0.6969 (0.0939)
02 06071 06071 06071  0.6779 (0.0708)  0.6779 (0.0708)  0.6668 (0.0597)
025 06062 06062 06043  0.6781 (0.0719)  0.6781 (0.0719)  0.6703 (0.0660)
03 06106 06106 06117  0.6548 (0.0442)  0.6548 (0.0442)  0.6578 (0.0461)
035 06050 06050 06054  0.6731 (0.0681)  0.6731 (0.0681)  0.6808 (0.0754)
04 05973 05973 05949  0.6354 (0.0381)  0.6354 (0.0381)  0.6183 (0.0234)
Average 06053 06054 06047  0.6849 (0.0796)  0.6848 (0.0794)  0.6808 (0.0761)
newthyroid 005 0.8869  0.8913 09228 08929 (0.0060)  0.8935 (0.0022)  0.9381 (0.0153)
0.1 08622 08672 08574  0.8826 (0.0204)  0.8761 (0.0089)  0.9524 (0.0950)
015 08780 08939 09055 08220 (-0.0560)  0.8377 (-0.0562)  0.9341 (0.0286)
02 08413 08757  0.8799 07940 (-0.0473)  0.8045 (:0.0712)  0.9298 (0.0499)
025 08020 08472  0.8364 07524 (-0.0496) 07718 (-0.0754)  0.8359 (-0.0005)
03 07848 08131 07827 07573 (:0.0275) 07917 (:0.0214)  0.8299 (0.0472)
035 07756 08245 08397 07510 (-0.0246) 07512 (-0.0733)  0.8505 (0.0108)
04 07605 07789 07466 07822 (0.0217)  0.7427 (:0.0362)  0.8366 (0.0900)
Average 08239 0.8490 08464  0.8043 (-0.0196)  0.8086 (-0.0404)  0.8884 (0.0420)
pendigits 005 09371 09245 09439 09370 (-0.0001) 09250 (0.0005)  0.9443 (0.0004)
0.1 09202 09219 09426 09296 (0.0004)  0.9142 (-0.0077)  0.9436 (0.0010)
015 09213 09139 09405 09227 (0.0014) 09096 (-0.0043)  0.9424 (0.0019)
02 09118 09007 09388  0.9125 (0.0007)  0.9039 (0.0032) 0.9388 (0)
025 09106 08968 09362 09105 (-0.0001) 09005 (0.0037)  0.9347 (-0.0015)
03 09071 08934 09346 09076 (0.0005)  0.8950 (0.0016)  0.9334 (-0.0012)
035 09061 08898 09276 09070 (0.0009)  0.8889 (-0.0009)  0.9306 (0.0030)
04 09005 08763 09330 09009 (0.0004)  0.8788 (0.0025)  0.9307 (-0.0023)
Average 09155 09022 09371 09160 (0.0005)  0.9020 (-0.0002)  0.9373 (0.0002)
PhishingData 005 0.6027 06027 05752 0.6573 (0.0546)  0.6573 (0.0546)  0.6569 (0.0817)
0.1 05958 05958 05740  0.6422 (0.0464)  0.6422 (0.0464)  0.6332 (0.0592)
015 05937 05937 05708  0.6424 (0.0487)  0.6424 (0.0487)  0.6260 (0.0552)
02 05931 05942 05706  0.6426 (0.0495)  0.6426 (0.0484)  0.6401 (0.0695)
025 05763 05763 05692 0.6248 (0.0485)  0.6248 (0.0485)  0.6185 (0.0493)
03 05749 05749 05756  0.5979 (0.0230)  0.5979 (0.0230)  0.5924 (0.0168)
035 05774 05774 05724 0.6027 (0.0253)  0.6022 (0.0248)  0.6094 (0.0370)
04 0587 0587 05709  0.6218 (0.0351)  0.6218 (0.0351)  0.6197 (0.0488)
Average 05876 05877 05723 0.6290 (0.0414)  0.6289 (0.0412)  0.6245 (0.0522)
satimage 005 0769 07711 08072 08156 (0.0460)  0.8160 (0.0449)  0.8386 (0.0314)
01 07592 07620 08112 08149 (0.0557)  0.8156 (0.0536)  0.8316 (0.0204)
015 07500 07510 08004 08069 (0.0569)  0.8070 (0.0560)  0.8320 (0.0316)
02 07322 07337 07999  0.8016 (0.0694)  0.8015 (0.0678)  0.8329 (0.0330)
025 07103 07110 07962 07799 (0.0696) 07812 (0.0702)  0.8295 (0.0333)
03 07200 07224 07852 07738 (0.0529)  0.7742 (0.0518)  0.8291 (0.0439)
035 06982 0699 07942 07581 (0.0599) 07590 (0.0594)  0.8271 (0.0329)
04 06899 06911 07802 07342 (0.0443) 07344 (0.0433)  0.8249 (0.0447)
Average 07288 07302 07968  0.7856 (0.0568)  0.7861 (0.0559)  0.8307 (0.0339)
shuttle 005 05353 00286 05857 04779 (-00574) 00012 (-0.0274)  0.4940 (-0.0917)
0.1 05565 01121 05869 04384 (:0.1181)  0.0870 (:0.0251)  0.5008 (-0.0861)
015 05252 01242 05499 03968 (-0.1284)  0.0825 (-0.0417)  0.5031 (-0.0468)
02 05153 00811 05809  0.3780 (-0.1373) 0.0811 (0) 05076 (-0.0733)
025 05317 01512 05504 03732 (-0.1585) 0.1512 (0) 05061 (-0.0443)
03 05083 00712 05521  0.3469 (-0.1614) 00712 (0) 05037 (-0.0484)
035 05059 00942 03960 03470 (-0.1589)  0.1497 (0.0555)  0.5119 (-0.0841)
04 04870 01758 05276  0.3393 (-0.1477) 0.1758 (0) 0.5038 (-0.0238)
Average 05207 01048 05662 03872 (-0.1335)  0.1000 (-0.0048)  0.5039 (-0.0623)
userknowledge 005 0.5206 05206 05148 0.6478 (0.1272)  0.6478 (0.1272)  0.6441 (0.1293)
01 05055 05055 05062  0.6412 (0.1357)  0.6412 (0.1357)  0.6497 (0.1435)
015 05051 05051 05018 05292 (0.0241) 05292 (0.0241)  0.5681 (0.0663)
02 05172 05172 05047 0.5035 (-0.0137)  0.5035 (:0.0137)  0.5343 (0.0296)
025 04797 04797 04892 05205 (0.0408)  0.5205 (0.0408)  0.5663 (0.0771)
03 04684 04684 04896 04582 (-0.0102)  0.4582 (0.0102)  0.4854 (-0.0042)
035 04800 04800 04805 04631 (-00169) 04631 (-0.0169)  0.4991 (0.0186)
04 04445 04445 04741 04113 (:0.0332) 04113 (0.0332)  0.5097 (0.0356)
Average 04901 04901 04951  0.5218 (0.0317)  0.5218 (0.0317)  0.5571 (0.0620)
vertebralColumn 005 0.8019  0.8115 07770  0.8000 (-0.0019)  0.7987 (-0.0128)  0.8136 (0.0366)
0.1 07957 08149 07641 07945 (:0.0012)  0.8028 (-0.0121)  0.7827 (0.0186)
015 08140 08142 07853 07794 (-0.0346)  0.7315 (-0.0827)  0.7920 (0.0067)
02 07611 07730 07787 07533 (-0.0078)  0.7643 (:0.0087)  0.7556 (-0.0231)
025 07675 07573 07736 07516 (-00159)  0.7568 (-0.0005)  0.8346 (0.0610)
03 07991 07946 07644 07548 (-0.0443) 07524 (:0.0422)  0.7386 (-0.0258)
035 07244 07294 06703 07176 (-0.0068) 07281 (-0.0013)  0.7292 (0.0589)
04 06360 06359  0.6659  0.6328 (0.0032)  0.6484 (0.0125)  0.6776 (0.0117)
Average 07625 07663 07474 07480 (-0.0145)  0.7479 (:0.0184)  0.7655 (0.0181)
wine 005 09253 09253 09092  0.9298 (0.0045) 09238 (-0.0015)  0.9338 (0.0246)
0.1 09341 09350 09308 09285 (-0.0056)  0.9292 (-0.0058)  0.9205 (-0.0103)
015 09250 09382 09644 09292 (0.0042)  0.9381 (-0.0001)  0.9554 (-0.0090)
02 09220 09339 09202 09010 (-0.0210)  0.9210 (-0.0129)  0.9177 (-0.0025)
025 09133 09130 09133 09233 (0.0100) 09221 (0.0091)  0.9351 (0.0218)
03 08958 09013 09267 08977 (0.0019) 09185 (0.0172)  0.9243 (-0.0024)
035 09564 09239 09447 09297 (-0.0267) 09235 (-0.0004)  0.9215 (-0.0232)
04 09140 08922 08463  0.8826 (-0.0314)  0.8811 (0.0111)  0.8825 (0.0362)
Average 09232 09203 09195 09152 (-0.0080) 09197 (-0.0006)  0.9238 (0.0043)
All_Average 07064 06618 07206 07102 (0.0038)  0.6778 (0.0160)  0.7458 (0.0252)

As the noise rate increases from 0.05 to 0.4, the average
accuracy of LR decreases from 88.14% to 82.48%, with a gap
of only 5.66%. The average accuracy of SVM decreases from
91.21% to 84.40% with a gap of 6.81%. After Adp_mCRF is
applied, these two classifiers achieve a maximum improvement
of 2.04% and 1.09% respectively. LightGBM and Xgboost are
excellent ensemble algorithms and achieve the highest two

average accuracies at 91.64% and 91.26% when v = 0.05.
However, when ~ increases to 0.4, the performances of these
two classifiers drop sharply to 74.36% and 70.25%. As seen in
the Table III, our proposed noise-filtering learning framework
provides strong support to these two algorithms, enabling these
ensemble classifiers to more capably handle a large amount of
noisy data.

The results in Tables I and IIT suggest classifier perfor-
mance on every data set is easily disturbed by the presence of
label noise. Our proposed noise-filtering learning frameworks
are demonstrably effective in mitigating the negative influence
of label noise. Furthermore, the ensemble mechanism incor-
porated into mCRF to stably and precisely detect label-noise
samples is empirically verified.

C. Imbalanced UCI Data sets Experiments

Class imbalance is ubiquitous and unavoidable in multi-
class classification. Synthetic Minority Oversampling Tech-
nique (SMOTE) is the most prevalent method of dealing with
imbalanced data sets [49]. However, the original SMOTE is
susceptible to noise because it blindly interpolates among k
nearest neighbors, without distinguishing overlapping class
regions from so-called safe areas [50]. The influence of label
noise can be effectively mitigated by applying noise filters
along with SMOTE [23], [51]. Therefore, we incorporate
SMOTE into our proposed filtering methods to address the
class imbalance problems that arise in multiclass classification
with label noise. Specifically, we use the performance metrics
macro—F'1 (that is, the average of the F1 measures calculated
for each class [52]) and the accuracy rate of correctly identified
minority samples, instead of precision, to evaluate the per-
formances of the proposed methods against our baseline, the
state-of-the-art method in imbalanced learning. Because the
precision metric in traditional classification is biased in favor
of the majority class, it does not accurately capture the details
of our multiclass classification results in imbalanced problems.
Nine imbalanced data sets, marked by * in Table I, are used.
For space, only LR is selected as a baseline classifier, due to
its high efficiency and effectiveness in classifying multiclass
data sets, and VCV_mCREF is selected as the representative
method of our frameworks.

We report the macro—F'1 scores of this experimental study
in Table IV. Results of mRD are not included in Table IV, as
the combination of SMOTE with the mRD filtering learning
framework performs poorly in imbalanced classification. This
is a result of the hard threshold 1; this threshold easily
fails and leads to many minority examples being identified
as label noise [I3], resulting in under-fitting during classi-
fication. Results of the original classifier (Original), mIW,
mCRF, and SMOTE-Original(S-Original), SMOTE-mIW(S-
mIW), SMOTE-mCRF(S-mCRF) are provided in Table IV,
with the highest value in bold in each row. The enhancement
on macro—F'1 score for each pair is given in parentheses.

We observe that the combination of SMOTE with different
algorithms exhibits varying levels of improvement on different
data sets. The average improvements across different noise
rates 7y for the original LR, mIW-LR, and mCRF-LR are
0.38%, 1.60%, and 2.52%, respectively. This indicates that
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Fig. 9. Comparison of Average Accuracies of Minority Samples, Before and After Applying SMOTE, across Varying Noise Rates ~.

applying SMOTE to a label noise-filtering learning framework
to handle imbalanced data will generally lead to improvement.
The incorporation of SMOTE shows a high level of improve-
ment to these three algorithms on the data sets balancescale,
PhishingData, and satimage. The average improvement across
noise rates on these three data sets is 5.93%, 5.88%, and
5.41%, respectively. The LR classifier and mIW-LR both ob-
tain the highest improvement from the application of SMOTE
at v = 0.05 on the balancescale data set, achieving 15.51%
improvement over the unmodified versions. After applying
SMOTE on newthyroid and userknowledge, the macro—F'1
scores of the original LR and mIW-LR increase when the
noise rate is at a low level (v = 0.05 or 0.1), but decrease
when the noise rate is at a high level (y > 0.20). This
indicates that, on these two data sets, when ~ increases to
a high level, noisy samples in the imbalanced data sets will
hinder the search for the best hyperplane. In contrast, noise-
filtering mCRF-LR demonstrates excellent performance with
average improvements of 4.20% and 6.20% on the two data
sets. For data sets pendigits and wine, the macro—F'1 scores
change only a little after oversampling the imbalanced data
sets. This is a result of the low imbalance ratios of the two
data sets producing little difference in the data distribution
as well as the classifying results. mIW-LR performs best on
the data set vertebralColumn from an average perspective,
but for the data set shuttle, which has an extreme imbalance
ratio, the macro—F'1 scores of mIW-LR drop down to about
10%. This is because the mIW method resorts to KLIEP to
estimate the conditional probability Pp_(Y'|X') [43]. However,
in an extremely imbalanced data set, the minority samples
can not provide enough information to accurately estimate the
probability Pp_(Y'|X), resulting in the inaccurate estimation
of the reweighing weights for each sample. For data set shuttle,
the mCRF-LR algorithm performs best.

Figure 9 visualizes the average accuracies of the minor-
ity samples both before and after applying SMOTE to the
imbalanced data sets. The tree-pair methods, that is, LR and
SMOTE-LR, mIW-LR and SMOTE-mIW-LR, and mCRF-LR
and SMOTE-mCRF-LR are colored in grey, blue, and red,
respectively. The lighter color in each pair corresponds to the
method without applying SMOTE. We observe in Figure 9 that

applying SMOTE to imbalanced data sets will improve the
accuracy of the minority samples, with average improvements
of 11.81%, 10.63%, and 13.04% for each algorithm, respec-
tively. A large improvement is seen on data sets balancescale,
newthyroid, PhishingData, satimage, userknowledge, and ver-
tebralColumn. These data sets are moderately imbalanced.
The difference before and after applying SMOTE to data sets
pendigits and wine is small, due to low imbalance ratios. For
shuttle, mCRF-LR demonstrates better performance. As clas-
sification accuracy is not the main evaluation index, detailed
accuracy comparisons of the minority samples are reported in
Table LV.

In summary, the combination of SMOTE with our mCRF
filtering learning framework will bring some improvement in
multiclass classification with label noise, but for extremely
imbalanced data sets with label noise, SMOTE is not the
best choice. Therefore, our future efforts will concentrate on
developing a new data cleaning algorithm that will be effective
on extremely imbalanced data sets.

VII. CONCLUSION

We have presented a general label noise filtering learning
framework for multiclass classification, and developed two
extensions, mCRF and mRD, of binary label-noise filtering
methods to multiclass classification using that framework.
We also propose the voting cross-validation method and an
adaptive method for optimizing the NI_threshold parameter,
resulting in a more stable label noise detection process.
In addition, we incorporate the popular Synthetic Minority
Oversampling Technique (SMOTE) with our proposed label-
noise filtering learning framework to deal with imbalanced
noisy data. Experiments on both synthetic and real data sets
verify the effectiveness of our proposed methods. Specifically,
our mCRF noise filtering learning framework has stable per-
formance with high accuracy, even on imbalanced data sets.
Our mRD noise filtering learning framework performs well on
small to mid-sized balanced data sets, but becomes less useful
on imbalanced data sets due to the hard threshold set at 1
causing an excessive number of minority samples to be mis-
classified as label noise. Experimental results demonstrate that
the VCV method performs better than the adaptive method.
The combination of SMOTE with the mCRF noise filtering
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learning framework has benefits on moderately imbalanced
data sets, but for extremely imbalanced data sets SMOTE
is not the best choice. Our results encourage us to continue
future work on this concept. Research going forward will
concentrate on developing a more effective filtering method
by utilizing ensemble mechanisms to detect noisy samples in
highly imbalanced data sets.
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