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Abstract

It is conjectured that the generalization of the Constantin—Lax—Majda model
(gCLM) w; + auwy, = uyw, due to Okamoto, Sakajo and Wunsch, can develop a
finite time singularity from smooth initial data for a < 1. For the endpoint case
where a is close to and less than 1, we prove finite time asymptotically self-similar
blowup of gCLM on a circle from a class of smooth initial data. For the gCLM on
a circle with the same initial data, if the strength of advection a is slightly larger
than 1, we prove that the solution exists globally with || (f)|| ;1 decaying in a rate
of O(t~") for large time. The transition threshold between two different behaviors
is a = 1, which corresponds to the De Gregorio model.

1. Introduction

Constantin, Lax and Majda [6] introduced an one-dimensional model (CLM)
oy =uyw, Uy =How

to model the vortex stretching term in the three-dimensional Euler equations, where
H is the Hilbert transform. The advection term is missing in CLM model. In order
to model both advection and vortex stretching, De Gregorio [8,9] generalized the
CLM model by adding an advection term uw,. By interpolating the CLM model
and the De Gregorio model, Okamoto, Sakajo and Wunsch [26] introduced a one-
parameter family of models (gCLM)

wy +auwy, = uyw, Uy = Ho, (1.1)
where a is a parameter and H is the Hilbert transform. In the case of a circle, H is

given by

1 T xX—y
How(x) = —P.V./ w(y) cot (T) dy.
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Ifa = 0, (1.1) is the CLM model. If a = 1, it becomes the De Gregorio model.
The gCLM shares some similarities with the 3D Euler equations. In fact, the 3D
incompressible Euler equations in the vorticity formulation can be written as

w;+ (- Vo =Vu-w, (1.2)

where u is the velocity field and ® = V X u is the vorticity. The term u,w in (1.1)
models vortex stretching in (1.2) which is the main source of difficulty in obtaining
global regularity of 3D Euler equations, and uwy in (1.1) models advection in (1.2)
which has a stabilizing effect [13,14].

The gCLM model (1.1) has been studied actively in recent years since it can
characterize the competition between advection and vortex stretching in different
scenarios. For a < 0, the advection would work together with the vortex stretching
to produce a singularity. Indeed, Castro and Cérdoba [ 1] proved the finite time blow-
up for a < 0 based on a Lyapunov functional argument. The case of a = 0 reduces
to the CLM model and finite time singularity was established by Constantin, Lax
and Majda [6].

For a > 0, there is a competing nonlocal stabilizing effect due to the advection
and a destabilizing effect due to vortex stretching. For small positive a, itis expected
that the vortex stretching term will dominate the advection term. In [12], Elgindi
and Jeong constructed smooth self-similar profiles for small a that lead to finite time
blowup using a power series expansion and an iterative construction. In a recent
joint work with Hou and Huang [4], we established the stability of an approximate
self-similar profile and obtained finite time asymptotically self-similar blowup for
CZ° initial data. Similar results were obtained independently by Elgindi, Ghoul and
Masmoudi [11] on the stability of the self-similar solutions constructed in [12] and
the stability of the asymptotically self-similar blowup of (1.1). For a close to %
where the vortex stretching term is relatively stronger, finite time asymptotically
self-similar blowup for CZ° initial data has been established by the author [2]. The
self-similar singularities in these works are focusing in the sense that they can be
written as w (x, t) = ﬁQ (ﬁ) for some T, ¢; > 0 and a nontrivial profile 2.

For a = 1, (1.1) reduces to the De Gregorio model. The analysis becomes
much more challenging since advection and vortex stretching are comparable. Dif-
ferent behaviors of the solution of (1.1) on the real line and on a circle have been
established. For (1.1) on a circle, numerical simulations performed in [9,20,26]
suggest that there is no blowup from smooth initial data. Hence, the global regu-
larity for the De Gregorio model on a circle from smooth initial data is expected,
but it remains an open problem. In a remarkable work of Jia, Stewart and Sverak
[15], they established the nonlinear stability of the equilibria A sin(x —x¢) of (1.1)
using spectral theories and complex variable methods. It implies that the solution
with smooth initial data close to A sin(x — xq) is global. An alternative proof of
the nonlinear stability result was obtained later by Lei, Liu and Ren [19] using a
direct energy method with a magic energy space. Moreover, global well-posedness
of the solution has been obtained in [19] for initial data wq that has a fixed sign and
lwo|'/?> € H'. Our analysis to be presented has benefited from some observations
made in [15] and the stability analysis in [19]. In particular, our stability analysis is
built on the coercivity estimates of a linearized operator established in [19] and we
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follow [19] to establish the weighted H! estimates except that we need to estimate
some additional perturbation terms. For (1.1) on the real line, in a recent joint work
with Hou and Huang [4], we proved finite time asymptotically self-similar blowup
for C2* initial data by establishing nonlinear stability of an approximate self-similar
profile in the dynamic rescaling equation. In contrast to the case of small positive a
and a close to %, the self-similar singularity corresponding to a = 1 is expanding
and it can be written as w (x, t) = ﬁQ ((T —t)x) forsome T > 0 and a nontrivial
profile Q2. The strength of the advection plays an important role in the transition
from focusing self-similar blowup to the expanding one.

For arbitrary large |a|, C* self-similar profiles were constructed in [12]. Stabil-
ity of approximate self-similar profiles and finite time asymptotically self-similar
blowup for C¢ initial data have been established in [4]. See also [11] for simi-
lar results. For this range of a, it is expected that advection dominates. Yet, an
important observation made in [12] is that advection term can be substantially
weakened by choosing C¢ initial data with sufficiently small « so that the vortex
stretching term still dominates. This observation and the idea of weakening the
advection have played a crucial role in recent works of singularity formation, in-
cluding Elgindi’s breakthrough [10] on singularity formation of 3D axisymmetric
Euler equations without swirl for C¢ velocity and singularity formation of 2D
Boussinesq equations and 3D axisymmetric Euler equations with C'* velocity
and boundary obtained in my joint work with Hou [3].

Recently, Lushnikov, Silantyev and Siegel [20] performed analysis and ex-
tensive numerical study on (1.1) and provided numerical evidence for singularity
formation of (1.1) with various a and obtained a critical value a. ~ 0.6890665. For
(1.1) on the real line, they showed using well resolved computations that the expand-
ing blowup for the case of @ = 1 obtained in [4] can be generalized toa, < a < 1.
For (1.1) on a circle, they discovered a new type of self-similar blowup solutions
of the form w(x, t) = [C%f(x) for a, < a < 0.95, which is neither focusing nor
expanding. Due to some numerical difficulties, the range of 0.95 < a < 1 was not
explored and it was conjectured by the authors that self-similar blowup still exists.
Our blowup results to be introduced are inspired by these new discoveries. There
are other 1D models for the 3D Euler equations and the surface quasi-geostrophic
equation, for example [5,7], and we refer to [12] for an excellent survey.

In this paper, we study (1.1) on a circle with a close to 1, which can be regarded
as a slightly perturbed De Gregorio model ((1.1) with @ = 1). For smooth initial
data, this range of parameters a is perhaps the most interesting one in (1.1) since
it contains both the region where the strength of advection is slightly weaker than
that of vortex stretching and the region where the strength of advection is slightly
stronger than that of vortex stretching. We study finite time blowup of (1.1) in the
first region a < 1 and the long time behavior of the solution of (1.1) in the second
regiona > 1.

1.1. Main Results

We first introduce some weighted norms and spaces.
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Definition 1.1. (Weighted norms and spaces) Define the singular weight p =

(sin )72 and the weighted norms || - ||, || - ||x as
1 T |f |2 T X
2 2 x 2 2 2 2.2
fll5 = P /;n sinz)%dx, fllx = ||f||H+/_n|fxx| cos de,

(1.3)
and the Hilbert spaces H, X as
HE{fIFO)=0,Ifllx <+oo}, X E{fIf©0)=0,][fllx < oo},

with inner products (-, -)7¢, (-, -)x induced by the H, X norm.

The ‘H norm and inner product (-, -)3; were first introduced in [19] for stability
analysis.

Throughout this paper, we choose the gauge u(¢, 0) = 0 for the velocity field.
The authors in [15] showed that solutions under different gauges are equivalent up
to translations.

Our first main result is the existence of a family of self-similar solutions.

Theorem 1. There exists an absolute small constant §1 such that for 1 — 81 < a <
1 + &1, the gCLM (1.1) with parameter a admits a self-similar solution

1
7t = T
w(x,t) ] +Cw,afwa(X)

with an odd profile w, and scaling parameter c,, , satisfying
1
lwa + sinx|[x S 1 —al. |coq— (@—1)] <min(C|1 —al?, E'l —alX1.4)

Sfor some absolute constant C > 0. In particular, for 1 — 61 < a < 1, ¢4 < 0 and
w(x, t) blows up in finite time T = —ﬁ. Fora =1, cyq =0and w; = —sinx.
Forl <a < 14361, cwa > 0and w(x,t) exists globally with Ot~ ") decay rate.

Moreover, w, ¢ C* for 1 < a < 1438 and any a(a) +1 < a < 1, while
wg € CY but w, ¢ Cl""for 1—-61 <a<landanya(a) <a < 1, where a(a) is
given by

Co,a + (1 —a)Hw, ()

(@) = aHw, ()

(1.5)

with |Hwg (1) + 1| < 5, la(a) — 2(1 — a)| < min(3|a — 1|, Cla — 1) and
sign(a(a)) = sign(l — a).

The second main result addresses the stability of these profiles and the regular-
izing effect of the advection term.

Theorem 2. Let (wq, cw.q) be the profile and scaling in Theorem 1. There exist
absolute small constants 8, 83 with 6y < 81, such that if wg is odd and satisfies
|lwo + sin x ||y < 83, the following statements hold true for the solution w(x, t) of
(1.1) with parameter a and initial data wg:
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(a) For1 =86, < a < 1, w(x, t) develops a singularity in finite time T with lifespan
T2 ﬁ Moreover, w(x, t) is asymptotically self-similar and satisfies

1 1
[lw(t) — mwallw < A(@) 4wy — wql |,

where A(t) < 1 is decreasing with % — —Cpa >0ast —T.

(b) For 1 < a < 1483, w(x, t) exists globally, decays for large time and satisfies

1 _ 1
llo(t) — mwa”?{ < At) =d|lwg — wqllnH,

where A(t) 2 1 is increasing with

A .
% — Cp.a > 0ast — oo. Moreover, if

wo € H® fors > % then, forany 0 <y < y(a),

1V |wo,x ()] Sa,y lox @, O] < lloxllLe S llollas

~

_ l@=DHwa(m)|
forallt > 0, where y(a) = Ts’ with |y (a) — 1| < la — 1.

In particular, the solution of (1.1) with parameter 1 — 82 < a < 1 develops a
singularity in finite time for some C initial data.

Theorem 2 resolves the endpoint case of the conjecture made in [12,20,27]
that the solution of gCLM (1.1) develops a finite time singularity for a < 1 from
smooth initial data in the case of a circle. A related conjecture was stated in [26].
For (1.1) on the real line with @ = 1, finite time singularity with C2° initial data
has been established by Chen—Hou—Huang in [4].

The odd assumption on the initial data can be dropped with a price of losing
the convergence estimates.

Theorem 3. There exist absolute small constants 84, 85, such thatif ||wo+sin x ||y <
85 and f g1 wo d8 = 0, the following statements hold true for the solution w(x, 1)
of (1.1) with parameter a and initial data wo;

(a) For 1 — 64 < a < 1, w(x,t) develops a singularity in finite time T with
(1) +Ar()"! sinx||y < 20(t) 185, where A(t) < 1 is decreasing and |% —
1 —all < 154

(b) For 1 < a < 14 64, w(x,t) exists globally and decays for large time
with || (-, 1) + A(t) " sinx||yy < 2A(t) "85 where A(t) = 1 is increasing and
5 =11 —all < B

Remark 1.2. For the case of a = 1, stability results similar to those in Theorems 2
and 3 have been established in [15,19]. It was first proved in [15] that the equi-
librium — sinx of (1.1) is nonlinear stable and the solution w(x, t) converges to
— sin x exponentially fast in the H* norm for s < % Alternative proof of nonlinear
stability was obtained later in [19] and convergence in the H norm was established

. : - : 3
Hw(x, 1) +sinx||y Se Pt||wo(x, 1) + sin x ||y for any B € (0, ).

Remark 1.3. Theorems 2, 3 can be generalized to initial data close to A sin6
for A > 0, which can be established by applying Theorems 2, 3 to w4 (x,1) £
Aw(x, At).
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Remark 1.4. The lifespan of the singular solution in result (a) in Theorem 2 is at
least ﬁ, which grows to oo as a — 17. Thus it is hard to observe and resolve
this singularity numerically.

Result (b) in Theorem 2 shows that the singularity developed from the solution
of (1.1) with a less than 1 can be regularized as the strength of advection increases.
We remark that the regularizing effect of advection has also been studied by Hou-Li
[14] and Hou-Lei [13] for the 3D axisymmetric Navier—Stokes equations. Result
(b) also confirms the numerical evidence in [20] that the solution of (1.1) with a
slightly larger than 1 exists globally for some initial data with decay of ||w||p
and unbounded growth of ||wy ||~ ast — oo. In addition, it relates to small scale
creation in the solution which can be measured in the H* norm fors > % A similar
observation was made in [15] for the solution of (1.1) witha = 1.

The qualitative behavior of the solution of (1.1) for various @ in Theorems 2, 3
can be characterized by the following simple ODE

d
L fo=0- a)f(*  f0)=1,

which has a solution f(r) = ﬁ For a < 1, f(¢) blows up in finite time

T = . Fora> 1, f(t) exists globally with O (t~!) decay rate.

l—a-

Remark 1.5. As we will see, the profile w, is not smooth near x = 7. We impose
the odd assumption on the initial data in Theorem 2 so that we can estimate uw,
using the vanishing condition u(;r) = 0 that compensates the nonsmoothness of
Wg.

Remark 1.6. Local well-posedness of (1.1) in H® for any s > % can be proved
by the Kato—Ponce commutator estimate [16] and energy estimate. We will use the
dynamic rescaling formulation discussed in Section 2.1 to perform a-priori estimate
on the rescaled perturbation w (x, t) — %wa, which implies that the perturbation
remains in the functional space H locally in time.

1.2. The Main Ideas and the Outline of the Proofs

1.2.1. Competition Between Advection and Vortex Stretching The fundamen-
tal idea in the proofs is to study the evolution of (1.1) using the dynamic rescaling
equation

wy + auwy = (cp + Uy)w (1.6)

with the normalization condition ¢, () = (@ — )u, (¢, 0). Formally @ — 1 charac-
terizes the relative strength of the advection term auw, and the vortex stretching
term u,w. A crucial observation is that if u, (¢, 0) has a fixed sign for all > 0,
then the sign of ¢, captures the competition between these two terms. In particular,
if the solution w(x, 1) of (1.6) is close to a nontrivial profile and u,(0) = ¢ > 0
for all # > 0, then the sign of ¢, determines the long time behavior of the solution
@P™ of (1.1) after rescaling the solution w (x, ¢). In particular, we can prove that
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o If c,,(t) < —|1 —alc < Oforall r > 0, "™ develops a singularity in finite
time.

e Ifc, (1) =0forall > 0, wP"Y remains close to the profile for all time.

o Ifc,(r) = |1 —alc > Oforallz > 0, P exists globally and decays for large
time.

See more discussion on the dynamic rescaling formulation in Section 2.1.

1.2.2. Outline of the Proofs We close the introduction by sketching the steps in
the proofs.

1. Reformulate (1.1) using the dynamic rescaling formulation.

2. We follow the method of analysis in [4] to construct the self-similar profile w,
and scaling ¢, 4 of (1.1) for a close to 1. There are several steps in this method.
Firstly, construct an approximate steady state of the dynamic rescaling equa-
tion (approximate self-similar profile). To our surprise, the equilibrium — sin x
of equation (1.1) with @ = 1 provides a good approximate self-similar pro-
file. Secondly, perform nonlinear stability analysis of the approximate steady
state in some suitable weighted Sobolev norm. We will use the coercivity esti-
mates of a linearized operator established in [19] to perform stability analysis
in the weighted H'! space . Then we further establish stability analysis in the
weighted H? space X using the energy method. We remark that some weighted
Sobolev spaces with singular weights have been used in [2,4,11,15,19] for
the nonlinear stability analysis of (1.1). Finally, establish convergence of the
solution of (1.6) to a self-similar profile by time differentiation. Similar time-
differentiation arguments have been developed in [4, 10].

3. Establish nonlinear stability analysis of the profile w, in the weighted H' space
‘H. Obtain the results about (1.1) with various a by rescaling the solution.

Organization of the paper In Section 2, we construct a family of self-similar
profiles of (1.1) for a close to 1. In Section 3, we study the stability of these profiles
and establish the convergence estimates in Theorem 2. In Section 4, we prove
Theorem 3. We discuss an approach which has the potential to be applied to obtain
finite time blowup for (1.1) with other a < 1 in Section 5. In the “Appendix”, we
prove some properties of the Hilbert transform and a functional inequality.

Notations We use (-,-) to denote the standard inner product on S': (f,g) £
fSl fg dx.
Recall H in Definition 1.1. For f, ¢ € H, we have
(f. ) = (4m) ™ (fr, gxP)- (1.7)

Without specification, f f dx means f sl f dx. Weuse C, C; to denote absolute
constants and C(A, B, .., Z) to denote constant depending on A, B, .., Z. These
constants may vary from line to line, unless specified. We also use the notation
A < B(A Z B) if there is some absolute constant C such that A < CB(A = CB).
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2. Construction of the Self-similar Profiles

In this Section, we prove Theorem 1 using the strategy in [4]. We first per-
form weighted H? stability analysis of an approximate steady state in the dynamic
rescaling equation and then establish convergence to the exact steady state, from
which we can obtain the self-similar profile.

2.1. Dynamic Rescaling Formulation
Let w(x, t), u(x, t) be the solutions of equation (1.1). It is easy to show that
o(x,7) = Cp(D)w(x, (1)), Ulx, 1) = Cy(t)u(x,t()) 2.1
are the solutions to the dynamic rescaling equations
W (x,T) +auwy(x,t) =co(t) + tiyw, Uy = Ho, 2.2)

where
Cy(t) =exp </r Co(S) dr) Cp(0), t(v)= /r Cyp(t)dr. 2.3)
0 0

We have the freedom to choose the initial rescaling factors C,,(0) and impose some
normalization condition on the time-dependent scaling parameter ¢, (7). Then the
equation (2.2) is completely determined and the solution of (2.2) is equivalent to
that of the original equation (1.1) using the scaling relationship given in (2.1)-(2.3),
as long as ¢, (t) remain finite.

Remark 2.1. In (2.1) and (2.2), we do not rescale the spatial variable. This is
different from the dynamic rescaling equation in [4] which contains a factor C;(7)
in (2.1) and a stretching term ¢;(7)xwy in (2.2). Here, we simply choose ¢;(t) =0
and C;(7) = 1.

We remark that a similar dynamic rescaling formulation was employed in [18,
22] to study the nonlinear Schrodinger (and related) equation. In some literature,
this formulation is called the modulation technique. It has been a very effective tool
to study singularity formation for many problems like the nonlinear Schrodinger
equation [17,23], the nonlinear wave equation [25], the nonlinear heat equation
[24], the generalized KdV equation [21], and other dispersive problems.

Suppose C,(0) = 1. If ¢,h(t) < —C < 0 for some C > 0 and any 7 > 0 and
the solution @ is nontrivial, for example ||@(t, -)||Lo = ¢ > 0 forall T > 0, we
then have

o0
Co(t) <e €7, 1(00) < f e Tdr =7 < 400
0

and that

lo(x, 1(1))| = Co(r) ' d(x, T)| 2 e T la(x, T)|
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blows up at finite time 7 = #(00).
On the contrary, if ¢, (t) = C > 0 for some C > 0 and &(x, ) is bounded,
for example ||@(x, T)||L < c, for any T > 0, then we obtain

T
Co(t) = €T, r(r);/ eCTdr
0

and that

| (x, 1(0))| = Co(0) " a(x, 1) < e Flatx, 1) <e e

decays for large . Due to the fact that #(r) — oo as T — oo and the above
estimate on w, we can obtain global existence of solution using Beale-Kato-Majda-
type criterion.

If (&, ¢ (7)) converges to a steady state (Woo, Cw.00) Of (2.2) as T — 00, one
can verify that

1
C()(X,t) = ﬁwm(x) (24)

is a self-similar solution of (1.1). Due to this connection, we do not distinguish the
steady state of (2.2) and the self-similar profile of (1.1).

To simplify our presentation, we still use ¢ to denote the rescaled time in the
rest of the paper, unless specified, and drop ~ in (2.2), which leads to

wy +auwy = (cpy +uy)w, uy = Ho. (2.5)

Using integration by parts and the antisymmetry property of the Hilbert trans-
form, we have

/uxa)—auwxdxz(l—i—a)/ w-Hwdx =0.
sl s!

Therefore, if |, g1 wp dx = 0, this property is conserved:

d

I Slwdx:cw/Sla)dx=0. (2.6)

2.2. Approximate Steady State and Linearization

We use the equilibrium — sin x of (1.1) witha = 1 to construct the approximate
steady states for (2.5):

w=—s8inx, Uu=sinx, ¢, = (a— Diu,(0)=a—1. 2.7)
We impose the following normalization condition on ¢, in (2.5):

co = (@ — Duy(0). (2.8)
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Linearizing (2.5) around the above approximate steady state, we can obtain that
the equation for the perturbation (w, ¢,) (@ + @, ¢ + C4 1S the solution of (2.5)):

wy = —auwy + (Cyp + ty)w + (€ + Uy)® — auwy, + N(w) + F(w) 2.9
2 L,w+ N(w) + F(@). '

here £, denotes the linearized operator and the nonlinear term and error term are
given below

N(@) = (cp + U)o — auwy, F(@) = (6p + ily)® — aii@y.  (2.10)

Plugging the approximate steady state (2.9) and the normalization condition
into (2.9) yields

Liw = —sinXx -wy +COSX - — Uy Sinx + ucosx
Law:—asinx~a)x+(a—l—.l—cosx)a) @211
— ((@ = Duy(0) + uy) sinx + au cos x
=Liw+ (a@a—1)(—sinx-wy +©—u,(0)sinx +ucosx) = Liw+ (a — 1 Aw,

where A is given by

Aw = —sinx - wy + @ — u,(0) sinx + u cos x. (2.12)

We consider initial perturbation wg € X with f g1 wp dx = 0, where X is defined

in (1.3). Using ® = — sinx and (2.6), to get

0= /wo(x) + w(x)dx = /w(x, t) + w(x)dx.

Thus the perturbation satisfies fSl w(x,t)dx =0fort > 0.

Recall the H norm in (1.3) and the operator £ in (2.11). Our stability analysis
is built on the work of Lei et al. [19], in which the authors proved the following
results:

Lemma 2.2. Suppose that f, g € H and fsl fdx = 0. Denote ep(x) = cosx — 1
and

fe=(fre0)n, (f.8)y = (f — feeo. & — ge€0)n-

We have: (a) Equivalence of norms : (H/R - eq, (-, -)y) is a Hilbert space and the
induced norm || - ||y satisfies

1
SISl < £y < 11 f e
(b) Orthogonality : ||leg|| = 1 and
(f = feeo ey =0, |If15, = f2+ £}

(¢c) Coercivity : {L1f, fly < —%||f||%/~
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Remark 2.3. The constant % in (a) is a direct consequence of the result in [19],

which implies || f17, < II/15(1 + iz ) < 417117 by using the
Cauchy-Schwarz inequality.

For f, g € H with f gt f dx = 0, results (a), (b) in the above Lemma implies

1
{8y = (/. 8 = geeo)r = 71— (fx (8x + & sin x)p), (2.13)

where we have used d,ep = — sin x and the notation (1.7).
The following simple integration by parts will be used repeatedly:

Lemma 2.4. Let [ € Lz(p). We have

1
(sinx - fy, fp) = §<f2,p>.

The proof is straightforward and omitted.

Remark 2.5. Formally, the above identity can be interpreted as that (sin %)_2 is
an eigenfunction of the adjoint of sinxd, with eigenvalue 1. An analog of it is
that on the real line, x ¥ is an eigenfunction of the adjoint of xd, with eigenvalue
k — 1, which plays an important role in the stability analysis in [4]. It seems that the
mysterious inner product (-, -)7y and singular weight (sin %)’2 constructed in [19]
arise naturally from the viewpoint of energy estimates. See more related estimates
in Lemma A.1 and Section 2.4.

In the following discussion, we will first establish weighted H' and weighted
H? estimates of the linearized equation and then control the remaining nonlinear
and error terms.

2.3. Weighted H' Estimates
Recall that the perturbation satisfies |, g1 @dx = 0. Performing energy estimate
on (w, w)y yields

1d
55(60, w)y = (Law, o)y + (N(0), w)y + (F(®), 0)y. (2.14)

Recall the operators L1, £, in (2.11) and A in (2.12). A direct calculation yields
Oy Aw = —sinx - wyy + wyx (1 — cosx)
+(uy — uy(0))cosx —usinx = —sinx - wyy + Ajo.
Applying Lemma 2.2 and the identities in (2.11), (2.13), we derive

(Low, w)y = (L1w+ (a — D) Aw, 0)y

3 a—1 Oy Aw - (wy + w, sinx
< —Zllolly + / . (.xz LN
8 47 Jst sin %
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Recall p = (sin %)_2. Using the Hardy-type inequality, the Poincaré inequality,
the Cauchy—Schwarz inequality and the isometry property of the Hilbert transform,
we have

((x —ux (0%, p) S x2S M2 S Nl

(2.15)
ullp2 S llollr,  lwel = (o, eo)x| S ol

We remark that the Hardy-type inequality used above can be proved by applying
an integration by parts argument and thus we omit the proof. Notice that |1 —cos x| <
|sin 5| and | sin x| < |sin 7|. We obtain

2
x| S lolly.

‘/ Ajw - (a)x—i—wesmx)d
Sl

sm 2

Using Lemma 2.4, we obtain

IA/ —sinx - wyy - (a)x+a)esmx)
- 2 x
sl sin® 5

1 w? , X
= —= dx — 4w, Wyy COS™ — dx.
22X
2 Jst sin > sl 2

Applying integration by parts and the estimate (2.15) on w, yields
111 S ol + leelllod S llollF,-

Combining the above estimates, we establish

3
(Law, )y < —§||w||%+C|a— 1wl (2.16)

2.4. Weighted H?* Estimates

The weighted H? estimates is not necessary in order to obtain finite time blowup
of (1.1) with a less than and close to 1 from some smooth initial data since the
nonlinear estimate can be closed once the nonlinear and error terms are estimated
using the energy ||w]||y. This is done in Section 4. See also [4] for the argument
to establish blowup. Yet, we cannot determine if the solution of (2.5) converges
as t — oo or if the singularity is asymptotically self-similar. To further obtain
convergence, we apply the time-differentiation argument in [4]. Since F(w) is
time-independent, taking 9; in (2.9), we derive

3,(0),) = Eaa); + 8[N((l)) (217)

There are two approaches to estimate w;:

(a) Estimate w; in some norm that is weaker than the Y norm.
(b) Further perform estimate on w in some energy norm that is stronger than the Y
norm and then estimate @, in the ¥ norm.
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In [4], the first approach is applied and w; is estimated in some weighted L? space.
Here, we do not have analysis of £, in some weaker norm. Alternatively, we apply
the second approach which is simpler since we can use the a-priori weighted H !
estimate established in Section 2.3. It is pointed out in [ 15] that in the case of a = 1,
where ¢,,, ¢, = 0and (2.5) reducesto (1.1),the H", s > % norm of the perturbation
around the steady state — sinx typically grows exponentially. We expect similar
instability for the perturbation around the approximate steady state (2.7) of (2.5)
since a is close to 1. Thus the higher order estimate is nontrivial and we need to
design the weighted H? norm carefully.

We introduce the weighted derivative D, = sin xd,. A similar weighted deriva-
tive has been used in [3,10,11] for stability analysis. We have the following com-
mutator estimate:

Lemma 2.6. For f, D f € L?,
1 .
(D, HIf = DeHf = H(D: f) = 7— (0, sinx).

We defer the proof to the “Appendix”.
Taking D, on both sides of (2.9) yields

0;Dxw = Dy Lyw + DyN(w) + Dy F(®). (2.18)

Our goal is to perform weighted H ' estimate of D, w with weight p = (sin ’5‘)_2.
To simplify the derivation, we use [.0.t. (lower order terms) to denote the terms
whose weighted L?(p) norm can be bounded by C||w]||y for some absolute con-
stant C. It can vary from line to line. Using the Hardy-type inequality and the L?
isometry of the Hilbert transform, we obtain

1/2

up Zl2 S Nuxllz S el Nuxxllrz S Hellx,

(2.19)
1/2
oo 2112 S llexllze S Nl
Combining the above estimates and (2.15) yield a that
u, uy —uy(0), sinx-wuy, Sinx-uy, = Dyuy, ©, wy, ,SiNX,

and the product of these terms and smooth functions are l.o.t.
Recall £, in (2.11). We rewrite £, as follows:

L, = ( —aD.w ~|—awcosx) +(a—1)(1 —cosx)w + ( — Uy sinx + ucosx)
+(a— Ducosx —u,(0)sinx) £ P, + P + P; + Ps.
Note that D, satisfies the Leibniz rule:
Dy(fg) = gD« f + fDxg.

Using 0y (wDy cosx) = l.o.t. and a direct calculation yields

0yDy Py = ady(—sinx - 0y Dyw + cosx - Dyw + wD, cos x)
=a(—sinx - 9,0y Dyw —cosx - 9y Dyw + cosx - 0y Dyw — sinx - Dyw) + [.o.1.

= —asinx - 0,0y Dyw + l.0.t..
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For P3, using 9, (u sin” x) = l.o.t. and Lemma 2.6, we get
0y Dy P3 = 0y (sin x(0y P3)) = 0, (Sin x(—uyy SINX — Uy COSX + U, COSX — U SIN X))
= —0y(sinx - Dyuy) +1l.0.t. = —cosx - Dyu, — sinx - 0x(Dyuy) + l.0.t.
= —sinxdy(Dyuty) + Lot. = — sinxax(H(wa) + o, sinx)) +lot.
2w
= —sinx - H(0yDyw) +l.0.t..
For P> and P4, we have
0xDy Py = (a—1)0,((1 —cosx)Dyw + wD,(1 — cos x))
=(a—1)(1 —cosx)d,Dyw+1l.0.t..
0xDy Py = (a — 1)0y(cosx - Dyu + uD, cosx — u,(0)D, sin x)
= (a —1)0y(cosxsinx -uy —u sin? x — u, (0) sin x cos x)
= (a — 1)0y(cosx sin x (uuy — u,(0))) +l.o.t.
= (a—1)0y(cosxsinx) - (uy — uy(0))
+ (a—1)sinxcosx -uxy +1.0.t. =l.0.t..
Performing the weighted H! estimate on D, w (2.18) with weight p yields

1d

Ea(axwa, 0y Dywp) = (0x Dx Law, 3y Dywp) + (0x Dy N(w) + 9y Dy F (@), 0x Dywp).

(2.20)
Using the above estimates on P;, we obtain
(9x Dx Lqw, dx Dywp)
< ( — asinxd, 8, Dyw — sinx - H(d, Do) + (@ — 1)(1 — cos x)d, Dy, axwap>
+ Cllox Dxwp' N pllollyg £ (I + b + I3, 0. Do) + I,
where we have bounded the l.o.t. in P; by ||w||%-
For I1, applying Lemma 2.4 with f = 9, D, yields
(1. 9; Dywp) = —%’naxwap‘/zHiz < (—% + %m — D119 Drap' |17

Note that sinx - p = sinx - (sin %)_2 = 2cot 5. For I, applying Lemma A.1
with f = 0, Dyw, we obtain

X
(1. 3 Dyewp) = ~2(cot = H(8, Dyw). By Dyw) = 27 (H (3, Dyw)(0))2.

Since Hf (0) = —%(cot 5, f)and 9y cot 5 = —%(sin %)_2, using integration by
parts, we derive

1 X )
|H (0, Dx0)(0)] = 5—|(eot 3. 0, Dy)] = cl{cin > Do

= l{esin 5)72 sinxd,0)| < llox(sin ) 7112 S Nl
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Therefore, we establish
{2, x Dywp)| S llwll3-
The estimate of /3 is simple
(I3, s Dywp)| < la — 1]+ |9 Dywp'/?[[7 .

Therefore, we obtain the following estimates for L,

1
(0 Dx Law, 8 Dywp) < (=3 + Cla = 1Dl Deeop' |17,
+ Cl13x Dywp' || 2|0l 13 + Cllll7, (2.21)

3
< (= + Cla = 1113 Dy I + Cllwlfy:

2.5. Estimates of the Nonlinear and the Error Terms

Recall the nonlinear term and the error term N (w), F (@) (2.10). Using (2.7),(2.8),
we have

N(w) = (a — Duy(O)w + uyw — auwsy,
F(w) =(a—1+cosx)(—sinx) —asinx(—cosx) (2.22)

= (1 —a)(sinx —sinxcosx) =2(1 —a)sinx sin’ %

Since F is of order O (x3) near 0, it is easy to obtain
IF@)ln S 11 —al. 118Dy F@)p' 2 S 11 —al,
which implies
(F (@), w)y| S 11 —alllolly, [(0xDxF (@), 0xDxwp)| S |1 —alllollx.  (2.23)
To control the L° norm, we have a simple Lemma, whose proof is deferred to
the “Appendix”.

Lemma 2.7. Suppose that f, € L*(p) and f(0) = 0. We have || fp'/?||1~ <
I feo' 2 2.

Using the Sobolev embedding and the above Lemma yields

1/2

1/2
iz S ol Noplle S lloxe 112 S lollx,

(2.24)
IDxwp /|| e S 118x Dyawp /2| 2.

In particular, |u,(0)| < ||w||. With the above estimates and (2.15), the estimate
of (N(w), w)y is standard. In the case of a = 1, it has been established in [19]. Its
generalization to the case of a close to 1 is straightforward. In particular, we obtain

(N (@), )y| < [l (2.25)
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Weighted H 2 estimate of N (w) with odd assumption

Next, we estimate the nonlinear term N (w) in (2.20). We need to impose an
extra condition on the initial perturbation wy. It is easy to see that the odd condition
is preserved and both u, w are odd. Since the solution is 27 periodic, we obtain
w(m) =0and u(wr) = 0.

Recall the X norm in Definition 1.1. Using the estimate

X X .
1p"29, Dy f — 2008 frel = 1(sin ) Hcosx - fe +sinx - fiy)

X 1/2
—ECOSE * faxl 5 | fxlp / >
we derive the equivalence of norms

WA S I3, + 118Dy fo 2112, S FII (2.26)

forany f € X.

Recall the L™ estimates (2.24). We can control the L norms of u,, wp'/2,
Dy wpl/? by ||||x. Using (2.19), the above equivalence and p/2sinx = cos 5
we have

el 2 + liwxxll g2 + [10"20: Dyl 12 + [1p"7 sinx - weell 2 S ool |x-
The crucial odd condition on the solution is used to obtain #(0) = u(wr) = 0
and thus |u| < ||uy ||| sin x|. Hence, we obtain

1/2

172 T .
uwyxp |2 = ||l——Ilrellp™/ 7 sinx - wyx|lf2
Sin x

172

(2.27)
: 2
S|z llp = sinx - wxxllp2 S llollx-

With the above preparations, the estimates of the (dy Dy N (w), dx D wp) are
standard and similar to those in [19]. We only focus on the difficult terms that
require special estimates. The first term is 9, Dy u, -  that appears in the expansion
of 3y Dy (uyw). Using Lemma 2.6, we get

1
O0xDyuy 'a)=8x(H(Dxa))+2—(w, sinx)) -w = 0y H(Dyw) - = wH (0 Dyw).
Vs

Using the L? isometry property of the Hilbert transform and (2.24), we obtain
llwH (3 Dx)p' |12 S 11H (0x Dx)l| 2 llop' P11 S 113: Droll 2 llollx S Mol

which implies the L2(p) estimate of d, D u, - w. The second term is # cCOS X - Wy
that appears from —ad, Dy (uw,). Using Dyw, = 0, (D) —cos x - w, and a direct
calculation yields
0y Dy (uwy) = 0y (wy Dyt + uDywy) = 0y (wy Dxtt + udy Dyw — u cosx - wy)
= wyx Dxtt + w0 (Dxut)
+ uy 0y Dyw + udy (0x Dyw)
— 0y (U COS X)Wy — UCOSX + Wyy-
The estimates of the first five terms are standard. For the last term, we apply (2.27).
In summary, we obtain

(9: Dy N (@), 3; Dywp) < Cllo|[%. (2.28)
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2.6. Nonlinear Stability

Recall the equivalence of norms in Lemma 2.2. Combining the estimates (2.16),
(2.21), (2.25), (2.28) and (2.23), we can construct an energy

E(t)* = |9: Dyap'?|17, + o, o)y

for some absolute constant u > 1, such that the following estimate holds for odd
perturbation

1d 1
S EO = (=3 +Cla— INE@®)? + C(llol} + llol3,) + Cla — 1|([|ollx + [lo]l).

Since p is absolute, using (2.26) and the equivalence between the H norm and
the Y norm from Lemma 2.2, we yield the equivalence between the energy E and
the X norm, that is

lloll} < E@) < ol (2.29)

Therefore, we can further obtain

1d 1

53 EW = (-3 +Cla—1DE®? + CE@®*? + Cla — 1|E®'.
Hence, there exists some small constant §o and some absolute constant ¢ > 0

such that for |[a — 1| < & , if E(0)'/? < c|a — 1|, then E(1)'/? < c|a — 1| for all

t > 0, which can be proved by a bootstrap argument. Using this bootstrap result

and (2.29), we obtain

llwllx < CE®)'/* < Cla—1]. (2.30)
We can further choose smaller 5y such that

lcw| = [(1 — a)uy (0)] < Cla — 1|E(1)"/?
5 1 (2.31)
<Cla—1]| §C80|a—1|<E|a—l|.

2.7. Convergence to the Self-similar Profile

We focus on odd initial perturbation wy € X with E 012 < cla — 1]. We
obtain f wo dx = 0 and estimate (2.30) for ||w]||x. Moreover, since w is odd, we
getw, = (w, cosx — 1)7¢y = 0 and similarly w, ; = 0. From Lemma 2.2, we obtain
that the inner products (-, -)y, (-, -)7 are the same, and the norms || - ||y and || - ||
are the same.

Performing the estimate on {(w;, w;)y yields

1d

Ea@)t,wthf = (Lqwr, )y + (N (@), )y =1+ 11

The estimate of the £, part follows from (2.16):

3
(Lawr, @)y = (—5 +Cla— N2
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A direct calculation yields
0y 0 (Uwy) = O (Urwx + UW; x) = Uy xOx + UrWxy + UxWr x + UD; xx.

We focus on the term u; @y, . The inner productinvolving u; @, is —a(u;wyy, Ox @ p).
Using an estimate similar to (2.27) and the L estimate (2.24), we get

t

172 u
sin x

S

lurwexp™ "l p2 llellollx S luxllzellollx S llodixllollx,

where we have used u;(0) = u,(7r) = 0 due to the crucial odd condition to obtain
the second inequality. Other terms in 7/ can be bounded by ||w;||||w||x using
estimates similar to those in Section 2.5. We can obtain

1d. 3 s
7 g lerlly = (=g + Cll —al + Cllollollerly
3 2
=< (_§ + CII —allexlly-

The last inequality holds due to (2.30).

Now we choose §; = §p and |a — 1| < &1, where § is the parameter determined
in (2.31). Applying the argument in [4], we can obtain that @ (¢) + @ converges
to some w, strongly in the H norm and ¢, + ¢, — Cw 4 for some scalar ¢, 4
exponentially fast as + — oo. In addition, there is a subsequence of w(?) + @
that converges weakly to w, in X and thus w, € X. Moreover, (@, ¢y 4) is the
steady state of (2.5). The relation (2.4) implies that w, is a self-similar profile of
(1.1). Since w(t) + @ is odd, the convergence w(t) + @ — w, implies that w, is
odd. Using the convergence results, ||@(f)||x < Cla — 1] in (2.30) and (2.31), we
establish the estimates (1.4) in Theorem 1.

2.8. Regularity of the Profile

In this Section, we estimate the regularity of w,.

2.8.1. Estimate of Exponent y(a) Recall o = —sinx and Ho(w) = uy(w) =
—11n (2.7). Using (1.4), we yield

lcwoa = (@=DISla =17, lcoal S la—11,

|Hwa(r) — Ho(m)| S llo —ollx Sla—1], [Hoa(m)] S 1.

It follows |Hw, ()| = |Ho(w)| — Cla — 1| = 1 — Cla — 1|. By choosing
smaller 81 so that |a — 1| < & is small, we obtain |Hw, ()| = % Applying the
above estimates, we obtain

Cw.a+ (1 —a)Hw,(m) B a—1D+A—-a)Ho(r)
aHw, (1) aHo(r)

Sla—1p%

The first term on the left hand side gives «(a) in (1.5) and the second term
equals % which satisfies
(a@a—=1D+@-1

| -2 -a)| Sl —al*
—dad
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By further choosing smaller §; so that [a — 1| < §; is small, we can obtain
|Hwa (1) + 1| = |Hou(7) — Hao(m)| < 15 and |a(a) —2(1 — a)| < Sla — 1].
We complete the estimates of «(a) and Hw, () in Theorem 1.

2.8.2. Estimates of the Holder Norm of w, Applying ||w, +sinx||x < |a — 1]
in (1.4), we obtain

g xx +sinx|[p2 Sla =11, |l@gxx — SianLz([—n/z,n/z]) Sla—1].

Using Sobolev embedding , we yield that w is close to — sinx on [—7/4, /4]
in C-1/3 norm and u is close to sin x in C'"!/3 norm. Hence, up to further choosing
smaller 8; so that [a — 1| < §; is small, we can assume that u, has exactly two
zeros at x = 0,x = 7 and w, has only one zero at x = 0 in [—7 /4, 7 /4]. We
simplify @, cw,q a8 @, ¢, in the following derivation: since (w, ¢,,) is the steady
state of (2.5), we derive

auwy = (Cy + Uy)w. (2.32)

We fix xo = % Then w(xp) # 0. The above equation can be seen as an ODE
on w with given ¢, u, uy. Starting from x¢, we can solve the ODE

X
»(x) = o (xp) exp (/ Co T tx dx) . (2.33)
%0 au
Since u € C'1/3 and u(m) =0, we yield
u(x) —ux (1) (x — 1) Sa lx — 713, ue () — ue ()] Sa Ix — |3

It follows that

‘Cw+ux(x) . Co + ux(m) < |x_7_[|72/3
a .

~

(2.34)

au(x) auy(m)(x — )

Recall the formula of «(a) in (1.5). We get

X 1 X
/ M —(a(a)+ 1) dx| <, / Ix — 7|72 dx <i1
X0 au(x) X -7 X0

X—
these estimates into (2.33), for x € (7/2, ), we obtain

for all x € (r/2, ). Note that f;) L dx = log |x — | —log(]xo — m|. Plugging

Ix — O < o (x)] So x — @ @F (2.35)

From the estimates of «(a) following (1.5), we have a(a) < 0 fora > 1 and
a(a) > Ofora < 1. Therefore, for | <a < 1+48yandany | +a(a) <a < 1, we
obtain

iminf 2P0 > piinf |y — g [e@+i-a
b X—>mT

= OQ.
x> |x — ¥ ~

Since w(wr) =0, weyieldw, ¢ C*forl —§; <a<landa(a)+1 <o < 1.
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Recall u € CV'3,w € HY(S") — C'3(S") and u(x) # 0 for x # 0, 7.
Using (2.32), we can derive that wy is continuous on (0, ) and thus w € CL(o, n)).
Similarly, we can obtain w € C Y((=m, 0)). From the discussion at the beginning
of this section, we have w € C11/3(—n/4, w/4). It follows w € C1(S'\{r}). It
remains to show that w, is continuous at x = . Using (2.32), (2.34), (2.35) and
a(a) >0forl —38; <a < 1, we obtain

Co + Uy

1+a(a) =0

lim sup |wy (x)| = lim sup | | <4 lim sup

X—7 x—n— au xon— X — ]

“x =]

Similarly, we yield limsup,_, .+ |@y(x)| = 0. Thus @ € C'(S'). In particular,
wy (1) = 0.

Finally, for any @ with @(a) < « < 1, using a similar argument and (2.35)
yields

: . |wx(x)| . . Co + Uy |a)|
liminf ————— = liminf
X—>T~ X—J‘[|‘x X—=m- au |x_n|(x
24 liminf x — )@ — oo

X—>7T~ |x —7T|

We conclude that w, ¢ cl® for any a(a) <o < 1.
So far, we have concluded the proof of Theorem 1.

3. Stability of the Self-similar Profiles

In this section, we establish the stability of the profiles (w4, cw.q), la — 1| < 81
constructed in the previous section and prove Theorem 2.

3.1. Stability Analysis

Denote by uy, u, x the velocity field corresponding to w,. We linearize (2.5)
around the steady state (w4, ¢ o) and consider odd perturbation wy € H

W = =AUy + (Co.q + g )© + (Co + U)Wy — atwy x + N(w) £ Tow + N(w),
(3.1

where 7, is the linearized operator, ¢, and the nonlinear term N (w) are the same
as that in (2.8) and (2.10). Here, we do not have the error term since (wq, Co.q)
is the steady state. Since the odd condition on w is preserved, we have w(w, t) =
u(m,t) =0fort > 0.

We compare 7, with £, in (2.9) or (2.11).

Tow — Lo =—a(u, — W)oy + (Cw,a —Cp + Ug,x — Uy)w

+ (Co + ux) (g — @) — a”(wa,x — y) £ Raw,
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where @ = —sinx, u = sinx, ¢, = a — 1 are given in (2.7). We focus on the last
term in R,

(”(wa,x —y))x = ux(wa,x — y) + u(a)a,xx — yyx) = + 11

For 11, we use the crucial condition u (s, t) = 0 due to the odd condition and an
estimate similar to (2.27) to obtain

12

1/2 u D) si
NP 2|12 < 1l =1%o | [(@a xx — @xx)sinx - p/2|],2
Sin x

S uxllz=llos — ollx < la = 1llollx.

The last inequality is due to (1.4) and (2.24).

Recall the definitions of w,, the ¥ norm and inner product in Lemma 2.2. Since
w is odd, w, = 0 vanishes and we get ||w||y = ||w||y. With the control (1.4) on
the error ||w; — @||x and |cy, 4 — Cw|, the I term and other terms in R, w can be
estimated in a way similar to that in Section 2.3. In particular, we can obtain

[(Raw, 0)y| = [(3x(Raw), xp)| < la — 1|[|o]]7,,

which, along with (2.16), implies
3
(Tow, @)y < (=3 +Cla = N2

The estimate of N (w) is essentially the same as that in Section 2.5 and we can
establish estimates similar to (2.25). In summary, we get that
1d
2dt
for some absolute constant C; > 0, where we have replaced the ¥ norm by the
‘H norm since they are the same. Therefore, there exist small positive parameters
820 < 81 and 839, such that for |a — 1| < 829, if ||wo|| < 830 then
1d
2dr
Asaresult, ||w||1 decays exponentially fast. We can further choose smaller 859, 830
such that

|1x (0) + ta,x (0) = 1] < |ux(0)] + |ua,x(0) — 1| < Cll@ll + Cllwg + sinx|[x

3
llowll3, < (-3 +Cila— I)lwll3, + Cilloll3,

1
llwll3; < —gnwn%i. (3.2)

1
= Cllwollr + Cla — 1] = C(é20 + 830) < 75-

This ensures that ¢, 4 + ¢, = (a — 1) (ux(0) + u4 (0)) satisfies

. . 9 11
sign(Cw.a +co) = sign(a —1), pla =1l =lcwa+col = pla—11. G.3)

Note that wg 4wy, is the initial data of (2.5). Suppose that ||wg+w, +sin x ||y <
63 and |a — 1| < 87 for 87, 83 to be determined. Using triangle inequality, we obtain

llwolln < |lwo + wg + sinx||p + ||wg +sinx||y <83+ Cla—1] <8 + C8. (3.4)
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‘We choose §;, 3 > 0 in Theorem 2 such that

1
0 < 82 < min(yg, m), 83 + Cdr < 830. 3.5)
As aresult, if the initial data wo 4w, of (2.5) satisfies ||wp+w, +sin x|| < 83,
then ||wo|| < 830 and thus we obtain the estimates (3.2), (3.3).

3.2. Rescaling

Recall the rescaling relations (2.1)—(2.3). To avoid confusion, we use 7, ¥ to

represent the temporal variable and solution in (2.2) and ¢, @”" to represent those
in the physical equation (1.1). Denote by ¢(t) = ¢, (7) + cw,q the scaling factor.
By definition, we have wPR = w + w,. Here, ¢, (1), w(t) are the perturbations
and wPR, c(7) solves (2.5).

The relations (2.1)-(2.3) imply

0P (x,1(1)) = ' (1)0PR(x, 1), Cu(r) = C,(0)exp (/T c(s) ds> , (3.6)
0

and 1(t) = [ Co(s)ds.

Suppose that a)ghy is odd and ||a)ghy + sinx||3 < 83. We choose C,,(0) = 1
so that of’® = wghy . Estimate (3.4) and its following discussion implies (3.2)
and (3.3). Therefore, for 1 < a < 1+ &, we obtain c(t) > %|a — 1], while
for1 — 8 <a < 1, we get —%|a -1l <c(r) < —%la — 1|. The discussion
in Section 2.1 implies the blowup result for I — §> < a < 1 and the long time

behavior of the solution for 1 < a < 1 + 8, in Theorem 2. It remains to establish
the estimates in Theorem 2.

3.2.1. Estimate of A(t) We choose A(t(7)) = C, (7).
For 1 — 6, < a < 1, since c(s) < 0, A(t(7)) is decreasing. Using c(s) =
Cw + Cw.a» (3.3) and the formula (3.6), we obtain the estimate of the blowup time

o0 T o0 11
T =t(0) = / exp(/ c(s)ds)dr = / exp(——la — 1j7)dt 2
0 0 0 10 2la — 1|

and the estimate of A(¢(7))

T—t(r) [ Culs)ds

= (3.7)
At (7)) Co(r)
= / exp </ c(2) dz> ds = / exp (/ c(t+2) dz) ds,
T T 0 0
(3.8)

where we have used a change of variable s — t + s in the last equality. Since the
perturbation ¢, (7), @ (7) decays exponentially fastin 7 (see (3.2)), we have c(1) =
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€o(T) + Cw.a = Coa < 0. Note that exp(fy c(t +2)dz) < exp(—%|a —1ls) is
integrable. Applying Dominated Convergence Theorem yields

T —t(7) e
_ = exp(Cep,q8)ds = —
At (7)) 0 Cw,a
Taking the inverse of the above limit implies 7{‘81((?) — —Cy.a-

At (7)
t(7)

Similarly, for 1 < a < 14 §,, we can obtain A(¢(7)) is increasing and —

Cw,a-

3.2.2. Convergence Estimates Next, we establish the convergence estimate. Us-
ing (3.6), A(t(1)) = Co(7) and 0k = & + w,, we have

" — At (1) wallpy = Co(D) " HI0PR — wallp = Co(0) ol I3
Using (3.2) and a)g hy — a)(l)) R — w0y + w,, we further obtain
, _ _1 I _ h
P — 4t (1) wallpg < Co(@) e 3 lwollp = Co(@) e [|0f™ — walln.

For a # 1, applying (3.3) to ¢(s) = ¢, + €. and using (3.6), we obtain

(max(C; (1), Co(@) T < exp (Ela — 1T ( +1) = exp().

41 —a|
where we have used [a — 1| < 87 < 100 from (3.5) in the last inequality. Combining
the above two estimates and substituting A(¢ (7)) = C, (1), we prove that
— o — h
o™ = 1@t () wally < (Max(A(z()), 2 () ™) 5T |of ™ — wallx.
(3.9

Since A(t(t)) < 1forl1 -8, <a < land A(t(7)) = 1forl <a < 1+ 8, it
follows the convergence estimates in Theorem 2.

3.2.3. Growth of | Ia)ghyl Lo Wefocusonl < a < 1+38; and further assume that
wPh e HS s > % The decay estimates (3.9) and the BKM-type blowup criterion
implies that w remains in H*. Since P is odd, we have u?" (1) = w?" () = 0.
The evolution of w?"™ (1) is given by

3™ () = (1 — ayul™ (m)w™ ().

To avoid using wyy, the above ODE can be established by dividing both sides of
(1.1) by (x — ) and then taking x — 7 or using the flow map. Solving the ODE,
we obtain

t
wfhy(n, ) = exp ((1 — a)/ ufhy(rr, s) ds)a)(')’};v(n).
0

Using the fast convergence (3.9), for any ¢ > 0, we obtain
t
S(t) = (1 —a)/ Wl (. 5)ds = (1 —a)/ Ye )u“(n)ds — C(a) = —C(a).
0

From the estimate following (1.5), wehave u, , (m) < 0.Hence (1—a)u, () >
0. From the estimate of A(¢) in Section 3.2.1, it is not difficult to obtain that for any
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& > 0, there exists C (¢, a), such that M) Cw.atefort(r) > C(e, a) (if t(r)

t(t)
large, then 7 must be large). Then for# > 1 and 0 < ¢ we get

t —
St = (1 — a)ua,x(n)f ;ds —C(a,8) = {4 = s () log(t) — C(a, &).
1 (Cwa +8)s Coa+ €

Combining the above estimates, we prove that

h
™ (1, 0)] Zase 17 |0 ()],
withy = (500D
in Theorem 2. The estimate |y (a) — 1] < |a — 1] follows from (1.4).
This concludes the proof of Theorem 2.

.Since ¢ > 0is arbitrary, we establish the growth of |w (7, 1)|

4. Proof of Theorem 3

The proof is similar to that of Theorem 2. We consider the perturbation around
the approximate steady state wy = — sinx, ¢, = a — 1 (2.7). In Sections 2.3, 2.5,
we have obtained the following estimates for the perturbation w(t) with wg € H
and f g1 wo dx = 0 under normalization condition (2.8) on ¢,

2dtllwlly_ —g T CQla =1l lelly + Gllelly + Cala = 11 - flolly,

where we have used the equivalence between the Y norm and the H norm in
Lemma 2.2. Remark that we do not require that wq is odd to obtain the weighted
H! estimates of linear, nonlinear and the error terms. It follows that there exist
84, 65 > Osuchthatfor|a—1| < §4 and any ||wg||y < J5, the bootstrap assumption
[lw(t)|ly < &5 holds for any # > 0. Using the equivalence of norms in Lemma 2.2
again and this bootstrap result, we obtain that if ||wg||7¢ < Js, then ||wgl|ly < 85,
which further implies ||w (¢)||y < &5 and || (?)|| < 2|lw(®)||ly < 285. The factor
2 in the upper bound 2(r) ' 85 in Theorem 3 is due to this equivalence.

Up to further choosing smaller 84, 85, using the bootstrap result, we can obtain
lc(s) —(a—1)] < 1 “l similar to (3.3), where c(s) = ¢, + a — 1. Plugging this
estimate into (3.7) ylelds the estimate of ¢(—2 forl —84 <a < 1. @ is estimated
similarly. Using the bootstrap result and the argument in Section 3, we can prove
other results in Theorem 3. We omit the details.

5. An Approach to Obtain Potential Finite Time Blowup for Other a < 1

We discuss an approach which has the potential to be applied to obtain finite
time blowup of (1.1) on a circle for other @ < 1 from smooth initial data. It is based
on the method in [4].

Construction of approximate steady state The first step is to construct the
approximate steady state using the dynamic rescaling equation

w; +auwy = (Cp + Uy,
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which is the same as (2.5), with normalization condition ¢, = (a — 1)u, (0).

For a close to 1, for example 0.95 < a < 1, wp = — sinx provides a good
candidate for initial data. An approximate steady state (@, ¢,,) can be obtained by
solving the above dynamic rescaling equation for long enough time numerically.
The approximation error can be estimated a posteriori. If the error is sufficiently
small, we can further perform stability analysis around (@, ¢,,); see more discus-
sions in [4]. For a away from 1, for example a < 0.95, the initial data can be chosen
successively based on the approximate steady state for larger a, if it exists. Our pre-
liminary numerical results suggest that the solution converges to some profile and
the approximation error F(w) £ (¢, + ux)w — auw, decays rapidly in time. For a
away from 1, the approximate steady state can also be constructed using the method
in [20].

Stability analysis Once an approximate steady state is constructed, one can
follow the steps in Sections 2.3 and 2.5 . The key step is to establish the linear
stability. For a close to 1, for example 0.95 < a < 1, it is conceivable that linear
stability can be established in a way similar to that in Section 2.3 by applying the
analysis of £ in Lemma 2.2 (established in [19]) and controlling the difference
between £ and the new linearized operator. For a away from 1, linear stability may
be established by an energy estimate similar to that in [4] using some well-chosen
singular weight.
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Appendix A

Lemma A.1. Suppose that f € L*((sin %‘)’2). We have

/ cots . f.Hf dx = —w Hf (0)>. (A.1)
Sl 2

Proof. Firstly, we consider f € C®. Using the Tricomi identity of the Hilbert
transform (see for example [4,12]), we obtain

/S | cot %f CHfdx = =2 H(f - Hf)(0) = —((Hf(0))* — £(0)?).

Since f € L?((sin$)~%), we have f(0) = 0 and obtain (A.1) for f € C*. For
general f, we can find a sequence f, € C™ such that f, — f in L?((sin %)_2).
Clearly, we have Hf, — Hf and f,cot5 — fcot3 in L?. Using the Cauchy—
Schwarz inequality, we get Hf,(0) — Hf(0). Applying (A.1) to f, and then
taking n — oo concludes the proof. O
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Next, we prove Lemmas 2.6 and 2.7 .

Proof of Lemma 2.6. Applying integration by parts yields

1 —_
D Hf(x) = E/sinx-f(y)-axcotx Y dy
1 . xX—y
= —— | sinx - f(y)dy cot dy
2w
1 _
= g/sinx . fy(y)cotx > Y dy.

It follows

X —

1
DAHF ()~ H(D, () = 5 / (sinx — sin y) fy (y) cot =2 dy

. s xX—y __ coX—y x+y xX—y __ xX+y xX—y
Note that (sin x —sin y) cot == = 2sin == €08 =%= cot == = 208 =5 €08 —5=

= cos x + cos y. We conclude

1 1
DyHf(x) = HD: f)(x) = 7 /(COSX +cosy) fy(»)dy = 2—fsiny -w(y)dy.

b4
0
Proof of Lemma 2.7. Using the Cauchy—Schwarz inequality, we obtain
w 1 x 1 * X
— = — dx| < sin® = dx)!/? <
vzl = g [ e = [ s 0 ol S ol
for any x € S', which concludes the proof. O
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