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Abstract

It is conjectured that the generalization of the Constantin–Lax–Majda model
(gCLM) ωt + auωx = uxω, due to Okamoto, Sakajo and Wunsch, can develop a
finite time singularity from smooth initial data for a < 1. For the endpoint case
where a is close to and less than 1, we prove finite time asymptotically self-similar
blowup of gCLM on a circle from a class of smooth initial data. For the gCLM on
a circle with the same initial data, if the strength of advection a is slightly larger
than 1, we prove that the solution exists globally with ||ω(t)||H1 decaying in a rate
of O(t−1) for large time. The transition threshold between two different behaviors
is a = 1, which corresponds to the De Gregorio model.

1. Introduction

Constantin, Lax and Majda [6] introduced an one-dimensional model (CLM)

ωt = uxω, ux = Hω

to model the vortex stretching term in the three-dimensional Euler equations, where
H is the Hilbert transform. The advection term is missing in CLM model. In order
to model both advection and vortex stretching, De Gregorio [8,9] generalized the
CLM model by adding an advection term uωx . By interpolating the CLM model
and the De Gregorio model, Okamoto, Sakajo and Wunsch [26] introduced a one-
parameter family of models (gCLM)

ωt + auωx = uxω, ux = Hω, (1.1)

where a is a parameter and H is the Hilbert transform. In the case of a circle, H is
given by

Hω(x) = 1

2π
P.V .

∫ π

−π

ω(y) cot

(
x − y

2

)
dy.
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If a = 0, (1.1) is the CLM model. If a = 1, it becomes the De Gregorio model.
The gCLM shares some similarities with the 3D Euler equations. In fact, the 3D
incompressible Euler equations in the vorticity formulation can be written as

ωt + (u · ∇)ω = ∇u · ω, (1.2)

where u is the velocity field and ω = ∇ × u is the vorticity. The term uxω in (1.1)
models vortex stretching in (1.2) which is the main source of difficulty in obtaining
global regularity of 3D Euler equations, and uωx in (1.1) models advection in (1.2)
which has a stabilizing effect [13,14].

The gCLM model (1.1) has been studied actively in recent years since it can
characterize the competition between advection and vortex stretching in different
scenarios. For a < 0, the advection would work together with the vortex stretching
to produce a singularity. Indeed, Castro andCórdoba [1] proved the finite time blow-
up for a < 0 based on a Lyapunov functional argument. The case of a = 0 reduces
to the CLM model and finite time singularity was established by Constantin, Lax
and Majda [6].

For a > 0, there is a competing nonlocal stabilizing effect due to the advection
and a destabilizing effect due to vortex stretching. For small positive a, it is expected
that the vortex stretching term will dominate the advection term. In [12], Elgindi
and Jeong constructed smooth self-similar profiles for small a that lead to finite time
blowup using a power series expansion and an iterative construction. In a recent
joint work with Hou and Huang [4], we established the stability of an approximate
self-similar profile and obtained finite time asymptotically self-similar blowup for
C∞
c initial data. Similar results were obtained independently by Elgindi, Ghoul and

Masmoudi [11] on the stability of the self-similar solutions constructed in [12] and
the stability of the asymptotically self-similar blowup of (1.1). For a close to 1

2 ,
where the vortex stretching term is relatively stronger, finite time asymptotically
self-similar blowup for C∞

c initial data has been established by the author [2]. The
self-similar singularities in these works are focusing in the sense that they can be
written as ω(x, t) = 1

T−t �( x
(T−t)cl ) for some T, cl > 0 and a nontrivial profile �.

For a = 1, (1.1) reduces to the De Gregorio model. The analysis becomes
much more challenging since advection and vortex stretching are comparable. Dif-
ferent behaviors of the solution of (1.1) on the real line and on a circle have been
established. For (1.1) on a circle, numerical simulations performed in [9,20,26]
suggest that there is no blowup from smooth initial data. Hence, the global regu-
larity for the De Gregorio model on a circle from smooth initial data is expected,
but it remains an open problem. In a remarkable work of Jia, Stewart and Sverak
[15], they established the nonlinear stability of the equilibria A sin(x − x0) of (1.1)
using spectral theories and complex variable methods. It implies that the solution
with smooth initial data close to A sin(x − x0) is global. An alternative proof of
the nonlinear stability result was obtained later by Lei, Liu and Ren [19] using a
direct energy method with a magic energy space. Moreover, global well-posedness
of the solution has been obtained in [19] for initial data ω0 that has a fixed sign and
|ω0|1/2 ∈ H1. Our analysis to be presented has benefited from some observations
made in [15] and the stability analysis in [19]. In particular, our stability analysis is
built on the coercivity estimates of a linearized operator established in [19] and we
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follow [19] to establish the weighted H1 estimates except that we need to estimate
some additional perturbation terms. For (1.1) on the real line, in a recent joint work
with Hou and Huang [4], we proved finite time asymptotically self-similar blowup
forC∞

c initial data by establishing nonlinear stability of an approximate self-similar
profile in the dynamic rescaling equation. In contrast to the case of small positive a
and a close to 1

2 , the self-similar singularity corresponding to a = 1 is expanding
and it can be written asω(x, t) = 1

T−t �((T − t)x) for some T > 0 and a nontrivial
profile �. The strength of the advection plays an important role in the transition
from focusing self-similar blowup to the expanding one.

For arbitrary large |a|, Cα self-similar profiles were constructed in [12]. Stabil-
ity of approximate self-similar profiles and finite time asymptotically self-similar
blowup for Cα

c initial data have been established in [4]. See also [11] for simi-
lar results. For this range of a, it is expected that advection dominates. Yet, an
important observation made in [12] is that advection term can be substantially
weakened by choosing Cα initial data with sufficiently small α so that the vortex
stretching term still dominates. This observation and the idea of weakening the
advection have played a crucial role in recent works of singularity formation, in-
cluding Elgindi’s breakthrough [10] on singularity formation of 3D axisymmetric
Euler equations without swirl for C1,α velocity and singularity formation of 2D
Boussinesq equations and 3D axisymmetric Euler equations with C1,α velocity
and boundary obtained in my joint work with Hou [3].

Recently, Lushnikov, Silantyev and Siegel [20] performed analysis and ex-
tensive numerical study on (1.1) and provided numerical evidence for singularity
formation of (1.1) with various a and obtained a critical value ac ≈ 0.6890665. For
(1.1) on the real line, they showed usingwell resolved computations that the expand-
ing blowup for the case of a = 1 obtained in [4] can be generalized to ac < a ≤ 1.
For (1.1) on a circle, they discovered a new type of self-similar blowup solutions
of the form ω(x, t) = 1

tc−t f (x) for ac < a ≤ 0.95, which is neither focusing nor
expanding. Due to some numerical difficulties, the range of 0.95 < a < 1 was not
explored and it was conjectured by the authors that self-similar blowup still exists.
Our blowup results to be introduced are inspired by these new discoveries. There
are other 1D models for the 3D Euler equations and the surface quasi-geostrophic
equation, for example [5,7], and we refer to [12] for an excellent survey.

In this paper, we study (1.1) on a circle with a close to 1, which can be regarded
as a slightly perturbed De Gregorio model ((1.1) with a = 1). For smooth initial
data, this range of parameters a is perhaps the most interesting one in (1.1) since
it contains both the region where the strength of advection is slightly weaker than
that of vortex stretching and the region where the strength of advection is slightly
stronger than that of vortex stretching. We study finite time blowup of (1.1) in the
first region a < 1 and the long time behavior of the solution of (1.1) in the second
region a > 1.

1.1. Main Results

We first introduce some weighted norms and spaces.
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Definition 1.1. (Weighted norms and spaces) Define the singular weight ρ =
(sin x

2 )−2 and the weighted norms || · ||H, || · ||X as

|| f ||2H � 1

4π

∫ π

−π

| fx |2
sin2 x

2

dx, || f ||2X � || f ||2H +
∫ π

−π

| fxx |2 cos2 x

2
dx,

(1.3)

and the Hilbert spaces H, X as

H � { f | f (0) = 0, || f ||H < +∞}, X � { f | f (0) = 0, || f ||X < +∞},
with inner products 〈·, ·〉H, 〈·, ·〉X induced by the H, X norm.

TheH norm and inner product 〈·, ·〉H were first introduced in [19] for stability
analysis.

Throughout this paper, we choose the gauge u(t, 0) ≡ 0 for the velocity field.
The authors in [15] showed that solutions under different gauges are equivalent up
to translations.

Our first main result is the existence of a family of self-similar solutions.

Theorem 1. There exists an absolute small constant δ1 such that for 1− δ1 < a <

1 + δ1, the gCLM (1.1) with parameter a admits a self-similar solution

ω(x, t) = 1

1 + cω,at
ωa(x)

with an odd profile ωa and scaling parameter cω,a satisfying

||ωa + sin x ||X � |1 − a|, |cω,a − (a − 1)| ≤ min(C |1 − a|2, 1
2
|1 − a|)(1.4)

for some absolute constant C > 0. In particular, for 1− δ1 < a < 1, cω,a < 0 and
ω(x, t) blows up in finite time T = − 1

cω,a
. For a = 1, cω,a = 0 and ω1 = − sin x.

For 1 < a < 1 + δ1, cω,a > 0 and ω(x, t) exists globally with O(t−1) decay rate.
Moreover, ωa /∈ Cα for 1 < a < 1 + δ1 and any α(a) + 1 < α < 1, while

ωa ∈ C1 but ωa /∈ C1,α for 1 − δ1 < a < 1 and any α(a) < α < 1, where α(a) is
given by

α(a) = cω,a + (1 − a)Hωa(π)

aHωa(π)
(1.5)

with |Hωa(π) + 1| < 1
10 , |α(a) − 2(1 − a)| ≤ min( 12 |a − 1|,C |a − 1|2) and

sign(α(a)) = sign(1 − a).

The second main result addresses the stability of these profiles and the regular-
izing effect of the advection term.

Theorem 2. Let (ωa, cω,a) be the profile and scaling in Theorem 1. There exist
absolute small constants δ2, δ3 with δ2 < δ1, such that if ω0 is odd and satisfies
||ω0 + sin x ||H < δ3, the following statements hold true for the solution ω(x, t) of
(1.1) with parameter a and initial data ω0:
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(a) For 1−δ2 < a < 1,ω(x, t) develops a singularity in finite time T with lifespan
T � 1

2|1−a| . Moreover, ω(x, t) is asymptotically self-similar and satisfies

||ω(t) − 1

λ(t)
ωa ||H ≤ λ(t)

1
4|a−1| ||ω0 − ωa ||H,

where λ(t) ≤ 1 is decreasing with λ(t)
T−t → −cω,a > 0 as t → T .

(b) For 1 < a < 1+ δ2, ω(x, t) exists globally, decays for large time and satisfies

||ω(t) − 1

λ(t)
ωa ||H ≤ λ(t)−

1
4|1−a| ||ω0 − ωa ||H,

where λ(t) � 1 is increasing with λ(t)
t → cω,a > 0 as t → ∞. Moreover, if

ω0 ∈ Hs for s > 3
2 then, for any 0 < γ < γ (a),

tγ |ω0,x (π)| �a,γ |ωx (π, t)| ≤ ||ωx ||L∞ � ||ω||Hs

for all t > 0, where γ (a) = |(a−1)Hωa(π)|
cω,a

with |γ (a) − 1| � |a − 1|.
In particular, the solution of (1.1) with parameter 1 − δ2 < a < 1 develops a
singularity in finite time for some C∞ initial data.

Theorem 2 resolves the endpoint case of the conjecture made in [12,20,27]
that the solution of gCLM (1.1) develops a finite time singularity for a < 1 from
smooth initial data in the case of a circle. A related conjecture was stated in [26].
For (1.1) on the real line with a = 1, finite time singularity with C∞

c initial data
has been established by Chen–Hou–Huang in [4].

The odd assumption on the initial data can be dropped with a price of losing
the convergence estimates.

Theorem 3. There exist absolute small constants δ4, δ5, such that if ||ω0+sin x ||H <

δ5 and
∫
S1 ω0 dθ = 0, the following statements hold true for the solution ω(x, t)

of (1.1) with parameter a and initial data ω0;
(a) For 1 − δ4 < a < 1, ω(x, t) develops a singularity in finite time T with

||ω(·, t) + λ(t)−1 sin x ||H < 2λ(t)−1δ5, where λ(t) ≤ 1 is decreasing and | λ(t)
T−t −

|1 − a|| ≤ |1−a|
2 .

(b) For 1 < a < 1 + δ4, ω(x, t) exists globally and decays for large time
with ||ω(·, t) + λ(t)−1 sin x ||H < 2λ(t)−1δ5 where λ(t) � 1 is increasing and
|λ(t)

t − |1 − a|| ≤ |1−a|
2 .

Remark 1.2. For the case of a = 1, stability results similar to those in Theorems 2
and 3 have been established in [15,19]. It was first proved in [15] that the equi-
librium − sin x of (1.1) is nonlinear stable and the solution ω(x, t) converges to
− sin x exponentially fast in the Hs norm for s < 3

2 . Alternative proof of nonlinear
stability was obtained later in [19] and convergence in theH norm was established
: ||ω(x, t) + sin x ||H � e−βt ||ω0(x, t) + sin x ||H for any β ∈ (0, 3

8 ).

Remark 1.3. Theorems 2, 3 can be generalized to initial data close to A sin θ

for A > 0, which can be established by applying Theorems 2, 3 to ωA(x, t) �
Aω(x, At).



1848 Jiajie Chen

Remark 1.4. The lifespan of the singular solution in result (a) in Theorem 2 is at
least 1

2(1−a)
, which grows to ∞ as a → 1−. Thus it is hard to observe and resolve

this singularity numerically.

Result (b) in Theorem 2 shows that the singularity developed from the solution
of (1.1) with a less than 1 can be regularized as the strength of advection increases.
We remark that the regularizing effect of advection has also been studied by Hou-Li
[14] and Hou–Lei [13] for the 3D axisymmetric Navier–Stokes equations. Result
(b) also confirms the numerical evidence in [20] that the solution of (1.1) with a
slightly larger than 1 exists globally for some initial data with decay of ||ω||L∞
and unbounded growth of ||ωx ||L∞ as t → ∞. In addition, it relates to small scale
creation in the solution which can be measured in the Hs norm for s > 3

2 . A similar
observation was made in [15] for the solution of (1.1) with a = 1.

The qualitative behavior of the solution of (1.1) for various a in Theorems 2, 3
can be characterized by the following simple ODE

d

dt
f (t) = (1 − a) f (t)2, f (0) = 1,

which has a solution f (t) = 1
1−(1−a)t . For a < 1, f (t) blows up in finite time

T = 1
1−a . For a > 1, f (t) exists globally with O(t−1) decay rate.

Remark 1.5. As we will see, the profile ωa is not smooth near x = π . We impose
the odd assumption on the initial data in Theorem 2 so that we can estimate uωa,xx

using the vanishing condition u(π) = 0 that compensates the nonsmoothness of
ωa .

Remark 1.6. Local well-posedness of (1.1) in Hs for any s > 3
2 can be proved

by the Kato–Ponce commutator estimate [16] and energy estimate. We will use the
dynamic rescaling formulation discussed in Section 2.1 to perform a-priori estimate
on the rescaled perturbation ω(x, t) − 1

λ(t)ωa , which implies that the perturbation
remains in the functional space H locally in time.

1.2. The Main Ideas and the Outline of the Proofs

1.2.1. CompetitionBetweenAdvection andVortex Stretching The fundamen-
tal idea in the proofs is to study the evolution of (1.1) using the dynamic rescaling
equation

ωt + auωx = (cω + ux )ω (1.6)

with the normalization condition cω(t) = (a − 1)ux (t, 0). Formally a − 1 charac-
terizes the relative strength of the advection term auωx and the vortex stretching
term uxω. A crucial observation is that if ux (t, 0) has a fixed sign for all t > 0,
then the sign of cω captures the competition between these two terms. In particular,
if the solution ω(x, t) of (1.6) is close to a nontrivial profile and ux (0) � c > 0
for all t > 0, then the sign of cω determines the long time behavior of the solution
ωphy of (1.1) after rescaling the solution ω(x, t). In particular, we can prove that
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• If cω(t) ≤ −|1 − a|c < 0 for all t > 0, ωphy develops a singularity in finite
time.

• If cω(t) = 0 for all t > 0, ωphy remains close to the profile for all time.
• If cω(t) � |1− a|c > 0 for all t > 0, ωphy exists globally and decays for large
time.

See more discussion on the dynamic rescaling formulation in Section 2.1.

1.2.2. Outline of the Proofs We close the introduction by sketching the steps in
the proofs.

1. Reformulate (1.1) using the dynamic rescaling formulation.
2. We follow the method of analysis in [4] to construct the self-similar profile ωa

and scaling cω,a of (1.1) for a close to 1. There are several steps in this method.
Firstly, construct an approximate steady state of the dynamic rescaling equa-
tion (approximate self-similar profile). To our surprise, the equilibrium − sin x
of equation (1.1) with a = 1 provides a good approximate self-similar pro-
file. Secondly, perform nonlinear stability analysis of the approximate steady
state in some suitable weighted Sobolev norm. We will use the coercivity esti-
mates of a linearized operator established in [19] to perform stability analysis
in the weighted H1 spaceH. Then we further establish stability analysis in the
weighted H2 space X using the energy method. We remark that some weighted
Sobolev spaces with singular weights have been used in [2,4,11,15,19] for
the nonlinear stability analysis of (1.1). Finally, establish convergence of the
solution of (1.6) to a self-similar profile by time differentiation. Similar time-
differentiation arguments have been developed in [4,10].

3. Establish nonlinear stability analysis of the profileωa in the weighted H1 space
H. Obtain the results about (1.1) with various a by rescaling the solution.

Organization of the paper In Section 2, we construct a family of self-similar
profiles of (1.1) for a close to 1. In Section 3, we study the stability of these profiles
and establish the convergence estimates in Theorem 2. In Section 4, we prove
Theorem 3. We discuss an approach which has the potential to be applied to obtain
finite time blowup for (1.1) with other a < 1 in Section 5. In the “Appendix”, we
prove some properties of the Hilbert transform and a functional inequality.

Notations We use 〈·, ·〉 to denote the standard inner product on S1: 〈 f, g〉 �∫
S1 f g dx .

Recall H in Definition 1.1. For f, g ∈ H, we have

〈 f, g〉H = (4π)−1〈 fx , gxρ〉. (1.7)

Without specification,
∫

f dx means
∫
S1 f dx . We useC,Ci to denote absolute

constants and C(A, B, .., Z) to denote constant depending on A, B, .., Z . These
constants may vary from line to line, unless specified. We also use the notation
A � B(A � B) if there is some absolute constant C such that A ≤ CB(A � CB).
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2. Construction of the Self-similar Profiles

In this Section, we prove Theorem 1 using the strategy in [4]. We first per-
form weighted H2 stability analysis of an approximate steady state in the dynamic
rescaling equation and then establish convergence to the exact steady state, from
which we can obtain the self-similar profile.

2.1. Dynamic Rescaling Formulation

Let ω(x, t), u(x, t) be the solutions of equation (1.1). It is easy to show that

ω̃(x, τ ) = Cω(τ)ω(x, t (τ )), ũ(x, τ ) = Cω(τ)u(x, t (τ )) (2.1)

are the solutions to the dynamic rescaling equations

ω̃τ (x, τ ) + aũω̃x (x, τ ) = cω(τ)ω̃ + ũx ω̃, ũx = H ω̃, (2.2)

where

Cω(τ) = exp

(∫ τ

0
cω(s) dτ

)
Cω(0), t (τ ) =

∫ τ

0
Cω(τ) dτ. (2.3)

We have the freedom to choose the initial rescaling factorsCω(0) and impose some
normalization condition on the time-dependent scaling parameter cω(τ). Then the
equation (2.2) is completely determined and the solution of (2.2) is equivalent to
that of the original equation (1.1) using the scaling relationship given in (2.1)-(2.3),
as long as cω(τ) remain finite.

Remark 2.1. In (2.1) and (2.2), we do not rescale the spatial variable. This is
different from the dynamic rescaling equation in [4] which contains a factor Cl(τ )

in (2.1) and a stretching term cl(τ )xωx in (2.2). Here, we simply choose cl(τ ) ≡ 0
and Cl(τ ) ≡ 1.

We remark that a similar dynamic rescaling formulation was employed in [18,
22] to study the nonlinear Schrödinger (and related) equation. In some literature,
this formulation is called the modulation technique. It has been a very effective tool
to study singularity formation for many problems like the nonlinear Schrödinger
equation [17,23], the nonlinear wave equation [25], the nonlinear heat equation
[24], the generalized KdV equation [21], and other dispersive problems.

Suppose Cω(0) = 1. If cω(τ) ≤ −C < 0 for some C > 0 and any τ > 0 and
the solution ω̃ is nontrivial, for example ||ω̃(τ, ·)||L∞ � c > 0 for all τ > 0, we
then have

Cω(τ) ≤ e−Cτ , t (∞) ≤
∫ ∞

0
e−Cτ dτ = C−1 < +∞

and that

|ω(x, t (τ ))| = Cω(τ)−1|ω̃(x, τ )| � eCτ |ω̃(x, τ )|
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blows up at finite time T = t (∞).
On the contrary, if cω(τ) � C > 0 for some C > 0 and ω̃(x, τ ) is bounded,

for example ||ω̃(x, τ )||L∞ ≤ c, for any τ > 0, then we obtain

Cω(τ) � eCτ , t (τ ) �
∫ τ

0
eCτ dτ

and that

|ω(x, t (τ ))| = Cω(τ)−1|ω̃(x, τ )| ≤ e−Cτ |ω̃(x, τ )| ≤ e−Cτ c

decays for large τ . Due to the fact that t (τ ) → ∞ as τ → ∞ and the above
estimate on ω, we can obtain global existence of solution using Beale-Kato-Majda-
type criterion.

If (ω̃τ , cω(τ)) converges to a steady state (ω∞, cω,∞) of (2.2) as τ → ∞, one
can verify that

ω(x, t) = 1

1 + cω,∞t
ω∞(x) (2.4)

is a self-similar solution of (1.1). Due to this connection, we do not distinguish the
steady state of (2.2) and the self-similar profile of (1.1).

To simplify our presentation, we still use t to denote the rescaled time in the
rest of the paper, unless specified, and drop ·̃ in (2.2), which leads to

ωt + auωx = (cω + ux )ω, ux = Hω. (2.5)

Using integration by parts and the antisymmetry property of the Hilbert trans-
form, we have

∫
S1
uxω − auωx dx = (1 + a)

∫
S1

ω · Hω dx = 0.

Therefore, if
∫
S1 ω0 dx = 0, this property is conserved:

d

dt

∫
S1

ω dx = cω

∫
S1

ω dx = 0. (2.6)

2.2. Approximate Steady State and Linearization

We use the equilibrium− sin x of (1.1) with a = 1 to construct the approximate
steady states for (2.5):

ω̄ = − sin x, ū = sin x, c̄ω = (a − 1)ūx (0) = a − 1. (2.7)

We impose the following normalization condition on cω in (2.5):

cω = (a − 1)ux (0). (2.8)
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Linearizing (2.5) around the above approximate steady state, we can obtain that
the equation for the perturbation (ω, cω) (ω + ω̄, cω + c̄ω is the solution of (2.5)):

ωt = −aūωx + (c̄ω + ūx )ω + (cω + ux )ω̄ − auω̄x + N (ω) + F(ω̄)

� Laω + N (ω) + F(ω̄).
(2.9)

here La denotes the linearized operator and the nonlinear term and error term are
given below

N (ω) = (cω + ux )ω − auωx , F(ω̄) = (c̄ω + ūx )ω̄ − aūω̄x . (2.10)

Plugging the approximate steady state (2.9) and the normalization condition
into (2.9) yields

L1ω = − sin x · ωx + cos x · ω − ux sin x + u cos x

Laω = −a sin x · ωx + (a − 1 + cos x)ω

− ((a − 1)ux (0) + ux ) sin x + au cos x

= L1ω + (a − 1)(− sin x · ωx + ω − ux (0) sin x + u cos x) = L1ω + (a − 1)Aω,

(2.11)

where A is given by

Aω = − sin x · ωx + ω − ux (0) sin x + u cos x . (2.12)

We consider initial perturbationω0 ∈ X with
∫
S1 ω0 dx = 0, where X is defined

in (1.3). Using ω̄ = − sin x and (2.6), to get

0 =
∫

ω0(x) + ω̄(x) dx =
∫

ω(x, t) + ω̄(x) dx .

Thus the perturbation satisfies
∫
S1 ω(x, t) dx = 0 for t > 0.

Recall theH norm in (1.3) and the operator L1 in (2.11). Our stability analysis
is built on the work of Lei et al. [19], in which the authors proved the following
results:

Lemma 2.2. Suppose that f, g ∈ H and
∫
S1 f dx = 0. Denote e0(x) = cos x − 1

and

fe = 〈 f, e0〉H, 〈 f, g〉Y � 〈 f − fee0, g − gee0〉H.

We have: (a) Equivalence of norms : (H/R · e0, 〈·, ·〉Y ) is a Hilbert space and the
induced norm || · ||Y satisfies

1

2
|| f ||H ≤ || f ||Y ≤ || f ||H.

(b) Orthogonality : ||e0||H = 1 and

〈 f − fee0, e0〉H = 0, || f ||2H = f 2e + || f ||2Y .

(c) Coercivity : 〈L1 f, f 〉Y ≤ − 3
8 || f ||2Y .
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Remark 2.3. The constant 1
2 in (a) is a direct consequence of the result in [19],

which implies || f ||2H ≤ || f ||2Y (1 + ∑
k�1

1
k2(k+1)2

) < 4|| f ||2Y by using the
Cauchy–Schwarz inequality.

For f, g ∈ H with
∫
S1 f dx = 0, results (a), (b) in the above Lemma implies

〈 f, g〉Y = 〈 f, g − gee0〉H = 1

4π
〈 fx , (gx + ge sin x)ρ〉, (2.13)

where we have used ∂xe0 = − sin x and the notation (1.7).
The following simple integration by parts will be used repeatedly:

Lemma 2.4. Let f ∈ L2(ρ). We have

〈sin x · fx , fρ〉 = 1

2
〈 f 2, ρ〉.

The proof is straightforward and omitted.

Remark 2.5. Formally, the above identity can be interpreted as that (sin x
2 )−2 is

an eigenfunction of the adjoint of sin x∂x with eigenvalue 1. An analog of it is
that on the real line, x−k is an eigenfunction of the adjoint of x∂x with eigenvalue
k−1, which plays an important role in the stability analysis in [4]. It seems that the
mysterious inner product 〈·, ·〉H and singular weight (sin x

2 )−2 constructed in [19]
arise naturally from the viewpoint of energy estimates. See more related estimates
in Lemma A.1 and Section 2.4.

In the following discussion, we will first establish weighted H1 and weighted
H2 estimates of the linearized equation and then control the remaining nonlinear
and error terms.

2.3. Weighted H1 Estimates

Recall that the perturbation satisfies
∫
S1 ω dx = 0. Performing energy estimate

on 〈ω,ω〉Y yields

1

2

d

dt
〈ω,ω〉Y = 〈Laω,ω〉Y + 〈N (ω), ω〉Y + 〈F(ω̄), ω〉Y . (2.14)

Recall the operators L1,La in (2.11) and A in (2.12). A direct calculation yields

∂xAω = − sin x · ωxx + ωx (1 − cos x)

+(ux − ux (0)) cos x − u sin x � − sin x · ωxx + A1ω.

Applying Lemma 2.2 and the identities in (2.11), (2.13), we derive

〈Laω,ω〉Y = 〈L1ω + (a − 1)Aω,ω〉Y
≤ −3

8
||ω||2Y + a − 1

4π

∫
S1

∂xAω · (ωx + ωe sin x)

sin2 x
2

dx .
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Recall ρ = (sin x
2 )−2. Using the Hardy-type inequality, the Poincaré inequality,

the Cauchy–Schwarz inequality and the isometry property of the Hilbert transform,
we have

〈(ux − ux (0))
2, ρ〉 � ||uxx ||L2 � ||ωx ||L2 � ||ω||H,

||u||L2 � ||ω||H, |ωe| = |〈ω, e0〉H| � ||ω||H.
(2.15)

We remark that theHardy-type inequality used above can be proved by applying
an integrationbyparts argument and thusweomit the proof.Notice that |1−cos x | �
| sin x

2 | and | sin x | � | sin x
2 |. We obtain

∣∣∣
∫
S1

A1ω · (ωx + ωe sin x)

sin2 x
2

dx
∣∣∣ � ||ω||2H.

Using Lemma 2.4, we obtain

I �
∫
S1

− sin x · ωxx · (ωx + ωe sin x)

sin2 x
2

dx

= −1

2

∫
S1

ω2
x

sin2 x
2

dx − 4ωe

∫
S1

ωxx cos
2 x

2
dx .

Applying integration by parts and the estimate (2.15) on ωe yields

|I | � ||ω||2H + |ωe|||ωx ||L1 � ||ω||2H.

Combining the above estimates, we establish

〈Laω,ω〉Y ≤ −3

8
||ω||2Y + C |a − 1|||ω||2H. (2.16)

2.4. Weighted H2 Estimates

Theweighted H2 estimates is not necessary in order to obtain finite time blowup
of (1.1) with a less than and close to 1 from some smooth initial data since the
nonlinear estimate can be closed once the nonlinear and error terms are estimated
using the energy ||ω||Y . This is done in Section 4. See also [4] for the argument
to establish blowup. Yet, we cannot determine if the solution of (2.5) converges
as t → ∞ or if the singularity is asymptotically self-similar. To further obtain
convergence, we apply the time-differentiation argument in [4]. Since F(ω̄) is
time-independent, taking ∂t in (2.9), we derive

∂t (ωt ) = Laωt + ∂t N (ω). (2.17)

There are two approaches to estimate ωt :

(a) Estimate ωt in some norm that is weaker than the Y norm.
(b) Further perform estimate on ω in some energy norm that is stronger than the Y

norm and then estimate ωt in the Y norm.
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In [4], the first approach is applied and ωt is estimated in some weighted L2 space.
Here, we do not have analysis of La in some weaker norm. Alternatively, we apply
the second approach which is simpler since we can use the a-priori weighted H1

estimate established in Section 2.3. It is pointed out in [15] that in the case of a = 1,
where cω, c̄ω = 0 and (2.5) reduces to (1.1), the Hs, s > 3

2 norm of the perturbation
around the steady state − sin x typically grows exponentially. We expect similar
instability for the perturbation around the approximate steady state (2.7) of (2.5)
since a is close to 1. Thus the higher order estimate is nontrivial and we need to
design the weighted H2 norm carefully.

We introduce the weighted derivative Dx = sin x∂x . A similar weighted deriva-
tive has been used in [3,10,11] for stability analysis. We have the following com-
mutator estimate:

Lemma 2.6. For f, Dx f ∈ L2,

[Dx , H ] f = Dx H f − H(Dx f ) = 1

2π
〈ω, sin x〉.

We defer the proof to the “Appendix”.
Taking Dx on both sides of (2.9) yields

∂t Dxω = DxLaω + Dx N (ω) + Dx F(ω̄). (2.18)

Our goal is to performweightedH1 estimate ofDxωwithweightρ = (sin x
2 )−2.

To simplify the derivation, we use l.o.t. (lower order terms) to denote the terms
whose weighted L2(ρ) norm can be bounded by C ||ω||H for some absolute con-
stant C . It can vary from line to line. Using the Hardy-type inequality and the L2

isometry of the Hilbert transform, we obtain

||uρ1/2||L2 � ||ux ||L2 � ||ω||H, ||uxx ||L2 � ||ω||H,

||ωρ1/2||L2 � ||ωx ||L2 � ||ω||H.
(2.19)

Combining the above estimates and (2.15) yield a that

u, ux − ux (0), sin x · ux , sin x · uxx = Dxux , ω, ωx , ωe sin x,

and the product of these terms and smooth functions are l.o.t.
Recall La in (2.11). We rewrite La as follows:

La =
(

− aDxω + aω cos x
)

+ (a − 1)(1 − cos x)ω +
(

− ux sin x + u cos x
)

+ (a − 1)(u cos x − ux (0) sin x) � P1 + P2 + P3 + P4.

Note that Dx satisfies the Leibniz rule:

Dx ( f g) = gDx f + f Dx g.

Using ∂x (ωDx cos x) = l.o.t. and a direct calculation yields

∂x Dx P1 = a∂x (− sin x · ∂x Dxω + cos x · Dxω + ωDx cos x)

= a(− sin x · ∂x∂x Dxω − cos x · ∂x Dxω + cos x · ∂x Dxω − sin x · Dxω) + l.o.t.

= −a sin x · ∂x∂x Dxω + l.o.t..
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For P3, using ∂x (u sin2 x) = l.o.t. and Lemma 2.6, we get

∂x Dx P3 = ∂x (sin x(∂x P3)) = ∂x (sin x(−uxx sin x − ux cos x + ux cos x − u sin x))

= −∂x (sin x · Dxux ) + l.o.t. = − cos x · Dxux − sin x · ∂x (Dxux ) + l.o.t.

= − sin x∂x (Dxux ) + l.o.t. = − sin x∂x
(
H(Dxω) + 1

2π
〈ω, sin x〉

)
+ l.o.t.

= − sin x · H(∂x Dxω) + l.o.t..

For P2 and P4, we have

∂x Dx P2 = (a − 1)∂x ((1 − cos x)Dxω + ωDx (1 − cos x))

= (a − 1)(1 − cos x)∂x Dxω + l.o.t..

∂x Dx P4 = (a − 1)∂x (cos x · Dxu + uDx cos x − ux (0)Dx sin x)

= (a − 1)∂x (cos x sin x · ux − u sin2 x − ux (0) sin x cos x)

= (a − 1)∂x (cos x sin x(ux − ux (0))) + l.o.t.

= (a − 1)∂x (cos x sin x) · (ux − ux (0))

+ (a − 1) sin x cos x · uxx + l.o.t. = l.o.t..

Performing the weighted H1 estimate on Dxω (2.18) with weight ρ yields

1

2

d

dt
〈∂x Dxω, ∂x Dxωρ〉 = 〈∂x DxLaω, ∂x Dxωρ〉 + 〈∂x Dx N (ω) + ∂x Dx F(ω̄), ∂x Dxωρ〉.

(2.20)

Using the above estimates on Pi , we obtain

〈∂x DxLaω, ∂x Dxωρ〉
≤

〈
− a sin x∂x∂x Dxω − sin x · H(∂x Dxω) + (a − 1)(1 − cos x)∂x Dxω, ∂x Dxωρ

〉

+ C ||∂x Dxωρ1/2||L2 ||ω||H � 〈I1 + I2 + I3, ∂x Dxω〉 + I4,

where we have bounded the l.o.t. in Pi by ||ω||H.
For I1, applying Lemma 2.4 with f = ∂x Dxω yields

〈I1, ∂x Dxωρ〉 = −a

2
||∂x Dxωρ1/2||2L2 ≤ (−1

2
+ 1

2
|a − 1|)||∂x Dxωρ1/2||2L2 .

Note that sin x · ρ = sin x · (sin x
2 )−2 = 2 cot x

2 . For I2, applying Lemma A.1
with f = ∂x Dxω, we obtain

〈I2, ∂x Dxωρ〉 = −2〈cot x
2
H(∂x Dxω), ∂x Dxω〉 = 2π(H(∂x Dxω)(0))2.

Since H f (0) = − 1
2π 〈cot x

2 , f 〉 and ∂x cot x
2 = − 1

2 (sin
x
2 )−2, using integration by

parts, we derive

|H(∂x Dxω)(0)| = 1

2π
|〈cot x

2
, ∂x Dxω〉| = C

∣∣∣
〈
(sin

x

2
)−2, Dxω

〉∣∣∣
= C

∣∣∣
〈
(sin

x

2
)−2, sin x∂xω

〉∣∣∣ � ||ωx (sin
x

2
)−1||L2 � ||ω||H.
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Therefore, we establish

|〈I2, ∂x Dxωρ〉| � ||ω||2H.

The estimate of I3 is simple

|〈I3, ∂x Dxωρ〉| � |a − 1| · ||∂x Dxωρ1/2||2L2 .

Therefore, we obtain the following estimates for La

〈∂x DxLaω, ∂x Dxωρ〉 ≤ (−1

2
+ C |a − 1|)||∂x Dxωρ1/2||2L2

+ C ||∂x Dxωρ1/2||L2 ||ω||H + C ||ω||2H
≤ (−3

8
+ C |a − 1|)||∂x Dxωρ1/2||2L2 + C ||ω||2H.

(2.21)

2.5. Estimates of the Nonlinear and the Error Terms

Recall the nonlinear termand the error term N (ω), F(ω̄) (2.10).Using (2.7),(2.8),
we have

N (ω) = (a − 1)ux (0)ω + uxω − auωx ,

F(ω̄) = (a − 1 + cos x)(− sin x) − a sin x(− cos x)

= (1 − a)(sin x − sin x cos x) = 2(1 − a) sin x sin2
x

2
.

(2.22)

Since F is of order O(x3) near 0, it is easy to obtain

||F(ω̄)||H � |1 − a|, ||∂x Dx F(ω̄)ρ1/2||L2 � |1 − a|,
which implies

|〈F(ω̄), ω〉Y | � |1 − a|||ω||Y , |〈∂x Dx F(ω̄), ∂x Dxωρ〉| � |1 − a|||ω||X . (2.23)

To control the L∞ norm, we have a simple Lemma, whose proof is deferred to
the “Appendix”.

Lemma 2.7. Suppose that fx ∈ L2(ρ) and f (0) = 0. We have || fρ1/2||L∞ �
|| fxρ1/2||L2 .

Using the Sobolev embedding and the above Lemma yields

||ux ||L∞ � ||ω||H, ||ωρ1/2||L∞ � ||ωxρ
1/2||L2 � ||ω||H,

||Dxωρ1/2||L∞ � ||∂x Dxωρ1/2||L2 .
(2.24)

In particular, |ux (0)| � ||ω||H. With the above estimates and (2.15), the estimate
of 〈N (ω), ω〉Y is standard. In the case of a = 1, it has been established in [19]. Its
generalization to the case of a close to 1 is straightforward. In particular, we obtain

|〈N (ω), ω〉Y | � ||ω||3H. (2.25)
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Weighted H2 estimate of N (ω) with odd assumption
Next, we estimate the nonlinear term N (ω) in (2.20). We need to impose an

extra condition on the initial perturbation ω0. It is easy to see that the odd condition
is preserved and both u, ω are odd. Since the solution is 2π periodic, we obtain
ω(π) = 0 and u(π) = 0.

Recall the X norm in Definition 1.1. Using the estimate

|ρ1/2∂x Dx f − 2 cos
x

2
fxx | = |(sin x

2
)−1(cos x · fx + sin x · fxx )

−2 cos
x

2
· fxx | � | fx |ρ1/2,

we derive the equivalence of norms

|| f ||2X � || f ||2H + ||∂x Dx fρ
1/2||2L2 � || f ||2X (2.26)

for any f ∈ X .
Recall the L∞ estimates (2.24). We can control the L∞ norms of ux , ωρ1/2,

Dxωρ1/2 by ||ω||X . Using (2.19), the above equivalence and ρ1/2 sin x = cos x
2 ,

we have

||ux ||L2 + ||uxx ||L2 + ||ρ1/2∂x Dxω||L2 + ||ρ1/2 sin x · ωxx ||L2 � ||ω||X .

The crucial odd condition on the solution is used to obtain u(0) = u(π) = 0
and thus |u| � ||ux ||L∞| sin x |. Hence, we obtain

||uωxxρ
1/2||L2 = || u

sin x
||L∞||ρ1/2 sin x · ωxx ||L2

� ||ux ||L∞||ρ1/2 sin x · ωxx ||L2 � ||ω||2X .

(2.27)

With the above preparations, the estimates of the 〈∂x Dx N (ω), ∂x Dxωρ〉 are
standard and similar to those in [19]. We only focus on the difficult terms that
require special estimates. The first term is ∂x Dxux ·ω that appears in the expansion
of ∂x Dx (uxω). Using Lemma 2.6, we get

∂x Dxux · ω=∂x (H(Dxω)+ 1

2π
〈ω, sin x〉) · ω = ∂x H(Dxω) · ω = ωH(∂x Dxω).

Using the L2 isometry property of the Hilbert transform and (2.24), we obtain

||ωH(∂x Dxω)ρ1/2||L2 � ||H(∂x Dxω)||L2 ||ωρ1/2||L∞ � ||∂x Dxω||L2 ||ω||X � ||ω||2X ,

which implies the L2(ρ) estimate of ∂x Dxux · ω. The second term is u cos x · ωxx

that appears from−a∂x Dx (uωx ). Using Dxωx = ∂x (Dxω)−cos x ·ωx and a direct
calculation yields

∂x Dx (uωx ) = ∂x (ωx Dxu + uDxωx ) = ∂x (ωx Dxu + u∂x Dxω − u cos x · ωx )

= ωxx Dxu + ωx∂x (Dxu)

+ ux∂x Dxω + u∂x (∂x Dxω)

− ∂x (u cos x)ωx − u cos x · ωxx .

The estimates of the first five terms are standard. For the last term, we apply (2.27).
In summary, we obtain

〈∂x Dx N (ω), ∂x Dxωρ〉 ≤ C ||ω||3X . (2.28)
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2.6. Nonlinear Stability

Recall the equivalence of norms in Lemma 2.2. Combining the estimates (2.16),
(2.21), (2.25), (2.28) and (2.23), we can construct an energy

E(t)2 = ||∂x Dxωρ1/2||2L2 + μ〈ω,ω〉Y
for some absolute constant μ > 1, such that the following estimate holds for odd
perturbation

1

2

d

dt
E(t) ≤ (−1

3
+ C |a − 1|)E(t)2 + C(||ω||3X + ||ω||3H) + C |a − 1|(||ω||X + ||ω||H).

Since μ is absolute, using (2.26) and the equivalence between theH norm and
the Y norm from Lemma 2.2, we yield the equivalence between the energy E and
the X norm, that is

||ω||2X � E(t) � ||ω||2X . (2.29)

Therefore, we can further obtain

1

2

d

dt
E(t) ≤ (−1

3
+ C |a − 1|)E(t)2 + CE(t)3/2 + C |a − 1|E(t)1/2.

Hence, there exists some small constant δ0 and some absolute constant c > 0
such that for |a − 1| < δ0 , if E(0)1/2 < c|a − 1|, then E(t)1/2 < c|a − 1| for all
t > 0, which can be proved by a bootstrap argument. Using this bootstrap result
and (2.29), we obtain

||ω||X ≤ CE(t)1/2 ≤ C |a − 1|. (2.30)

We can further choose smaller δ0 such that

|cω| = |(1 − a)ux (0)| ≤ C |a − 1|E(t)1/2

≤ C |a − 1|2 ≤ Cδ0|a − 1| <
1

10
|a − 1|. (2.31)

2.7. Convergence to the Self-similar Profile

We focus on odd initial perturbation ω0 ∈ X with E(0)1/2 ≤ c|a − 1|. We
obtain

∫
ω0 dx = 0 and estimate (2.30) for ||ω||X . Moreover, since ω is odd, we

get ωe = 〈ω, cos x −1〉H = 0 and similarly ωe,t = 0. From Lemma 2.2, we obtain
that the inner products 〈·, ·〉Y , 〈·, ·〉H are the same, and the norms || · ||Y and || · ||H
are the same.

Performing the estimate on 〈ωt , ωt 〉Y yields

1

2

d

dt
〈ωt , ωt 〉Y = 〈Laωt , ωt 〉Y + 〈∂t N (ω), ωt 〉Y � I + I I.

The estimate of the La part follows from (2.16):

〈Laωt , ωt 〉Y ≤ (−3

8
+ C |a − 1|)||ω||2Y .
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A direct calculation yields

∂x∂t (uωx ) = ∂x (utωx + uωt,x ) = ut,xωx + utωxx + uxωt,x + uωt,xx .

Wefocuson the termutωxx . The inner product involvingutωxx is−a〈utωxx , ∂xωtρ〉.
Using an estimate similar to (2.27) and the L∞ estimate (2.24), we get

||utωxxρ
1/2||L2 � || ut

sin x
||L∞||ω||X � ||ut,x ||L∞||ω||X � ||ωt ||H||ω||X ,

where we have used ut (0) = ut (π) = 0 due to the crucial odd condition to obtain
the second inequality. Other terms in I I can be bounded by ||ωt ||H||ω||X using
estimates similar to those in Section 2.5. We can obtain

1

2

d

dt
||ωt ||2Y ≤ (−3

8
+ C |1 − a| + C ||ω||X )||ωt ||2Y

≤ (−3

8
+ C |1 − a|)||ωt ||2Y .

The last inequality holds due to (2.30).
Nowwe choose δ1 = δ0 and |a−1| < δ1, where δ0 is the parameter determined

in (2.31). Applying the argument in [4], we can obtain that ω(t) + ω̄ converges
to some ωa strongly in the H norm and cω + c̄ω → cω,a for some scalar cω,a

exponentially fast as t → ∞. In addition, there is a subsequence of ω(t) + ω̄

that converges weakly to ωa in X and thus ωa ∈ X . Moreover, (ωa, cω,a) is the
steady state of (2.5). The relation (2.4) implies that ωa is a self-similar profile of
(1.1). Since ω(t) + ω̄ is odd, the convergence ω(t) + ω̄ → ωa implies that ωa is
odd. Using the convergence results, ||ω(t)||X ≤ C |a − 1| in (2.30) and (2.31), we
establish the estimates (1.4) in Theorem 1.

2.8. Regularity of the Profile

In this Section, we estimate the regularity of ωa .

2.8.1. Estimate of Exponent γ (a) Recall ω̄ = − sin x and H ω̄(π) = ūx (π) =
−1 in (2.7). Using (1.4), we yield

|cω,a − (a − 1)| � |a − 1|2, |cω,a | � |a − 1|,
|Hωa(π) − H ω̄(π)| � ||ω − ω̄||X � |a − 1|, |Hωa(π)| � 1.

It follows |Hωa(π)| � |H ω̄(π)| − C |a − 1| = 1 − C |a − 1|. By choosing
smaller δ1 so that |a − 1| < δ1 is small, we obtain |Hωa(π)| � 1

2 . Applying the
above estimates, we obtain

∣∣∣cω,a + (1 − a)Hωa(π)

aHωa(π)
− (a − 1) + (1 − a)H ω̄(π)

aH ω̄(π)

∣∣∣ � |a − 1|2.

The first term on the left hand side gives α(a) in (1.5) and the second term
equals (a−1)+(a−1)

−a which satisfies

| (a − 1) + (a − 1)

−a
− 2(1 − a)| � |1 − a|2.
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By further choosing smaller δ1 so that |a − 1| < δ1 is small, we can obtain
|Hωa(π) + 1| = |Hωa(π) − H ω̄(π)| < 1

10 and |α(a) − 2(1 − a)| ≤ 1
2 |a − 1|.

We complete the estimates of α(a) and Hωa(π) in Theorem 1.

2.8.2. Estimates of the Hölder Norm of ωa Applying ||ωa + sin x ||X � |a − 1|
in (1.4), we obtain

||ua,xx + sin x ||L2 � |a − 1|, ||ωa,xx − sin x ||L2([−π/2,π/2]) � |a − 1|.
Using Sobolev embedding , we yield that ω is close to − sin x on [−π/4, π/4]

in C1,1/3 norm and u is close to sin x in C1,1/3 norm. Hence, up to further choosing
smaller δ1 so that |a − 1| < δ1 is small, we can assume that ua has exactly two
zeros at x = 0, x = π and ωa has only one zero at x = 0 in [−π/4, π/4]. We
simplify ωa, cω,a as ω, cω in the following derivation: since (ω, cω) is the steady
state of (2.5), we derive

auωx = (cω + ux )ω. (2.32)

We fix x0 = π
8 . Then ω(x0) �= 0. The above equation can be seen as an ODE

on ω with given cω, u, ux . Starting from x0, we can solve the ODE

ω(x) = ω(x0) exp

(∫ x

x0

cω + ux
au

dx

)
. (2.33)

Since u ∈ C1,1/3 and u(π) = 0, we yield

|u(x) − ux (π)(x − π)| �a |x − π |4/3, |ux (x) − ux (π)| �a |x − π |1/3.
It follows that

∣∣∣cω + ux (x)

au(x)
− cω + ux (π)

aux (π)(x − π)

∣∣∣ �a |x − π |−2/3. (2.34)

Recall the formula of α(a) in (1.5). We get

∣∣∣
∫ x

x0

cω + ux (x)

au(x)
− (α(a) + 1)

1

x − π
dx

∣∣∣ �a

∫ x

x0
|x − π |−2/3 dx �a 1

for all x ∈ (π/2, π). Note that
∫ x
x0

1
x−π

dx = log |x − π | − log(|x0 − π |. Plugging
these estimates into (2.33), for x ∈ (π/2, π), we obtain

|x − π |α(a)+1 �a |ω(x)| �a |x − π |α(a)+1. (2.35)

From the estimates of α(a) following (1.5), we have α(a) < 0 for a > 1 and
α(a) > 0 for a < 1. Therefore, for 1 < a < 1+ δ1 and any 1+ α(a) < a < 1, we
obtain

lim inf
x→π−

|ω(x)|
|x − π |α �a lim inf

x→π− |x − π |α(a)+1−α = ∞.

Since ω(π) = 0, we yield ωa /∈ Cα for 1 − δ1 < a < 1 and α(a) + 1 < α < 1.
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Recall u ∈ C1,1/3, ω ∈ H1(S1) ↪→ C1/3(S1) and u(x) �= 0 for x �= 0, π .
Using (2.32),we canderive thatωx is continuous on (0, π) and thusω ∈ C1((0, π)).
Similarly, we can obtain ω ∈ C1((−π, 0)). From the discussion at the beginning
of this section, we have ω ∈ C1,1/3(−π/4, π/4). It follows ω ∈ C1(S1\{π}). It
remains to show that ωx is continuous at x = π . Using (2.32), (2.34), (2.35) and
α(a) > 0 for 1 − δ1 < a < 1, we obtain

lim sup
x→π−

|ωx (x)| = lim sup
x→π−

|cω + ux
au

ω| �a lim sup
x→π−

1

|x − π | · |x − π |1+α(a) = 0,

Similarly, we yield lim supx→π+ |ωx (x)| = 0. Thus ω ∈ C1(S1). In particular,
ωx (π) = 0.

Finally, for any α with α(a) < α < 1, using a similar argument and (2.35)
yields

lim inf
x→π−

|ωx (x)|
|x − π |α = lim inf

x→π−

∣∣∣cω + ux
au

∣∣∣ |ω|
|x − π |α

�a lim inf
x→π−

1

|x − π | · |x − π |1+α(a)−α = ∞.

We conclude that ωa /∈ C1,α for any α(a) < α < 1.
So far, we have concluded the proof of Theorem 1.

3. Stability of the Self-similar Profiles

In this section, we establish the stability of the profiles (ωa, cω,a), |a − 1| < δ1
constructed in the previous section and prove Theorem 2.

3.1. Stability Analysis

Denote by uα, ua,x the velocity field corresponding to ωa . We linearize (2.5)
around the steady state (ωa, cω,a) and consider odd perturbation ω0 ∈ H

ωt = −auαωx + (cω,a + ua,x )ω + (cω + ux )ωa − auωa,x + N (ω) � Taω + N (ω),

(3.1)

where Ta is the linearized operator, cω and the nonlinear term N (ω) are the same
as that in (2.8) and (2.10). Here, we do not have the error term since (ωa, cω,a)

is the steady state. Since the odd condition on ω is preserved, we have ω(π, t) =
u(π, t) = 0 for t > 0.

We compare Ta with La in (2.9) or (2.11).

Taω − Laω = − a(ua − ū)ωx + (cω,a − c̄ω + uα,x − ūx )ω

+ (cω + ux )(ωa − ω̄) − au(ωa,x − ω̄x ) � Raω,
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where ω̄ = − sin x, ū = sin x, c̄ω = a − 1 are given in (2.7). We focus on the last
term inRaω

(u(ωa,x − ω̄x ))x = ux (ωa,x − ω̄x ) + u(ωa,xx − ω̄xx ) � I + I I.

For I I , we use the crucial condition u(π, t) = 0 due to the odd condition and an
estimate similar to (2.27) to obtain

||I Iρ1/2||L2 � || u

sin x
||L∞||(ωa,xx − ω̄xx ) sin x · ρ1/2||L2

� ||ux ||L∞||ωa − ω̄||X � |a − 1|||ω||H.

The last inequality is due to (1.4) and (2.24).
Recall the definitions of ωe, the Y norm and inner product in Lemma 2.2. Since

ω is odd, ωe = 0 vanishes and we get ||ω||H = ||ω||Y . With the control (1.4) on
the error ||ωa − ω̄||X and |cω,a − c̄ω|, the I term and other terms in Raω can be
estimated in a way similar to that in Section 2.3. In particular, we can obtain

|〈Raω,ω〉Y | = |〈∂x (Raω), ωxρ〉| � |a − 1|||ω||2H,

which, along with (2.16), implies

〈Taω,ω〉Y ≤ (−3

8
+ C |a − 1|)||ω||2Y .

The estimate of N (ω) is essentially the same as that in Section 2.5 and we can
establish estimates similar to (2.25). In summary, we get that

1

2

d

dt
||ω||2H ≤ (−3

8
+ C1|a − 1|)||ω||2H + C1||ω||3H

for some absolute constant C1 > 0, where we have replaced the Y norm by the
H norm since they are the same. Therefore, there exist small positive parameters
δ20 < δ1 and δ30, such that for |a − 1| < δ20, if ||ω0||H < δ30 then

1

2

d

dt
||ω||2H < −1

3
||ω||2H. (3.2)

As a result, ||ω||H decays exponentially fast.We can further choose smaller δ20, δ30
such that

|ux (0) + ua,x (0) − 1| ≤ |ux (0)| + |ua,x (0) − 1| ≤ C ||ω||H + C ||ωa + sin x ||X
≤ C ||ω0||H + C |a − 1| ≤ C(δ20 + δ30) <

1

10
.

This ensures that cω,a + cω = (a − 1)(ux (0) + ua,x (0)) satisfies

sign(cω,a + cω) = sign(a − 1),
9

10
|a − 1| ≤ |cω,a + cω| ≤ 11

10
|a − 1|. (3.3)

Note thatω0+ωa is the initial data of (2.5). Suppose that ||ω0+ωa+sin x ||H <

δ3 and |a−1| < δ2 for δ2, δ3 to be determined. Using triangle inequality, we obtain

||ω0||H ≤ ||ω0 + ωa + sin x ||H + ||ωa + sin x ||H < δ3 + C |a − 1| ≤ δ3 + Cδ2. (3.4)
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We choose δ2, δ3 > 0 in Theorem 2 such that

0 < δ2 < min(δ20,
1

100
), δ3 + Cδ2 < δ30. (3.5)

As a result, if the initial dataω0+ωa of (2.5) satisfies ||ω0+ωa+sin x ||H < δ3,
then ||ω0||H < δ30 and thus we obtain the estimates (3.2), (3.3).

3.2. Rescaling

Recall the rescaling relations (2.1)–(2.3). To avoid confusion, we use τ, ωDR to
represent the temporal variable and solution in (2.2) and t, ωphy to represent those
in the physical equation (1.1). Denote by c(τ ) = cω(τ) + cω,a the scaling factor.
By definition, we have ωDR = ω + ωa . Here, cω(τ), ω(τ) are the perturbations
and ωDR, c(τ ) solves (2.5).

The relations (2.1)-(2.3) imply

ωphy(x, t (τ )) = C−1
ω (τ)ωDR(x, τ ), Cω(τ) = Cω(0) exp

(∫ τ

0
c(s) ds

)
, (3.6)

and t (τ ) = ∫ τ

0 Cω(s) ds.

Suppose that ω
phy
0 is odd and ||ωphy

0 + sin x ||H < δ3. We choose Cω(0) = 1

so that ωDR
0 = ω

phy
0 . Estimate (3.4) and its following discussion implies (3.2)

and (3.3). Therefore, for 1 < a < 1 + δ2, we obtain c(τ ) > 9
10 |a − 1|, while

for 1 − δ2 < a < 1, we get − 11
10 |a − 1| < c(τ ) < − 9

10 |a − 1|. The discussion
in Section 2.1 implies the blowup result for 1 − δ2 < a < 1 and the long time
behavior of the solution for 1 < a < 1 + δ2 in Theorem 2. It remains to establish
the estimates in Theorem 2.

3.2.1. Estimate of λ(t) We choose λ(t (τ )) = Cω(τ).
For 1 − δ2 < a < 1, since c(s) < 0, λ(t (τ )) is decreasing. Using c(s) =

cω + cω,a , (3.3) and the formula (3.6), we obtain the estimate of the blowup time

T = t (∞) =
∫ ∞

0
exp(

∫ τ

0
c(s) ds) dτ �

∫ ∞

0
exp(−11

10
|a − 1|τ) dτ � 1

2|a − 1|
and the estimate of λ(t (τ ))

T − t (τ )

λ(t (τ ))
=

∫ ∞
τ

Cω(s) ds

Cω(τ)
(3.7)

=
∫ ∞

τ

exp

(∫ s

τ

c(z) dz

)
ds =

∫ ∞

0
exp

(∫ s

0
c(τ + z) dz

)
ds,

(3.8)

where we have used a change of variable s → τ + s in the last equality. Since the
perturbation cω(τ), ω(τ) decays exponentially fast in τ (see (3.2)), we have c(τ ) =
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cω(τ) + cω,a → cω,a < 0. Note that exp(
∫ s
0 c(τ + z) dz) ≤ exp(− 9

10 |a − 1|s) is
integrable. Applying Dominated Convergence Theorem yields

T − t (τ )

λ(t (τ ))
→

∫ ∞

0
exp(cω,as) ds = − 1

cω,a
.

Taking the inverse of the above limit implies λ(t (τ )
T−t (τ )

→ −cω,a .

Similarly, for 1 < a < 1+δ2, we can obtain λ(t (τ )) is increasing and λ(t (τ )
t (τ )

→
cω,a .

3.2.2. Convergence Estimates Next, we establish the convergence estimate. Us-
ing (3.6), λ(t (τ )) = Cω(τ) and ωDR = ω + ωa , we have

||ωphy − λ(t (τ ))−1ωa ||H = Cω(τ)−1||ωDR − ωa ||H = Cω(τ)−1||ω||H.

Using (3.2) and ω
phy
0 = ωDR

0 = ω0 + ωa , we further obtain

||ωphy − λ(t (τ )−1ωa ||H ≤ Cω(τ)−1e− τ
3 ||ω0||H = Cω(τ)−1e− τ

3 ||ωphy
0 − ωa ||H.

For a �= 1, applying (3.3) to c(s) = cω + cω,a and using (3.6), we obtain

(max(C−1
ω (τ),Cω(τ)))

1
4(|1−a|) +1 ≤ exp

(11
10

|a − 1|τ · (
1

4|1 − a| + 1)
)

≤ exp(
τ

3
),

where we have used |a−1| < δ2 < 1
100 from (3.5) in the last inequality. Combining

the above two estimates and substituting λ(t (τ )) = Cω(τ), we prove that

||ωphy − λ(t (τ ))−1ωa ||H ≤ (max(λ(t (τ )), λ(t (τ ))−1))
− 1

4|a−1| ||ωphy
0 − ωa ||H.

(3.9)

Since λ(t (τ )) ≤ 1 for 1 − δ2 < a < 1 and λ(t (τ )) � 1 for 1 < a < 1 + δ2, it
follows the convergence estimates in Theorem 2.

3.2.3. Growth of ||ωphy
x ||L∞ We focus on 1 < a < 1+δ2 and further assume that

ωphy ∈ Hs, s > 3
2 . The decay estimates (3.9) and the BKM-type blowup criterion

implies thatω remains in Hs . Sinceωphy is odd, we have u phy(π) = ωphy(π) = 0.
The evolution of ω

phy
x (π) is given by

∂tω
phy
x (π) = (1 − a)u phy

x (π)ω
phy
x (π).

To avoid using ωxx , the above ODE can be established by dividing both sides of
(1.1) by (x − π) and then taking x → π or using the flow map. Solving the ODE,
we obtain

ω
phy
x (π, t) = exp

(
(1 − a)

∫ t

0
u phy
x (π, s) ds

)
ω

phy
0,x (π).

Using the fast convergence (3.9), for any t > 0, we obtain

S(t) � (1 − a)

∫ t

0
u phy
x (π, s) ds � (1 − a)

∫ t

0

1

λ(s)
ua,x (π) ds − C(a) � −C(a).

From the estimate following (1.5),wehaveua,x (π) < 0.Hence (1−a)ua,x (π) >

0. From the estimate of λ(t) in Section 3.2.1, it is not difficult to obtain that for any
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ε > 0, there exists C(ε, a), such that λ(t (τ ))
t (τ )

< cω,a + ε for t (τ ) > C(ε, a) (if t (τ )

large, then τ must be large). Then for t > 1 and 0 < ε we get

S(t) � (1 − a)ua,x (π)

∫ t

1

1

(cω,a + ε)s
ds − C(a, ε) = (1 − a)ua,x (π)

cω,a + ε
log(t) − C(a, ε).

Combining the above estimates, we prove that

|ωphy
x (π, t)| �a,ε tγ |ω0,x (π)|,

with γ = (1−a)ua,x (π)

cω,a+ε
. Since ε > 0 is arbitrary,we establish the growth of |ωx (π, t)|

in Theorem 2. The estimate |γ (a) − 1| � |a − 1| follows from (1.4).
This concludes the proof of Theorem 2.

4. Proof of Theorem 3

The proof is similar to that of Theorem 2. We consider the perturbation around
the approximate steady state ω0 = − sin x, c̄ω = a − 1 (2.7). In Sections 2.3, 2.5,
we have obtained the following estimates for the perturbation ω(t) with ω0 ∈ H
and

∫
S1 ω0 dx = 0 under normalization condition (2.8) on cω

1

2

d

dt
||ω||2Y ≤

(
−3

8
+ C2|a − 1|

)
||ω||2Y + C2||ω||3Y + C2|a − 1| · ||ω||Y ,

where we have used the equivalence between the Y norm and the H norm in
Lemma 2.2. Remark that we do not require that ω0 is odd to obtain the weighted
H1 estimates of linear, nonlinear and the error terms. It follows that there exist
δ4, δ5 > 0 such that for |a−1| < δ4 and any ||ω0||Y < δ5, the bootstrap assumption
||ω(t)||Y < δ5 holds for any t > 0. Using the equivalence of norms in Lemma 2.2
again and this bootstrap result, we obtain that if ||ω0||H < δ5, then ||ω0||Y < δ5,
which further implies ||ω(t)||Y < δ5 and ||ω(t)||H ≤ 2||ω(t)||Y < 2δ5. The factor
2 in the upper bound 2λ(t)−1δ5 in Theorem 3 is due to this equivalence.

Up to further choosing smaller δ4, δ5, using the bootstrap result, we can obtain
|c(s) − (a − 1)| ≤ |1−a|

10 similar to (3.3), where c(s) = cω + a − 1. Plugging this

estimate into (3.7) yields the estimate of λ(t)
T−t for 1− δ4 < a < 1. λ(t)

t is estimated
similarly. Using the bootstrap result and the argument in Section 3, we can prove
other results in Theorem 3. We omit the details.

5. An Approach to Obtain Potential Finite Time Blowup for Other a < 1

We discuss an approach which has the potential to be applied to obtain finite
time blowup of (1.1) on a circle for other a < 1 from smooth initial data. It is based
on the method in [4].

Construction of approximate steady state The first step is to construct the
approximate steady state using the dynamic rescaling equation

ωt + auωx = (cω + ux )ω,
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which is the same as (2.5), with normalization condition cω = (a − 1)ux (0).
For a close to 1, for example 0.95 < a < 1, ω0 = − sin x provides a good

candidate for initial data. An approximate steady state (ω̄, c̄ω) can be obtained by
solving the above dynamic rescaling equation for long enough time numerically.
The approximation error can be estimated a posteriori. If the error is sufficiently
small, we can further perform stability analysis around (ω̄, c̄ω); see more discus-
sions in [4]. For a away from 1, for example a < 0.95, the initial data can be chosen
successively based on the approximate steady state for larger a, if it exists. Our pre-
liminary numerical results suggest that the solution converges to some profile and
the approximation error F(ω) � (cω + ux )ω − auωx decays rapidly in time. For a
away from 1, the approximate steady state can also be constructed using the method
in [20].

Stability analysis Once an approximate steady state is constructed, one can
follow the steps in Sections 2.3 and 2.5 . The key step is to establish the linear
stability. For a close to 1, for example 0.95 < a < 1, it is conceivable that linear
stability can be established in a way similar to that in Section 2.3 by applying the
analysis of L1 in Lemma 2.2 (established in [19]) and controlling the difference
betweenL1 and the new linearized operator. For a away from 1, linear stability may
be established by an energy estimate similar to that in [4] using some well-chosen
singular weight.
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Appendix A

Lemma A.1. Suppose that f ∈ L2((sin x
2 )−2). We have∫

S1
cot

x

2
· f · H f dx = −πH f (0)2. (A.1)

Proof. Firstly, we consider f ∈ C∞. Using the Tricomi identity of the Hilbert
transform (see for example [4,12]), we obtain∫

S1
cot

x

2
f · H f dx = −2πH( f · H f )(0) = −π((H f (0))2 − f (0)2).

Since f ∈ L2((sin x
2 )−2), we have f (0) = 0 and obtain (A.1) for f ∈ C∞. For

general f , we can find a sequence fn ∈ C∞ such that fn → f in L2((sin x
2 )−2).

Clearly, we have H fn → H f and fn cot x
2 → f cot x

2 in L2. Using the Cauchy–
Schwarz inequality, we get H fn(0) → H f (0). Applying (A.1) to fn and then
taking n → ∞ concludes the proof. �
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Next, we prove Lemmas 2.6 and 2.7 .

Proof of Lemma 2.6. Applying integration by parts yields

Dx H f (x) = 1

2π

∫
sin x · f (y) · ∂x cot

x − y

2
dy

= − 1

2π

∫
sin x · f (y)∂y cot

x − y

2
dy

= 1

2π

∫
sin x · fy(y) cot

x − y

2
dy.

It follows

Dx H f (x) − H(Dx f )(x) = 1

2π

∫
(sin x − sin y) fy(y) cot

x − y

2
dy

Note that (sin x−sin y) cot x−y
2 = 2 sin x−y

2 cos x+y
2 cot x−y

2 = 2 cos x+y
2 cos x−y

2= cos x + cos y. We conclude

Dx H f (x) − H(Dx f )(x) = 1

2π

∫
(cos x + cos y) fy(y) dy = 1

2π

∫
sin y · ω(y) dy.

�

Proof of Lemma 2.7. Using the Cauchy–Schwarz inequality, we obtain

∣∣∣ ω

sin x
2

∣∣∣ = 1

| sin x
2 | |

∫ x

0
ωx dx | � 1

| sin x
2 | (

∫ x

0
sin2

x

2
dx)1/2||ω||H � ||ω||H

for any x ∈ S1, which concludes the proof. �
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