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Anharmonic free energy of lattice vibrations in fcc crystals from a mean-field bond
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It has recently been shown that the ab initio anharmonic free energy of fcc crystals can be approximated
to meV/atom accuracy by a lattice of anharmonic nearest-neighbor bonds, where the bonding potential can be
efficiently parametrized from the target system. We develop a mean-field approach for the free energy of a general
bond lattice, analytically accounting for strong bond-bond correlations while enforcing material compatibility
and thermodynamic self-consistency. Applying our fundamentally anharmonic model to fcc crystals yields free
energies within meV/atom of brute force thermodynamic integration for core seconds of computational effort.
Potential applications of this approach in computational materials science are discussed.
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Introduction. The key quantity to determine material prop-
erties at finite temperature is the free energy [1,2]. Compared
to T = 0 K calculations, where only a single minimized
configuration is required, free-energy computation requires
thermodynamic ensemble averages consisting of millions
of individual configurations [3,4]. Computing such large
numbers of configurations is impractical with ab initio cal-
culations, but these are required to guarantee accuracy. As a
result, to compute free energies the majority of current studies
have to employ severe approximations. The most widely used
are the harmonic approximation and its variant, the quasi-
harmonic approximation (QHA), where a single anharmonic
degree, the volume expansion, is included [3,5,6]. The reason
for this popularity is the ease of construction and the existence
of analytical expressions which directly connect the eigenval-
ues of the dynamical matrix with the free energy [7,8].

Recent studies [9,10] show, however, that the QHA may
fail and provide even qualitatively wrong thermodynamic
trends, motivating numerous approaches over the past few
years to explicitly account for anharmonicity beyond the QHA
[10–14]. An almost universal prerequisite for these methods is
knowledge of a reference system where the free energy can be
easily computed. Examples of such methods are thermody-
namic integration or free-energy perturbation [4]. Due to the
existence of an analytical expression the QHA is typically the
preferred choice, but a critical requirement for such methods
to be numerically efficient is that the potential energy surface
of the reference system closely matches that of the true system
in the region of configuration space where thermodynamic
sampling occurs. Wide-range studies, e.g., on fcc metals [10]
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showed that for many of the studied systems the conventional
QHA is insufficient to allow accurate ab initio free-energy
computation. When analyzing the reason Glensk et al. [10]
discovered that a simple anharmonic nearest-neighbor bond
model with only one (longitudinal) or two (+ transversal)
force components provides a reference system that matches
ab initio data with meV/atom precision. Thus, a lattice of
anharmonic bonds allows one to describe the thermodynamic
configuration space with very few and easy to determine
parameters.

To fully exploit these insights we require methods that
allow us to compute free energies of anharmonic bond models
with the same computational efficiency and conceptual ease
as of harmonic ones, allowing access to anharmonic free en-
ergies with negligible computational cost.

In this Rapid Communication we introduce an analytic
model that fulfills this aim, giving anharmonic free energies
for a model fcc bond lattice within meV/atom to brute force
sampling, even for highly anharmonic systems. The computa-
tional effort is negligible for a given bonding potential, as no
sampling is required. The present approach can thus be used
in a variety of settings in multiscale materials modeling, some
of which we discuss in the Conclusions. The PYTHON/C++
code used to generate reference data and evaluate model pre-
dictions is freely available [15], while data analysis and model
predictions can also be run in the cloud [16].

Thermodynamics of a bond lattice. Consider a crystalline
solid of N atoms in d dimensions, with ionic positions
{Ri}i=N

i=1 , confined to a fixed volume (1 + ε)V0 such that ε = 0
corresponds to zero strain at zero temperature. The bond lat-
tice model builds a surrogate potential energy using mN/2
pairwise interactions between an atom i and its m neighbors
nl (i), where l ∈ [1, m]. This naturally motivates the definition
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FIG. 1. (a) Cartoon of a hexagonal bond lattice with m = 6 bond
vectors per atom. (b) The corresponding connectivity condition on
the bond vectors, which in general is given by (3). (c) Labeling
convention for the fcc lattice with m = 12 bond vectors per atom.

of mN “bond vectors”

b(l )
i ≡ Rnl (i) − Ri ∈ Rd . (1)

With a potential energy function Vl (b(l ) ) for a bond l the total
energy reads

U ({b}) = 1

2

N∑
i=1

m∑
l=1

Vl
(
b(l )

i

)
, (2)

where the factor of 1/2 corrects for the fact that two neigh-
boring atoms share the same bond. The set of all bond
vectors is clearly a heavily overcomplete description of the
system, as each d-dimensional atom coordinate Ri has been
replaced with m d-dimensional bond vectors {b(l )

i }l=m
l=1 . The

overcompleteness of bond space is lifted by enforcing material
compatibility, defined as a dN-dimensional surface C({b}) =
0 in the mdN-dimensional bond space, corresponding to bond
configurations satisfying (1). Material compatibility requires
that elementary closed circuits around adjacent bonds give
zero net displacement [17]. To define C({b}) = 0, we first use
the pairwise symmetry of (1) to set b(l )

i = −b(l+m/2)
nl (i)

with no
loss of generality. It is then simple to show that compatibility
imposes the constraints

b(l )
i − b(l )

nk (i) = b(k)
i − b(k)

nl (i)
, (3)

which defines the dN-dimensional constraint surface
C({b}) = 0 [18]. In Fig. 1(b) we provide a demonstration
of the relations that lead to (3) for the two-dimensional
hexagonal lattice. The equilibrium distribution in the
mdN-dimensional bond space is then formally given by

ρ({b}, ε, T ) = exp [−U ({b})/(kBT )]δ[C({b})]/Z. (4)

As the total energy (2) is a sum over bonds, the anharmonic
contribution to the internal energy per atom at a temperature
T and strain ε reduces to

U ah(T, ε) ≡ 1

2

∑
l

∫
Vl (b)ρ1,l (b, ε, T )db − 3

2
kBT , (5)

where we have defined the single bond density for a bond l in
d-dimensional space at a temperature T and strain ε,

ρ1,l (b, ε, T ) ≡
∫

δ
(
b(l )

j − b
)
ρ({b}, ε, T )

∏
il

db(l )
i , (6)

which is identical for any choice of j ∈ [1, N]. Using elemen-
tary thermodynamic identities, the anharmonic component of

the free energy is then obtained from the integral

F ah(T, ε) ≡ T
∫ T

0
U ah(T ′, ε)/(T ′)2dT ′. (7)

As one can access the internal energy and thus the free energy
of a bond lattice through single bond averages, i.e., without
any sampling, approximation of the singlebond densities
ρ1,l (b, ε, T ) is the central topic of this contribution.

Bond lattice for a model fcc crystal. While the above
theoretical considerations are general to any crystal structure,
in the present work we focus on fcc lattices, a close-packed
structure which is common to many material systems and
can be stabilized using a single bonding potential. The bond
network is constructed from m = 12 nearest-neighbor bonds,
with a labeling convention shown in Fig. 1(c). As all bonds
are equivalent (reducible) under the fcc space group, in the
absence of lattice vibrations a bond vector b(l ) is given by
aε

l ≡ (1 + ε)al , where al is a primitive lattice vector at ε = 0.
Any two primitive lattice vectors aε

l , a
ε
k satisfy aε

l = Glkaε
k ,

where Glk represents a point symmetry. For the fcc lattice
we can thus write Vl (b(l ) ) = V1(G1lb(l ) ) and ρ1,l (b(l ), ε, T ) =
ρ1(G1lb(l ), ε, T ) giving a total energy

Ufcc({b}) = 1

2

N∑
i=1

12∑
l=1

V1
(
G1lb

(l )
i

)
, (8)

and an anharmonic internal energy per atom

U ah
fcc(T, ε) = 6

∫
ρ1(b, ε, T )V1(b)db − 3kBT

2
. (9)

To generate reference data we used the “polarized” bonding
potential derived from ab initio molecular dynamics (MD) for
fcc bulk Al [10],

V1(b) ≡ V‖(â1 · b) + V⊥(|â1 × b|), (10)

where â1 = aε
1/|aε

1| and |â1 × b| projects the component of
b perpendicular to â1. The longitudinal potential V‖(b‖) =
D(1 − exp[−α(b‖ − a)])2 is of the Morse form, and captures
the strong anharmonicity in the interatomic interactions. The
transverse potential V⊥(b⊥) ≡ κDα2b2

⊥ is harmonic, where
κ controls the relative strength of the transverse potential.
The potential parameters were D = 0.1 eV, α = 1.5 Å−1,
a = 2.85 Å, with a variable transverse strength κ ∈ [0.0, 0.3].
A plot of V1(b) for κ = 0.2 is given in Fig. 2, where the
significant anharmonicity is clear.

Sampling bond space under C({b}) = 0 is equivalent to
sampling position space while extracting bond configura-
tions through (1). Reference data to benchmark against our
sampling-free bond model was thus collated from indepen-
dent MD trajectories governed by Eq. (8). Integration was
performed with an overdamped Langevin thermostat. Ther-
malization of the system was carefully monitored by ensur-
ing the measured virial temperature T MD

vir ≡ 〈R · ∇U 〉/(3kB)
agreed with the target temperature, i.e., T MD

vir = T . Following
thermalization, at each timestep the bond energy V1(G1lb

(l )
i )

and bond vector G1lb
(l )
i was collated from the MD runs to

estimate U ah(T, ε) and ρ1(b, ε, T ). This results in excess of
109 samples of the bond configurations, requiring around
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FIG. 2. Comparison of mean-field models and empirical data
using (10) with κ = 0.2, ε = 0.04, and T = 1000 K. (a) Two-
dimensional plot of the bonding potential V1(b), (b) the mean-field
effective potential (12), (c) the correlated mean-field effective poten-
tial (14), and (d) the empirical MD data.

1 core hour of computational effort, for each point in the
(κ, T, ε) parameter space. The ensemble errors in U ah(T, ε)
and T MD

vir (T ) were around 0.5 meV/atom and 0.5 K for a
target temperature of T = 1000 K, which gave propagated
errors in F ah(T, ε) of around 1 meV/atom. This emphasizes
that accurate determination of anharmonic free energies by
MD sampling is numerically challenging even for simple po-
tential energy functions such as (10), precluding the use of
such models in high-throughput problems.

Mean field of a bond lattice. The key idea in our mean-
field approaches is to approximate the single bond density
ρ1(b, ε, T ). To aid comparison with the empirical data we
shall focus on the effective potential in which a single bond
resides, given by the Boltzmann inverse of the single bond
density as Ṽ (b, ε, T ) ≡ −kBT ln |ρ1(b, ε, T )|. As can be seen
in Figs. 2(a) and 2(d), the potential V1(b) of a single isolated
bond is qualitatively different from the empirical effective
potential ṼMD(b, ε, T ), demonstrating the need to take bond-
bond interactions into account. We first imposed the following
mean-field approximation to (3):

b(l )
i − b(k)

i = 〈b(l )〉 − 〈b(k)〉 = aε
l − aε

k . (11)

It is simple to show that this condition satisfies the con-
nectivity constraint C({b}) = 0 by construction. The physical
picture behind (11) is that two neighboring bonds do not move
independently. Rather, by selecting one bond for the estima-
tion of ρ1(b, ε, T ) under (11) the neighboring bonds are fully
determined. The effective potential therefore has contributions
from the selected bond and all neighboring bonds. In practice,
implementation of (11) in the single bond density (6) gives a

FIG. 3. Density difference ρ2(b, b′) − ρ1(b)ρ1(b′) for fcc bond
component pairs (b(l )

‖ , b(l )
⊥ ), (b(l )

‖ , b(l+6)
‖ ), and (b(l )

‖ , b(l+1)
‖ ) at T =

500 K, ε = 0, and κ = 0.1. The degree of correlation is given by
the mutual information I [19] of ρ2(b, b′) from ρ1(b)ρ1(b′) (Sup-
plemental Material [20]). The color scale is uniform, with orange
positive and blue negative. The antiparallel (l, l + 6) bond pair has
noticeably (approximately five times) stronger correlation.

general effective potential of

Ṽmf (b, ε) = 1

2

m∑
l

Vl
(
b + aε

l − aε
1

)
, (12)

which for the single bonding potential of the fcc lattice
reduces to Ṽmf (b, ε) = ∑12

l=1 V1[G1l (b − aε
1 ) + aε

1]/2. The ef-
fective potential, shown in Fig. 2(b), gives dramatically
improved agreement with ṼMD(b, ε, T ). As the fcc lattice is
centrosymmetric, Vmf (b, ε, T ) has reflection symmetry in b −
aε

1 and thus 〈b〉 = aε
1, meaning the mean-field model predicts

the correct system volume. We emphasize that in contrast to
the core hour of effort required to produce ṼMD(b) for a given
parameter choice, evaluation of (12) is effectively instanta-
neous. An approximate single bond density can be readily
obtained through ρmf

1 (b, ε, T ) ≡ N exp[−Ṽmf (b, ε)/(kBT )].
Evaluating the expectations (5) and (7) yields estimations
U ah

mf (T, ε) and thus F ah
mf (T, ε), as shown in Fig. 4. While the

correct qualitative trend is observed, this initial mean-field
model underestimates the anharmonic free energy by around a
factor of 2, breaching our target meV/atom error. The reason
for this discrepancy is that the compatibility condition defined
by Eq. (11) is too strict, forcing the mean-field model to
inhabit too small a region of the full bond space defined by
Eq. (3). Specifically, the condition that the difference between
two neighboring bond vectors has to be a lattice vector re-
stricts the system in finding the energetically most favorable
configurations.

To identify which of the many bond-bond constraints given
by Eq. (8) are not sufficiently well described we used our
MD simulations to investigate correlations between various
components of the bond vectors that go beyond the mean-field
approximation. As illustrated in Fig. 3, this analysis revealed
the perpendicular and parallel components b(l )

‖ , b(l )
⊥ are essen-

tially uncorrelated, while the antiparallel bond pairs (l, l + 6)
(Fig. 1) show significantly larger correlation than all other
bond pairs as measured by the mutual information [19] (Sup-
plemental Material [20]). Configurations where these bonds
are both longer/shorter than the average occur with enhanced
probability (manifest as a depleted density along the main
diagonal in Fig. 3). This behavior is reminiscent for acoustic
phonons, which are expected to dominate in thermodynamic
sampling due to their lower energy. It is, however, opposite
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FIG. 4. The anharmonic contribution to the free energy
F ah(T, ε) from MD simulation, the uncorrelated mean-field model
(mf), the correlated mean-field model (mfc), and the virial corrected
mean-field model (mfcv) for ε = 0, 0.04 and κ = 0, 0.2. The mfcv
model is less than 1.2 meV/atom from the empirical data in all cases,
within the sampling error.

to our mean-field approach according to which the sum of
two neighboring bond vectors is constant and thus shows
anticorrelation, i.e., if one bond is longer the other should
be shorter. To retain the dominant correlation effect along
chains of antiparallel bonds, we take a “correlated” mean-field
approximation

b(l )
i − b(k)

i = aε
l − aε

k , k 	= l + 6, (13)

i.e., we assume all bonds apart from the antiparallel pairs
are independent. Implementation of (13) reduces the general
expression (6) for ρ1(b, ε, T ) to a product of integrals over
independent linear chains of bonds. As there is only one inde-
pendent bond per atom for this quasi-one-dimensional chain,
any set of bond vectors satisfying the finite volume constraint
is a valid configuration, meaning C({b}) = ∑N1

i=1 bi − N1aε
l .

In the Supplemental Material [20] we evaluate the single bond
density analytically, giving a new effective potential

Ṽmfc(b, ε, T ) = Ṽmf (b, ε) + λ(ε, T )â1 · b
+ 1

2

[
V1(b) − V7

(
b − 2aε

1

)]
, (14)

where the scalar λ(ε, T ) is determined such that 〈b〉 = aε
1

at a temperature T . This is achieved by minimizing a suit-
able objective function [15]; in our tests this required only
tiny fractions of a core second on a modern processor using
SCIPY.MINIMIZE [21]. As can be seen in Fig. 2(c), (14) yields
an effective potential that is visually almost indistinguishable
to the empirical density. Taking averages over the resultant
single bond distribution

ρmfc
1 (b, ε, T ) ≡ N exp[−Ṽmfc(b, ε, T )/(kBT )], (15)

gives a much improved estimation of F ah, shown in Fig. 4,
with a typical error of 4–5 meV/atom at 1000 K.

As a final step to reach meV/atom accuracy, we investi-
gated thermodynamic properties of the correlated mean-field

approximation (11). We confirmed the equipartition relation
limT→0 U ah

mfc(T, ε) = O(T 2), which indeed is required for the
anharmonic component of the free energy (7) to be well
defined. To ensure the mean-field model predicts the correct
bond lattice temperature we used the exact expression for the
virial temperature of an fcc bond lattice

Tvir (T ) ≡ (2/kB)
∫

b · ∇V1(b)ρ1(b, ε, T )db, (16)

which is derived in the Supplemental Material [20]. Substitut-
ing ρmfc

1 for ρ1 gives the mean-field virial temperature

T mfc
vir (T ) ≡ 2

kB

∫
b · ∇V1(b)ρmfc

1 (b, ε, T )db. (17)

The exact virial temperature agrees with the target tem-
perature, i.e., Tvir (T) = T, as expected. However, while
T mfc

vir (T ) → T as T → 0 K, at high temperature T mfc
vir (T ) was

found to slightly underestimate T by up to 4%. To correct for
this deviation, we numerically evaluated the effective temper-
ature T̃ such that T mfc

vir (T̃ ) = T . As the Lagrange multiplier
λ(ε, T ) in the effective potential (14) is also temperature de-
pendent this procedure took around a core second for each
value in the (T, κ, ε) parameter space studied, remaining
nearly four orders of magnitude more efficient than brute force
sampling using the empirical bonding potential V1(b) in (8).
We then build a new “virial corrected” single bond density
using the effective temperature

ρmfcv
1 (b, ε, T ) ≡ ρmfc

1 (b, ε, T̃ ), T mfc
vir (T̃ ) ≡ T . (18)

Averages over ρmfcv
1 (b, ε, T ) thus enforce not just material

compatibility but consistent thermodynamics by ensuring the
true temperature of the mean-field model, namely, the pre-
dicted virial temperature of the bond lattice, matches the
desired target temperature. As can be seen in Fig. 4, this gives
almost perfect reproduction of U ah and F ah, with less than
1.2 meV/atom error across the entire parameter space, within
the ensemble error of brute force thermodynamic integration.

The very light computational demand of our mean-field
model compared to brute force sampling with (8) can be
verified by running the analysis scripts online [16]. We note
that an equivalent sampling effort with ab initio molecular dy-
namics requires on the order of 1 core hour of computation per
timestep, which has motivated the development of advanced
thermodynamic integration strategies to reduce sampling
error [10].

Conclusions. In this Rapid Communication we have pro-
vided an analytic mean-field bond model which achieves
meV/atom accuracy to the anharmonic free energy of fcc
bond lattices with no sampling and negligible computational
cost. When suitably parametrized, bond lattices are able to
reproduce ab initio free energies obtained by thermodynamic
integration to within meV/atom [10], meaning (14) is a highly
efficient and accurate surrogate model for anharmonic ther-
modynamic properties.

We have focused on unary fcc lattices, where a single
bonding potential is sufficient to accurately reproduce ab
initio vibrational free energies. In future work we will gen-
eralize our approach to a wider range of crystal structures,
where it is expected that multiple bonding potentials will
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be required. However, given the importance of fcc mate-
rials to materials science, the efficiencies demonstrated by
the present model provides many opportunities for compu-
tational materials modeling, beyond the acceleration of ab
initio free-energy calculations. Parametrization of the bonding
potential requires around 10–100 force calls [10], which is es-
sentially instantaneous even for the most advanced empirical
interatomic potentials [22,23]. Using the developed model to
efficiently and accurately predict the anharmonic free energy
for a given potential parametrization has clear advantages
for computational materials science problems where many
such evaluations are needed, such as high-throughput crystal
structure prediction [12]. In addition, the efficient connection
between potential parameters and the anharmonic free en-
ergy could be used in the objective function during potential
parametrization, to target agreement with high temperature
ab initio phase free energies. Finally, we speculate that the
structurally and thermodynamically accurate mean-field bond

density (18) may allow classical density functional theory
[24,25] or phase field crystal models [26,27] to more accu-
rately represent the configuration space of atomic vibrations
at high temperatures.
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Rev. Mod. Phys. 84, 945 (2012).

[3] B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, Phys.
Rev. B 79, 134106 (2009).

[4] T. Lelièvre, G. Stoltz, and M. Rousset, Free Energy Compu-
tations: A Mathematical perspective (Imperial College Press,
London, 2010).

[5] O. Hellman, I. A. Abrikosov, and S. I. Simak, Phys. Rev. B 84,
180301(R) (2011).

[6] O. Hellman and I. A. Abrikosov, Phys. Rev. B 88, 144301
(2013).

[7] I. Errea, M. Calandra, and F. Mauri, Phys. Rev. B 89, 064302
(2014).

[8] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak,
Phys. Rev. B 87, 104111 (2013).

[9] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer,
Phys. Rev. X 4, 011018 (2014).

[10] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer,
Phys. Rev. Lett. 114, 195901 (2015).

[11] S. G. Moustafa, A. J. Schultz, E. Zurek, and D. A. Kofke,
Phys. Rev. B 96, 014117 (2017).

[12] R. Bianco, I. Errea, L. Paulatto, M. Calandra, and F. Mauri,
Phys. Rev. B 96, 014111 (2017).

[13] T. D. Swinburne and M.-C. Marinica, Phys. Rev. Lett. 120,
135503 (2018).

[14] A. S. Bochkarev, A. van Roekeghem, S. Mossa, and N. Mingo,
Phys. Rev. Materials 3, 093803 (2019).

[15] T. Swinburne and J. Janssen, BLaSA code, https://github.com/
tomswinburne/BLaSA.

[16] T. Swinburne and J. Janssen, Binder-BLaSA analysis,
https://mybinder.org/v2/gh/tomswinburne/BLaSA/master?
filepath=analyze.

[17] Equation (3) can be derived in the continuum limit using Stoke’s
law [28] for the tensor fieldyy ⊕d

l=1b
(l )(Ri ).

[18] Accounting for the d (m/2 − d )N additional constraints when
m > 2d , we have mdN/2 − d (d − 1)N − d (m/2 − d )N = dN
degrees of freedom as required.

[19] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley, New York, 2012).

[20] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.100101 for a derivation of the
mean-field effective potential, the bond lattice virial
temperature, and further details on the bond correlation
analysis.

[21] P. Virtanen et al., Nat. Methods 17, 261 (2020).
[22] A. M. Goryaeva, J.-B. Maillet, and M.-C. Marinica, Comput.

Mater. Sci. 166, 200 (2019).
[23] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi,

A. V. Shapeev, A. P. Thompson, M. A. Wood et al., J. Phys.
Chem. A 124, 731 (2020).

[24] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic,
and M. Grant, Phys. Rev. B 75, 064107
(2007).

[25] J. F. Lutsko, Adv. Chem. Phys. 144, 1 (2010).
[26] A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys.

Rev. E 80, 031602 (2009).
[27] G. Demange, H. Zapolsky, R. Patte, and M. Brunel, npj

Comput. Mater. 3, 1 (2017).
[28] R. Fosdick and G. Royer-Carfagni, Int. J. Non-Linear Mech. 40,

381 (2005).

100101-5

https://doi.org/10.1038/nature11031
https://doi.org/10.1103/RevModPhys.84.945
https://doi.org/10.1103/PhysRevB.79.134106
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.88.144301
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.87.104111
https://doi.org/10.1103/PhysRevX.4.011018
https://doi.org/10.1103/PhysRevLett.114.195901
https://doi.org/10.1103/PhysRevB.96.014117
https://doi.org/10.1103/PhysRevB.96.014111
https://doi.org/10.1103/PhysRevLett.120.135503
https://doi.org/10.1103/PhysRevMaterials.3.093803
https://github.com/tomswinburne/BLaSA
https://mybinder.org/v2/gh/tomswinburne/BLaSA/master?filepath=analyze
http://link.aps.org/supplemental/10.1103/PhysRevB.102.100101
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.commatsci.2019.04.043
https://doi.org/10.1021/acs.jpca.9b08723
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevE.80.031602
https://doi.org/10.1038/s41524-017-0015-1
https://doi.org/10.1016/j.ijnonlinmec.2004.07.006

