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Abstract— Cable driven manipulators are popular in surgical
robots due to compact design, low inertia, and remote actuation.
In these manipulators, encoders are usually mounted on the
motor, and joint angles are estimated based on transmission
kinematics. However, due to non-linear properties of cables such
as cable stretch, lower stiffness, and uncertainties in kinematic
model parameters, the precision of joint angle estimation is
limited with transmission kinematics approach. To improve the
positioning of these manipulators, we use a pair of low cost
stereo camera as the observation for joint angles and we input
these noisy measurements into an Unscented Kalman Filter
(UKF) for state estimation. We use the dual UKF to estimate ca-
ble parameters and states offline. We evaluated the effectiveness
of the proposed method on a Raven-II experimental surgical
research platform. Additional encoders at the joint output were
employed as a reference system. From the experiments, the
UKF improved the accuracy of joint angle estimation by 33-
72%. Also, we tested the reliability of state estimation under
camera occlusion. We found that when the system dynamics
is tuned with offline UKF parameter estimation, the camera
occlusion has no effect on the online state estimation.

Index Terms— surgical robots, cable driven mechanism, flex-
ible manipulators, Unscented Kalman Filter.

I. INTRODUCTION

Cable driven manipulators have a long history and they

are found in many applications including advanced Robotic

Surgical Assistants (RSAs) such as such as da Vinci R© [1]

and Raven-II R© [2]. Cable driven mechanisms consist of

rigid links, cables, capstans, and pulleys. Usually a cable

is multiply wrapped in a figure eight shape around input

and output capstans to achieve high stiffness [3]. In these

manipulators, power is transmitted through cables to move

the end-effector to the desired position and actuators can

be installed remotely from the driven axes. This kind of

power transmission provides several advantages over non-

cable driven mechanisms including lower inertia, structural

simplicity, compact design, and remote actuation. Remote

installation of the actuators realizes lightweight and compact

design. Low inertia reduces the energy that is needed to move

the link which is desirable in robot applications. Also, in

a fully cable driven manipulator, sensitive parts are located

away from the end-effector, which is then suitable for harsh

environments [4], [5], [6]. In RSAs, due to sterilization,

placement of tracking sensors or encoders on the end-effector
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is difficult [7]. In Raven, all the encoders are mounted on the

shaft of the motors away from the joints. The joint angles are

estimated from transmission kinematics: gear ratios, pulley

ratios, cable couplings which define the mapping from motor

rotations to joint rotations.

However, the use of cable in robot manipulators introduces

new challenges to control of the systems due to elasticity of

cables and their nonlinear properties [7]. Moreover, cables

transmits power thorough tension and therefore to treat them

as a rigid link, the cables must remain under tension [7],

[5]. Also, compared to rigid links, the stiffness of cable

is lower, which may cause undesirable vibrations [5] and

a relative position error between motor and link [7]. If

cable elasticity is not modeled in dynamic equations and

an appropriate control compensation is not considered, the

accuracy of a cable driven robot is limited. In tele-operating

RSAs, these inaccuracies are compensated by surgeon’s

visual feedback and skill. However, for autonomous surgical

tasks, appropriate control compensation is required.

Stereo vision is becoming more common in RSAs [8]. In

[8], stereo vision and a model predictive controller (MPC)

were used to perform a simulated debridement task (an

automated surgical sub-task to remove dead tissues). In

[9], Gaussian Process Regression (GPR) was used to learn

accurate kinematic control by including velocity as a feature

and removing corrupted observations from a pre-recorded

data set. Four high speed cameras with active LED’s were

used for motion detection and the authors acknowledged the

sensitivity of this method to sensor noise.

To improve the accuracy of cable driven robots, state es-

timation techniques can be adopted. For non-linear systems,

Unscented Kalman Filter (UKF) [10] can be used for state

estimation. UKF uses deterministic sampling technique and it

is simple to implement [11]. Previously the UKF was used in

[12] to estimate states of a one DOF cable driven test panel,

and in [13], the UKF was applied on a multi-link simulated

robot.

In [14], the work on the UKF was extended by applying

it to the first 3 DOF of the Raven to estimate cable coupling

parameters offline and estimate joint angles online. The UKF

improved the state estimation online even by observing only

motor encoders. However, in offline parameter estimation,

both motor encoders and joint encoders were used to estimate

parameters. Furthermore, the feasibility of estimating the

system parameters offline without using ideal high resolution

joint encoders were not studied. Moreover, the result shows

that for more rigid joints the transmission kinematic errors

are dominant and the UKF does not provide improvements.
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Also, the results were based on an ideal sinusoidal trajectory

and statistical analysis were not performed.

The overall goal of this work is to improve the accuracy of

position control in RSA with practical sensors. Specifically,

in this paper we use the joint sensors of [14] only for

validation and all the parameter identification is performed

with stereo vision. Moreover, we extend the previous work to

1) estimate kinematic model parameters of the rigid joints in

addition to the dynamic model parameters to improve joint

angle estimation, 2) perform realistic trajectories to test the

effectiveness of the method, 3) verify the system performance

and the estimator convergence when the camera is occluded.

To evaluate the proposed method, we use the first three DOF

of the Raven. The experimental setup is shown in Fig. 1.

Fig. 1. Raven-II experimental research platform. Joint encoders are
mounted on each joint for validation only and their values were not used in
the controller or the UKF. Stereo cameras, fixed perpendicular to the robot
base, were used for stereo 3D vision.

II. VISION

A. Hardware

We place a passive visual marker on the tip of the robot

and use stereo vision to track the tip in real-time. For stereo

vision, we constructed a low cost stereo camera using a

pair of “Logiteck QuickCam Communicate MP” cameras

with baseline of 48.0 mm and resolution of 640x480 pixels

at 15 Frame Per Second (FPS). We fixed the cameras

perpendicular to the stand of the robot (Fig. 1). To calibrate

the cameras’ intrinsic parameters, we used a checkerboard

and the ROS camera calibration package [15]. Once the

cameras’ intrinsic parameters were known, the translation

offset between the origin of the camera frame and the origin

of the marker frame (CPC,M ) were calculated from the

projection of a rectified pixel with disparity to a 3D point.

To register the camera to robot frame, the transformation

between camera frame and the robot frame must be found. In

Raven, the location of the end-effector is computed in frame

zero [16] and since the cameras are fixed perpendicular to

the robot’s base, the rotation matrix from cameras to the

robot frame zero (C0 R ) is known. However the translation

offset needs to be found.

In Raven, encoders are initialized at the hard-stop position

(the physical joint limit position of each joint). Thus at the

hard-stop position, there is no kinematic error. Furthermore,

at this position from kinematics, the translation offset be-

tween the origin of frame zero and the origin of the end-

effector (marker) 0P0,M is known. Since in this work, we

are only tracking translation, we can assume there is no

rotation between frame zero and the origin of the marker.

Hence, they are coincident (0MR = Identity). Thus, the

homogeneous transformation from the camera to the marker
C
MT is known at this point with translation vector CPC,M

and rotation matrix C
MR = C

0 R. Also, the homogeneous

transformation between frame zero to marker (0MT ) is known

with translation vector 0P0,M and rotation matrix 0
MR.

Hence, the transformation from camera frame to frame zero

can be calculated by:

C
0 T = C

MT (0MT )−1 (1)

This method works under the assumption that the camera

is mounted perpendicular to the robot and the rotation matrix

(C0 R ) is known. If these constraints are not set, the full

transformation can be obtained by placing multiple markers

on the tip with known initial kinematics offset at the hard-

stop position. However, this still assumes that the camera is

fixed to the base.

B. Methods

To track the end-effector position, we placed a passive

color-marker on the tip of the robot and used stereo vision

hardware described in Section II-A for color-marker detec-

tion.

1) Marker Detection: To localize and segment the color-

marker, we assumed that no other object with the same color

is present in the cameras’ field of view. With this constraint,

we segment the image with the following procedures. First,

we threshold the image based on Hue, Saturation, and Value

(HSV). Then, to remove the noise, we smooth the image

by applying a median blur filter with kernel size of 5x5

aperture. We also applied the morphological erosion and

dilation operations to remove any potential small blobs.

Finally, by applying a contour (chain of vectors around the

detected marker) and computing its centroid, we found the

pixel location of the origin of the marker for each camera.

We use the OpenCV library functions [17] to perform these

tasks. To calculate the position of the tip in 3D space, we

use ROS image geometry package [15] to find the disparity

map between left and right cameras. These procedures are

illustrated in Fig. 2.

Performing these tasks for 640x480 pixels is computation-

ally expensive. Also, because the detection is based on HSV,

it requires ideal lighting conditions across the workspace.

Slight variation in lighting condition may cause no detection

at all or multiple false detection. To improve the detection

computation performance and reliability we defined a Region

of Interest (ROI) based the on current position of the robot.
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Fig. 2. Marker detection on square ROI. (a) Original 100x100 ROI image
taken from right camera around the tip of the Raven. (b) Thresholded image,
(c) Processed image after median filter and morphological operations (d)
Fitted circle around the detected segment shown in green.

2) Region of Interest (ROI): The kinematics of a cable

driven robot may present substantial uncertainties due to

lower transmission stiffness. However, the kinematics does

provide approximate location of the end-effector from which

a ROI can be defined around the tip of the robot. Once

a ROI has been implemented, the procedures in Section

II-B.1 can be used to detect and localize the marker. By

defining a ROI, the detection computation can significantly

be improved. The major advantage of this technique is that

the search window of the image is much smaller; therefore,

the lighting condition does not need to be uniform across

the entire workspace. Thus, the upper and lower bound of

the HSV can be more relaxed. Therefore, slight variations

in lighting conditions will not result in multiple false blob

detection. Moreover, since with this technique the detection

computation is about 31x faster for 100x100 ROI, a pair of

high speed cameras’ that supports hardware ROI can be used

in real-time for high speed robots.

From Raven forward kinematics, we calculate the approx-

imate position of the end-effector and transform this position

into the camera frame (CP = C
0 T

0P ). Then, from the

cameras’ intrinsic parameters, we project CP to pixel space

of left and right cameras. The ROI is a square of 100x100

pixels around this position for both left and right image.

Once the left and right image is updated with ROI, we use

the process outlined in Section II-B.1 to detect the Raven

tip in camera frame and transformed it to robots’ frame

by 0P = 0
CT

CP . Then, inverse kinematics were used to

calculate joint angles. Throughout this paper, we denote joint

angles based on vision as q̂C .

III. SYSTEM DYNAMICS

The dynamic equations of a general cable driven robot

in particular the Raven were modeled and described in

details in our previous paper [14]. In summary, in a cable

driven mechanisms the motors are mounted remotely and the

power is transmitted through cables to the joints. Thus, the

dynamics of each motor and the transmission can be modeled

as:

q̈m = (1/Im)(τ − τm − τrn) (2)

τm = τcmsign( ˙qm) + τvm ˙qm (3)

τrn = rmcγ/N (4)

γ = ke(e
qmcrmc−qlrl

− eqlrl−qmcrmc)

+2be( ˙qmcrmc − q̇lrl)
(5)

Γ = rlγ (6)

Where qm, q̇m, q̈m are motor position, velocity and accel-

eration, respectively; ke, be are cable stiffness and damping;

τcm, τvm are motor coulomb and viscous friction; rmc, rl are

capstan radius of motor and link, respectively; N, Im are the

gear ratio and motor inertia of the motors, respectively; τ,Γ
are torques on motor and joint, respectively. Therefore, Γ is

the actual torque that is transferred to each link. For a serial

link manipulator from [18] the dynamic equations can be

represented as:

q̈l = Il
−1 [Γ− FH (ql, q̇l)] (7)

FH (ql, q̇l) = FC (ql, q̇l) + FG + diag (sign(q̇l))Fcl

+diag (q̇l)Fvl + JTFen (8)

Where Il is Inertia matrix; J is Jacobian; FC are Coriolis

and centrifugal terms; FG is Gravitational force; ql, q̇l, q̈l
are joint position, velocity and acceleration, respectively;

Fcl, Fvl are coulomb and viscous friction, respectively; Fen

is external torque.

IV. METHODS

A. State Estimation

Raven has four states for each link. The states are motor

angle, motor velocity, joint angle and joint velocity. How-

ever, an optical encoder with 4000 counts per revolution

is mounted directly on the shaft of each motor. Therefore,

the position and velocity of the motor is well known and

equations 2-4 need not be solved. Hence, the dynamics can

be simplified and the system states can be reduced to two

states for each link (joint angle, and joint velocity). With

this simplification the state space form of the Raven can be

expressed as:

ẋ = f(x,u)

y = Hx
(9)

Where x and H are system states and the observation

matrix, respectively. The system states and observations for

the first three links are defined as:

xi :=
[

qli q̇li
]

, i = 1, .., 3

x =
[

x1 x2 x3

]T

hi :=
[

1 0
]

,H = blkdiag(
[

h1, h2, h3

]

)

(10)

Where i is the link number and the measurements y are

the joint angles based on noisy camera data. In this work,

we use the square root (srUKF) [19] form of the UKF

which has improved numerical properties [20]. To solve the

differential equation, we use the fourth order Explicit Runga

Kutta method. The initial inertia matrices, center of mass,

and mass were obtained from CAD models and the joint

friction parameters (Fcl, Fvl) were obtained from [14].
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B. Parameter Estimation

Raven system consists of both kinematic model and dy-

namic model parameters. We used the dual UKF to estimate

these parameters. In the dual UKF two parallel filter runs are

made for the states and the parameters. When estimating the

states the parameters are assumed to be known, and when

estimating the parameters the states are assumed to be known

[21]. Equation (10) is used for state space representation

of states. From [22], the state space representation for

parameters is described by:

wk+1 = wk + rk (11)

dk = G(xk,wk) + ek (12)

Where, wk is the unknown parameters with identity state

transition matrix. rk is the process noise. G(xk,wk) is a

nonlinear mapping that is parameterized by the vector w.

dk is the desired output from nonlinear observation on wk

and ek is the error of the system [23].

1) Kinematic Model Parameters: Many cable driven

mechanisms, have gear ratios, cable pulley ratios, and mech-

anism kinematics. It is very important to know the exact

value of each of these parameters for accurate transmission

kinematics calculations. Slight variation in any of these

parameters can substantially increase the error in calculating

the end-effector position from motor angles alone. In Raven,

the transmission of joint 1 is very stiff. Thus, transmission

kinematic error is dominant vs. error due to cable compli-

ance. This, was observed in [14], where the UKF did not

provide any improvements for estimating the joint angles of

rigid transmissions.

From kinematics of Raven, the motor angle of link 1 is

related to joint 1 angle by: qm = N(rl1/rm1)q1. Where,

N = 12.25 (gear ratio), rl1 = 63.095mm is the design

radius of the partial pulley of link 1, and rm1 = 5.675mm
is the design radius of the motor capstan. However, as it can

be seen from Fig. 3 (b) there is a gap between the pulley

radius which introduces uncertainty in the pulley ratio. This

causes significant error in joint angle estimation. In Raven we

verified experimentally that the effective ratio of transmission

was different from the actual one on the robot as shown

in Fig. 3 (a). To conduct this experiment, we changed the

value of rl1 from its design value from -10% to +10% and

measured the true joint angles directly from joint encoders.

To compensate for this source of error, we used the dual

UKF parameter estimation and stereo vision to estimate the

radius of partial pulley of link 1 (rl).
2) Dynamic Model Parameters: Over time, the cable

parameters such as stiffness and damping can change due to

creep and stretch [7], [12]. We used the dual UKF parameter

estimation and stereo vision offline to compensate for these

changes to improve system dynamics.

V. EXPERIMENTS

In this paper, the main objective is to improve the state

estimation of the joint angles by using the UKF and low

cost stereo vision. Therefore, to measure the performance of

Fig. 3. (a) Joint 1 position error when the value of rl1 is changed by
+10%, 0%, -5%, -10%. The error decreases to almost zero when the value
is changed from its design value by -5%. (b) Schematic drawing of link 1
transmission shows uncertainty in transmission ratios.

Fig. 4. Block diagram of the controller loop and joint angles. xd is
the desired trajectory. q is the true joint angle measurements from optical
encoders mounted directly on the joints. q̂Kin, q̂C , and q̂UKF are estimated
joint angles from transmission kinematics, camera, and UKF, respectively.
The robot controller feedback is based on the motor measurements and not
the UKF. When occlusion happens the UKF observation will switch from
q̂C to q̂Kin.

the UKF, additional optical encoders (Avago Technologies,

model number AEDA-3300, 80000 counts per revolution, for

the first two rotary joints and linear optical encoder MicroE

Systems, model number Mercury II 1600, resolution 5 µm,

for the third prismatic joint) were installed on the joints

for comparison. Moreover, since we are only investigating

state estimation accuracy of the UKF and not the controller

performance, the feedback input of the controller is based on

the motor angles and the UKF estimated states were not used

in the control. Fig. 4 shows a block diagram representation of

the joint angle computations and measurements. q represents

the true joint angle. q̂Kin is the estimated joint angle based

on transmission kinematics. q̂C is the estimated joint angle

based on camera raw data, and q̂UKF is the estimated joint

angle based on UKF method proposed in this paper.

To estimate parameters and states of the Raven, we

implemented srUKF in C++ and designed experiments A-

D. We used pre-recorded Fundamentals of Laparoscopic

(FLS) block transfer task [24] trajectory for experiments B-

D, which is one of the five FLS tasks that emulates tissue

handling and manipulation [25].
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A. Kinematic Model Parameters Estimation

To improve the state estimation, we first estimated the

partial pulley radius (rl) of link 1 offline using the UKF

parameter estimation. To estimate rl of link 1, we ran a

sinusoidal trajectory on Raven and we observed the end-

effector with the cameras. These observation were used in

the UKF dual parameter and state estimation offline.

B. Dynamic Model Parameters Estimation

After finding the updated value of rl for link 1, we

estimated the cable parameters. To estimate cable parameters,

a pre-recorded FLS block transfer trajectory was applied on

Raven and the cable stiffness (ke) and cable damping (be)

parameters of joints 1-3 were estimated with the dual UKF.

C. State Estimation

After finding the kinematic and dynamic model param-

eters offline, we used the updated parameters to estimate

system states online. To test state estimation under realistic

conditions, FLS block transfer trajectories in free-space were

applied to the control inputs of the Raven PD controller. To

conduct statistical analysis, we ran the robot six times with

different pre-recorded FLS block transfer trajectories. Each

experiment had different duration. The total length of all

these six experiments were 900 seconds.

D. Camera Occlusion

The UKF is programmed to detect occlusion. UKF detects

occlusion when no marker is detected in either of the cameras

or if the marker jumps to a new location. To investigate

the system performance and filter convergence under camera

occlusion, five experiments with the same FLS block transfer

trajectory of 200 seconds were conducted. Each experiment

had occlusion for a different percentage of time: 10%, 20%

, 40%, 60%, and 80%. To simulate occlusion, we repeatedly

blocked the camera data for multiple intervals of 2 seconds

at equal time intervals to create the above percentages.

During the camera occlusions, the UKF joint observations

were changed to q̂Kin with hard switch (Fig. 4), which

is calculated from transmission kinematics based on motor

encoder measurement.

VI. RESULTS AND DISCUSSION

A. Experiment A

The radius of partial pulley of link 1 (rl), was estimated

based on a 200 seconds sinusoidal trajectory (Fig. 5). The

parameter estimation (Fig. 6) converged in about 40 seconds

to 59 mm from the initial value of 63.095 mm or a decrease

of 6.49%. This is a consistent with experimental results of

Fig. 3. From Fig. 3, it can be seen that a decrease of about

5% is required in the value of the pulley ratios to minimize

the kinematic error.

Fig. 5. Plot showing the true position (q), transmission kinematic estimate
(q̂Kin), UKF estimate (q̂UKF ), and camera estimate (q̂C ). This sinusoidal
trajectory was applied on Raven to estimate rl.

Fig. 6. Estimated rl parameter for link 1.

B. Experiment B

The dynamic model parameters of the cables, i.e. stiffness

and damping, were estimated based on 200 seconds of a

pre-recorded FLS trajectory. The results are shown in Fig. 7.

The damping values of link 1 and 2 converged in about 100

seconds and the stiffness values of link 1 and 2 converged

in about 150 seconds. The stiffness value for link 3 stayed

at about the same value and the damping value converged at

about 80 seconds.

Fig. 7. Estimated cable parameters (stiffness and damping) for link 1-3
from top row to bottom row, respectively.
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C. Experiment C

The updated parameters were used for state estimation. Six

different FLS block transfer trajectories were performed by

the robot. The first FLS trajectory is shown in Fig. 8. The

figure illustrates the estimated joint angles with the UKF

and direct transmission kinematic for joints 1-3. The joint

angles based on camera data and the reference true value

from attached ideal joint encoders were also plotted. The

corresponding error histogram is shown in Fig. 9. The error

using the UKF joint angle estimation for all three joints is

less than the error using the direct transmission kinematics

method. The results for links 2 and 3 are comparable

with [14] where ideal joint encoders were used to tune

system parameters. Moreover, the result for the rigid link

is substantially improved due to kinematic model parameter

estimation.

The results for the remaining five experiments were similar

and in all the cases the UKF outperforms transmission

kinematics. To perform statistical analysis and summarize the

results of all these six experiments the box plot of all these

experiments are shown in Fig. 10-12 for joints 1-3, respec-

tively. Furthermore, the joint angle RMS errors using UKF

(eq̂UKF
) and the joint angles RMS errors using transmission

kinematics (eq̂Kin
) for joints 1-3 of trials 1-6 are shown in

Table I for comparison. From the table eq̂UKF
is less than

eq̂Kin
for all three joints in all the trials. We took the average

of all the trials and use (100 × (eq̂Kin
− eq̂UKF

)/eq̂Kin
) to

find the percentage improvement that the UKF provides over

direct transmission kinematic method for joint angle state

estimation. The mean and percent improvements are shown

in Table II. When the average was weighted by experiment

duration, the results were the same. Also, to verify if there

are statistical difference between the eq̂Kin
and eq̂UKF

we

applied Student’s t-test. The P values for the t-test are shown

in table II. From the t-test it can be concluded that there are

significant difference between two groups.

TABLE II

AVERAGE POSITION ERRORS AND PERCENT IMPROVEMENT OF TRIALS

1-6 FOR JOINT 1-3.

Joint (Unit) eq̂UKF
eq̂Kin

% Improvement P value

1 (Deg) 0.7419 1.3051 43.14 0.0025

2 (Deg) 1.6411 2.4652 33.42 0.0015

3 (cm) 0.0790 0.2828 72.05 2.59e-9

D. Occlusion

The results for occlusion experiments are shown in Fig.

13 (a-c) for links 1-3, respectively. We expected that as the

occlusion percentage increases, the joint angle estimation

error would also increase. However, only slight degradation

in quality of state estimation was observed for joint 2 and

3. On the contrary the estimation for joint 1, improved

slightly as the occlusion percentage increased. We believe

this is because the camera is perpendicular to link 1. Thus,

joint 1 is based on the cameras depth measurement (the

cameras depth measurements are much more noisier than

x and y measurements). Overall, only slight degradation

Fig. 10. Boxplot showing the results for Experiment C, for trials 1-6 for
joint 1. For each trial, boxplot of UKF estimate and direct transmission
estimate is shown for camparison.

Fig. 11. Boxplot showing the results for Experiment C, for trials 1-6 for
joint 2. For each trial, boxplot of UKF estimate and direct transmission
estimate is shown for camparison.

and improvement was observed for joint 1-3 as the percent

occlusion increased; and therefore, from this experiment, it

can be concluded that the UKF estimation is consistent even

when occlusion is likely to occur in an application. This

suggests that once the system parameters have been identified

and fine tuned offline with the UKF and the camera, the

UKF will have sufficient information from motor encoders

to consistently estimate the states.

VII. CONCLUSION AND FUTURE WORK

In this work, we used motor encoders and low cost

cameras to estimate joint transmission parameters of rigid

link, cable parameters for all the links, and joint states of a

serial cable driven robots on the Raven experimental surgical

robot platform utilizing the Unscented Kalman Filter. With

this method, we were able to fine tune the system dynamics

by estimating parameters offline. Once the dynamics were

tuned with UKF parameter estimation, the UKF was able to

improve the joint angle estimation. The occlusion experiment

suggests that this method is reliable and robust even when

the camera is occluded during state estimation. From the ex-

periments, once the system parameters are tuned with stereo

vision and the UKF offline, the camera measurements did not
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Fig. 8. Actual, transmission kinematics, camera, and UKF estimation of trial 1. Rows 1-3 shows joints 1-3 trajectory, respectively.

Fig. 9. Error histogram of trial 1 trajectory for joints 1-3 from left to right, respectively.

TABLE I

RMS POSITION ESTIMATION ERRORS OF JOINTS 1-3 FOR EXPERIMENT C TRIALS 1-6.

Trial 1 (188 sec) Trial 2 (80 sec) Trial 3 (150 sec) Trial 4 (82 sec) Trial 5 (110 sec) Trial 6 (290 sec)
Joint (Unit) eq̂UKF

eq̂Kin
eq̂UKF

eq̂Kin
eq̂UKF

eq̂Kin
eq̂UKF

eq̂Kin
eq̂UKF

eq̂Kin
eq̂UKF

eq̂Kin

1 (deg) 0.7525 1.4294 0.5958 1.6644 0.8414 1.0847 0.7881 0.9313 0.8167 0.9827 0.6825 1.4675
2 (deg) 1.6373 2.8012 1.8665 2.5525 1.7965 2.9971 1.7541 1.9428 1.7644 2.3691 1.4220 2.1314
3 (cm) 0.0869 0.2792 0.0989 0.3036 0.0606 0.3227 0.0852 0.2647 0.0852 0.2730 0.0763 0.2675

provide much improvement online during state estimation.

Hence, only motor measurements and UKF will be sufficient.

This is beneficial because in practice the camera will get

occluded during surgery. However, running both the camera

and motor encoder at the same time improves safety due to

redundancy that is provided to estimate joint angles.
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Fig. 12. Boxplot showing the results for Experiment C, for trials 1-6 for
joint 3. For each trial, boxplot of UKF estimate and direct transmission
estimate is shown for camparison.

Fig. 13. Boxplot showing the results for Experiment D, for joints 1-3 from
left to right, respectively. Each plot shows a boxplot for 10%, 20%, 40%,
60%, and 80% occlusion.

In surgery, in addition to accuracy, redundancy is also

important. In case of sensor failures, it is essential to have

backup sensors or methods. The future work will include in-

vestigating whether the UKF can estimate joint angles using

only camera measurements in case of motor encoder failure.

Also, we will study for how long and what frequency and

speed range the filter can maintain convergence under camera

occlusion when a motor encoder fails. Furthermore, we will

use the results of ongoing research on improving cable driven

mechanism dynamics in [26], which may improve the UKF

performance when motor encoder fails.
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