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Surgical Robot Joint Angle Estimation
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Abstract— Cable driven manipulators are popular in surgical
robots due to compact design, low inertia, and remote actuation.
In these manipulators, encoders are usually mounted on the
motor, and joint angles are estimated based on transmission
kinematics. However, due to non-linear properties of cables such
as cable stretch, lower stiffness, and uncertainties in kinematic
model parameters, the precision of joint angle estimation is
limited with transmission kinematics approach. To improve the
positioning of these manipulators, we use a pair of low cost
stereo camera as the observation for joint angles and we input
these noisy measurements into an Unscented Kalman Filter
(UKF) for state estimation. We use the dual UKF to estimate ca-
ble parameters and states offline. We evaluated the effectiveness
of the proposed method on a Raven-II experimental surgical
research platform. Additional encoders at the joint output were
employed as a reference system. From the experiments, the
UKF improved the accuracy of joint angle estimation by 33-
72%. Also, we tested the reliability of state estimation under
camera occlusion. We found that when the system dynamics
is tuned with offline UKF parameter estimation, the camera
occlusion has no effect on the online state estimation.

Index Terms— surgical robots, cable driven mechanism, flex-
ible manipulators, Unscented Kalman Filter.

I. INTRODUCTION

Cable driven manipulators have a long history and they
are found in many applications including advanced Robotic
Surgical Assistants (RSAs) such as such as da Vinci® [1]
and Raven-II [2]. Cable driven mechanisms consist of
rigid links, cables, capstans, and pulleys. Usually a cable
is multiply wrapped in a figure eight shape around input
and output capstans to achieve high stiffness [3]. In these
manipulators, power is transmitted through cables to move
the end-effector to the desired position and actuators can
be installed remotely from the driven axes. This kind of
power transmission provides several advantages over non-
cable driven mechanisms including lower inertia, structural
simplicity, compact design, and remote actuation. Remote
installation of the actuators realizes lightweight and compact
design. Low inertia reduces the energy that is needed to move
the link which is desirable in robot applications. Also, in
a fully cable driven manipulator, sensitive parts are located
away from the end-effector, which is then suitable for harsh
environments [4], [5], [6]. In RSAs, due to sterilization,
placement of tracking sensors or encoders on the end-effector
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is difficult [7]. In Raven, all the encoders are mounted on the
shaft of the motors away from the joints. The joint angles are
estimated from transmission kinematics: gear ratios, pulley
ratios, cable couplings which define the mapping from motor
rotations to joint rotations.

However, the use of cable in robot manipulators introduces
new challenges to control of the systems due to elasticity of
cables and their nonlinear properties [7]. Moreover, cables
transmits power thorough tension and therefore to treat them
as a rigid link, the cables must remain under tension [7],
[5]. Also, compared to rigid links, the stiffness of cable
is lower, which may cause undesirable vibrations [5] and
a relative position error between motor and link [7]. If
cable elasticity is not modeled in dynamic equations and
an appropriate control compensation is not considered, the
accuracy of a cable driven robot is limited. In tele-operating
RSAs, these inaccuracies are compensated by surgeon’s
visual feedback and skill. However, for autonomous surgical
tasks, appropriate control compensation is required.

Stereo vision is becoming more common in RSAs [8]. In
[8], stereo vision and a model predictive controller (MPC)
were used to perform a simulated debridement task (an
automated surgical sub-task to remove dead tissues). In
[9], Gaussian Process Regression (GPR) was used to learn
accurate kinematic control by including velocity as a feature
and removing corrupted observations from a pre-recorded
data set. Four high speed cameras with active LED’s were
used for motion detection and the authors acknowledged the
sensitivity of this method to sensor noise.

To improve the accuracy of cable driven robots, state es-
timation techniques can be adopted. For non-linear systems,
Unscented Kalman Filter (UKF) [10] can be used for state
estimation. UKF uses deterministic sampling technique and it
is simple to implement [11]. Previously the UKF was used in
[12] to estimate states of a one DOF cable driven test panel,
and in [13], the UKF was applied on a multi-link simulated
robot.

In [14], the work on the UKF was extended by applying
it to the first 3 DOF of the Raven to estimate cable coupling
parameters offline and estimate joint angles online. The UKF
improved the state estimation online even by observing only
motor encoders. However, in offline parameter estimation,
both motor encoders and joint encoders were used to estimate
parameters. Furthermore, the feasibility of estimating the
system parameters offline without using ideal high resolution
joint encoders were not studied. Moreover, the result shows
that for more rigid joints the transmission kinematic errors
are dominant and the UKF does not provide improvements.
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Also, the results were based on an ideal sinusoidal trajectory
and statistical analysis were not performed.

The overall goal of this work is to improve the accuracy of
position control in RSA with practical sensors. Specifically,
in this paper we use the joint sensors of [14] only for
validation and all the parameter identification is performed
with stereo vision. Moreover, we extend the previous work to
1) estimate kinematic model parameters of the rigid joints in
addition to the dynamic model parameters to improve joint
angle estimation, 2) perform realistic trajectories to test the
effectiveness of the method, 3) verify the system performance
and the estimator convergence when the camera is occluded.
To evaluate the proposed method, we use the first three DOF
of the Raven. The experimental setup is shown in Fig. 1.

Joint Encoders
- /
\

Stereo
Cameras

{| [
L\

s are ﬁxed to thet

Fig. 1. Raven-II experimental research platform. Joint encoders are
mounted on each joint for validation only and their values were not used in
the controller or the UKF. Stereo cameras, fixed perpendicular to the robot
base, were used for stereo 3D vision.

II. VISION
A. Hardware

We place a passive visual marker on the tip of the robot
and use stereo vision to track the tip in real-time. For stereo
vision, we constructed a low cost stereo camera using a
pair of “Logiteck QuickCam Communicate MP” cameras
with baseline of 48.0 mm and resolution of 640x480 pixels
at 15 Frame Per Second (FPS). We fixed the cameras
perpendicular to the stand of the robot (Fig. 1). To calibrate
the cameras’ intrinsic parameters, we used a checkerboard
and the ROS camera_calibration package [15]. Once the
cameras’ intrinsic parameters were known, the translation
offset between the origin of the camera frame and the origin
of the marker frame (CPC, am) were calculated from the
projection of a rectified pixel with disparity to a 3D point.

To register the camera to robot frame, the transformation
between camera frame and the robot frame must be found. In
Raven, the location of the end-effector is computed in frame
zero [16] and since the cameras are fixed perpendicular to
the robot’s base, the rotation matrix from cameras to the

robot frame zero (OCR ) is known. However the translation
offset needs to be found.

In Raven, encoders are initialized at the hard-stop position
(the physical joint limit position of each joint). Thus at the
hard-stop position, there is no kinematic error. Furthermore,
at this position from kinematics, the translation offset be-
tween the origin of frame zero and the origin of the end-
effector (marker) 0P07 M 1is known. Since in this work, we
are only tracking translation, we can assume there is no
rotation between frame zero and the origin of the marker.
Hence, they are coincident (?WR = Identity). Thus, the
homogeneous transformation from the camera to the marker
%T is known at this point with translation vector CPC, M
and rotation matrix §;R = §'R. Also, the homogeneous
transformation between frame zero to marker (§,7) is known
with translation vector °Py j; and rotation matrix 9, R.
Hence, the transformation from camera frame to frame zero
can be calculated by:

§T =510 (1)

This method works under the assumption that the camera
is mounted perpendicular to the robot and the rotation matrix
(((f R ) is known. If these constraints are not set, the full
transformation can be obtained by placing multiple markers
on the tip with known initial kinematics offset at the hard-
stop position. However, this still assumes that the camera is
fixed to the base.

B. Methods

To track the end-effector position, we placed a passive
color-marker on the tip of the robot and used stereo vision
hardware described in Section II-A for color-marker detec-
tion.

1) Marker Detection: To localize and segment the color-
marker, we assumed that no other object with the same color
is present in the cameras’ field of view. With this constraint,
we segment the image with the following procedures. First,
we threshold the image based on Hue, Saturation, and Value
(HSV). Then, to remove the noise, we smooth the image
by applying a median blur filter with kernel size of 5x5
aperture. We also applied the morphological erosion and
dilation operations to remove any potential small blobs.
Finally, by applying a contour (chain of vectors around the
detected marker) and computing its centroid, we found the
pixel location of the origin of the marker for each camera.
We use the OpenCV library functions [17] to perform these
tasks. To calculate the position of the tip in 3D space, we
use ROS image_geometry package [15] to find the disparity
map between left and right cameras. These procedures are
illustrated in Fig. 2.

Performing these tasks for 640x480 pixels is computation-
ally expensive. Also, because the detection is based on HSV,
it requires ideal lighting conditions across the workspace.
Slight variation in lighting condition may cause no detection
at all or multiple false detection. To improve the detection
computation performance and reliability we defined a Region
of Interest (ROI) based the on current position of the robot.
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(a) (b) (c) (d)

Fig. 2. Marker detection on square ROI. (a) Original 100x100 ROI image
taken from right camera around the tip of the Raven. (b) Thresholded image,
(c) Processed image after median filter and morphological operations (d)
Fitted circle around the detected segment shown in green.

2) Region of Interest (ROI): The kinematics of a cable
driven robot may present substantial uncertainties due to
lower transmission stiffness. However, the kinematics does
provide approximate location of the end-effector from which
a ROI can be defined around the tip of the robot. Once
a ROI has been implemented, the procedures in Section
II-B.1 can be used to detect and localize the marker. By
defining a ROI, the detection computation can significantly
be improved. The major advantage of this technique is that
the search window of the image is much smaller; therefore,
the lighting condition does not need to be uniform across
the entire workspace. Thus, the upper and lower bound of
the HSV can be more relaxed. Therefore, slight variations
in lighting conditions will not result in multiple false blob
detection. Moreover, since with this technique the detection
computation is about 31x faster for 100x100 ROI, a pair of
high speed cameras’ that supports hardware ROI can be used
in real-time for high speed robots.

From Raven forward kinematics, we calculate the approx-
imate position of the end-effector and transform this position
into the camera frame (P §TOP). Then, from the
cameras’ intrinsic parameters, we project © P to pixel space
of left and right cameras. The ROI is a square of 100x100
pixels around this position for both left and right image.
Once the left and right image is updated with ROI, we use
the process outlined in Section II-B.1 to detect the Raven
tip in camera frame and transformed it to robots’ frame
by op = %TCP. Then, inverse kinematics were used to
calculate joint angles. Throughout this paper, we denote joint
angles based on vision as gc.

III. SYSTEM DYNAMICS

The dynamic equations of a general cable driven robot
in particular the Raven were modeled and described in
details in our previous paper [14]. In summary, in a cable
driven mechanisms the motors are mounted remotely and the
power is transmitted through cables to the joints. Thus, the
dynamics of each motor and the transmission can be modeled
as:

éjm = (1/Im)(T_Tm_Trn) (2)
Tm = Tcm.Sign(q;n) + Tvmq;n (3)
Trn = Tmc'}//N €]

v = ke(eqﬂwhﬂc*mﬁ _ BCIZM*chTmc)

Where g, ¢m, G are motor position, velocity and accel-
eration, respectively; k., b, are cable stiffness and damping;
Tem, Tom are motor coulomb and viscous friction; ry,., 7, are
capstan radius of motor and link, respectively; NV, I,,, are the
gear ratio and motor inertia of the motors, respectively; 7, T’
are torques on motor and joint, respectively. Therefore, I" is
the actual torque that is transferred to each link. For a serial
link manipulator from [18] the dynamic equations can be
represented as:

G =1"[—Fu(qq) (7

Fo (q, 1) + Fg + diag (sign(qy)) Fa
+diag (G;) For + J* F.p, (8)

Fy(q,q) =

Where I; is Inertia matrix; J is Jacobian; I are Coriolis
and centrifugal terms; F is Gravitational force; qi, g, q;
are joint position, velocity and acceleration, respectively;
F,;, F,; are coulomb and viscous friction, respectively; F¢,
is external torque.

IV. METHODS

A. State Estimation

Raven has four states for each link. The states are motor
angle, motor velocity, joint angle and joint velocity. How-
ever, an optical encoder with 4000 counts per revolution
is mounted directly on the shaft of each motor. Therefore,
the position and velocity of the motor is well known and
equations 2-4 need not be solved. Hence, the dynamics can
be simplified and the system states can be reduced to two
states for each link (joint angle, and joint velocity). With
this simplification the state space form of the Raven can be
expressed as:

x = f(x,u)

y = Hx €))

Where x and H are system states and the observation
matrix, respectively. The system states and observations for
the first three links are defined as:

xi = lq; q).i=1,.,3
x:[x1 T2 903]T (10)

hi = [1 O} 7H = blk?d’i(lg([hl, hg, h3])

Where @ is the link number and the measurements y are
the joint angles based on noisy camera data. In this work,
we use the square root (stUKF) [19] form of the UKF
which has improved numerical properties [20]. To solve the
differential equation, we use the fourth order Explicit Runga

5) Kutta method. The initial inertia matrices, center of mass,
+2be(qmeTme — @iTt) and mass were obtained from CAD models and the joint
I'=nr7y (6) friction parameters (F;, F},;) were obtained from [14].
4137

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 12,2021 at 23:26:50 UTC from IEEE Xplore. Restrictions apply.



B. Parameter Estimation

Raven system consists of both kinematic model and dy-
namic model parameters. We used the dual UKF to estimate
these parameters. In the dual UKF two parallel filter runs are
made for the states and the parameters. When estimating the
states the parameters are assumed to be known, and when
estimating the parameters the states are assumed to be known
[21]. Equation (10) is used for state space representation
of states. From [22], the state space representation for
parameters is described by:

(In
(12)

Wi + I'g
G(Xk, Wk) + er

Wik+1
d, =

Where, wy, is the unknown parameters with identity state
transition matrix. rj is the process noise. G(xy, W) is a
nonlinear mapping that is parameterized by the vector w.
dj is the desired output from nonlinear observation on wy
and ey, is the error of the system [23].

1) Kinematic Model Parameters: Many cable driven
mechanisms, have gear ratios, cable pulley ratios, and mech-
anism kinematics. It is very important to know the exact
value of each of these parameters for accurate transmission
kinematics calculations. Slight variation in any of these
parameters can substantially increase the error in calculating
the end-effector position from motor angles alone. In Raven,
the transmission of joint 1 is very stiff. Thus, transmission
kinematic error is dominant vs. error due to cable compli-
ance. This, was observed in [14], where the UKF did not
provide any improvements for estimating the joint angles of
rigid transmissions.

From kinematics of Raven, the motor angle of link 1 is
related to joint 1 angle by: ¢, = N(r;1/7m1)q1. Where,
N = 12.25 (gear ratio), 73 = 63.095mm is the design
radius of the partial pulley of link 1, and 7,,,; = 5.675mm
is the design radius of the motor capstan. However, as it can
be seen from Fig. 3 (b) there is a gap between the pulley
radius which introduces uncertainty in the pulley ratio. This
causes significant error in joint angle estimation. In Raven we
verified experimentally that the effective ratio of transmission
was different from the actual one on the robot as shown
in Fig. 3 (a). To conduct this experiment, we changed the
value of r;; from its design value from -10% to +10% and
measured the true joint angles directly from joint encoders.
To compensate for this source of error, we used the dual
UKF parameter estimation and stereo vision to estimate the
radius of partial pulley of link 1 (r;).

2) Dynamic Model Parameters: Over time, the cable
parameters such as stiffness and damping can change due to
creep and stretch [7], [12]. We used the dual UKF parameter
estimation and stereo vision offline to compensate for these
changes to improve system dynamics.

V. EXPERIMENTS

In this paper, the main objective is to improve the state
estimation of the joint angles by using the UKF and low
cost stereo vision. Therefore, to measure the performance of
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Fig. 3. (a) Joint 1 position error when the value of 7;; is changed by

+10%, 0%, -5%, -10%. The error decreases to almost zero when the value
is changed from its design value by -5%. (b) Schematic drawing of link 1
transmission shows uncertainty in transmission ratios.
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Fig. 4. Block diagram of the controller loop and joint angles. x4 is
the desired trajectory. g is the true joint angle measurements from optical
encoders mounted directly on the joints. §xin, ¢c, and §y x F are estimated
joint angles from transmission kinematics, camera, and UKF, respectively.
The robot controller feedback is based on the motor measurements and not
the UKF. When occlusion happens the UKF observation will switch from
gc 10 4Kin-

the UKF, additional optical encoders (Avago Technologies,
model number AEDA-3300, 80000 counts per revolution, for
the first two rotary joints and linear optical encoder MicroE
Systems, model number Mercury II 1600, resolution 5 pm,
for the third prismatic joint) were installed on the joints
for comparison. Moreover, since we are only investigating
state estimation accuracy of the UKF and not the controller
performance, the feedback input of the controller is based on
the motor angles and the UKF estimated states were not used
in the control. Fig. 4 shows a block diagram representation of
the joint angle computations and measurements. g represents
the true joint angle. §x, is the estimated joint angle based
on transmission kinematics. ¢ is the estimated joint angle
based on camera raw data, and gy x r is the estimated joint
angle based on UKF method proposed in this paper.

To estimate parameters and states of the Raven, we
implemented srUKF in C++ and designed experiments A-
D. We used pre-recorded Fundamentals of Laparoscopic
(FLS) block transfer task [24] trajectory for experiments B-
D, which is one of the five FLS tasks that emulates tissue
handling and manipulation [25].
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A. Kinematic Model Parameters Estimation

To improve the state estimation, we first estimated the
partial pulley radius (r;) of link 1 offline using the UKF
parameter estimation. To estimate r; of link 1, we ran a
sinusoidal trajectory on Raven and we observed the end-
effector with the cameras. These observation were used in
the UKF dual parameter and state estimation offline.

B. Dynamic Model Parameters Estimation

After finding the updated value of r; for link 1, we
estimated the cable parameters. To estimate cable parameters,
a pre-recorded FLS block transfer trajectory was applied on
Raven and the cable stiffness (k.) and cable damping (b.)
parameters of joints 1-3 were estimated with the dual UKF.

C. State Estimation

After finding the kinematic and dynamic model param-
eters offline, we used the updated parameters to estimate
system states online. To test state estimation under realistic
conditions, FLS block transfer trajectories in free-space were
applied to the control inputs of the Raven PD controller. To
conduct statistical analysis, we ran the robot six times with
different pre-recorded FLS block transfer trajectories. Each
experiment had different duration. The total length of all
these six experiments were 900 seconds.

D. Camera Occlusion

The UKF is programmed to detect occlusion. UKF detects
occlusion when no marker is detected in either of the cameras
or if the marker jumps to a new location. To investigate
the system performance and filter convergence under camera
occlusion, five experiments with the same FLS block transfer
trajectory of 200 seconds were conducted. Each experiment
had occlusion for a different percentage of time: 10%, 20%
, 40%, 60%, and 80%. To simulate occlusion, we repeatedly
blocked the camera data for multiple intervals of 2 seconds
at equal time intervals to create the above percentages.
During the camera occlusions, the UKF joint observations
were changed to §g;, with hard switch (Fig. 4), which
is calculated from transmission kinematics based on motor
encoder measurement.

VI. RESULTS AND DISCUSSION

A. Experiment A

The radius of partial pulley of link 1 (r;), was estimated
based on a 200 seconds sinusoidal trajectory (Fig. 5). The
parameter estimation (Fig. 6) converged in about 40 seconds
to 59 mm from the initial value of 63.095 mm or a decrease
of 6.49%. This is a consistent with experimental results of
Fig. 3. From Fig. 3, it can be seen that a decrease of about
5% is required in the value of the pulley ratios to minimize
the kinematic error.

Fig. 5. Plot showing the true position (q), transmission kinematic estimate
(4xin), UKF estimate (Gu ik F), and camera estimate (§¢). This sinusoidal
trajectory was applied on Raven to estimate r;.

of Link 1 (mm)

Partial Pulley Radius

Time (5)

Fig. 6. Estimated r; parameter for link 1.

B. Experiment B

The dynamic model parameters of the cables, i.e. stiffness
and damping, were estimated based on 200 seconds of a
pre-recorded FLS trajectory. The results are shown in Fig. 7.
The damping values of link 1 and 2 converged in about 100
seconds and the stiffness values of link 1 and 2 converged
in about 150 seconds. The stiffness value for link 3 stayed
at about the same value and the damping value converged at
about 80 seconds.
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Fig. 7. Estimated cable parameters (stiffness and damping) for link 1-3

from top row to bottom row, respectively.
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C. Experiment C

The updated parameters were used for state estimation. Six
different FLS block transfer trajectories were performed by
the robot. The first FLS trajectory is shown in Fig. 8. The
figure illustrates the estimated joint angles with the UKF
and direct transmission kinematic for joints 1-3. The joint
angles based on camera data and the reference true value
from attached ideal joint encoders were also plotted. The
corresponding error histogram is shown in Fig. 9. The error
using the UKF joint angle estimation for all three joints is
less than the error using the direct transmission kinematics
method. The results for links 2 and 3 are comparable
with [14] where ideal joint encoders were used to tune
system parameters. Moreover, the result for the rigid link
is substantially improved due to kinematic model parameter
estimation.

The results for the remaining five experiments were similar
and in all the cases the UKF outperforms transmission
kinematics. To perform statistical analysis and summarize the
results of all these six experiments the box plot of all these
experiments are shown in Fig. 10-12 for joints 1-3, respec-
tively. Furthermore, the joint angle RMS errors using UKF
(e r) and the joint angles RMS errors using transmission
kinematics (eg,,,) for joints 1-3 of trials 1-6 are shown in
Table I for comparison. From the table eg,, . is less than
€4y, for all three joints in all the trials. We took the average
of all the trials and use (100 X (4., — €qurr)/€dxin) tO
find the percentage improvement that the UKF provides over
direct transmission kinematic method for joint angle state
estimation. The mean and percent improvements are shown
in Table II. When the average was weighted by experiment
duration, the results were the same. Also, to verify if there
are statistical difference between the eg4,, and eg,, . we
applied Student’s t-test. The P values for the t-test are shown
in table II. From the t-test it can be concluded that there are
significant difference between two groups.

TABLE 11
AVERAGE POSITION ERRORS AND PERCENT IMPROVEMENT OF TRIALS
1-6 FOR JOINT 1-3.

Joint (Unit) | €grer | €4gs, | o Improvement | P value
1 (Deg) 0.7419 | 1.3051 43.14 0.0025
2 (Deg) 1.6411 | 2.4652 33.42 0.0015
3 (cm) 0.0790 | 0.2828 72.05 2.59¢e-9

D. Occlusion

The results for occlusion experiments are shown in Fig.
13 (a-c) for links 1-3, respectively. We expected that as the
occlusion percentage increases, the joint angle estimation
error would also increase. However, only slight degradation
in quality of state estimation was observed for joint 2 and
3. On the contrary the estimation for joint 1, improved
slightly as the occlusion percentage increased. We believe
this is because the camera is perpendicular to link 1. Thus,
joint 1 is based on the cameras depth measurement (the
cameras depth measurements are much more noisier than
x and y measurements). Overall, only slight degradation
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Fig. 10. Boxplot showing the results for Experiment C, for trials 1-6 for
joint 1. For each trial, boxplot of UKF estimate and direct transmission
estimate is shown for camparison.
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Fig. 11.  Boxplot showing the results for Experiment C, for trials 1-6 for
joint 2. For each trial, boxplot of UKF estimate and direct transmission
estimate is shown for camparison.

and improvement was observed for joint 1-3 as the percent
occlusion increased; and therefore, from this experiment, it
can be concluded that the UKF estimation is consistent even
when occlusion is likely to occur in an application. This
suggests that once the system parameters have been identified
and fine tuned offline with the UKF and the camera, the
UKF will have sufficient information from motor encoders
to consistently estimate the states.

VII. CONCLUSION AND FUTURE WORK

In this work, we used motor encoders and low cost
cameras to estimate joint transmission parameters of rigid
link, cable parameters for all the links, and joint states of a
serial cable driven robots on the Raven experimental surgical
robot platform utilizing the Unscented Kalman Filter. With
this method, we were able to fine tune the system dynamics
by estimating parameters offline. Once the dynamics were
tuned with UKF parameter estimation, the UKF was able to
improve the joint angle estimation. The occlusion experiment
suggests that this method is reliable and robust even when
the camera is occluded during state estimation. From the ex-
periments, once the system parameters are tuned with stereo
vision and the UKF offline, the camera measurements did not
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Fig. 9. Error histogram of trial 1 trajectory for joints 1-3 from left to right, respectively.

TABLE 1

RMS POSITION ESTIMATION ERRORS OF JOINTS 1-3 FOR EXPERIMENT C TRIALS 1-6.

Trial 1 (188 sec) Trial 2 (80 sec) Trial 3 (150 sec) Trial 4 (82 sec) Trial 5 (110 sec) Trial 6 (290 sec)

Joint (Unit) CiukF CiKin 19 Cirin CiukF Carin CiukF Carin Ciukr €iKin CiukF CiKin
1 (deg) 0.7525 1.4294 | 0.5958 1.6644 | 0.8414 1.0847 | 0.7881 0.9313 | 0.8167 | 0.9827 | 0.6825 1.4675

2 (deg) 1.6373 | 2.8012 1.8665 | 2.5525 1.7965 | 2.9971 1.7541 1.9428 1.7644 | 2.3691 1.4220 | 2.1314

3 (cm) 0.0869 | 0.2792 | 0.0989 | 0.3036 | 0.0606 | 0.3227 | 0.0852 | 0.2647 | 0.0852 | 0.2730 | 0.0763 | 0.2675

provide much improvement online during state estimation.
Hence, only motor measurements and UKF will be sufficient.
This is beneficial because in practice the camera will get
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occluded during surgery. However, running both the camera
and motor encoder at the same time improves safety due to
redundancy that is provided to estimate joint angles.
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Fig. 12. Boxplot showing the results for Experiment C, for trials 1-6 for
joint 3. For each trial, boxplot of UKF estimate and direct transmission
estimate is shown for camparison.
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Fig. 13. Boxplot showing the results for Experiment D, for joints 1-3 from [14]
left to right, respectively. Each plot shows a boxplot for 10%, 20%, 40%,
60%, and 80% occlusion.

In surgery, in addition to accuracy, redundancy is also  [15]
important. In case of sensor failures, it is essential to have (16]
backup sensors or methods. The future work will include in-
vestigating whether the UKF can estimate joint angles using -
only camera measurements in case of motor encoder failure. (7
Also, we will study for how long and what frequency and  [18]
speed range the filter can maintain convergence under camera

. ) . [19]
occlusion when a motor encoder fails. Furthermore, we will
use the results of ongoing research on improving cable driven
mechanism dynamics in [26], which may improve the UKF -
performance when motor encoder fails. [20]
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