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ABSTRACT

Engineers design for an inherently uncertain world. In the
early stages of design processes, they commonly account for
such uncertainty either by manually choosing a specific worst-
case and multiplying uncertain parameters with safety factors,
or by using Monte Carlo simulations to estimate the probabilistic
boundaries in which their design is feasible. The safety factors of
this first practice are determined by industry and organizational
standards, providing an inexpressive account of uncertainty; the
second practice is time intensive, requiring the development of
separate testing infrastructure. In theory, robust optimization
provides an alternative, allowing set based conceptualizations
of uncertainty to be represented during model development as
optimizable design parameters. How these theoretical benefits
translate to design practice has not previously been studied. In
this work, we analyzed present use of geometric programs as de-
sign models in the aerospace industry to determine the current
state-of-the-art, then conducted a human-subjects experiment to
investigate how various mathematical representations of uncer-
tainty affect design space exploration. We found that robust op-
timization led to far more efficient explorations of possible de-
signs with only small differences in experimental participant’s
understandings of their model. Specifically, the Pareto frontier
of a typical participant using robust optimization left less perfor-
mance “on the table” across various levels of risk than the very
best frontiers of participants using industry-standard practices.

Keywords: robust design, uncertainty modeling, design op-
timization, multiobjective optimization.

1 INTRODUCTION
Engineering designers use complex computational models

to represent a variety of problems, despite their awareness that
the results will not be perfectly recreatable in the physical world.
Even if a model were able to represent a specific problem per-
fectly, environmental conditions and physical realities are rarely
stable or knowable; for example, an engineer may declare the
density of a metal as a particular value, but in manufacturing the
metal supplied will vary from supplier to supplier and day to day.
Beyond material quantities, such uncertainty is also inevitable
for environmental conditions, assembly quality, and many other
important components of performance. Accounting for such un-
certainty is therefore a necessity which designers often represent
through the manual implementation of conservative heuristics.

Convex Geometric Programs (GPs), sets of algebraic con-
straints globally optimizable for a specific cost function, are ca-
pable of representing a variety of complex systems. Historically,
the inaccessibility of software used to create and solve GPs has
restricted their use in engineering design. The Python package
GPkit provides a familiar and clear syntax for geometric pro-
grams, reducing this barrier to entry. [1] Through GPkit, several
engineering design firms have adopted GPs for regular use in
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their processes, typically to validate the feasibility of innovative
conceptual designs.

At present, GPkit models (along with most other design
models) do not provide interfaces specifically for the represen-
tation of uncertainty. Designers instead set some parameters’
values to a “reasonable worst case”, often via multiplication by a
blanket “safety factor”. Robust optimization aims to address this
by allowing specified uncertainties to be set on parameters, then
optimizing for the best worst-case performance under a given un-
certainty set. [2] This method provides more mathematical guar-
antees than safety factors do and is more directly translatable to
a simulation environment.

How much these mathematical details affect designers and
design practice is unclear. The marginal improvement in design
quality may or may not be worth the effort of changing designer’s
conceptualizations of their model. However, we argue that robust
optimization’s potential benefits come not only from its under-
lying mathematics, but also from the novel “questions” it lets
designers ask of their models. When uncertainty is explicitly
defined in robust GPs, it can be optimized for as if it were any
other variable. This provides a dynamic understanding of uncer-
tainty, encouraging discussions of robustness earlier in a design
process. This study seeks to explore ways in which robust opti-
mization can affect the practice of creating designs, and provides
evidence that robust GPs improve design space exploration, in-
creasing designs’ quality, quantity, and coverage relative to an
underlying Pareto frontier of optimal tradeoffs.

1.1 Research Questions
Previous work has shown that robust optimization provides

a mathematically rigorous method of accounting for uncertainty.
[3,4]. However, its effects on the questions designers ask of their
models has not yet been analyzed. In this study, we ask the fol-
lowing questions:

RQ1 How do designers conceptualize uncertainty? How
do particular conceptualizations change their com-
fort with robust optimization?

RQ2 How do different mathematical formulations of un-
certainty, as represented in a design model, affect
designers’ explorations of possible designs?

RQ3 What design processes do robust optimization tools
alter or automate?

Our study had two stages. The first, a series of practitioner
field interviews, was used to guide the design of the second, a
human-subjects experiment in a controlled environment. We ad-
dress RQ1 by summarizing how current users of GPkit account
for uncertainty in their design processes and looking at how ex-
perimental participants used robust optimization to account for
uncertainty. RQ2 is addressed by analysis of the quality and

spread of experimental participants’ solutions. RQ3 is touched
on in comparisons between processes for uncertainty accounting
described in interviews and those seen experimentally, but we an-
ticipate its full investigation to also require field studies of how
robust optimization affects organizational processes.

2 BACKGROUND
A substantial amount of research has been conducted on

software tools for design, analysis, and robust optimization, but
the development of particular tools is not our focus. Rather,
we are interested in how designers use these tools and how the
choice, application, and integration of these tools can impact de-
sign process exploration. The set of tools we use varies in their
handling of uncertainty and robustness. To better specify this va-
riety, we define uncertainty as variables listed as a fixed constant
in our model having instead a set of possible values. Robustness
is the ability of the design to still function with small perturba-
tions of these fixed variables; the larger a perturbation that can
be handled, the more robust the design is.

2.1 Frameworks for Early Stage Design
Many frameworks exist for early stage design processes for

products and engineered systems, including Pahl and Beitz’ sys-
tematic approach to engineering design and Ulrich, et al.’s widely
known process for product design and development. [5, 6] Un-
derpinning both approaches is the notion of a design specifica-
tion and/or initial prototype created by an engineering and de-
sign team. The initial prototypes being considered in this study
are Python codes using the GPkit library. [1] The current design
specification of these models does not include a method of ac-
counting for uncertainty; we will refer to the additional design
specification of uncertainty as the conceptualization of uncer-
tainty within the model.

2.2 Design Models
Human participants in engineering organizations use soft-

ware “design models” to enumerate parameters of their designs
and implement interactions amongst these parameters. Design
models are often made from materials like parameterized CAD
assemblies (to construct a shape from geometric constraints)
[7,8], spreadsheets (to calculate performance), [9,10]and “math-
ematical programs” (to take in a desired performance and put out
a design that achieves it). [11]

Design models serve as loci for understanding what will
be built, while encoding (and sometimes concealing) decisions
on why [12]. This makes them an important arena for intra-
organizational design politics, but just how participants’ perspec-
tives clash and coalesce around these models depends also on the
motif they are part of. [7,13] Design models express their agency
both by shaping the motif and, within a motif, by determining
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their outsiders and insiders, spectators and maintainers, and for-
mal and informal power structures. [7, 14]

2.3 Design Tools and the Designer
Software tools, most notably CAD, are essential to design

and production, and a number of studies have considered the im-
pact of these tools on early stage designs. In the exploratory
phases of design, studies with practicing engineers and student
designers have observed that the use of CAD too early in the
design process can have a negative effect on design creativity,
known as ”premature fixation”. [12,15] High fidelity digital tools
require more time and effort on the part of the designer than
lower fidelity tools, making designers more invested in a design
and less likely to discard it. This is an observation of not only the
design tool, but the way that designers use the tools in practice.
Our study takes a similar designer-focused perspective on explo-
ration using a design tool by formulating a constrained but real-
istic design problem with minimal interface complexity. Our de-
sign tool is GPkit, and we investigate the effect of a more detailed
but potentially confusing mathematical model of uncertainty on
the ability of users to find optimal solutions using this tool. The
exact mathematics behind how uncertainty is calculated will be
referred to as the formulation of uncertainty.

2.4 Design Optimization and the Designer
An overarching goal of design optimization research is to

create tools and systems that can support designers by generating
the “best” solutions by searching through the set of all possible
solutions, or the design space. The majority of research in de-
sign optimization concentrates on the development of better and
faster algorithms and strategies, and only limited research has
been conducted on how designers themselves reach globally- or
locally-optimal solutions, and how this is affected by their tools.

In an early study of how humans deal with coupled prob-
lems, Hirschi and Frey compared the time to solve coupled and
uncoupled parametric design problems. [16] For uncoupled prob-
lems, the time to solve was of the order of O(n) where n is the
number of input variables, and increased dramatically to O(n3.4)
for coupled problems. Notably, coupled problems with more
than 4 variables were found to be very difficult and frustrating
for the participants. Similarly, human studies by Flager et al.
showed that an increase in problem complexity caused a signifi-
cant decrease in solution quality. [17] A study by McComb et al.
showed specifically that more complex 2D trusses led to worse
performance. [18] Austin-Breneman et al. found that, despite
domain expertise and optimization training, graduate students
asked to collaboratively design a simplified satellite had trouble
exploring the design space because of the complexity of subsys-
tems and subsystem interactions, and few teams found designs
on the Pareto-optimal frontier. [19] In interviews with space sys-
tem designers, it was found that teams in industry routinely re-

stricted the information shared with each other in ways that made
exploration much more difficult both in practice and from the
perspective of optimization theory. [20] Yu’s study of desalina-
tion systems found that software choices could enable novices to
explore complex system designs almost as well as experts, with
some caveats. [21] Designer satisfaction with rapid prototyping
process has been explored by Neeley, et al., who found that de-
signers tended to be more satisfied with design outcomes when
given the opportunity to explore more design space initially. [22]
Specific questions of how real-time interfaces affect design out-
comes were present in the first direct-manipulation CAD soft-
ware, [8] in early studies of the effect of analysis speed on struc-
tural design exploration and outcomes, [23] and in more recent
research on human-computer optimization in circuit-routing [24]
and in architectural design [25].

We hope to extend such studies by directly measuring the
effects of real-time software decisions and algorithms on design
outcomes and process. Previous studies by Barron et al. and
Egan et al. [26, 27] have looked at the effects of visualization
and search techniques in custom tools that use different visual
representations and search strategies than designers may be ac-
customed to; in contrast, our study uses familiar visual repre-
sentations and interaction modalities but changes the conceptu-
alization and formulation of the design problem. Since this de-
sign problem has two goal parameters, we define “optimality” in
terms of the Pareto frontier—a subset of the possible solutions
such that each solution on the Pareto frontier is either better in
the first goal parameter or the second goal parameter compared
to any other solution.

2.5 Geometric Programs
Geometric programs are nonlinear optimization problems of

a set of posynomial constraints and a cost function known as the
objective. A posynomial is a sum of monomials, where a mono-
mial is a set of variables raised to any positive real power multi-
plied together with a positive coefficient. Formally, a posynomial
p(x) can be defined as

p(x) =
K

∑
k=1

ck

n

∏
j=1

x
a j,k
j (1)

where x is a vector of all variables, n is the length of x and there-
fore the number of variables, K is the number of monomials, all
ck are positive real numbers, and all a j,k are real numbers [28].

A geometric program is defined by minimizing a posyno-
mial objective function subject to posynomial constraints that
must be less than or equal to some positive value. Geometric
programs have the practical feature that, when transformed log-
arithmically, they become convex, guaranteeing only one local
minimum exists-the global minimum. This allows for gradient
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descent in log-space to always find the globally optimal solution.
GPkit serves as a Python interface for geometric program solvers
such as MOSEK and cvxopt [29, 30] that allows users to define
these objectives and constraints intuitively. It then can solve for
the optimal solution and can visualize the structure of the models
and the feasible solution space. GPkit has enabled engineering
designers who are not experts in mathematical optimization to
create, solve, and understand GP models by black-boxing com-
putational details and providing diagramatic representations of
the underlying mathematics. If negative ck values are necessary,
a signomial program can be used, which can be optimized via
multiple geometric program approximations.

2.6 Robust Convex Optimization
While geometric programs are highly generalizable, they

run the risk of being overly specialized solutions relative to the
uncertainty that exists. To account for that uncertainty, Robust,
an add-on GPkit package, allows for the inclusion of standard de-
viations on each variable, as well as an overall “Gamma” factor
that scales the amount of uncertainty accounted for, then opti-
mizes the worst point of a region of uncertain parameters. This
process is generally known as robust optimization. Work on Ro-
bust has shown that the current standard of multiplying each un-
certain variable by a margin does not actually take into account
the worst combined case mathematically, and that robust opti-
mization is necessary to fully account for uncertainty [3]. While
the quantitative case for using Robust has been made, the ques-
tion of how this affects the overall design process, particularly
in the context of design space exploration, has not yet been an-
swered.

3 METHODS
In the first stage of this study, we interviewed current GP-

kit model designers. In the second, we conducted a controlled
human-subjects experiment. This ordering allowed us to use re-
sults from the first stage to guide the second.

3.1 Practitioner Interviews
To understand current practices of accounting for uncer-

tainty in design models, we interviewed five GPkit users with a
flexible questionnaire focusing on how they accounted for uncer-
tainty within their models. Each of the five interviews lasted for
half an hour to an hour and took place off campus, either at the
interviewee’s place of work or at a public location like a coffee
shop. Interviewees varied in the extent of their experience with
GPkit, their interactions with GPkit (developers versus design-
ers), and their affiliations (academic versus commercial), though
all were in the field of aerospace, where most GPkit models are
made. First, we asked about each designer’s work to encourage

engagement in the conversation and to understand their back-
ground. We then explored the workflows of their projects before
and after using GPkit, asking them to speak of particular projects
to ground their answers. We then asked more targeted questions
about uncertainty, looking for specific methods. Finally we asked
broadly about inefficiencies they had encountered while model-
ing, to understand how salient issues surrounding uncertainty are
relative to other concerns.

These interviews were the backbone of our experimental de-
sign for the second stage, for we based its guiding questions on
the concerns expressed by those interviewed.

3.2 Human-Subjects Experiment
This experiment was held to provide a direct comparison be-

tween methods of accounting for uncertainty with different com-
putational models. We wanted in particular to see how additional
uncertainty information mathematically encapsulated in models
might shape designer’s practices.

Forty-three graduate and undergraduate students in science
and engineering were recruited to individually participate in a
design challenge using a custom built graphical interface for a
GPkit design model. Participants were prompted to choose pa-
rameters for an airplane design which led to designs with both
as low a failure rate and as low a fuel consumption as possible.
They were tasked with finding designs in three “reward regions”
and to find designs on the final combined Pareto frontier; partic-
ipants received greater compensation depending on their perfor-
mance on these metrics. Each participant was given a ten minute
tutorial, thirty minutes to complete the design challenge, and ten
minutes to complete a short survey about their experience using
the tool after the experiment.

3.2.1 Experimental Interface The graphical inter-
face shown in Figure 1 allowed users to directly modify a small
set of parameters with sliders (A), then optimized a design based
on those parameters and presented its fuel consumption (perfor-
mance) and simulated failure rate. Participants kept track of the
history of their designs with a plot of each design’s fuel con-
sumption and failure rate (B), a list of parameter combinations
they’d tried that led to infeasible designs (C). The three reward
regions were also shown on (B), providing a visual reminder of
their goals. Additionally, participants saw the planform of their
most recent airplane design (D). Fuel consumption was evalu-
ated by solving the GPkit design model for the input slider val-
ues, while failure rate was determined by checking the model’s
feasibility across a set of one hundred randomized conditions;
conditions were sampled from a multivariate truncated Gaussian
probability distribution. A fixed set was used for all participants
to enable comparability between the failure rates of various de-
signs. This method of determining failure rates is similar to best-
practices Monte Carlo simulations. The design model underly-
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FIGURE 1. Diagram of the user interface in our experiment. The
three reward regions highlighted in the plot are designs with a fuel con-
sumption below 1100 lbs (in blue), designs with failure rate below 10%
(in yellow), and designs with both a fuel consumption below 1200 lbs
and a failure rate below 30% (in green). The ordering of participant’s
designs was tracked through a line, with the most recent points appear-
ing bright pink and older points appearing dark purple.

ing this graphical interface was based on the “SimPleAC” GPkit
model for passenger aircraft, [31] itself a condensed version of
previous GPkit models for commercial aircraft [32, 33] that had
been co-developed with the robust optimization library [3].

3.2.2 Experimental Conditions Subjects were ran-
domly partitioned into the four experimental conditions: two
conditions similar to existing practices (Control and Margin),
and two using robust optimization (Gamma Slider and Perfor-
mance Slider). Participants using Control chose design parame-
ters such as wing size; those using Margin chose safety factors,
those using Gamma Slider chose the precise shape and scale of
the uncertainty region they were optimizing for, while those us-
ing Performance Slider, chose the shape of that region and a de-
sired performance, letting the optimizer maximize the scale of
the uncertainty region. The uncertainty region was set to be el-
liptical, which represents a percentage of combined uncertainty
being accounted for. Both Control and Margin represent cur-
rent design practices: Control simulates common practices with
non-optimizing design models, while Margin simulates common
practices with GPkit models. Gamma Slider and Performance
Slider represent the intended design practices Robust enables.
We expected to see improvements to design space exploration
coverage and quality with these uses of robust optimization.

More specifically, Control users directly manipulated four

physical design parameters of the airplane (wing length, wing
area, fuel volume available, and lift coefficient). Margin, Gamma
Slider, and Performance Slider users directly manipulated pa-
rameters which accounted for uncertainty (margins or percent-
ages of uncertainty on wing weight, fuel quality, takeoff speed,
and range). Control users saw the fuel consumption of their de-
signed airplane in the context it was optimized for, while users
of the other design models saw performances which “priced in”
uncertainty. Since the reward regions were identical across con-
ditions, a larger fraction of possible designs Control users were
able to find appeared in these regions. This kind of biased com-
parison is common in robust optimization practice. To compare
performance across conditions during the analysis, designs made
in non-Control conditions were “nominalized” by recalculating
performance of each design in the nominal conditions Control
designs had seen.

4 RESULTS
4.1 Practitioner Interviews

When we asked interviewees how they accounted for un-
certainty during conceptual stages of design, we received two
responses: either they 1) multiplied uncertain parameters by a
margin or safety factor of 20% (considered an industry standard)
or 2) did not account for uncertainty at those stages. Some inter-
viewees mentioned checking if their design was robust to small
perturbations in environmental conditions via Monte Carlo simu-
lation, but usually as a final check of a model’s solution, not dur-
ing model development. Most interviewees believed they should
be accounting for uncertainty, but did not consider it a priority
due to a perceived lack of social pressure to do so; if none of their
peers were trying to account for uncertainty, why should they?
Almost everyone interviewed considered uncertainty quantifica-
tion an important problem, but also thought of it as intractable
and impractical.

Interviewees discussed how safety factors can lead a design
to be incorrectly seen as infeasible. One talked in particular
about electric airplanes, much of whose mass rests in their bat-
tery. Putting a safety factor on total airplane weight increases
the amount of battery needed, which increases the total airplane
weight; the process converges, but often leaves a design look-
ing impossible. Therefore, instead of weight safety factors, this
interviewee accounted for excess weight by making the allow-
able payload a maximized free variable, even though this makes
it more difficult to design for an exact payload.

Deciding on a model’s objective function—the parameter
it optimizes for—was described as the “single most important
choice” of modeling. In robust optimization, uncertainty can be
the optimized parameter. This allows for different conceptual-
izations of a design problem. With the electric aircraft above, in-
stead of calculating the battery size required to handle 20% extra
weight, designers might use robust optimization to calculate the
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maximum level of uncertainty allowable for an airplane capable
of carrying a specific payload.

That our interviewees used GPkit primarily during concep-
tual design stages made the detailed accounting for uncertainty
of robust optimization seem less necessary to them. In order to
use robust optimization, they would have to create models with
increased complexity in both concept and form, more difficult to
interpret and to code. Some practitioners were additionally skep-
tical that doing so would significantly improve conceptual de-
signs, as the uncertainties known at such an early stage felt more
“made up” than other design parameters. While they found cur-
rent uncertainty accounting practices to be more arbitrary, they
felt that the specific uncertainty values they would choose in
robust optimization might be just as arbitrary without the ben-
efit of following industry standards. This formed the question
for our human-subjects experiment: can robust optimization be
useful (in comparison to current practices) even with guessed
parametrizations of uncertainty?

4.2 Human-Subjects Experiment
Prior to analyzing the quantitative data of the experiment, we

assessed our overall impressions of each of the conditions from
piloting and from post-experimental conversations with partici-
pants. Participants in the Control condition seemed to have the
most direct understanding of how or why their parameter changes
affected performance and failure rate, especially if they had some
experience with airplane design. Participants in the Margin con-
dition found their designs highly sensitive to even small param-
eter changes; it seemed easy to accidentally go to extremes with
this tool. For both Performance Slider and Gamma Slider par-
ticipants it seemed difficult to find designs far away from the
Pareto frontier. Performance Slider participants could, by keep-
ing the performance slider consistent, constrain their motion on
the results plot to a single vertical line, allowing them to separate
dimensions inextricably linked for other users. Gamma Slider
participants could, by keeping their standard deviations constant
and only modifying the size of their uncertainty set, move along
a single curve. Being able to act in only one “dimension” in
these ways seemed to make the challenge less stressful for both
Gamma Slider and Performance Slider participants.

To see if these impressions were validated by our data,
we analyzed qualitative results from the post-experiment survey,
which gave participants a set of statements and asked them to
rate how much they agreed or disagreed with each on a six point
Likert scale. Comparisons between Control and other conditions
were biased by Control’s easier access to the goal regions; given
this, the fact that Control felt less stressed and frustrated than
most other conditions is less surprising. Between other con-
ditions, we saw differences in the amount participants felt like
they “had a plan”, were “in control”, were “frustrated”, or were
“stressed”. As expected, robust optimization conditions were

TABLE 1. SUMMARY STATISTICS
Given as intervals of one standard deviation around each mean. Signif-
icant differences (Welch’s t-test) indicated by asterisks. “Points” refers
to feasible designs generated within thirty minutes. “% in R.R.” refers to
the percent of nominalized designs created in any of the regions partic-
ipants were given financial incentive to be in. “Combined” refers to the
average number of points found by each participant in each condition
that were on the combined Pareto frontier across all conditions.

Points % in R.R. Combined

Control (N=10) 64 to 146 33% to 71% 0 to 0.4

Margin (11) 62 to 126 47% to 79% 0 to 1.7*

Gamma S. (11) 103 to 163* 76% to 88%* 0 to 4.2**

Perf. S. (11) 84 to 208* 77% to 91%* 0 to 5.3**

less stressful and frustrating than Margin. However, Gamma
Slider participants felt the least like they had a plan and were in
control. This may indicate confusion about the “Gamma” param-
eter, which, as a robust-optimization specific term, lacked famil-
iarity. Despite this, Gamma Slider participants had the highest
quality solutions of all conditions. Even without feeling they un-
derstood what they were doing, Gamma Slider participants were
able to find high quality designs.

The rest of this section quantitatively compares solutions
across all four conditions. The design challenge incentivized par-
ticipants not to find an optimal solution given a single goal, but
rather to find a Pareto frontier of optimal solutions in terms of
two goal parameters, performance and failure rate. To statisti-
cally analyze the influence conditions had on design outcomes,
we compare the quantity of high quality points found in Table 1.
The metrics of Pareto points and combined Pareto points serve
as proxies for how much of the space was covered; the percent
inside reward regions serves as a proxy for design quality. We
see significant differences between robust optimization methods
and standard methods in these metrics, providing evidence for
the hypothesis that robust optimization encourages more explo-
ration of optimal designs and increases the quality of each design
explored.

The number of points metric is an indication of how much
exploration participants were willing to do given specific tools;
the large number of points in robust conditions indicates that ex-
ploration was faster and/or participants more willing to explore.
To disambiguate this, we looked at the average time between
points for each condition. We did see a statistically significant
difference here, but this was likely due to the abundance of points
produced decreasing the threshold required for significance. As
the overall end times did not show significant differences, the
number of points produced may be best explained by partici-
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FIGURE 2. DISTRIBUTION OF FUEL WEIGHTS
Solid lines show median of participants’ Pareto frontiers after nominal-
ization. Shaded regions extend above it to the 75th percentile and below
to the 25th. The black dashed line shows the combined final Pareto
frontier, while solid black lines indicate reward regions.

pants’ willingness to explore under each condition. Robust op-
timization is not the sole factor here: the Control condition, in
which the reward regions were the easiest to achieve, provided
less financial incentive to explore, which may have discouraged
exploration. However, the Margin condition was rated as slightly
more stressful and frustrating, and participants may have been
disincentivized to explore by their stress and frustration. One of
the benefits of robust optimization might be a reduction of this
stress and frustration, leading to increased exploration.

We parametrize a design’s quality with two dimensions:
the improvement in failure rate that could have been achieved
for that design’s performance (vertical distance on the follow-
ing plots), and the improvement in performance that could have
been achieved for its failure rate (horizontal distance). In both
cases, designs were compared to the final combined Pareto fron-
tier achieved by other participants. Figures 2 and 3 show the dis-
tribution of these distances across participants’ Pareto frontiers.
Because we used the same reward regions across conditions, the
difficult central region became therefore a focal point for some
participants, as can be seen in the compression of their distri-
bution at that point. With normalized performance, Control and
the least-performant half of Margin participants are clearly sep-
arated from the combined frontier, while other participants are
quite close.

To see the differences between the Pareto frontiers achieved
by participants under condition, we summarize each individual
frontier by its average vertical distance (Figure 4) and horizontal
distance (Figure 5). We consider individual’s frontiers all to-
gether instead of each of their points because such frontiers are
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FIGURE 3. DISTRIBUTION OF FAILURE RATES
Solid lines show median of participants’ Pareto frontiers after nominal-
ization. Shaded regions extend to its right to the 75th percentile and
to its left to the 25th. The black dashed line shows the combined final
Pareto frontier, while solid black lines indicate reward regions.

the primary output of design model use, not a particular design
point. That is, our simplified framework for the use of these mod-
els in a design process is 1) a condition is selected, 2) a Pareto
frontier created, and 3) a condition is chosen from that Pareto
frontier based upon the whole frontier.

Figure 4 shows the distributions of excess failure rates (av-
erage vertical distance) across the frontiers made with each con-
dition. There is a clear distinction between Control and Margin,
and between both of them and the two robust conditions. Figure
5 shows the distribution of excess fuel consumption (average ver-
tical distance) across conditions. The frontiers of median users
of the robust models perform better by this metric than the best
users of Margin and Control, and every user of robust models
performs better than three quarters of Control users.

5 DISCUSSION
These results are evidence that robust optimization can in-

crease design quality. Returning to our fundamental research
questions, what do they imply about the effects of conceptual-
izations and formulations of uncertainty, and what current design
practices might robust optimization alter or automate?

5.1 RQ1: Conceptualization of Uncertainty
From practitioner interviews we found that uncertainty con-

ceptualization in the early stages of airplane design is mini-
mal, partly because uncertainty is considered fruitless to estimate
when the overall design is rapidly changing. However, we found

7 Copyright c© 2020 by ASME
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FIGURE 4. AVERAGE EXCESS FAILURE RATES
Shaded region shows the distribution for each condition, darker between
the 25th and 75th percentiles. Black dots show medians.

two types of uncertainty were being mixed together: 1) uncer-
tainty related to changes that were part of the design process,
and 2) uncertainty related to the range of possibilities the final
design might face. The conceptual merging of these meant that
designers who did not think they could account for the first type,
also thought they could not account for the second. For robust
optimization to be used in conceptual design, it must make clear
it is formulated for the second type.

Given that designers at this stage do not often conceptualize
this second type of uncertainty, how might they adopt robust op-
timization? Experimental participants in the robust Performance
Slider condition felt most like they “had a plan”; Gamma Slider
participants felt least like they had a plan. This implies that, for
non-expert users, the terminology of robust optimization (present
in Gamma Slider as the “Gamma” factor, but absent in Perfor-
mance Slider) may be a barrier to entry. However, the concept
of optimizing for uncertainty, present in both conditions, did not
seem to hinder understanding (using “felt like they had a plan” as
a proxy). For GPkit users trying robust optimization, we would
expect the transition to be eased by parallels between the con-
ceptualization of uncertainty in robust optimization and uncer-
tainty questions already asked later in the design process. The
Performance Slider condition is analogous to finding the most
robust design possible for a certain performance; the Gamma
Slider condition is analogous to finding the most performant de-
sign possible for a specific uncertainty set. The additional com-
plexity of design models in practice and the lack of GUI-based
abstraction may limit the generality of these results.
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FIGURE 5. AVERAGE EXCESS FUEL CONSUMPTION
Shaded region shows the distribution for each condition, darker between
the 25th and 75th percentiles. Black dots show medians.

5.2 RQ2: Formulation of Uncertainty
The current process of GPkit model creation does not en-

courage a rigorous formulation of uncertainty. Practitioners
discussed multiplying uncertain fixed variables with industry-
standard safety factors, but this method seemed more of a de-
fault practice rather than one engaged with a conceptualization
of uncertainty.

In our experiment, the Control condition had no formulation
of uncertainty, the Margin condition encapsulated uncertainty in
safety factors, and the robust optimization conditions encapsu-
lated uncertainty in relative standard deviations. Results showed
participants in Control and Margin were far worse at finding
Pareto optimal points than participants in robust optimization
conditions: 75% of robust optimization frontiers were better than
the median frontier of the other conditions. Additionally, for-
mulating uncertainty as a directly controllable variable seems to
have reduced the quantity of suboptimal designs explored.

In this simplified design challenge, the model’s formulation
was abstracted away from the participants. In practice, users of
GPkit would need to understand robust optimization well enough
to create these models on their own. While Robust was designed
to only require a small amount of additional code, the mathemat-
ical increase in understanding needed to create such syntax was
not accounted for within this study. It remains to be investigated
as a possible obstacle to usage of robust optimization in GPkit.

5.3 RQ3: Automated Design Processes
Our experiment was designed to represent both designers’

present design exploration processes and the potential processes
of robust optimization. Our failure rate simulation was meant to
mimic a designer testing their design, either through Monte Carlo
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simulation, more complex computational modeling, or proto-
type creation. In this study, this failure rate simulation formed
the “ground truth” of the participants involved; in practice, the
ground truth could not be so easily discovered at this stage. A
simulation similar to ours would serve as an early check in the
design process, rather than the final one.

Current design processes were emulated by the Control and
Margin conditions. Control emulated the process of manually
setting design parameters without use of optimization, as is com-
mon in conceptual aerospace design. Our results find that, while
it is possible to find high quality solutions this way, it is difficult
to do so consistently. Our Margins participants emulated the pro-
cess of specifying safety factors within an optimization frame-
work such as GPkit. Margins are not so flexibly set in practice.
Instead, they are generally fixed at an industry-standard value.
Similarly, simulations to check failure rates are more generally
performed after a solution has been decided upon, not during a
single designer’s rapid iteration through designs. Both the Mar-
gin and Control conditions of our experiment put current prac-
tices on a much faster timescale; caution should be taken equat-
ing these results with current design practices. The optimization
involved in Margin, as well as the ability to control uncertainty
parameters, led to higher quality designs than those of Control
participants, though Margin participants were still able to find
poor quality designs far away from the Pareto frontier.

Judging just by what participants saw on their screen, the
Control case had an easier time reaching the reward regions.
However, this is due to the method in which uncertainty is incor-
porated into the mathematical model—since the uncertain vari-
ables are directly modified to be in their worst case of the uncer-
tainty accounted for, the performance given by the model is the
performance under worst case conditions. We presented this per-
formance to participants to better simulate how designers would
view each tool. To be able to compare the underlying data how-
ever, we needed to “nominalize” the data, which meant rerun-
ning the model with optimized fixed design parameters with un-
certainty parameters set to the nominal values used by the Con-
trol condition. This workflow on the experimenter’s part implies
the need for an automated functionality to compare designs op-
timized for various conditions; practitioners also noted the need
to easily test performance on “off-design” cases.

The Gamma Slider and Performance Slider conditions
mimic two ways designers could use robust optimization to ex-
plore the design space, and the consistent quality of their Pareto
frontiers implies that the methods can produce a high likelihood
of Pareto optimality without requiring much skill. Given the
mathematical formulation of robust optimization, this is no sur-
prise. A random sample of conditions is an approximation of
the bounds robust optimization is designed to optimize for; the
failure rate returned by the random sample is a less accurate rep-
resentation of how much uncertainty is accounted for than the
robust optimization’s own parameter bounds. This turns the ex-

periment into a game of finding uncertainty parameters that over-
fit the controlled set of one hundred random samples. A designer
mimicking this process in practice would set the bounds of both
the Monte Carlo simulation and the uncertainty parameters of
robust optimization; however, a probabilistic simulation analy-
sis does not make sense if the designer can choose the space of
uncertainty optimized for. Robust optimization automates away
the mathematical necessity of performing Monte Carlo simula-
tions over direct design parameters.In practice, we would expect
Monte Carlo simulations to still be used to provide additional
legitimacy to designs for stakeholders with less familiarity with
robust optimization practices, and for uncertain parameters not
representable within a convex model.

Robust optimization’s most apparent advantage becomes
clearer later in the design process—the expressivity it provides
designers to build models that are detailed mirrors of their
project-specific conceptions of uncertainty. [34] However, this
potential benefit would require a change in how GPkit is used;
while some designers wanted to continuously update GPkit mod-
els as their designs proceeded past the conceptual stage, they
felt little ability or incentive to do so, as their coworkers usually
trusted more complex “high-fidelity” to be more legitimate.

Trust in GPkit models of various designs does need to be
built; not many designers would be willing to use the values de-
termined as optimal directly from a GPkit solve without first val-
idating the model in other software. However, late-stage GPkit
models have been able to accurately predict the performance of
an airplane prototype, such as with the Jungle Hawk Owl [35,36],
whose designers built a plane fully modelled in GPkit, and found
their built performance remarkably close to model estimates.
However, to encourage adoption of robust optimization in GP-
kit, improvements in design quality must be evident even at early
conceptual stages. This study provides evidence that robust opti-
mization can have a dramatic effect, even with a simple concep-
tual model.

6 CONCLUSION
This study provides evidence for the importance of account-

ing for uncertainty early in the design process. A lack of uncer-
tainty formulation within a design model can require external,
imperfect metrics of uncertainty testing, such as Monte Carlo
simulations, and the iteration modeling process is thus less likely
to produce high quality designs. Simple uncertainty formula-
tion within a design model, such as multiplying a variable by
a safety factor, can create overly conservative designs or make
worthwhile designs appear infeasible. However, most designers
do not know alternative methods of accounting for uncertainty, or
consider those methods to be impractical for conceptual design.

Robust optimization provides stronger protections against
uncertainty than safety factors, making it difficult for even in-
experienced users to create non-robust designs. This is seen

9 Copyright c© 2020 by ASME



through the high quality of almost all our experimental partici-
pants’ final designs relative to the combined Pareto frontier. We
also provide two conceptualizations of uncertainty GPkit users
could use robust optimization to represent. The first, represented
by Performance Slider, is optimizing for the largest scaled uncer-
tainty, creating an airplane that is as robust as possible for a par-
ticular performance. The second, represented by Gamma Slider,
is optimizing for performance, creating an airplane that main-
tains a particular level of robustness while spending little on fuel.
GPkit users who already consider uncertainty via Monte Carlo
simulations of their designs will find robust optimization essen-
tially automates the function of Monte Carlo simulation within
it, reducing the necessity of running additional simulations on
designs.

The human-subjects experiment was a game for novices, and
so does not allow us to draw conclusions about how designers in
practice might behave. However, even though robust optimiza-
tion uncertainty parameters were difficult to understand concep-
tually, this barrier did not prevent novice participants from find-
ing high quality solutions. The experiment also provides ques-
tions for future field studies: Do explicit formulations of uncer-
tainty enable better conversations about it during conceptual de-
sign? How do multiple stakeholders interact with these tools
and solutions to reach an agreement? Do the benefits found in
this study extend to more complex solutions? How difficult is it
for designers to transition from formulating uncertainty as safety
factors to skillfully using robust optimization? Answering these
questions will allow us to understand the potential of robust op-
timization as a method for accounting for uncertainty.
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