


for conventional texture-editing operations (see Fig. 1).

As in NeRF [28], we march a ray through each pixel,

regress volume density and radiance (using fully connected

MLPs) at sampled 3D shading points on the ray, accumu-

late the per-point radiance values to compute the final pixel

color. NeRF uses a single MLP to regress both density and

radiance in a 3D volume. While we retain this volumetric

density-based representation for geometry, NeuTex repre-

sents radiance in a 2D (UV) texture space. In particular, we

train a texture mapping MLP to regress a 2D UV coordi-

nate at every 3D point in the scene, and use another MLP

to regress radiance in the 2D texture space for any UV lo-

cation. Thus, given any 3D shading point in ray marching,

our network can obtain its radiance by sampling the recon-

structed neural texture at its mapped UV location.

Naively adding a texture mapping network to NeRF (and

supervising only with a rendering loss) leads to a degenerate

texture mapping that does not unwrap the surface and can-

not support texture editing (see Fig. 3). To ensure that the

estimated texture space reasonably represents the object’s

2D surface, we introduce a novel cycle consistency loss.

Specifically, we consider the shading points that contribute

predominantly to the pixel color along a given ray, and cor-

respond to the points either on or close to the surface. We

train an additional inverse mapping MLP to map the 2D

UV coordinates of these high-contribution points back to

their 3D locations. Introducing this inverse-mapping net-

work forces our model to learn a consistent mapping (sim-

ilar to a one-to-one correspondence) between the 2D UV

coordinates and the 3D points on the object surface. This

additionally regularizes the surface reasoning and texture

space discovery process. As can be seen in Fig. 1, our full

model recovers a reasonable texture space, that can support

realistic rendering similar to previous work while also al-

lowing for intuitive appearance editing.

Our technique can be incorporated into different volume

rendering frameworks. In addition to NeRF, we show that it

can be combined with Neural Reflectance Fields [4] to re-

construct BRDF parameters as 2D texture maps (see Fig. 6),

enabling both view synthesis and relighting.

Naturally, NeuTex is more constrained than a fully-

volumetric method; this leads to our final rendering quality

to be on par or slightly worse than NeRF [28]. Nonethe-

less, we demonstrate that our approach can still synthesize

photo-realistic images and significantly outperform both

traditional mesh-based reconstruction methods [39] and

previous neural rendering methods [41, 40]. Most impor-

tantly, our work is the first to recover a meaningful surface-

aware texture parameterization of a scene and enable sur-

face appearance editing applications (as in Fig. 1 and 5).

This, we believe, is an important step towards making neu-

ral rendering methods useful in 3D design workflows.

2. Related Work

Scene representations. Deep learning based methods have

explored various classical scene representations, includ-

ing volumes [18, 47, 35, 40], point clouds [34, 2, 45],

meshes [19, 46], depth maps [22, 17] and implicit func-

tions [9, 27, 29, 51]. However, most of them focus on ge-

ometry reconstruction and understanding and do not aim to

perform realistic image synthesis. We leverage volumetric

neural rendering [28, 4] for realistic rendering; our method

achieves higher rendering quality than other neural render-

ing methods [40, 41].

Mesh-based reconstruction and rendering. 3D polyg-

onal meshes are one of the most popular geometry rep-

resentations, widely used in 3D modeling and rendering

pipelines. Numerous traditional 3D reconstruction tech-

niques have been proposed to directly reconstruct a mesh

from multiple captured images, including structure from

motion [38], multi-view stereo [12, 21, 39], and surface

extraction [25, 20]. Recently, many deep learning based

methods [44, 50, 42, 7, 10] have also been proposed, im-

proving the reconstruction quality in many of these tech-

niques. In spite of these advances, it is still challenging to

reconstruct a mesh that can directly be used to synthesize

photo-realistic images. In fact, many image-based render-

ing techniques [6, 3, 15] have been presented to fix the ren-

dering artifacts from mesh reconstruction; however, they of-

ten leverage view-dependent texture maps [11], which can-

not be easily edited. We instead leverage volumetric neural

rendering to achieve realistic image synthesis; our approach

explicitly extracts surface appearance as view-independent

textures, just like standard textures used with meshes, al-

lowing for broad texture editing applications in 3D model-

ing and content generation.

Neural rendering. Recently, deep learning-based meth-

ods have proposed to ameliorate or completely bypass

mesh reconstruction to achieve realistic neural renderings

of real scenes for view synthesis [52, 48, 41, 40], relighting

[49, 32, 8], and many other image synthesis tasks [24]. In

particular, NeRF [28], Deep Reflectance Volumes [5] and

other relevant works [4, 23] model a scene using neural vol-

umetric representations (that encode geometry and appear-

ance) and leverage differentiable volume rendering [26] to

synthesize highly photo-realistic images. However, these

volume representations do not explicitly reason about the

2D surface of a scene and are essentially “black-box” func-

tions that cannot be easily modified after reconstruction. In

contrast, we introduce a novel neural scene representation

that offers direct access to the 2D surface appearance in vol-

umetric neural rendering. Our representation has disentan-

gled geometry and appearance components, and models ap-

pearance as a 2D neural texture in a auto-discovered texture
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ci of multiple shading points on the ray, as expressed by:

I =
∑

i

Ti(1− exp(−σiδi))ci, (1)

Ti = exp(−

i−1∑

j=1

σjδj), (2)

where i = 1, ..., N denotes the index of a shading point on

the ray, δi represents the distance between two consecutive

points, Ti is known as the transmittance, and ci and σi are

the volume density (extinction coefficient) and radiance at

shading point i. The above ray marching process is derived

as a discretization of a continuous volume rendering inte-

gral; for more details, please see previous work [26].

Radiance field. In the context of view synthesis, a general

volume scene representation can be seen as a 5D function

(i.e. a radiance field, as referred to by [28]):

Fσ,c : (x,d) → (σ, c), (3)

which outputs volume density and radiance (σ, c) given a

3D location x = (x, y, z) and viewing direction d = (θ, φ).
NeRF [28] proposes to use a single MLP network to rep-

resent Fσ,c as a neural radiance field and achieves photo-

realistic rendering results. Their single network encapsu-

lates the entire scene geometry and appearance as a whole;

however, this “bakes” the scene content into the trained net-

work, and does not allow for any applications (e.g., appear-

ance editing) beyond pure view synthesis.

Disentangling Fσ,c. In contrast, we propose explicitly de-

composing the radiance field Fσ,c into two components, Fσ

and Fc, modeling geometry and appearance, respectively:

Fσ : x → σ, Fc : (x,d) → c. (4)

In particular, Fσ regresses volume density (i.e., scene ge-

ometry), and Fc regresses radiance (i.e., scene appearance).

We model them as two independent networks.

Texture mapping. We further propose to model scene ap-

pearance in a 2D texture space that explains the object’s

2D surface appearance. We explicitly map a 3D point x =
(x, y, z) in a volume onto a 2D UV coordinate u = (u, v) in

a texture, and regress the radiance in the texture space given

2D UV coordinates and a viewing direction (u,d). We de-

scribe the 3D-to-2D mapping as a texture mapping function

Fuv and the radiance regression as a texture function Ftex:

Fuv : x → u, Ftex : (u,d) → c. (5)

Our appearance function Fc is thus a composition of the

two functions:

Fc(x,d) = Ftex(Fuv(x),d). (6)

Neural representation. In summary, our full radiance field

is a composition of three functions: a geometry function

Fσ , a texture mapping function Fuv, and a texture function

Ftex, given by:

(σ, c) = Fσ,c(x,d) = (Fσ(x), Ftex(Fuv(x),d)). (7)

We use three separate MLP networks for Fσ , Fuv and Ftex.

Unlike the black-box NeRF network, our representation has

disentangled geometry and appearance modules, and mod-

els appearance in a 2D texture space.

3.3. Texture space and inverse texture mapping

As described in Eqn. 5, our texture space is parameter-

ized by a 2D UV coordinate u = (u, v). While any con-

tinuous 2D topology can be used for the UV space in our

network, we use a 2D unit sphere for most results, where u

is interpreted as a point on the unit sphere.

Directly training the representation networks (Fσ , Fuv,

Ftex) with pure rendering supervision often leads to a highly

distorted texture space and degenerate cases where multiple

points map to the same UV coordinate, which is undesir-

able. The ideal goal is instead to uniformly map the 2D

surface onto the texture space and occupy the entire texture

space. To achieve this, we propose to jointly train an “in-

verse” texture mapping network F−1

uv that maps a 2D UV

coordinate u on the texture to a 3D point x in the volume:

F−1

uv : u → x. (8)

F−1

uv projects the 2D texture space onto a 2D manifold

(in 3D space). This inverse texture mapping allows us to

reason about the 2D surface of the scene (corresponding to

the inferred texture) and regularize the texture mapping pro-

cess. We leverage our texture mapping and inverse mapping

networks to build a cycle mapping (a one-to-one correspon-

dence) between the 2D object surface and the texture space,

leading to high-quality texture mapping.

3.4. Training neural texture mapping

We train our full network, consisting of Fσ , Ftex, Fuv,

and F−1

uv , from end to end, to simultaneously achieve sur-

face discovery, space mapping, and scene geometry and ap-

pearance inference.

Rendering loss. We directly use the ground truth pixel radi-

ance value Igt in the captured images to supervise our ren-

dered pixel radiance value I from ray marching (Eqn. 1).

The rendering loss for a pixel ray is given by:

Lrender = ‖Igt − I‖2
2
. (9)

This the main source of supervision in our system.

Cycle loss. Given any sampled shading point xi on a ray in

ray marching, our texture mapping network finds its UV ui
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texture in a automatically discovered texture space. We pro-

pose to jointly train a 3D-to-2D texture mapping network

and a 2D-to-3D inverse mapping network to achieve sur-

face reasoning and texture space discovery, using a surface-

aware cycle consistency loss. As demonstrated, our ap-

proach can discover a reasonable texture space that mean-

ingfully explains the object surface. Our method enables

flexible surface appearance editing applications for neural

volumetric rendering.
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proach to learning 3d surface generation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 216–224, 2018. 3, 5

[15] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,

George Drettakis, and Gabriel Brostow. Deep blending for

free-viewpoint image-based rendering. ACM Transactions

on Graphics (TOG), 37(6):1–15, 2018. 2

[16] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learn-

ing a neural 3d texture space from 2d exemplars. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8356–8364, 2020. 3

[17] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra

Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view

stereopsis. In CVPR, pages 2821–2830, 2018. 2

[18] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu

Fang. SurfaceNet: An end-to-end 3D neural network for

multiview stereopsis. In ICCV, pages 2307–2315, 2017. 2

[19] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and

Jitendra Malik. Learning category-specific mesh reconstruc-

tion from image collections. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 371–

386, 2018. 2, 3

[20] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.

Poisson surface reconstruction. In Proceedings of the

fourth Eurographics symposium on Geometry processing,

volume 7, 2006. 1, 2

[21] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape

by space carving. ICCV, 38(3):199–218, 2000. 2

[22] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.

Learning depth from single monocular images using deep

convolutional neural fields. IEEE transactions on pattern

analysis and machine intelligence, 38(10):2024–2039, 2015.

2

[23] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. Advances in

Neural Information Processing Systems, 33, 2020. 2

[24] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-

umes: Learning dynamic renderable volumes from images.

arXiv preprint arXiv:1906.07751, 2019. 2

[25] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. ACM

siggraph computer graphics, 21(4):163–169, 1987. 2

[26] Nelson Max. Optical models for direct volume rendering.

IEEE Transactions on Visualization and Computer Graphics,

1(2):99–108, 1995. 2, 4

9



[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. arXiv preprint

arXiv:1812.03828, 2018. 2

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. arXiv preprint arXiv:2003.08934, 2020. 1, 2, 3, 4, 5,

6

[29] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. In

CVPR, pages 3504–3515, 2020. 2

[30] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo

Strauss, and Andreas Geiger. Texture fields: Learning tex-

ture representations in function space. In Proceedings of the

IEEE International Conference on Computer Vision, pages

4531–4540, 2019. 3

[31] Michael Oechsle, Michael Niemeyer, Lars Mescheder, Thilo

Strauss, and Andreas Geiger. Learning implicit surface light

fields. arXiv preprint arXiv:2003.12406, 2020. 3
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