NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

Fanbo Xiang!, Zexiang Xu?, Milo§ Ha$an?, Yannick Hold-Geoffroy?, Kalyan Sunkavalli?, Hao Su!

! University of California, San Diego
2 Adobe Research

Abstract

Recent work [28, 5] has demonstrated that volumetric
scene representations combined with differentiable volume
rendering can enable photo-realistic rendering for chal-
lenging scenes that mesh reconstruction fails on. How-
ever, these methods entangle geometry and appearance
in a “black-box” volume that cannot be edited. In-
stead, we present an approach that explicitly disentangles
geometry—represented as a continuous 3D volume—from
appearance—represented as a continuous 2D texture map.
We achieve this by introducing a 3D-to-2D texture mapping
(or surface parameterization) network into volumetric rep-
resentations. We constrain this texture mapping network us-
ing an additional 2D-to-3D inverse mapping network and
a novel cycle consistency loss to make 3D surface points
map to 2D texture points that map back to the original 3D
points. We demonstrate that this representation can be re-
constructed using only multi-view image supervision and
generates high-quality rendering results. More importantly,
by separating geometry and texture, we allow users to edit
appearance by simply editing 2D texture maps.

1. Introduction

Capturing and modeling real scenes from image inputs
is an extensively studied problem in vision and graphics.
One crucial goal of this task is to avoid the tedious manual
3D modeling process and directly provide a renderable and
editable 3D model that can be used for realistic rendering
in applications, like e-commerce, VR and AR. Traditional
3D reconstruction methods [38, 39, 20] usually reconstruct
objects as meshes. Meshes are widely used in rendering
pipelines; they are typically combined with mapped textures
for appearance editing in 3D modeling pipelines.

However, mesh-based reconstruction is particularly chal-
lenging and often cannot synthesize highly realistic images

Research partially done When F. Xiang was an intern at Adobe Re-
search.

o) Hh

f) &=
"")':’?&"—"’— -:-:-a-cé:E:'E R
A NN
Figure 1. NeuTex is a neural scene representation that represents
geometry as a 3D volume but appearance as a 2D neural texture in
an automatically discovered texture UV space, shown as a cube-
map in (e). NeuTex can synthesize highly realistic images (b) that
are very close to the ground-truth (a). Moreover, it enables intu-
itive surface appearance editing directly in the 2D texture space;
we show an example of this in (c), by using a new texture (f) to
modulate the reconstructed texture. Our discovered texture map-
ping covers the object surface uniformly, as illustrated in (d), by
rendering the object using a uniform checkerboard texture (g).

for complex objects. Recently, various neural scene rep-
resentations have been presented to address this scene ac-
quisition task. Arguably the best visual quality is obtained
by approaches like NeRF [28] and Deep Reflectance Vol-
umes [5] that leverage differentiable volume rendering (ray
marching). However, these volume-based methods do not
(explicitly) reason about the object’s surface and entangle
both geometry and appearance in a volume-encoding neural
network. This does not allow for easy editing—as is possi-
ble with a texture mapped mesh—and significantly limits
the practicality of these neural rendering approaches.

Our goal is to make volumetric neural reconstruction
more practical by enabling both realistic image synthesis
and flexible surface appearance editing. To this end, we
present NeuTex—an approach that explicitly disentangles
scene geometry from appearance. NeuTex represents geom-
etry with a volumetric representation (similar to NeRF) but
represents surface appearance using 2D texture maps. This
allows us to leverage differentiable volume rendering to re-
construct the scene from multi-view images, while allowing

for conventional texture-editing operations (see Fig. 1).

As in NeRF [28], we march a ray through each pixel,
regress volume density and radiance (using fully connected
MLPs) at sampled 3D shading points on the ray, accumu-
late the per-point radiance values to compute the final pixel
color. NeRF uses a single MLP to regress both density and
radiance in a 3D volume. While we retain this volumetric
density-based representation for geometry, NeuTex repre-
sents radiance in a 2D (UV) texture space. In particular, we
train a texture mapping MLP to regress a 2D UV coordi-
nate at every 3D point in the scene, and use another MLP
to regress radiance in the 2D texture space for any UV lo-
cation. Thus, given any 3D shading point in ray marching,
our network can obtain its radiance by sampling the recon-
structed neural texture at its mapped UV location.

Naively adding a texture mapping network to NeRF (and
supervising only with a rendering loss) leads to a degenerate
texture mapping that does not unwrap the surface and can-
not support texture editing (see Fig. 3). To ensure that the
estimated texture space reasonably represents the object’s
2D surface, we introduce a novel cycle consistency loss.
Specifically, we consider the shading points that contribute
predominantly to the pixel color along a given ray, and cor-
respond to the points either on or close to the surface. We
train an additional inverse mapping MLP to map the 2D
UV coordinates of these high-contribution points back to
their 3D locations. Introducing this inverse-mapping net-
work forces our model to learn a consistent mapping (sim-
ilar to a one-to-one correspondence) between the 2D UV
coordinates and the 3D points on the object surface. This
additionally regularizes the surface reasoning and texture
space discovery process. As can be seen in Fig. 1, our full
model recovers a reasonable texture space, that can support
realistic rendering similar to previous work while also al-
lowing for intuitive appearance editing.

Our technique can be incorporated into different volume
rendering frameworks. In addition to NeRF, we show that it
can be combined with Neural Reflectance Fields [4] to re-
construct BRDF parameters as 2D texture maps (see Fig. 0),
enabling both view synthesis and relighting.

Naturally, NeuTex is more constrained than a fully-
volumetric method; this leads to our final rendering quality
to be on par or slightly worse than NeRF [28]. Nonethe-
less, we demonstrate that our approach can still synthesize
photo-realistic images and significantly outperform both
traditional mesh-based reconstruction methods [39] and
previous neural rendering methods [41, 40]. Most impor-
tantly, our work is the first to recover a meaningful surface-
aware texture parameterization of a scene and enable sur-
face appearance editing applications (as in Fig. 1 and 5).
This, we believe, is an important step towards making neu-
ral rendering methods useful in 3D design workflows.

2. Related Work

Scene representations. Deep learning based methods have
explored various classical scene representations, includ-
ing volumes [18, 47, 35, 40], point clouds [34, 2, 45],
meshes [19, 46], depth maps [22, 17] and implicit func-
tions [9, 27, 29, 51]. However, most of them focus on ge-
ometry reconstruction and understanding and do not aim to
perform realistic image synthesis. We leverage volumetric
neural rendering [28, 4] for realistic rendering; our method
achieves higher rendering quality than other neural render-
ing methods [40, 41].

Mesh-based reconstruction and rendering. 3D polyg-
onal meshes are one of the most popular geometry rep-
resentations, widely used in 3D modeling and rendering
pipelines. Numerous traditional 3D reconstruction tech-
niques have been proposed to directly reconstruct a mesh
from multiple captured images, including structure from
motion [38], multi-view stereo [12, 21, 39], and surface
extraction [25, 20]. Recently, many deep learning based
methods [44, 50, 42, 7, 10] have also been proposed, im-
proving the reconstruction quality in many of these tech-
niques. In spite of these advances, it is still challenging to
reconstruct a mesh that can directly be used to synthesize
photo-realistic images. In fact, many image-based render-
ing techniques [0, 3, 15] have been presented to fix the ren-
dering artifacts from mesh reconstruction; however, they of-
ten leverage view-dependent texture maps [| 1], which can-
not be easily edited. We instead leverage volumetric neural
rendering to achieve realistic image synthesis; our approach
explicitly extracts surface appearance as view-independent
textures, just like standard textures used with meshes, al-
lowing for broad texture editing applications in 3D model-
ing and content generation.

Neural rendering. Recently, deep learning-based meth-
ods have proposed to ameliorate or completely bypass
mesh reconstruction to achieve realistic neural renderings
of real scenes for view synthesis [52, 48, 41, 40], relighting
[49, 32, 8], and many other image synthesis tasks [24]. In
particular, NeRF [28], Deep Reflectance Volumes [5] and
other relevant works [4, 23] model a scene using neural vol-
umetric representations (that encode geometry and appear-
ance) and leverage differentiable volume rendering [26] to
synthesize highly photo-realistic images. However, these
volume representations do not explicitly reason about the
2D surface of a scene and are essentially “black-box” func-
tions that cannot be easily modified after reconstruction. In
contrast, we introduce a novel neural scene representation
that offers direct access to the 2D surface appearance in vol-
umetric neural rendering. Our representation has disentan-
gled geometry and appearance components, and models ap-
pearance as a 2D neural texture in a auto-discovered texture

7)

Figure 2. Overview. We present a disentangled neural representation consisting of multiple MLPs for neural volumetric rendering. As in
NeRF [28], for geometry we use an MLP (4) F, to regress volume density o at any 3D point x = (z,y, 2). In contrast, for appearance,
we use a texture mapping MLP (1) F,, to map 3D points to 2D texture UVs, u = (u, v), and a texture network (3) Fix to regress the 2D
view-dependent radiance in the UV space given a UV u and a viewing direction d = (6, ¢). One regressed texture (for a fixed viewing
direction) is shown in (5). We also train an inverse mapping MLP (2) F,;;* that maps UVs back to 3D points. We leverage a cycle loss
(Eqn. 12) to ensure consistency between the 3D-to-2D mapping Fyy and the 2D-to-3D F,! mapping at points on the object surface. This
enables meaningful surface reasoning and texture space discovery, as illustrated by (6, 7). We demonstrate the meaningfulness of the UV
space learned by Fyy, (6) by rendering the object with a uniform checkerboard texture. We also show the result of the inverse mapping
network (7) by uniformly sampling UVs in the texture space and unprojecting them to 3D using F,; !, resulting in a reasonable mesh.

space. Unlike previous volumetric neural rendering meth-
ods, this allows for easy texture/appearance editing.

Learning textures. Texture mapping is a standard tech-
nique widely used with meshes. Here, surface appearance is
represented by a 2D texture image and a 3D-to-2D mapping
from every mesh vertex to the texture space. Textures can
be easily controlled and edited by artists as needed to cre-
ate diversities of scene appearance. Recently, many deep
learning based methods leverage texture-based techniques
to model geometry or appearance in a scene [16, 14, 43].
Many works learn a 2D texture for a mesh by assuming
a known mesh template [19, 37, 13], focusing on recon-
struction problems for specific object categories. Our ap-
proach works for arbitrary shapes, and we instead learn a
2D texture in a volume rendering framework, discovering
a 2D surface in the 3D volume space. Thies et al. [43]
optimize neural textures to do rendering for a known fixed
mesh with given UV mapping. In contrast, our approach si-
multaneously reconstructs the scene geometry as a volume,
discovers a 2D texture UV space, and regresses a neural
texture in the self-discovered texture space. Other meth-
ods learn appearance by regressing colors directly from 3D
points [30, 31], which requires a known mesh and does not
provide a 2D UV space necessary for texture editing.

AtlasNet [14] and follow-up work [33] train neural net-
works to map 2D UV coordinates into 3D locations (like an
inverse texture mapping), modeling an object 2D surface as
an unwrapped atlas. These works focus on learning gen-
eralized geometry representations, and cannot be directly
applied to arbitrary shapes or used for realistic rendering.
Our network instead discovers a cycle mapping between a
2D texture space and a 3D volume, learning both a texture
mapping and an inverse mapping. We leverage differen-
tiable volume rendering to model scene appearance from

captured images for realistic rendering. We also show that
our neural texture mapping, supervised using a rendering
loss and a cycle mapping loss, can discover a more uniform
surface than a simple AtlasNet, supervised by a noisy point
cloud from COLMAP [39] (see Fig. 7).

3. Neural Texture Mapping
3.1. Overview

We now present the NeuTex scene representation and
demonstrate how to use it in the context of volumetric neu-
ral rendering. While NeuTex can enable disentangled scene
modeling and texture mapping for different acquisition and
rendering tasks, in this section, we demonstrate its view
synthesis capabilities with NeRF [28]. An extension to re-
flectance fields (with [4]) is discussed in Sec. 5.4.

As shown in Fig. 2, our method is composed of four
learned components: F,, Fiey, Fyy and F;!. Unlike NeRF,
which uses a single MLP, NeuTex uses a disentangled neu-
ral representation consisting of three sub-networks, which
encode scene geometry (F,), a texture mapping function
(Fuy), and a 2D texture (Fiex) respectively (Sec. 3.2). In ad-
dition, we use an inverse texture mapping network (1) to
ensure that the discovered texture space reasonably explains
the scene surfaces (Sec. 3.3). We introduce a cycle mapping
loss to regularize the texture mapping and inverse mapping
networks, and use a rendering loss to train our neural model
end-to-end to regress realistic images (Sec. 3.4).

3.2. Disentangled neural scene representation

Volume rendering. Volume rendering requires volume
density o and radiance c at all 3D locations in a scene. A
pixel’s radiance value (RGB color) I is computed by march-
ing a ray from the pixel and aggregating the radiance values

c; of multiple shading points on the ray, as expressed by:

I=>) Ti(1-exp(—0id;))c;, (1)

! 1—1
T; = exp(— Y _ 06), 2)
j=1

where ¢ = 1, ..., N denotes the index of a shading point on
the ray, §; represents the distance between two consecutive
points, 7; is known as the transmittance, and c; and o; are
the volume density (extinction coefficient) and radiance at
shading point 7. The above ray marching process is derived
as a discretization of a continuous volume rendering inte-
gral; for more details, please see previous work [26].

Radiance field. In the context of view synthesis, a general
volume scene representation can be seen as a 5D function
(i.e. a radiance field, as referred to by [28]):

Fye: (x,d) = (0,c), 3)

which outputs volume density and radiance (o, c) given a
3D location x = (z,y, z) and viewing directiond = (6, ¢).
NeRF [28] proposes to use a single MLP network to rep-
resent F, . as a neural radiance field and achieves photo-
realistic rendering results. Their single network encapsu-
lates the entire scene geometry and appearance as a whole;
however, this “bakes” the scene content into the trained net-
work, and does not allow for any applications (e.g., appear-
ance editing) beyond pure view synthesis.

Disentangling F, .. In contrast, we propose explicitly de-
composing the radiance field F}; . into two components, I,
and F., modeling geometry and appearance, respectively:

F,:x— o, F.: (x,d) —c. (@)

In particular, F, regresses volume density (i.e., scene ge-
ometry), and F, regresses radiance (i.e., scene appearance).
We model them as two independent networks.

Texture mapping. We further propose to model scene ap-
pearance in a 2D texture space that explains the object’s
2D surface appearance. We explicitly map a 3D point x =
(z,y, z) in a volume onto a 2D UV coordinate u = (u, v) in
a texture, and regress the radiance in the texture space given
2D UV coordinates and a viewing direction (u, d). We de-
scribe the 3D-to-2D mapping as a texture mapping function
F,y and the radiance regression as a texture function Fiey:

Fy:x—u, Fiex : (u,d) — c. 5)

Our appearance function F, is thus a composition of the
two functions:

Fe (X, d) = ECX(FUV(X)? d) (6)

Neural representation. In summary, our full radiance field
is a composition of three functions: a geometry function
F,, a texture mapping function F,, and a texture function
Fiex, given by:

(0,¢) = Freo(x,d) = (Fp(x), Flex(Fuv(x),d)). (7)

We use three separate MLP networks for F;, Fy, and Fie.
Unlike the black-box NeRF network, our representation has
disentangled geometry and appearance modules, and mod-
els appearance in a 2D texture space.

3.3. Texture space and inverse texture mapping

As described in Eqn. 5, our texture space is parameter-
ized by a 2D UV coordinate u = (u,v). While any con-
tinuous 2D topology can be used for the UV space in our
network, we use a 2D unit sphere for most results, where u
is interpreted as a point on the unit sphere.

Directly training the representation networks (Fy, Fyy,
Fiex) with pure rendering supervision often leads to a highly
distorted texture space and degenerate cases where multiple
points map to the same UV coordinate, which is undesir-
able. The ideal goal is instead to uniformly map the 2D
surface onto the texture space and occupy the entire texture
space. To achieve this, we propose to jointly train an “in-
verse” texture mapping network F,! that maps a 2D UV
coordinate u on the texture to a 3D point x in the volume:

Fliu—x ®)

F,! projects the 2D texture space onto a 2D manifold
(in 3D space). This inverse texture mapping allows us to
reason about the 2D surface of the scene (corresponding to
the inferred texture) and regularize the texture mapping pro-
cess. We leverage our texture mapping and inverse mapping
networks to build a cycle mapping (a one-to-one correspon-
dence) between the 2D object surface and the texture space,
leading to high-quality texture mapping.

3.4. Training neural texture mapping

We train our full network, consisting of F,, Fiex, Fuv,
and Fujl, from end to end, to simultaneously achieve sur-
face discovery, space mapping, and scene geometry and ap-

pearance inference.

Rendering loss. We directly use the ground truth pixel radi-
ance value I in the captured images to supervise our ren-
dered pixel radiance value I from ray marching (Eqn. 1).
The rendering loss for a pixel ray is given by:

2
Lrender = ||Igl - IH2 (9)
This the main source of supervision in our system.

Cycle loss. Given any sampled shading point x; on a ray in
ray marching, our texture mapping network finds its UV u;

No Inverse
Network (d)

Trivial Init +
Cycle Loss (c)

Pointcloud Init +
Cycle Loss (b)

Capture (a)

Figure 3. A checkerboard texture applied to scenes (a). When
trained with or without initialization using coarse point cloud (b,c),
the learned texture space is relatively uniform compared to trained
without F..! and cycle loss (d).

in texture space for radiance regression. We use the inverse
mapping network to map this UV u; back to the 3D space:
x; = F ' (Fuv(x3)). (10)
We propose to minimize the difference between x| and x;
to enforce a cycle mapping between the texture and world
spaces (and force F;;* to learn the inverse of Fy).
However, it is unnecessary and unreasonable to enforce
a cycle mapping at any 3D point. We only expect a corre-
spondence between the texture space and points on the 2D
surface of the scene; enforcing the cycle mapping in the
empty space away from the surface is meaningless. We ex-
pect 3D points near the scene surface to have high contribu-
tions to the radiance. Therefore, we leverage the radiance
contribution weights per shading point to weigh our cycle
loss. Specifically, we consider the weight:

w; = Tj(1 — exp(—040;)), (11)

which determines the contribution to the final pixel color for
each shading point ¢ in the ray marching equation 1. Equa-
tion 1 can be simply written as I = >, w;c;. This contri-
bution weight w; naturally expresses how close a point is to
the surface, and has been previously used for depth infer-
ence [28]. Our cycle loss for a single ray is given by:

Leyae =) wil Py (B (i) =3 (12)

Mask loss. We also additionally provide a loss to super-
vise a foreground-background mask. Basically, the trans-
mittance (Eqn. 2) of the the last shading point T’y on a pixel
ray indicates if the pixel is part of the background. We use
the ground truth mask My per pixel to supervise this by

Lmask - ||Mgt - (1 - TN)”% (13)

We found this mask loss is necessary when viewpoints do
not cover the object entirely. In such cases, the network can
use the volume density to darken (when the background is
black) renderings and fake some shading effects that should
be in the texture. When the view coverage is dense enough
around an object, this mask loss is often optional.

Full loss. Our full loss function L during training is:
L = Lender + a1 Lcycle + a2 Linask- (14)

We use a; = 1 for all our scenes in our experiments. We
use as = 1 for most scenes, except for those that already
have good view coverage, where we remove the mask loss
by setting ag = 0.

4. Implementation Details
4.1. Network details
All four sub-networks, F.,, Fix, Fuy, and F 51, are de-

uv

signed as MLP networks. We use unit vectors to repre-
sent viewing direction d and UV coordinate u (for spherical
UV). As proposed by NeRF, we use positional encoding to
infer high-frequency geometry and appearance details. In
particular, we apply positional encoding for our geometry
network F,; and texture network Fix on all their input com-
ponents including x, u and d. On the other hand, since the
texture mapping is expected to be smooth and uniform, we
do not apply positional encoding on the two mapping net-
works. Please refer to the supplemental materials for the
detailed architecture of our networks.

4.2. Training details

Before training, we normalize the scene space to the unit
box. When generating rays, we sample shading points on
each pixel ray inside the box. For all our experiments, we
use stratified sampling (uniform sampling with local jitter-
ing) to sample 256 point on each ray for ray marching. For
each iteration, we randomly select a batch size of 600 to
800 pixels (depending on GPU memory usage) from an in-
put image; we take 2/3 pixels from the foreground and 1/3
pixels from the background.

Our inverse mapping network F ! maps the 2D UV
space to a 3D surface, which is functionally similar to Atlas-
Net [14] and can be trained as such, if geometry is available.
We thus initialize F;;* with a point cloud from COLMAP
[39] using a Chamfer loss. However, since the MVS point
cloud is often very noisy, this Chamfer loss is only used dur-
ing this initialization phase. We find this initialization facil-
itates training, though our network still works without it for
most cases (see Fig. 3). Usually, this AtlasNet-style initial-
ization is very sensitive to the MVS reconstruction noise
and leads to a highly non-uniform mapping surface. How-
ever, we find that our final inverse mapping network can

GT Ours

NeRF SRN

DeepVoxels

Colmap

Figure 4. Comparisons on DTU scenes. Note how visually close our method is to the state-of-the-art, while enabling editing.

Method PSNR SSIM
SRN [41] 26.05 0.837
DeepVoxels [40] | 20.85 0.702
Colmap [39] 24.63 0.865
NeRF[28] 30.73 0.938
Ours 28.23 0.894

Table 1. Average PSNR/SSIM for novel view synthesis on 4 held-
out views on 5 DTU scenes. See supplementary for full table.

output a much smoother surface as shown in Fig. 7, after
jointly training with our rendering and cycle losses.
Specifically, we initially train our method using a Cham-
fer loss together with a rendering loss for 50,000 iterations.
Then, we remove the Chamfer loss and train with our full
loss (Eqn. 14) until convergence, after around 500,000 it-
erations. Finally, we fine-tune our texture network Fix un-
til convergence, freezing the other networks (F,, Fyy and
F b, which is useful to get better texture details. The
whole process takes 2-3 days on a single RTX 2080Ti GPU.

5. Results

We now show experimental results of our method and
comparisons against previous methods on real scenes.

5.1. Configuration

We demonstrate our method on real scenes from differ-
ent sources, including five scenes from the DTU dataset [1]
(Fig. 1, 4, 5), two scenes from Neural Reflectance Fields
[4] obtained from the authors (Fig. 6), and three scenes cap-
tured by ourselves (Fig. 5). Each DTU scene contains either
49 or 64 input images from multiple viewpoints. Each scene
from [4] contains about 300 images. Our own scenes each
contain about 100 images. For our own data, we capture the
images using a held-hanld cellphone and use the structure
from motion implementation in COLMAP [38] for cam-

era calibration. For other scenes, we directly use the pro-
vided camera calibration in the dataset. Since our method
focuses on the capture and surface discovery of objects, we
require the input images to have a clean, easily segmentable
background. We use U2Net [36] to automatically compute
masks for our own scenes. For the DTU scenes, we use
the background masks provided by [51]. The images from
[4] are captured under a single flash light, which already
have very dark background; thus we do not apply additional
masks for these images.

5.2. View synthesis results on DTU scenes

We now evaluate and compare our view synthesis re-
sults on five DTU scenes. In particular, we compare with
NeRF [28], two previous neural rendering methods, SRN
[41] and DeepVoxels [40], and one classical mesh recon-
struction method COLMAP [39]. We use the released code
from their authors to generate the results for all the com-
parison methods. For COLMAP, we skip the structure from
motion, since we already have the provided camera cali-
bration from the dataset. We hold-out 4 random views as
testing views from the original 49 or 64 input views and run
all methods on the remaining images for reconstruction.

We show qualitative visual comparisons on zoomed-in
crops of testing images of two DTU scenes in Fig. 4 (the
other scenes are shown in supplementary materials), and
quantitative comparison results of the averaged PSNRs and
SSIMs on the testing images across five scenes in Tab. 1.
Our method achieves high-quality view synthesis results as
reflected by our rendered images being close to the ground
truth and also our high PSNRs and SSIMs. Note that
NeuTex enables automatic texture mapping that none of
the other comparison methods can do. Even a traditional
mesh-based method like COLMAP [39] needs additional
techniques or tools to unwrap its surface for texture map-
ping, whereas our method unwraps the surface into a tex-

‘

M &

Checkerboard (c)

) ¢

Input (a) NeuTex Render (b)

vl

Cubemap (d)

w
- ;'\
e
L

Edited Cubemap (g)

Texture Edit View 1 (e) Texture Edit View 2 (f)

Figure 5. Texture editing on DTU (rows 1-2) and our (rows 3-5) scenes. Since our neural texture (Fix) depends on a view direction, we
show the cubemap texture (d) with pixelwise maximum values across views. Each texture is edited by multiplying a new specified texture;
the resulting texture is shown in (g). The images rendered with the edited textures are shown from two different views in (e) and (f).

ture while doing reconstruction in a unsupervised way. To
achieve this challenging task, NeuTex is designed in a more
constrained way than NeRF. As a result, our rendering qual-
ity is quantitatively slightly worse than NeRF. Nonetheless,
as shown in Fig. 4, our rendered results are realistic, re-
produce many high-frequency details and qualitatively look
very close to NeRF’s results.

In fact, our results are significantly better than all other
comparison methods, including both mesh-based recon-
struction [39] and previous neural rendering methods [40,

] in both qualitative and quantitative comparisons. In par-
ticular, COLMAP [38] can reconstruct reasonable shapes,
but it cannot recover accurate texture details and intrinsi-
cally lacks view-dependent appearance effects (due to the
Lambertian materials assumption). DeepVoxels [40] lever-
ages a non-physically-based module for geometry and oc-
clusion inference. While this works well on scenes that
have hundreds of input images, it does not work well on
DTU scenes that have only about 40 to 60 images, lead-
ing to incorrect shapes and serious artifacts in their re-
sults. SRN [41], on the other hand, can reproduce rea-
sonable shape in the rendering; however it cannot gener-
ate high-frequency appearance details like our method. Our
approach is based on physically-based volume rendering,
which models scene geometry and appearance accurately,
leading to photo-realistic rendering results. More impor-

tantly, our approach achieves texture mapping and enables
surface appearance editing in a 2D texture space that it au-
tomatically discovered, which cannot be done by NeRF nor
any other previous neural rendering approaches.

5.3. Texture mapping and appearance editing

We now demonstrate our unique results on texture map-
ping and texture-space appearance editing that previous
neural rendering approaches cannot achieve. Figure 5
shows such results on diverse real objects of DTU scenes
and our own captured scenes. Our method can synthe-
size realistic view synthesis results (Fig. 5.b) that are very
close to the ground truth. In addition, our method success-
fully unwraps the object surface into a reasonable texture
(Fig. 5.d); the discovered texture space meaningfully ex-
presses the 2D surface and distributes uniformly, as illus-
trated by the checkerboard rendering shown in Fig. 5.c.

Texture editing. Our high-quality texture mapping en-
ables flexible appearance editing applications as shown in
Fig. 5.e-g. In these examples, we show that we can use a
specified full texture map to modulate the original texture,
which entirely changes the object appearance. For exam-
ple, the object in the 1st row is interestingly changed from a
stone-like object to a wooden one. We also demonstrate that
we can locally modify the texture to add certain patterns on

Input (a) NeuTex Render (b) Checkerboard (c)

Cubemap (d)

Texture Edit View 1 (e) Texture Edit View 2 (f) Edited Cubemap (g)

Figure 6. NeuTex in reflectance fields setting. We edit captured diffuse albedo (d) as shown in (g) to produce results shown in (e,f).

Figure 7. Our parametric surface (F,,,') is strongly affected by
noise in the COLMAP point cloud when trained with a Chamfer
loss (center). Finetuning with our cycle and rendering losses with-
out point cloud supervision (right) gives a smoother surface.

the object surface, such as the CVPR logo, the numbers, and
the star in the last three rows. Note that, all our appearance
editing is directly done in the texture space, which changes
the essential surface appearance and naturally appears con-
sistent across multiple view points, as shown in the rendered
images from two different views in Fig. 5.e and f. Our Neu-
Tex successfully disentangles the geometry and appearance
of real objects and model the surface appearance in a mean-
ingful texture space that explains the surface.

Inverse mapping. We further demonstrate the role of our
inverse mapping network F ! in discovering this reason-
able texture space. When we remove F;! from our network
and train the system with only the rendering loss, the result
always leads to a degenerate texture mapping, where large
regions of 3D points are mapped to the same UV coordi-
nates, as illustrated by the checkerboard-texture rendering
shown in Fig. 3. In contrast, our full network with the cy-
cle loss generally discovers a uniform space. As described
in Sec. 4.2, we initialize our inverse network using a point
cloud with a Chamfer loss; this is done mainly to help the
network converges quickly to a reasonable stage. In Fig. 3,
we also show that our inverse network can still function well
even without the point cloud initialization, using only the
cycle loss. Note that, our initial point clouds come from
an MVS reconstruction [39], which contains a lot of noise,
leading to a noisy surface out of F;! as shown in Fig. 7.

To prevent a degradation in the surface texture quality, we
remove the supervision on this initial point cloud after ini-
tialization. Instead, our cycle loss can continue improving
the noisy initialization and let the inverse mapping network
F,! discover a smooth surface as shown in Fig. 7.

5.4. Extension to reflectance fields

NeuTex can be incorporated into different volume ren-
dering pipelines. We now discuss combining it with the
recent Neural Reflectance Fields [5, 4] that reconstructs
BRDFs in volume rendering from flash images.

Instead of directly outputting radiance c, [4] regresses
normal n and reflectance parameters r at each shading
point, and introduces a reflectance-aware volume rendering
that computes radiance from these shading properties under
given viewing and lighting condition. We correspondingly
modify our geometry network F,, to jointly regress volume
density and normal, and change the texture regression net-
work Fix to regress the reflectance parameters in the texture
space. Our central texture mapping and inverse mapping
networks remain the same for this case. The modified net-
work naturally provides the required volume properties in
the reflectance-aware volume rendering process.

We show that our neural texture mapping can enable
high-quality BRDF texture extraction in this setting in Fig. 6
on the two scenes from [4]. Our approach achieves realistic
rendering (Fig. 6.b) that reproduces the original appearance,
discovers a reasonably uniform texture space (Fig. 6.c), suc-
cessfully unwraps the surface BRDFs into this space (as
shown by the albedo maps in Fig. 6.d), and enables realistic
rendering with BRDF editing in the texture space (Fig. 6.e-
g). These results demonstrate the generality of our neural
texture mapping framework and inspire potential future ap-
plications of our technique on other neural rendering tasks.

6. Conclusion

We have presented a novel approach that enables texture
mapping in neural volumetric rendering. We introduce a
novel disentangled neural scene representation that models
geometry as a 3D volume and models appearance as a 2D

texture in a automatically discovered texture space. We pro-
pose to jointly train a 3D-to-2D texture mapping network
and a 2D-to-3D inverse mapping network to achieve sur-
face reasoning and texture space discovery, using a surface-

aware cycle consistency loss.

As demonstrated, our ap-

proach can discover a reasonable texture space that mean-
ingfully explains the object surface. Our method enables
flexible surface appearance editing applications for neural
volumetric rendering.

Acknowledgement This research was supported by gifts
from Adobe, Kwai, and Qualcomm.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Henrik Aan@s, Rasmus Ramsbgl Jensen, George Vogiatzis,
Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. International Journal of Computer
Vision, 120(2):153-168, 2016. 6

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In ICML, pages 40-49, 2018. 2
Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi.
Patch-based optimization for image-based texture mapping.
ACM Transaction on Graphics, 36(4):106-1, 2017. 2

Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
Kalyan Sunkavalli, Milo§ HaSan, Yannick Hold-Geoffroy,
David Kriegman, and Ravi Ramamoorthi. Neural re-
flectance fields for appearance acquisition. arXiv preprint
arXiv:2008.03824, 2020. 2, 3, 6, 8

Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Milo§ Hasan, Yan-
nick Hold-Geoffroy, David Kriegman, and Ravi Ramamoor-
thi. Deep reflectance volumes: Relightable reconstruc-
tions from multi-view photometric images. arXiv preprint
arXiv:2007.09892,2020. 1,2, 8

Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In SIGGRAPH, pages 425-432. ACM, 2001. 2

Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based
multi-view stereo network. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1538—-1547,
2019. 2

Zhang Chen, Anpei Chen, Guli Zhang, Chengyuan Wang,
Yu Ji, Kiriakos N. Kutulakos, and Jingyi Yu. A neural ren-
dering framework for free-viewpoint relighting. In CVPR,
June 2020. 2

Zhigin Chen and Hao Zhang.
fields for generative shape modeling.
arXiv:1812.02822,2018. 2

Shuo Cheng, Zexiang Xu, Shilin Zhu, Zhuwen Li, Li Erran
Li, Ravi Ramamoorthi, and Hao Su. Deep stereo using adap-
tive thin volume representation with uncertainty awareness.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2524-2534, 2020. 2
Paul Debevec, Yizhou Yu, and George Borshukov. Effi-
cient view-dependent image-based rendering with projective

Learning implicit
arXiv preprint

(12]

(13]

(14]

[15]

(16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

texture-mapping. In Rendering Techniques’ 98, pages 105—
116. Springer, 1998. 2

Yasutaka Furukawa and Jean Ponce. Accurate, dense, and
robust multiview stereopsis. IEEE transactions on pattern
analysis and machine intelligence, 32(8):1362-1376, 2009.
2

Shubham Goel, Angjoo Kanazawa, and Jitendra Malik.
Shape and viewpoint without keypoints. arXiv preprint
arXiv:2007.10982, 2020. 3

Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-maché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216-224, 2018. 3, 5

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (TOG), 37(6):1-15, 2018. 2

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learn-
ing a neural 3d texture space from 2d exemplars. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8356-8364, 2020. 3

Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view
stereopsis. In CVPR, pages 2821-2830, 2018. 2

Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu
Fang. SurfaceNet: An end-to-end 3D neural network for
multiview stereopsis. In ICCV, pages 2307-2315, 2017. 2
Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 371—
386,2018. 2,3

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006. 1, 2

Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. ICCV, 38(3):199-218, 2000. 2

Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. [EEE transactions on pattern
analysis and machine intelligence, 38(10):2024-2039, 2015.
2

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances in
Neural Information Processing Systems, 33, 2020. 2
Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv preprint arXiv:1906.07751, 2019. 2

William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163-169, 1987. 2
Nelson Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99-108, 1995. 2, 4

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. arXiv preprint
arXiv:1812.03828, 2018. 2

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. arXiv preprint arXiv:2003.08934, 2020. 1, 2, 3,4, 5,
6

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, pages 3504-3515, 2020. 2

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4531-4540, 2019. 3

Michael Oechsle, Michael Niemeyer, Lars Mescheder, Thilo
Strauss, and Andreas Geiger. Learning implicit surface light
fields. arXiv preprint arXiv:2003.12406, 2020. 3

Julien Philip, Michaél Gharbi, Tinghui Zhou, Alexei A
Efros, and George Drettakis. Multi-view relighting using a
geometry-aware network. ACM Transactions on Graphics,
38(4):1-14, 2019. 2

Omid Poursaced, Matthew Fisher, Noam Aigerman, and
Vladimir G Kim. Coupling explicit and implicit surface
representations for generative 3d modeling. arXiv preprint
arXiv:2007.10294, 2, 2020. 3

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652—-660,
2017. 2

Charles R Qi, Hao Su, Matthias Niener, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view cnns for object classification on 3d data. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5648-5656, 2016. 2

Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-
hghan, Osmar Zaiane, and Martin Jagersand. U2-net: Going
deeper with nested u-structure for salient object detection.
Pattern Recognition, 106:107404, 2020. 6

Shunsuke Saito, Lingyu Wei, Liwen Hu, Koki Nagano, and
Hao Li. Photorealistic facial texture inference using deep
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5144—
5153,2017. 3

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1, 2,
6,7

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 1,2,3,5,6,7, 8

10

(40]

[41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(50]

(51]

(52]

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
NieBner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3D feature embeddings. In
CVPR, pages 2437-2446, 2019. 2, 6,7

Vincent Sitzmann, Michael Zollhofer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances in
Neural Information Processing Systems, pages 1119-1130,
2019. 2,6,7

Chengzhou Tang and Ping Tan. Ba-net: Dense bundle ad-
justment network. arXiv preprint arXiv:1806.04807, 2018.
2

Justus Thies, Michael Zollhofer, and Matthias Niener. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Transactions on Graphics (TOG), 38(4):1-12,
2019. 3

Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia
Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. Sfm-
net: Learning of structure and motion from video. arXiv
preprint arXiv:1704.07804, 2017. 2

Jinglu Wang, Bo Sun, and Yan Lu. Mvpnet: Multi-view
point regression networks for 3D object reconstruction from
a single image. arXiv preprint arXiv:1811.09410, 2018. 2
Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 52-67,
2018. 2

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912-1920, 2015. 2

Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao
Su, and Ravi Ramamoorthi. Deep view synthesis from
sparse photometric images. ACM Transactions on Graphics,
38(4):76, 2019. 2

Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi
Ramamoorthi. Deep image-based relighting from optimal
sparse samples. ACM Transactions on Graphics, 37(4):126,
2018. 2

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 767-783, 2018. 2

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. Advances in Neural Information Processing Sys-
tems, 33, 2020. 2,6

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view
synthesis using multiplane images. ACM Transactions on
Graphics, 37(4):1-12, 2018. 2

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering
Supplementary Material

Fanbo Xiang!, Zexiang Xu?, Milo§ Ha$an?, Yannick Hold-Geoffroy?, Kalyan Sunkavalli?, Hao Su!

! University of California, San Diego
2 Adobe Research

1. Cube map Clarification

We briefly clarify our texture visualization (with cube-
maps) used in our main paper. As discussed in Sec. 3.3 in
the paper, we use spherical UVs for our texture mapping,
where u represents a point on the surface a unit sphere.
For all the figures in the main paper, we use cubemaps [1]
to visualize the spherical domain. A cubemap consists of
sixes faces of a unit box, recording all the color information
projected from a unit sphere (as shown in Fig 1), which is
widely used in graphics for spherical mapping. An alter-
native standard way to visualize a spherical function is to
use a equirectangle map. We show the correspondence be-
tween a cube map and a equirectangle map in Fig. 2. We
use cubemaps in the paper since they involve less distor-
tion, avoiding the distorted regions in the top and bottom of
equirectangle maps.

Figure 1. Cube map projection. The color at each point on the unit
sphere is projected to a point on the cube centered at the origin. A
cubemap is obtained by “opening up” the cube.

2. Network Implementation Details
2.1. Network structure

We show the detailed network architecture for
F,,F,,, F!and F,., in Figure 3.

uv

Figure 2. Cube maps on the second row corresponds to the
equirectangle maps on the first row. They are different projections
of the same spherical texture. A cubemap has a smaller distortion
on the Y direction.

2.2, Training details in initialization

Here we describe in detail how we do the initialization
stage mentioned in Sec 4.2. in the paper. Given a point
cloud from Colmap, we first downsample it to one with
2,000-3,000 points. We denote this point cloud as Py;. We
then sample 2,500 points uniformly in the UV space (the
unit sphere). We denote the set of UV coordinates as P.

Chamfer loss. The Chamfer loss is simply the Cham-
fer distance between F,}! (P) and Py, where F,,} (P) cor-
responds to the point cloud generated by inverse-mapping
very UV in P to the 3D space using the network F, 1.

Lehamter = Chamfer(F,.} (P), P,;)

Inverse loss. We also leverage a loss that is similar to our
cycle loss to let the initialization also influence the texture
mapping network Fy,. In particular, instead of the 3D-to-
2D-to-3D cycle mapping used the cycle loss in Eqn. 12 of
the paper, we leverage a 2D-to-3D-to-2D cycle mapping in
the initialization, given by:

LcycleZ = ||qu(F_1(P)) - PH%

uv

256 {256 3256 256 —»{256 256

—>256—>256—>256—>256—>256 g

7(x)
60
x u
128|128 128—>u I—512—>512—>512—>X
-1
F, F
u
3
() 256 {256 {256 —»{256 —»{256 {256 --»256 {256 {256 —»{256 {256 -> “+->»cC
60 A
i el o e e e
— |3
3 a)
B
H 36
i
|
Fte:c
D Input I:I Network Layer --» Copy —» Linear + RelLU Softplus —» Tanh

Figure 3. Network structure for the 4 networks. x represents 3D coordinates. ~ denotes positional encoding. u represents texture-space
points (3D points on the unit sphere). d represents a 3D unit vector for viewing direction. ¢ is predicted volumetric density. ¢ is predicted

radiance.

Rendering and mask loss. The same rendering and
mask loss as described in section 4.1 are also applied in the
initialization stage. So the loss at initialization stage is

Linit = Lehamfer + aLcycleZ + bLrender + CLmask

where we set @ = 100, b = ¢ = 1.

3. Additional Results

3.1. Full quantitative comparison

We have shown the averaged quantitative results across
five DTU scenes in Tab. 1 of the paper. Detailed compar-
isons on individual scenes are provided in Table 1. Similar

to the average scores, though slightly worse than NeRF, our
method significantly outperforms other traditional and neu-
ral rendering methods.

3.2. Additional visual results

Figure 4 shows the visual comparison of different meth-
ods on the remaining 2 DTU scenes. Figure 5 shows ad-
ditional texture editing results. Please refer to the attached
video for more results on view synthesis and editing.

References

[1] Ned Greene. Environment mapping and other applications of
world projections. IEEE Computer Graphics and Applica-

(2]

(3]

[4

—_

(5]

55 83 114 118 122
Method PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
SRN[5] 21.35 0.673 | 28.68 0.929 | 23.75 0.808 | 28.74 0.900 | 27.75 0.877
DeepVoxels[4] | 17.21 0.532 | 23.76 0.858 | 17.97 0.606 | 23.18 0.764 | 22.12 0.748
Colmap[3] 21.25 0.784 | 27.11 0.921 | 20.69 0.809 | 27.43 0.907 | 26.66 0.905
NeRF[2] 26.78 0913 | 31.77 0952 | 27.38 0.918 | 33.98 0.954 | 33.72 0.955
Ours 22.67 0.808 | 30.61 0.931 | 2645 0.891 | 30.67 0.916 | 30.75 0.925

Table 1. PSNR/SSIM for novel view synthesis quality on 4 held-out views on 5 DTU scenes.

GT Ours

NeRF

SRN

Figure 4. Comparison on the remaining DTU scenes.

Input (a) NeuTex Render (b) Checkerboard (c) Cubemap (d)

Figure 5. Additional texture editing on DTU scenes.

tions, 6(11):21-29, 1986. 1

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. arXiv preprint arXiv:2003.08934, 2020. 3

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for unstruc-
tured multi-view stereo. In European Conference on Com-
puter Vision (ECCV), 2016. 3

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
NieBner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3D feature embeddings. In CVPR,
pages 2437-2446, 2019. 3

Vincent Sitzmann, Michael Zollhofer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In Advances in Neural
Information Processing Systems, pages 1119-1130, 2019. 3

Texture Edit View 1 (e)

Texture Edit View 2 (f)

Edited Cubemap (g)

