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ABSTRACT

BBR is a new congestion control algorithm and is seeing increased
adoption especially for video traffic. BBR solves the bufferbloat
problem in legacy loss-based congestion control algorithms where
application performance drops considerably when router buffers
are deep. BBR regulates traffic such that router queues don’t build
up to avoid the bufferbloat problem while still maintaining high
throughput. However, our analysis shows that video applications
experience significantly poor performance when using BBR under
deep buffers. In fact, we find that video traffic sees inflated latencies
because of long queues at the router, ultimately degrading video
performance. To understand this dichotomy, we study the inter-
action between BBR and DASH video. Our investigation reveals
that BBR under deep buffers and high network burstiness severely
overestimates available bandwidth and does not converge to steady
state, both of which results in BBR sending substantially more data
into the network, causing a queue buildup. This elevated packet
sending rate under BBR is ultimately caused by the router’s ability
to absorb bursts in traffic, which destabilizes BBR’s bandwidth esti-
mation and overrides BBR’s expected logic for exiting the startup
phase. We design a new bandwidth estimation algorithm and apply
it to BBR (and a still-unreleased, newer version of BBR called BBR2).
Our modified BBR and BBR2 both see significantly improved video
QoE even under deep buffers.

CCS CONCEPTS

» Networks — Transport protocols; Network performance anal-
ysis; Network measurement.

ACM Reference Format:

Santiago Vargas[1], Rebecca Drucker[1], Aiswarya Renganathan, Aruna
Balasubramanian, and Anshul Gandhi. 2021. BBR Bufferbloat in DASH
Video. In Proceedings of the Web Conference 2021 (WWW °21), April 19—
23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3442381.3450061

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450061

Rebecca Drucker”
Stony Brook University

rdrucker@cs.stonybrook.edu

Aiswarya Renganathan
Stony Brook University
USA
arenganathan@cs.stonybrook.edu

Anshul Gandhi
Stony Brook University
USA
anshul@cs.stonybrook.edu

1 INTRODUCTION

BBR (Bottleneck Bandwidth and RTT) [8] is a relatively new con-
gestion control algorithm which is seeing surging adoption in prac-
tice. Recent reports suggest that 40% of Internet traffic now uses
BBR [33]. BBR is especially popular for video applications and
is adopted by popular video streaming services like YouTube [7].
Given the prevalence of video traffic (accounting for 60.6% of total
downstream traffic worldwide [44] in 2019) and the adoption of BBR
as the primary congestion control algorithm for video, it is critical
to understand the impact of BBR on video Quality of Experience
(QoE). Unfortunately, given its recency, BBR is not as well-studied
as other congestion control algorithms, especially in the context of
video traffic.

In this paper, we provide an in-depth characterization of video
QoE under BBR. To this end, we study how video performance is
affected by the combination of congestion control algorithms and
router configurations for different HTTP versions, video streaming
algorithms, and network conditions. We especially focus on router
configurations because the end hosts do not have control over how
routers are configured, but the router configuration can severely
affect the performance of congestion control algorithms, and in-
turn the end application.

Congestion control algorithms critically impact application per-
formance by regulating the amount of traffic to be sent on the
network without causing congestion at the routers. The most pop-
ular congestion control algorithm, Cubic [33], uses packet loss to
infer that routers are congested and regulates traffic accordingly.
However, under deep buffers (since packet losses are limited), Cubic
fails to infer congestion [6], resulting in inflated packet latencies and
poor application performance, a condition known as bufferbloat [13].
BBR is designed specifically to address the problem of bufferbloat
by not using losses to infer congestion but instead estimating the
network’s bandwidth delay product, BDP, and regulating its send-
ing rate to maximize throughput while attempting to maintain BDP
worth of packets in flight, irrespective of the size of the buffer.

Surprisingly, we find that DASH video under BBR performs
poorly when router buffers are large, significantly affecting video
QoE, including quality and stall rate. For example, even for moderate
router buffer sizes of 3MB, video QoE drops by over 50% when using
BBR, compared to shallow buffers. This buffer size corresponds to
9% BDP in our experiments, and studies show that router buffers
are typically 10x to 30x BDP [27]. We find, via controlled and
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WAN (Wide Area Networks) experiments, that this poor video
performance for BBR persists under large buffers across various
network configurations, HT TP versions, and video algorithms.

We also study the video performance of BBR2 [37-39], a newer
version of BBR that is still unreleased but is designed to address
some of the drawbacks of BBR (see Section 2). We find that BBR2
performs slightly better than BBR, but video QoE still drops sharply
as buffer size increases. Cubic also performs poorly under deep
buffers, but this is a well known, Cubic-specific problem [24].

The question, then, is why does BBR, designed specifically to
overcome bufferbloat and be agnostic to router buffer sizes, perform
poorly when buffer sizes are large? We make three observations.
(1) We find that BBR’s latencies are elevated, showing that it is

indeed bufferbloat that is causing poor video QoE. In other
words, even though BBR is designed to only maintain BDP
number of outstanding packets, more packets are filling up in
the buffer and inflating latencies.

(2) We find that BBR sends many more packets into the network be-
cause BBR severely overestimates the bandwidth when stream-
ing video under deep buffers. In our experiments with deep
buffers, BBR overestimates bandwidth by over 3X, resulting
in a much larger estimated BDP, and consequently sending
excessive packets into the network.

(3) Under deep buffers, BBR and BBR2 spend a larger fraction of
time in the initial STARTUP phase where packets are sent more
indiscriminately compared to the steady state. For example,
BBR2 spends 32% of its time in the STARTUP phase under deep
buffers compared to less than 1% when the router buffers are
shallow.

To identify the root cause of this bandwidth overestimation and
extended stay in the STARTUP phase, we carefully investigate the
impact of various configuration settings on video QoE. We find
that BBR’s elevated packet sending rate is ultimately caused by
the router’s ability to absorb bursts in traffic, which destabilizes
BBR’s bandwidth estimation and overrides BBR’s expected logic
for exiting the STARTUP phase. The bursty video traffic pattern of
DASH further exacerbates this issue.

We address this root cause by modifying the BBR source code to
improve its bandwidth estimation in the presence of temporary but
artificially high bandwidth availability at routers. By accounting
for potential outliers in BBR’s moving window of bandwidth obser-
vations, we provide a more faithful bandwidth estimate. We modify
both BBR and BBR2’s bandwidth estimation. Using our new band-
width estimation, video QoE improves significantly—the quality
increases from under 4 to over 9 where max quality is 10, and the
stall rate reduces from over 0.7 to 0. Our new bandwidth estimation
is simple, easy-to-implement, and has the potential to solve the
critical problem of bufferbloat, while retaining the benefits of BBR.

2 BACKGROUND

This section provides an overview of adaptive video streaming,
followed by a brief description of BBR and BBR2 congestion control
algorithms, which are the focus of our study.

Video Streaming: Video is the dominant traffic type throughout
the Internet. In 2019, video accounted for 60.6% of total down-
stream volume worldwide [44]. The number of US users watching
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live video on Facebook has increased 50% since January 2020 [47].
Due to the lockdown effects of COVID-19, the popularity of video
streaming has only gone up [50]. It is estimated that by the end of
2020, the number of online streaming users in US will surpass 240
million [54].

Much of this video traffic is delivered by HTTP-based adaptive
streaming protocols such as Dynamic Adaptive Streaming over
HTTP, or DASH [51]. In particular, DASH is an international In-
ternet video streaming standard that is supported by large video
streaming providers, including YouTube and Netflix [21]. In DASH,
the web server hosts video files, which are segments of equal length
encoded in multiple bitrates, along with a manifest file describing
the segments and their bitrates. In general, a higher bitrate provides
better video quality, but results in a higher file size. When a stream-
ing session is started on the client, a DASH video client first learns
about the available bitrates by downloading the manifest file. The
client then downloads video segments with the goal of providing
the best QoFE for the end-user. The video QoE is often defined in
terms of features such as video quality and rebuffering time [5].

Adaptive Bitrate (ABR) algorithms: To choose between the dif-
ferent segment bitrates, a client uses an ABR algorithm that dynam-
ically decides the bitrate for subsequent segments with the goal
of providing the highest Quality-of-Experience (QoE) to the end-
user [5]. These ABR algorithms use network and/or player signals
like available bandwidth estimates and player buffer occupancy to
select the quality of future segments.

To maximize QoE under DASH, various ABR algorithms have
been proposed, such as DYNAMIC [48], BOLA [49], Festive [25],
Rate-Based (RB), and BBA [22]. Each of these algorithms uses differ-
ent signals to choose the next segment quality—BOLA runs online
optimizations using buffer occupancy, Festive uses the throughput
of the last 5 segments, Rate-Based uses throughput estimation from
the most recent segment download, DYNAMIC uses both buffer
occupancy and throughput estimation, and BBA aims to keep a
minimum buffer occupancy range, gradating quality based on this
minimum.

While we experiment with all five of the aforementioned ABR al-
gorithms in this paper, we primarily employ the recent DYNAMIC [438]
ABR algorithm, which is the default algorithm used in the dash.js
reference client [11]. DYNAMIC uses a simple throughput-based
ABR algorithm, THROUGHPUT, when the client buffer level is low
(including at startup) and dynamically switches to BOLA, another
ABR algorithm, when the buffer level is high. THROUGHPUT [48]
first estimates the network throughput using a sliding-window
approach, and then picks the highest bitrate that can be accom-
modated (with a small safety factor) by the estimated bandwidth.
BOLA [49] is an online ABR algorithm with provable optimality
guarantees that makes ABR decisions based on buffer levels to max-
imize QoE. The reasoning here is that throughput-based ABR has
superior performance when the buffer is low or empty, whereas
BOLA performs better when the buffer levels are large.

BBR: Online video streaming requires both high throughput and
low latency for optimal QoE. While ABR algorithms can adjust to
underlying network conditions, the network performance is also
dictated by the lower-level TCP protocol.
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Figure 1: The state diagram for BBR’s congestion control algorithm
showing the four modes of operation.

TCP aims to achieve the maximum throughput by having a send
buffer whose size is approximately the bandwidth delay product
(BDP) between the sender and the receiver. To deal with network
congestion, traditional TCP algorithms enforce congestion control
based on packet losses; when there is packet loss, TCP assumes
that there is congestion and backs off to a lower transmission rate.
However, when there is a large buffer at a network device, the packet
loss detection can be significantly delayed, leading to bufferbloat -
TCP overestimating the BDP and sending larger bursts of packets
that fill up the deep buffers, resulting in high delays [13, 59].

In 2016, Google released the BBR (Bottleneck Bandwidth and
Round-trip propagation time) congestion control algorithm [8],
which attempts to operate at the network’s optimal operating
point [26] by maximizing achieved bandwidth while minimizing
delay. To avoid bufferbloat, the amount of in-flight packets under
BBR is a small multiple of the bandwidth-delay product (BDP); ide-
ally, this should result in low buffer occupancy and, consequently,
low delays. Since its release, BBR has been widely adopted by many
online services around the world [33], and is in use in Google’s B4
network as well as in YouTube video servers [8].

BBR works by operating in 4 modes, as shown in Figure 1:
STARTUP, DRAIN, PROBE_BW, and PROBE_RTT. BBR starts in
the STARTUP mode, where the goal is to quickly estimate available
bandwidth. As in prior congestion control algorithms, BBR doubles
its sending rate with each round trip until the measured bandwidth
does not increase further; at this point, BBR is assumed to have
reached the bottleneck bandwidth and thus exits the STARTUP
mode. To drain the queue created during STARTUP, BBR enters
DRAIN mode and temporarily reduces its pacing_gain. BBR then
enters the PROBE_BW mode where it maintains steady state but
periodically probes for more available bandwidth. To estimate avail-
able bandwidth, in PROBE_BW, BBR continuously samples the
achieved bandwidth and uses the maximum over a moving window
as its BWest [36]. Finally, BBR occasionally enters the PROBE_RTT
mode to check the propagation delay and update its estimates of
RTT (MinRTT). In PROBE_RTT, the congestion window size (cwnd)
is reduced to 4 packets to drain any possible bottleneck queue, to
obtain accurate RTT measurements.

BBR2: Despite its success, BBR has a few well documented short-
comings [6, 18, 23, 45, 52], including its inability to actively respond
to losses, its unfair exploitation of available bandwidth when co-
existing with other flows, the high retransmission rate in shallow
buffers, and the severely low throughput in the PROBE_RTT mode.
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Figure 3: Illustration of our WAN testbed topology.

To address these shortcomings, Google introduced BBR2, which is
still being evolved with ongoing improvements [37-39]. While not
yet in production, we do employ BBR2 in our experiments for the
sake of completeness. The major changes from BBR to BBR2 include
improved (fair) coexistence with loss-based TCPs, much lower loss
rates under shallow buffers, and greatly minimized throughput
reduction in PROBE_RTT mode. While BBR2 does not react to in-
dividual packet losses, BBR2 does attempt to maintain a maximum
packet loss rate before reducing its sending rate.

3 EXPERIMENTAL SETUP

Our goal is to characterize the performance of video applications
under different TCP variants and router configurations. To this
end, we measure video QoE across different HTTP versions, video
streaming/ABR algorithms, network conditions, and router config-
urations. We consider three TCP variants in our experiments: BBR,
BBR2, and Cubic (the default TCP variant used in Linux). In all, our
study involved around 700 experiments.

3.1 Device and Network Setup

There are a large number of confounding network and end-host
parameters that affect video QoE. To isolate the effect of these
different factors, we run controlled experiments. We validate our
findings through WAN experiments.

Network topology. For the controlled experiments, we connect
a video client and a video server through a router. The client and
server are run on Ubuntu 18.04 host machines. The machines are
connected in a dumbbell topology, as shown in Figure 2, through
a Linksys WRT1900ACS router with OpenWRT 19.07.1 installed.
We simulate the bottleneck link and vary router configurations
directly at the router. Setting network conditions at the router, as
opposed to at the client or server, avoids interfering with TCP Small
Queues [2, 10] and allows for more accurate and realistic control
of bandwidth and RTT constraints [6].

Network and router configurations. We experiment with two dif-
ferent network conditions: a short real world RTT of 10ms and a
larger RTT of 100ms. In both cases, we set the bandwidth to 25Mbps,
as this bandwidth is sufficient to support our highest-quality video
segments. We use the Linux utility TC (traffic control) NetEm [17]
to impose delays and regulate bandwidth. We note that we do not
explicitly set a loss rate; losses occur due to buffer overflow at
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the router based on our router configuration, as is the case in the
real-world.

When sending or receiving packets, a typical end host applica-
tion encounters various router buffer configurations (that it has no
control over) that have different effects on the application perfor-
mance. We study this by varying two of the most common router
parameters: Limit or Buffer Size, and Burst. Limit/Buffer Size de-
fines the amount of data that the router buffer can hold before
dropping packets, and burst is the maximum amount of traffic a
router can process above the connection bandwidth limit. Both
of these parameters are typically regulated using a token bucket
filter [1]. The token bucket controls the rate at which packets may
be sent by generating tokens at the specified bandwidth. A packet
size cannot be sent out until enough tokens have been generated,
commensurate to the packet size, and excess tokens are stored up
to the specified burst size for future packet transmissions. We vary
the burst parameter from 8KB to 2MB, based on configurations
reported in prior work [12], and we vary the buffer size from 10KB
to 100MB. Modern technologies like DOCSIS 3.1 support bursts in
excess of 30MB for 1Gbps links [55, 56]; this roughly translates to
a 1MB burst for our 25Mbps link. Unless specified otherwise, we
present results when using a burst size of 1MB.

WAN setup. To validate our findings from the controlled exper-
iments, we also experiment with a long-distance WAN network
(over commodity links) with the server hosted in Northeast US
and the client located at least 2,000 miles away from Northeast
US, resulting in average RTT of around 200ms. Our WAN network
topology is illustrated in Figure 3. We set the bandwidth for this
network to 25Mbps via our router (using TC); we verified that our
router, with the 25Mbps limit, is indeed the bottleneck rate limiter
in this network.

3.2 Video and Protocol Setup

Video player. We run our video experiments using the dash.js
reference client [11], an open source JavaScript DASH video player,
in Google Chrome v80. All experiments use the 10-minute 4K video
Big Buck Bunny [43] as it is the reference video for dash.js. We
encode this video using ffmpeg 2.7.6 to 11 video quality levels,
1mbps to 25mbps (4K) in intervals of 2.5mbps; we set the fimpeg
configuration parameters (minrate, maxrate, and bufsize) to en-
sure minimal segment size variance. GPAC MB4Box [3] creates
the DASH metadata and video files from the encoded videos us-
ing 5-second segments (resulting in 127 total segments), similar to
previous work and industry recommendations [9, 31].

We experiment with different popular ABR algorithms, includ-
ing DYNAMIC [48], which is the default algorithm used in dash.js,
BOLA [49], Festive [25], BBA [22], and RB which is a rate-based
algorithm; see Section 2 for details on these ABR algorithms. We bor-
row the open source implementations of these ABR algorithms [30].
In the default case, we show results when using DYNAMIC.

Client, server, and network protocols. The client machine uses the
dash.js reference client, but is enhanced to collect additional statis-
tics. We serve video segments using an nginx static web server [40].
The web server is configured to use HTTP/1.1 or HTTP/2. We set
congestion control on the server side, and experiment with Cubic,
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BBR, and BBR2. Since BBR2 is still unreleased in the Linux kernel,
we install BBR2 as a congestion control by following Google’s in-
structions to recompile the Linux kernel with BBR2 source code [14].

BBR is used by default across all experiments unless otherwise spec-
ified.

3.3 Metrics

We measure video QoE using two metrics: average segment quality
and stall rate. Average segment quality of downloaded segments
ranges from 0 to 10 (11 bitrate levels). Stall rate is computed as
follows:

total playback time — video length

Stall Rate = , (1)

video length

where a stall rate larger than 0 implies that a user experiences re-
buffering. Both metrics are critical to user experience since stream-
ing high quality videos with stalls is not ideal, whereas streaming
lower quality videos will result in poor user experience even if
there are no stalls [5]. Note that the average segment quality for
a video is averaged over the quality of all downloaded video seg-
ments (127 segments, in case of the reference video we employ in
our experiments). Apart from the QoE metrics, for analysis, we also
collect other video metrics, including the video buffer level and
ABR estimated throughput.

At the server side, for analysis, we collect TCP statistics including
the smoothed RTT (or sRTT), throughput, loss rate, and delivery
rates. The smoothed RTT is a weighted moving average of the
current RTT experienced by a connection [42]. We also collect BBR-
specific statistics including BBR’s bandwidth estimate and mode of
operation, as described in Section 2.

4 VIDEO QOE UNDER DEEP BUFFERS

In this section, we present our experimental results characterizing
the Quality of Experience (QoE) of video streaming under various
router configurations and for the TCP variants of BBR, BBR2, and
Cubic. We make the surprising observation that video QoE dete-
riorates substantially under deep buffers, even for BBR and BBR2
that are designed specifically to overcome the problems arising
from deep buffers. This QoE deterioration extends across varying
network conditions, HTTP variants, and ABR algorithms.

4.1 Video QoE under deep and shallow buffers

We start by empirically comparing the QoE under BBR and BBR2
with that of loss-based congestion control, specifically Cubic, in
the LAN setting described above. We note that Cubic is the default
congestion control algorithm in Linux and also the dominant TCP
variant used in the Internet [33].

Figures 4 and 5 show the QoE of Cubic, BBR, and BBR2 for vary-
ing bottleneck buffer sizes under a 100ms RTT; these experiments
used HTTP/2 and are averaged over 10 runs.

Under deeper buffers (corresponding to 9 BDP and above), we
find that the video QoE suffers significantly. For example, for a 10MB
buffer size, the average segment quality is lower than 5 (compared
to the highest achievable quality of 10) for all TCP variants. The
corresponding stall rate for BBR is at least 0.75, implying that the
video took 75% longer to play back compared to its size. Studies
show that router buffers are typically 10x to 30x BDP [27] for similar
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Figure 4: Average Segment Quality across bottleneck buffer sizes for Cubic, BBR, and BBR2. As the bottleneck buffer size increases, the video
quality reduces even though BBR and BBR2 are explicitly designed to work well under bufferbloat.
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Figure 5: Average Stall Rate across bottleneck buffer sizes for Cubic, BBR, and BBR2. Similarly to average quality (Figure 4), under deep buffers,

the stall rate increases.

100ms RTT conditions, so these setups are fairly common in the
Internet.

While BBR2 performs better than BBR in terms of quality under
3MB and 5MB buffers, the attained segment quality is still signif-
icantly lower than the achievable quality of 10, as is the case for
smaller buffer sizes. We discuss possible reasons for the improved
performance of BBR2, compared to BBR, in Section 7.2.

Poor performance under deep buffers may be expected from
legacy congestion control algorithms (such as Cubic) due to the
downsides of using loss as a congestion signal. However, BBR and
BBR2 are designed to keep router queues small with their mecha-
nisms of estimating BDP at runtime and using packet pacing. How-
ever, they still experience poor performance under deep buffers.

When the bottleneck buffer is very small (10KB buffer, corre-
sponding to 0.01BDP), Figure 4 shows that the segment quality
is close to zero under Cubic with a very high stall rate of 1 (as
seen in Figure 5). This is because the shallow buffer induces severe
losses, resulting in low throughput for Cubic [6]. In contrast, BBR
and BBR?2, as intended, are both able to perform well since they

do not directly react to individual losses. Slightly larger bottleneck
buffers (100KB and 1MB) allow for improved QoE for all congestion
controls (quality near 10 and a 0 stall rate) due to connections not
being buffer limited.

4.2 Video QoE under different protocols and
network conditions

Our experimental results in the previous subsection were obtained
under HTTP/2 as the application layer protocol with a 100 ms RTT.
For completeness, we also experiment with HTTP/1.1 and a 10 ms
RTT in addition to a 100 ms RTT. Our results under these conditions
are tabulated in Table 1; we report the QoE values averaged across
five runs.

Our results are consistent across protocols and network condi-
tions; video QoE continues to be poor under deep buffers (10MB).
Under deep buffers, the quality is roughly 1 point higher for the 10
ms RTT than the 100 ms RTT for both BBR and BBR2. The QoE
under shallow buffers (100KB) continues to be near-ideal.
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RTT | Buffer Size | BBR Version | Avg. Quality | Stall Rate
10 100KB BBR 9.86 0
10 100KB BBR2 9.86 0
10 10MB BBR 4.51 0.11
10 10MB BBR2 5.25 0.08
100 100KB BBR 9.85 0
100 100KB BBR2 9.85 0
100 10MB BBR 3.75 0.14
100 10MB BBR2 3.68 0.24

Table 1: Average quality and stall rate for HTTP/1.1 video runs un-
der 10ms and 100ms RTTs, shallow and deep buffers, and BBR and
BBR2. QoE is low under deep buffers regardless of HTTP version or
RTT.
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Figure 6: Video QoE under deep and shallow buffers in a WAN.
The client and server are located at two different continents with
roughly 200ms RTT. As before, we see the video QoE in terms of
quality is poor under deep buffer conditions compared to shallow
buffer condition.

4.3 Video QoE in Wide Area Network

The aforementioned results were obtained under our controlled
LAN environment. We now verify our findings under our WAN
network that has larger RTTs (see Section 3.1 for details on our
network setup).

Figure 6 shows our results for the WAN network. We see that
video QoE is poor under deep buffers of 10MB (=16BDP) compared
to bottleneck router buffer size of 100KB (= 0.16DP) for BBR and
BBR2; the quality drops from around 10 to under 5. Interestingly,
Cubic performs relatively poorly under both buffer conditions. Un-
der shallow buffer, Cubic suffers large losses, and under deep buffer,
Cubic sees bufferbloat due to RTT inflation. Thus, video QoE met-
rics continue to suffer under a deep buffer in the WAN network as
well.

4.4 Video QoE under different ABR algorithms

A natural question that arises based on our observations from
Section 4.1 is whether the drop in QoE under deep buffers is a
result of specific artifacts in the default ABR algorithm used by the
reference dash.js player. To explore this possibility, we repeat the
experiments under different ABR algorithms (see Section 3.2 for
details on the algorithms).

Figure 7 shows the difference in QoE between a smaller (100KB)
and larger (10MB) bottleneck buffer under different ABR algorithms.
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Figure 8: CDF of the RTTs estimated by BBR under shallow buffer
(100KB) and deep buffer (10MB). Under deep buffers, RTTs are much
higher than the propagation delay (100ms), indicating that packets
experience large queueing delays. This is not the case in shallow
buffers.

The change in QoE is shown as a percentage difference for quality
and as an absolute increase for stall rate. Overall, we see that video
QOE continues to suffer under a large buffer. One group of ABRs,
BBA and BOLA, experiences a near 50% decrease in quality along
with a small increase in stall rate. The second group of ABRs, Festive
and Rate-Based (RB), maintains high quality (less that 20% decrease
in quality), but does so at the expense of a significant rise in stall
rate. While all ABRs have virtually no rebuffering under 100KB
buffers, Festive and RB suffer a huge increase (around 0.7 and 1.1
respectively) in stall rate under larger buffers.

We thus conclude that poor QoE under deep buffers cannot be
attributed to the behavior of the ABR algorithm. We investigate
possible root causes of poor QoE under deep buffers in the following
section.

5 WHY IS VIDEO QOE POOR WHEN USING
BBR UNDER DEEP BUFFERS?

We find that the poor video QoE when using BBR (or BBR2) is not
only correlated with deep router buffers, it is in fact caused by deep
router buffers. Under deep buffers, more packets are sent to the
router buffers than can be processed, increasing queueing delays,
inflating RTTs, and resulting in poor QoE. In this section, we show
why BBR fills up router queues despite being designed to avoid
bufferbloat. While a large part of the discussion focuses on BBR,
the same phenomenon also occurs under BBR2.
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Figure 9: CDF of BBR’s bandwidth estimates under shallow buffer
(100KB) and deep buffer (10MB). Under deep buffers, BBR severely
overestimates bandwidth. The available bandwidth is 25Mbps
shown by the black vertical line.

5.1 Inflated RTTs

For video applications, packets are sent is terms of segments at a
certain quality level. One reason for poor QoF is when the segment
download experiences high latencies; this increases stall rates and
the subsequent segments are requested at a lower quality level.

We find that the cause of poor QoE is in fact because packets
experience high latencies when running BBR under deep buffers.
Figure 8 shows the CDF of RTTs observed by BBR, for the network
conditions of 100ms RTT and 25Mbps bandwidth. When the router
buffer sizes are small (100KB in our experiments), in 70% of the
cases, there are no queuing delays and the RTTs are equal to the
propagation delay of the link. However, under deep buffers, the
median RTT grows to 7X the propagation delay, severely inflating
packet latencies.

Takeaway 1: BBR was designed to keep the router queues small
using its novel RTT and bandwidth estimation and using packet
pacing. However, BBR is not able to maintain these small queues
for video traffic, resulting bufferbloat and inflated RTTs.

5.2 Bandwidth overestimation and lack of
convergence

We next look at why BBR is not able to maintain small queues.
BBR severely overestimates available bandwidth: BBR is de-
signed to ensure that buffer queues are small. It does so by esti-
mating the bandwidth and minimum RTT, and caps the number of
outstanding packets to 2 X bandwidth X min RTT, and uses packet
pacing.

However, the problem is that for video traffic, BBR severely over-
estimates the bandwidth, in turn overestimating how much data
can be sent. Figure 9 shows a CDF of BBR’s bandwidth estimates
across all our video runs under BBR. Note, the network rate is
fixed at 25Mbps, denoted by the black line. Under the 100KB buffer,
nearly 70% of BBR’s bandwidth estimates are around the set net-
work rate. However, when the buffer size increases to 10MB, BBR
almost always overestimates available bandwidth, with the median
overestimation being around 3X the set network rate of 25Mbps.
This overestimation results in BBR sending excessive packets into
the network.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

I PROBE_BW
m STARTUP

=)

N

N

Average Segment Quality

0!

BBR
BBR Version

Figure 10: Average segment quality is lower for runs in STARTUP
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Figure 11: Average stall rate is higher for STARTUP runs than
PROBE_BW runs. Both BBR and BBR2 have stall rates more than
3% higher for STARTUP than PROBE_BW.

Takeaway 2: BBR grossly overestimates bandwidth under deep
buffers when streaming video, resulting in large queues at the router.

BBR is slower to converge to steady state: Recall from Section 2
that BBR operates in four modes. The steady state mode for BBR
is the PROBE_BW mode where BBR sends at a target rate deter-
mined by its most recent bandwidth and min RTT estimates. BBR’s
STARTUP mode was designed to mimic the slow-start phase in
loss-based congestion control. Similar to the slow start phase, when
BBR is in the STARTUP mode, data is sent more than twice as fast
compared to when in the PROBE_BW mode.

Usually, BBR spends most of its time in the PROBE_BW mode [8].
However, for video applications, when buffers are deep, we find
that BBR spends a large fraction of its time in STARTUP mode,
sending data indiscriminately and further increasing queue sizes.
Table 2 shows the average percentage of time spent in each BBR
state across video runs. For both BBR and BBR2, average time
spent in STARTUP is higher in deep buffers than shallow buffers,
and average time spent in PROBE_BW is lower. The difference is
especially pronounced for BBR2: on average, a BBR2 video run in a
deep buffer spends just over half its time in PROBE_BW, compared
to nearly 100% when the buffer is shallow. BBR2 video runs often
fail to converge to steady state at all, remaining in STARTUP for
the duration of the video.

When BBR is in STARTUP state, video QoE is much worse com-
pared to when it is in PROBE_BW. The effect is more pronounced
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BBR Version | Avg % STARTUP | Avg % PROBE_BW | Avg % DRAIN | Avg % PROBE_RTT
Buffer Size | 100KB | 10MB [ 100KB | 10MB 100KB | 10MB [ 100KB |  10MB
BBR 0.23% 5.3% 98.4% 82.8% 0% | 03% | 1.2% 11.5%
BBR2 017% | 31.9% | 96.7% 54.8% 0.01% | 0.16% | 2.9% 13.1%

Table 2: Average percentage of video run spent in each BBR state. Runs spend more time in STARTUP for the deep 10MB buffer than the

shallow 100KB buffer. The difference is more dramatic for BBR2.

R
=1 W
/ RTT B

Throughput B Throughput b

estimate estimate
Segment Segment
quality B quality b

Router

NS

Figure 12: Under deep buffers and large burst, BBR and ABR both
operate according to the control loop shown here. BBR’s bandwidth
overestimation and resulting excessive sending causes high RTTs
due to queuing delay, resulting in poor throughput for the appli-
cation. The application then sends lower-quality segments, which
allows the router queue to drain and RTTs to return to normal. The
cycle repeats when the application sends higher-quality segments
at an unsustainable rate, filling the buffer again.

for BBR2 than BBR. Figures 10 and 11 compare quality and stall,
respectively, between runs whose primary state is STARTUP with
runs whose primary state is PROBE_BW. We say that a run’s pri-
mary state is the state in which it spends the plurality of its time.
While BBR manages to maintain a similar average quality for runs
stuck in STARTUP, the stall rate during STARTUP mode increases
over 3X. For BBR2, the effect is more pronounced with quality de-
creasing by over 50% and stall rate jumping from virtually 0 under
PROBE_BW to nearly 1.5 in STARTUP runs.

These figures show results from 60 video runs each for BBR and
BBR2, where RTT is set to 100 ms, bandwidth is set to 25 Mbps,
and buffer size is set to 10MB. All videos are served over HTTP/2.
Note that videos served over HTTP/1.1 spend even more time in
STARTUP because HTTP/1.1 opens multiple connections, all of
which must meet BBR’s conditions to exit STARTUP. As a result,
HTTP/1.1 video QoE is even lower than HTTP/2 on average (not
shown here).

Takeaway 3: For video traffic, BBR under deep buffers does
not converge to steady state in several cases, instead remaining
in the STARTUP mode. In the STARTUP mode, packets are sent
indiscriminately, increasing queue sizes, and reducing video QoE.
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Figure 13: Illustration of how RTT, segment quality, and ABR esti-
mated throughput cycle in response to one another over the course
of a video run under a 10MB buffer and 1MB burst. Red dashed lines
on the TCP calculated RTT plot and the ABR estimated through-
put plot indicate the propagation delay (100ms) and set bandwidth
(25Mbps) respectively.

5.3 Interaction between BBR and ABR

The sending rates under DASH video are controlled by both the
congestion control algorithm and the ABR of the DASH player.
We have a dual control loop problem where both ABR and BBR
affect overall sending rates and can affect each other’s sending
rates as well. In this work, we focus on the BBR piece of the control
loop issue by providing measurements of BBR. Accordingly, we
will describe how the BBR algorithm affects ABR, leading to poor
performance.

Our analysis suggests that it is BBR’s overestimation of band-
width that leads to unsustainably higher delivery rates under BBR,
which in turn causes bufferbloat and results in poor video QoE.
This bufferbloat, which manifests itself as high RTTs, reduces video
QoE because ABR interprets high RTTs as low throughput. We
illustrate the tight control loop between BBR and ABR in Figure 12,
focusing on ABR operating in throughput mode (a similar control
loop occurs in buffer mode as well):

(1) High RTTs cause the requested video segments to be sent to

the client slower than expected.

(2) The throughput estimation indicates low throughput be-

cause high RTTs cause the requested segments to be sent
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more slowly. The ABR selects lower quality segments due to
low estimated throughput, resulting in poor video QoE.

(3) Sending smaller, low-quality segments allows the router
queue to drain, lowering RTTs to normal levels.

(4) The throughput estimation indicates high throughput be-
cause multiple low-quality segments have been sent suc-
cessfully over a short period of time. ABR then chooses a
high-quality segment to match the perceived high through-
put.

Steps (1) through (4) repeat throughout the video run. Figure 13
illustrates the cycling video quality over the course of one video
run. Red areas correspond to steps (1) and (2) in the ABR control
loop while green areas correspond to steps (3) and (4). The ABR
and BBR control loops described above drive this quality cycle.

6 BURST IS THE CAUSE

We found in the previous section that bandwidth overestimation
is the main culprit behind poor video QoE. In this section, we
investigate the causes of BBR’s bandwidth overestimation.

BBR estimates bandwidth by finding the maximum over through-
put samples across ten RTTs. In Figure 14, we plot throughput
samples (delivery rates are used as proxy for the samples) across
10 runs each for BBR and BBR2 under a 10MB deep buffer. Even
though the maximum bandwidth in the link is only 25Mbps, in
more than 20-30% of the samples, the bandwidth is above 25Mbps.
In other words, the throughput for some samples is high, causing
BBR to overestimate bandwidth.

We find that these spikes in throughput are caused by the router’s
ability to absorb bursts in traffic. Recall that routers are configured
with a burst capacity [12] that allows the router to process a burst
worth of packets above the connection rate (§3). Since BBR uses a
max filter over throughput samples, BBR will incorrectly assume
that the connection can sustain the burst rate. To verify this, we
characterize video performance with burst sizes 8KB, 100KB, 1MB,
and 2MB. Similar to previous works, we choose these burst sizes
because they are commonly seen in the wild [12]. Figure 15 shows
that under large burst sizes of greater than 1MB, video quality is
poor. However, under smaller burst sizes of 8KB and 100KB bursts,
average segment quality is 9, suggesting excellent video QoE. The
results for stall rate are similar.

Circling back to bandwidth estimation, we find that indeed, under
lower burst sizes, the overestimation problem in BBR disappears, as
shown in Table 3. Similarly, under smaller bursts, BBR converges to
steady-state and does not remain in extended STARTUP, different
from when the burst sizes were large (figure omitted for brevity).
We believe that video runs are more likely to remain in STARTUP
for extended periods in deep buffers due to the deep buffer’s ability
to absorb large bursts of packets without inducing losses. Bursts
vary in size, but as long as one RTT out of every three has at least
a 25% larger burst than the other two, the BBR flow will not exit
STARTUP [8].

Overall, large burst sizes cause overestimation and convergence
problems in BBR and BBR2, severely impacting video QoE.
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Figure 15: Average video segment quality for BBR and BBR2 under
four burst sizes. BBR’s average quality is 60% under a 1IMB burst
than an 8KB burst, while BBR2’s quality is 30% lower under a 1IMB
burst than an 8KB burst.

Avg. BBR est. BW
Burst | BBR BBR2

8KB 24.1 24.2
100KB | 28.3 29.4
1MB 91.8 65.7

2MB | 162.9 107.9
Table 3: Average BBR estimated bandwidth for BBR and BBR2
across burst sizes. The link bandwidth is set to 25Mbps. For large
burst sizes of 1MB and 2MB, BBR and BBR severely ovestimate the
bandwidth as also seen in Section 5.2. But for smaller burst sizes,
BBR and BBR2 are able to fairly estimate the bandwidth.

7 NEW ALGORITHM FOR BANDWIDTH
ESTIMATION

While we identify burst in traffic policers/shapers as a crucial pa-
rameter that affects BBR video QoE, the solution is not as simple as
ISPs decreasing burst parameters across their networks. ISPs use
wide ranges of different network hardware and technologies, all
of which have varying buffer sizes and recommended burst sizes.
For example, most DOCSIS 3.0 implementations use a burst be-
tween 1 and 1.5 MB in size, while the DOCSIS 3.1 standard [16]
suggests using a burst between 10 MB and 30 MB depending on the
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speed of the connection [55]. Further, changing the burst param-
eter to suit BBR video can produce unwanted effects across other
applications/network settings.

7.1 BBR-S: BBR with Sampled BW Estimation

The key problem with BBR and BBR2, as noted in the preceding
sections, is the overestimation of bandwidth. The bandwidth esti-
mation is done over 10 RTTs, which is a long period of time; it takes
10 RTTs to phase out old data. Further, the estimate picks the maxi-
mum bandwidth from the samples, which results in overestimation
even if one sample experiences high bandwidth. However, if we
underestimate bandwidth, then BBR will not be able to efficiently
use the available bandwidth, resulting in poor throughput.

Instead, we implement a bandwidth estimation mechanism that
balances over- and under-estimation. Our new algorithm, BBR-
Sampled (BBR-S for short), derives the estimated bandwidth from a
list of sampled estimates. The main differences between BBR and
BBR-S are outlined below:

(1) Instead of storing a single, window-based max bandwidth
filter, BBR-S stores a history of bandwidth samples every
time an ACK for a non-app-limited transmission is received.

(2) Instead of using the maximum bandwidth sample from the
history, BBR-S treats the history as a distribution of samples
and sets its bandwidth estimate based on a hist_percentile
parameter, representing a high percentile of the observed
samples.

The key idea behind this approach is that since network bursts
are short by definition, we can remove bandwidth estimates that
have been amplified by these short bursts. In our implementation,
we use a sample history size of 100. Recall from Figure 14 that
the throughput samples seen by BBR and BBR2 have a long tail.
At the 85th percentile, the overestimation is modest, so we set
hist_percentile = 85%ile. On further experimentation (not shown
here), we find that modest overestimation of bandwidth does not
affect video QoE, which indicates that there is some flexibility in the
choice of hist_percentile. While the above solution validates BBR’s
over-estimation of bandwidth with DASH video workloads, we do
note that it is not intended to be a general purpose solution for all
types of traffic. Our solution can serve as a starting point for further
improving BBR. Analytically finding the optimal hist_percentile
under this solution is also left for future work.

7.2 Bandwidth estimation for BBR2

BBR2 uses a slightly different bandwidth estimation compared to
BBR. Specifically, BBR2 does not use the maximum bandwidth
across a window, and instead estimates bandwidth to be 85% of
the maximum bandwidth across a window. This is done to provide
headroom for competing flows to grow quickly, because BBR can
be unfair to other flows [52]. This naturally will result in BBR2 not
overestimating bandwidth quite as much as BBR, and is perhaps
responsible for the slight improvements in QoE between BBR and
BBR2 under some buffer sizes seen in Figures 4 and 5. However,
BBR2 still overestimates bandwidth (as shown in Figure 14) and
video QoE under BBR2 is still poor for deep buffers.

We modify BBR2’s bandwidth estimation as follows: we use
the distribution of samples and pick the hist_percentile value, after
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Figure 16: Our new bandwidth estimation algorithms BBR-S and
BBR2-S outperform BBR and BBR2 respectively in terms of both
quality and stall rate. Experimental setup is similar to that of Fig-
ure 4 and 5 with 100ms RTT, 25Mbps bandwidth, 10MB router buffer
size, 1IMB router burst size, over HTTP/2.

which we set the estimated bandwidth to be 85% of the value. We
call this estimation algorithm BBR2-S. We find that hist_percentile
= 85%ile works well for BBR2-S as well.

7.3 Performance of BBR-S and BBR2-S

Figure 16 shows the QoE of BBR-S and BBR2-S compared to BBR
and BBR2, respectively. We use the same experimental setup as
that used in Figure 4 and 5. The results show that our sampled
approach significantly improves video QoE. In terms of average
quality, BBR-S and BBR2-S improve quality from below 4 to near 10.
In terms of stall rates, BBR-S and BBR2-S see no stalls at all, while
the stall rates are greater that 0.75 for BBR and BBR2. In effect, our
sampled-based estimation technique, which is easy to implement,
addresses the bufferbloat problem for video applications for both
BBR and BBR2, resulting in much improved video QoE.

8 RELATED WORK

This section discusses related work on QoE evaluation of video
streaming and performance analysis of BBR.

ABR algorithms. Much of the work in improving the QoE of video
applications has been focused on developing new ABR algorithms
to better adapt to changing network conditions. The most closely
related ABR work is Adaptive CoDel [32], that aims to mitigate
bufferbloat by dropping packets at the router if the queue delay
goes above a target value, thus improving the QoE real-time video
streaming. LDM [28] also focuses on frame dropping to improve
QokE for live video streaming over HT'TP/2. Our efforts in this paper
are directed at addressing bufferbloat-related issues in the TCP
congestion control algorithms, specifically BBR and BBR2, without
dropping any packets at the router.

There are also orthogonal ABR that use of machine learning
techniques to better predict the available bandwidth and adapt
bitrate accordingly [20, 46, 57] or focus on improving QoE when
coexisting with other video streaming applications [24, 35]. Our
focus in this paper is on mitigating the bandwidth overestimation
problem under deep buffers in BBR and BBR2, irrespective of the
ABR in use.
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Recent work on the design of BBR. Recent work [6] has demon-
strated that BBR outperforms other loss-based congestion control
algorithms for shallow buffers, but performs poorly under deep
buffers. In the case of deep buffers, the authors find that Cubic has
higher throughput than BBR when using iPerf, because BBR fails
to utilize the deep buffers to queue up enough packets. By contrast,
we find that, for video traffic, BBR overestimates bandwidth and
causes bufferbloat.

Ware et al. [53] investigate BBR’s fairness properties when coex-
isting with other competing loss-based flows. The authors find that
in such cases, BBR’s inflight cap dictates the sending rate, which
does not adapt to the number of competing flows, thus causing
unfairness with legacy TCPs.

There have also been efforts to tailor BBR for specific applica-
tions to obtain improved performance. For example, RCP-BBR [34],
designed for VoIP, works by removing the in-order delivery and
packet retransmission features of BBR to achieve better throughput.
Zhang et al. [58] propose a delay response BBR (Delay-BBR) algo-
rithm specifically for real-time video transmission which reduces
the sending rate when the link delay exceeds a threshold. While
our work focuses on static video streaming, we believe that our
BBR-S and BBR2-S modification can improve the performance of
any bursty traffic type under deep buffers and large router burst
sizes. Further, we do not modify the core TCP features of BBR, such
as in-order packet delivery and retransmissions.

Network bandwidth variability. Flach et al. [12] show that loss
rates are six times higher on average with traffic policing, which
severely impacts video playback quality. The authors evaluate the
impact of burst sizes in the range of 8KB — 2MB and find that
rebuffering reduces with smaller burst sizes but larger burst sizes
provide increased throughput. The choice of burst sizes in our
experiments was based on the values employed by the authors. We
note that our sampled bandwidth estimation solution reduces the
sending rate at the server, thus avoiding excessive policing, while
still providing high QoE to end-users.

Goyal et al. [15] explore the performance of iPerf under different
congestion control algorithms, including BBR, and under time-
varying links. They find that many congestion controls perform
sub-optimally under time-varying links, which they evaluate using
cellular traces. Specifically, they show that BBR experiences high
delay under these links and BBR’s rate does not match the true
network rate. Our work evaluates the performance of BBR under
DASH video and networks with burst configurations.

Addressing Bufferbloat. Mansy et al. [29] show that a single video
stream can cause up to one second of queuing delay, which gets
worse when the home link is congested in a typical residential set-
ting. To address this problem, the authors present SABRE (Smooth
Adaptive Bit RatE), a client based technique for video players that
reduces delays by adjusting the flow control TCP window (rwnd) in
a DASH client. Our paper focuses on bufferbloat caused by router
settings, and is thus orthogonal to the client-centric work in SABRE.

PIE [41] is a latency-based enqueuing technique that limits the
average queuing latency to a reference value by dropping packets
based on queuing delay. Hohlfeld et al. [19] suggest using load-
dependent buffer sizing schemes as they find that the level of com-
peting network workloads, rather than the buffer size, is the main
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factor affecting end-user QoE. They also find that bufferbloat af-
fects QoE only when the buffers are oversized and sustainably filled.
Unlike the above works, we address the bufferbloat problem at the
server, thereby avoiding filling up deep buffers and improving QoE.
Further, we find that bufferbloat can impact QoE even under bursty
traffic, as in video playback.

9 CONCLUSION

In this work, we present an in depth analysis into the performance
of DASH Video under BBR, a recent and popular congestion control
used by a large fraction of Internet traffic. We set out to understand
the performance of BBR under varying network settings and router
configurations.

We first find that, with BBR under deep buffers, video QoE is
significantly worse even under different ABR algorithms, appli-
cation protocols, and network conditions. On further investiga-
tion, we find the QoE drop occurs as a result of BBR bufferbloat,
even though BBR was designed specifically to solve the problem
of bufferbloat, reminiscent of loss-based congestion controls like
Cubic operating in deep buffers. When analyzing BBR’s behavior
under deep buffers, two immediate observations emerge: (i) BBR
severely overestimates the available bandwidth, thus pumping an
excessive amount of packets, causing bufferbloat, and (ii) BBR fails
to converge to its steady state, spending a long time in the startup
phase indiscriminately sending packets, further exacerbating the
bufferbloat problem. The root cause of BBR’s overestimation is that
BBR’s bandwidth estimation does not account for network bursti-
ness present in network shapers and policers, which are used by
ISPs. Instead, BBR takes a greedy approach to bandwidth estima-
tion by using the maximum observed bandwidth over a fixed time
window as a proxy for available bandwidth.

To address this problem, we develop an alternative bandwidth
estimation technique for BBR and BBR2 that filters out bursty band-
width observations when estimating available bandwidth. We find
that this change in estimation significantly improves the QoE of
BBR and BBR2 under deep buffers.

While we examine BBR’s response to network burstiness in the
context of TBF burst, we believe that future work could look at
BBR’s bandwidth estimation in light of other network phenomena
that may cause burstiness, such as cross-traffic, buffer sharing, and
unstable network paths. We also make our experiment data and
BBR-S code publicly available [4].
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