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Artificial intelligence methods such as fuzzy logic and particle swarm optimization (PSO)
have been applied to maximum power point tracking (MPPT) for solar panels. The P-V
curve of a solar panel exhibits multiple peaks under partial shading condition (PSC) when all
modules of a solar panel do not receive the same solar irradiation. Although conventional
PSO has been shown to perform well under uniform insolation, it is often unable to find the
global maximum power point under PSC. Fuzzy adaptive PSO controllers have been
proposed for MPPT. However, the controller became computation-intensive in order to
adjust the PSO parameters for each particle. In this paper, fuzzy adaptive PSO-based and
conventional PSO-based MPPT are compared and evaluated in the aspect of design and
performance. A simple fuzzy adaptive PSO controller for MPPT was designed to reach the
global optimal point under PSC and uniform irradiation. The controller combines the
advantages of both PSO and fuzzy control. The fuzzy controller dynamically adjusts the
PSO parameter to improve the convergence speed and global search capability. Since
tuning of the PSO parameter is designed to be common for all particles, it reduced the
computation complexity. The fuzzy controller’s rule base is designed to obtain a fast
transient response and stable steady state response. Design of the fuzzy adaptive PSO-
based MPPT is verified with simulation results using a boost converter. The results are
evaluated in comparison to the results using a conventional PSO controller under PSC.
Simulation shows the fuzzy adaptive PSO-based MPPT is able to improve the global
search process and increase the convergency speed. The comparison indicates the
settling time using the fuzzy adaptive PSO-based MPPT is 14% faster under PSC on
average and 30% faster under uniform irradiation than the settling time using the
conventional PSO. Both the fuzzy adaptive and conventional PSO controllers have
similar output power tracking accuracy.

Keywords: partial shading, PV array, maximum power point tracking, fuzzy logic controller, particle swarm
optimization
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1 INTRODUCTION

Solar power generation has seen rapid growth in the past decade
(Madvar et al., 2018; Al-Dahidi et al., 2019; Guozden et al., 2020;
Sohani et al, 2021). Solar power has the advantage of low
maintenance, noiseless and environmentally friendly power
generation. Improving photovoltaic (PV) efficiency is a key goal
of research and helps make PV technology costs competitive with
conventional sources of energy (Alizadeh et al., 2020; Maleki et al,,
2020). A major challenge in the use of PV is posed by its nonlinear
current-voltage (I-V) characteristics, which result in a unique
maximum power point (MPP) on the power-voltage (P-V) curve.
To improve efficiency, maximum power point tracking (MPPT) is
needed along with power converters to ensure optimal utilization
of solar power systems. The objective of MPPT is to extract the
maximum amount of power under varying temperature and
irradiation conditions. Several MPPT algorithms have been
studied, including perturb and observe (P&O), incremental
conductance, fractional open-circuit voltage, and fractional
short-circuit current (Esram and Chapman, 2007). The solar
panel model was linearized into a Thevenin equivalent circuit to
design the MPPT (Nguyen et al, 2020). Artificial intelligence
MPPT methods include fuzzy logic control and neural network.
Fuzzy logic controllers do not need an accurate mathematical
model, and are not sensitive to parameter changes (Khosravi et al,,
2019; Khosravi et al.,, 2020). Fuzzy logic based MPPT has been
shown to perform well under uniform insolation (Rezk et al., 2019).
However, study of MPPT control methods has mainly focused on
uniform insolation where only one maximum power point (MPP)
exists in the power-voltage (P-V) curve.

Partial shading condition (PSC) refers to conditions when
all modules of a solar panel do not receive the same solar
irradiation. PSCs are very common in solar power systems,
especially in urban areas and in areas with trees and low
moving clouds (Patel and Agarwal, 2008; Ghasemi et al,
2016). In PSC, multiple maximum power points (MPPs) are
in the P-V curve. Conventional MPPT algorithms assume a
single MPP and are unable to identify the global MPP among
the local MPPs, thus they usually track local peaks. This can
cause significant energy loss (Tey and Mekhilef, 2014).
Therefore, it is necessary to develop new MPPT techniques
to reliably track the global MPP under PSC (Chen et al., 2014).

Soft computing based algorithms were recently developed
to obtain the global optimal solution under PSC. Biological
optimization algorithms such as genetic algorithms (GA), gray
wolf optimization, colony of flashing flies, artificial bee colony,
and particle swarm optimization (PSO) have been applied to
MPPT under PSC. Gray wolf optimization imitates the
leadership hierarchy and hunting mechanism of gray wolves
in nature. It was used to improve tracking efficiency and
steady-state oscillations (Mohanty et al., 2016; AlShabi
et al., 2021). Colony of flashing flies is inspired by the
movement of fireflies. The tracking procedure consists of
positioning the fireflies in the possible solution space, and
based on the PV output power, the flies move to the promised
regions (Sundareswaran et al., 2014). Artificial bee colony
simulates the intelligent foraging behavior of a swarm of
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honeybees. The entire population is divided into three
categories: employed bees, onlookers and scout bees. The
cooperation and communication among the three groups
lead to an optimal solution (Sundareswaran et al., 2015).
Particle swarm optimization (PSO) is a population-based
optimization technique inspired by the motion of bird flocks.
It provides an effective metaheuristic approach that can be
applied to optimization problems with several local optimal
points (Al-Shabi et al, 2021). Compared to the other
evolutionary algorithms, PSO method is simpler in structure,
less computationally extensive and easier for experimental
implementation. A number of conventional and modified
PSO methods were reported for MPPT (Chen et al.,, 2010;
Cheng et al, 2015; Renaudineau et al., 2015; Koad et al.,
2017). PSO algorithm was used to tune the membership
function of a fuzzy controller for MPPT to reduce the
steady-state oscillation (Soufi et al., 2016; Priyadarshi et al.,
2019). A deterministic PSO was introduced to improve the
MPPT capability under PSC. Random numbers in the
acceleration factor of conventional PSO were removed. The
maximum change in velocity is restricted to a particular value
based on P-V characteristics of PSC. It results in more
consistent solution and simpler control structure. However, a
previous study of the P-V characteristics under PSC is required
(Ishaque and Salam, 2013). Conventional PSO was modified for
MPPT, where the parameters were adjusted linearly to improve
on accuracy (Liu et al., 2012). Tuning of PSO parameters in the
literature were mostly linear. Since PSO is a nonlinear search
process, linear tuning is not enough to achieve highly efficient
algorithm, while nonlinear tuning can make the algorithm
overly complicated (Merchaoui et al, 2020). In addition,
advanced PSO control methods have not been fully
investigated for PSC.

Presented in this paper is a fuzzy adaptive PSO-based
MPPT. Motivation of the research is to combine the
advantages of both PSO and fuzzy control to improve the
speed of the MPPT controller, find a global optimal solution
under both PSC and uniform irridiation, and keep the simple
structure of PSO at the same time. Controllers based on fuzzy
logic have been applied to a broad range of engineering
problems, particularly those having nonlinear dynamics
(Guo et al., 2009). Design of fuzzy controllers is based on
expert knowledge about a plant instead of a precise
mathematical model. The fuzzy controller dynamically
adjusts the PSO parameter to improve the convergence
speed. Simulation results show the controller is able to track
the global MPP under PSC where multiple local MPP exist as
well as under uniform irridiation Settling time using the
proposed controller is 14% faster under PSC on average and
30% faster under uniform irradiation than the settling time
using regular PSO controller.

The paper is organized as follows. Section 2 describes a
conventional PSO controller. The proposed fuzzy adaptive
PSO is presented in Section 3. Section 4 describes system
configuration and simulation. Simulation results are reported
and compared in Section 5. Finally, the conclusion and
recommendations are made in the last section.
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2 CONVENTIONAL PARTICLE SWARM
OPTIMIZATION

PSO is a stochastic population-based evolutionary algorithm search
method modeled after the behavior of flocks of birds (Ishaque and
Salam, 2013). PSO requires a swarm of particles. Each particle
represents a possible solution. Initially A swarm of particles is
randomly placed in the search space. The controller searches for the
optimal solution with the particles velocity and position
communicating with each other. Particles are moved around in a
multi-dimensional space in search of the optimal solution. Each particle
has its own personal best position, Pp.. The next position p**! depends
on both Py and the global best position of the space, Gpesy. It is
determined iteratively using 1, where the next position, p**! represents
the new duty cycle, d is the current duty cycle, and the velocity v*1,
calculated by 1, represents the step size. Table 1 define the variables.

pk+1 =d+ Vk+1 (1)

Vkﬂ wv]l_c t+an (Pbe:t - d) + G (Gbesr - d) (2)

In 2, w stands for the inertia weight, and ¢; and ¢, are the cognitive
and social parameters, respectively, that are responsible for
acceleration. r; and r, are random variables that vary between 0
and 1. The acceleration coefficients ¢; and ¢, move each particle in the
direction of Py and Gpey. The inertial weight w balances the global
and local searches to reduce the number of iterations to obtain the
global best solution.

The flowchart of conventional PSO is presented in Figure 1. Inputs
to the PSO controller are the voltage and current from the solar panel.
36 particles are placed in a 6x6 matrix. Each position in the matrix
represents a solution that includes the value of the duty cycle and
output power. The initial values of particles were randomly chosen.
Particles travel across the grid, calculating the power and duty cycle at
each position. At the end of each iteration, the particles store the best
solution. Individual best solutions are compared and the global best
solution is updated. In the next iteration, the particles try to converge
to the newly updated global best solution. When used for MPPT, the
search process should satisfy the condition in 3 at each iteration,
where OP is the solar panel’s output power, j is the particle number,

TABLE 1 | Definition of variables.

Variables Definition

k Iteration number

J Particle number

ol New particle position, or new duty cycle
d Current duty cycle

Va Step size

Phrest Personal best position

Gbest Global best position

W Inertial weight

Cq Cognitive parameter

Co Social parameter

OP Solar panel’s output power

NFF; Normalized fithess function for particle j
f(d(k)) Fitness function of current solution
Fpest Best solution for fitness function

Fuorst Worst solution for fithess function

Fuzzy Adaptive Particle Swarm Optimization
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FIGURE 1 | Flowchart of conventional PSO.

and k is the iteration number. The convergence criteria are met when
velocities of all particles become smaller than a threshold, or when
the maximum number of iterations is reached. The PSO algorithm
will stop and output the obtained Gy, solution when the criteria are
met. Therefore, the controller is able to identify the global MPP
among the local MPPs through the global search process.

Oij*l > OP]’,‘ (3)

3 PROPOSED FUZZY ADAPTIVE PARTICLE
SWARM OPTIMIZATION BASED MPPT

In 2, the inertial weight w is a very important parameter. It is used to
control the convergence behavior of PSO. An optimal value of w is
needed to find the MPP with as few iterations as possible. It balances
the exploration and exploitation of the search process. During
exploration, particles check different search areas to detect the
region containing the optimal solution. After that, the particles
concentrate on the best candidates to converge to the final
solution. A higher value of w promotes exploration, while a
smaller value encourages an efficient exploitation process. In
conventional PSO, w is a constant. It results in a slow dynamic
response for MPPT. To improve the performance, this paper used a
fuzzy controller to vary the value of w iteratively based on the fitness
function and the inertial weight w.

A fuzzy controller contains four main components: 1) the
input membership functions that convert its inputs into
information the inference mechanism can use to activate
and apply rules, 2) the rule base that contains the expert’s
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FIGURE 2 | Flowchart of the proposed fuzzy adaptive PSO controller.
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dw

No

linguistic description, 3) the interference mechanism that
evaluates which control rules are relevant, and 4) the
defuzzification interface that converts the result from the

inference mechanism into the control output (Guo et al,
2009). The flowchart of the proposed fuzzy adaptive PSO
based MPPT is shown in Figure 2.
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The normalized fitness function is shown in 4, where
f(d(k)) is the current solution, Fp, is the best solution and
F,yors: 1s the worst solution. The normalized fitness function
quantifies the distance between the particle and global best
position. When the normalized fitness function is large, it
means the particle is far away from the MPP; therefore, the
inertial weight « should be increased to promote
exploration. Conversely, when the normalized fitness
function is small, it implies the particle is close to the
MPP; therefore, a smaller value of w is needed to enhance
local search capability.

_ f(d(k)) - Fbest

NFF; = )

Fworst - Fbest

The normalized fitness function and the inertial weight w
are the inputs to the fuzzy controller. First, membership
functions for the inputs and outputs are defined. Each

Fuzzy Adaptive Particle Swarm Optimization

universe of discourse is divided into fuzzy subsets. The
membership functions are shown in Figure 3. There are
seven fuzzy subsets in the fuzzy  controller:
NB,NM, NS, Z, PS, PM, PB, where N indicates negative, Z
indicates zero, P represents positive, B indicates big, M
indicates medium, and S indicates small. There are three
fuzzy subsets for the positive and negative parts of the
universe of discourse, respectively.

The rule base is derived from general knowledge of the PSO
controller, and is tuned based on experimental results. There is a
tradeoff between the size of the rule base and the performance of
the controller. For the same universe of discourse, more
membership functions results in finer control. The output of
the fuzzy controller has less variations for small changes in
either input, and a more accurate control is achieved. A 7x7 rule
base was designed, as shown in Table 2. The output of the fuzzy
system is then added to the current w to create the new and

. . ot points: 181

FIS Variables : Membfershlp f‘unct|0|‘1 plots Pt points

VXX\J NB NM NS ZE PS PM PB
XX ‘
NFF dw
w
0 T !
-1 08 06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
input variable "NFF"
. . lot points:

FIS Variables ‘ ‘ Membership functlon plots ‘ et ‘ 181
— M ZE P1 P2 P3 P4 P5 P6
XX W

NFF dw
XX

— 053 3

W

O 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
input variable "W"
o A lot boints: 181

FIS Variables ‘ : Membgrshlp functlon plots o °°"" =
‘ ‘ NB NM NS ZE PS PM PB
XX /

NFF dw
‘2 é 05 .

w

0 L 1 1 1 1
1 0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
output variable "dW"
FIGURE 3 | Membership functions of the fuzzy controller.
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TABLE 2 | Fuzzy rules for given member functions.

NFF NB NM NS ZE PS PM PB
©
ZE PB PM PS PS NS NM NB
P1 PM PS PS ZE NS NM NM
P2 PS PS PS ZE NS NS NS
P3 NS NS NS ZE NS NS PS
P4 NS NS NS ZE PS PS PS
P5 NM NM NS NS PS PS PM
P6 NB NM NS NS PS PM PB

improved inertia weight shown in 5. A block diagram of the
fuzzy controller is shown in Figure 4.

! = o + Aw (5)

4 SIMULATION

The system was simulated in Matlab/Simulink™. It includes four solar
panels connected in series, a boost converter and the fuzzy adaptive
PSO MPPT controller. Configuration of the system is shown in
Figure 5. The solar panels and power converter were built using
Simscape in Simulink. Simulink is a graphical programming
environment for modeling, simulating and analyzing of dynamic
systems, whereas Simscape is the physical modeling part in
Simulink environment. The PSO controller is implemented using
Matlab by writing a function. Rapid accelerator mode is used to
increase the speed by generating an executable for the simulation. It
only takes 3 s to run the simulation. Another option to implement
artificial intelligence algorithms is Python language, an open source
programming language. The advantage of using Matlab/Simulink™ is
that it provides a productive computing environment for engineering
systems in which physical components are conveniently available.
The PV array model in Simulink allows modeling of a variety of
preset PV modules available from the National Renewable Energy
Laboratory System Advisor Model as well as user-defined PV modules.
PV module Trina Solar TSM-250PA05.08 was used for this simulation.
The maximum output power is 249.86 W, with open circuit voltage
Voc of 37.6 V, and short circuit current Isc of 8.55 A. The voltage at
maximum power point V., is 31V, and the current at maximum
power point I,,,, is 8.06 A. The PV array model has four parallel strings,
and 10 series-connected modules per string. Figure 6 shows the
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Boost dc-dc
converter

= 1

Ipv val rYYY] o I

I I

I I

PV —_— I Se { I Load

Cev I I

I I
—————7

DwppT

Yy

FPSO MPPT | ,
Controller

PWM

FIGURE 5 | System Configuration.

parameter configurations of the PV array model in Simulink. Four
PV arrays were then connected in series for the simulation.

The circuit parameters for the boost converter are Vi, = 20 V,
Vo = 12V, L = 147 uH, C = 0.467 yF, and R = 53 Q. The
switching frequency is 50 kHz. Table 3 shows the parameters
of the proposed fuzzy adaptive PSO-based MPPT controller.

5 RESULTS

Simulation results of the fuzzy adaptive PSO MPPT and conventional
PSO MPPT controllers are presented and compared in this section.
Table 4 shows four operating conditions of irradiation levels for each of
the four PV arrays connected in series. The first three instances are
partial shading conditions, and the last one is uniform irradiation of
1000 W/m? without partial shading. For the first instance of partial
shading, the P-V curve is shown in Figure 7, where the peak of the
curve is the global maximum power point (MPP). There are a few local
MPPs below the global MPP. Figure 8 compares the startup transient
response using the proposed fuzzy adaptive PSO and the regular PSO
MPPT controller. The settling time of the fuzzy adaptive PSO MPPT is
0.0983 s, while the settling time of the regular PSO is 0.1152's.
Figures 9-11 show the P-V curve for instances 2, 3, and 4,
respectively. Figures 12-14 compare the startup response of the output

Normalized Fitness Fuzzy Controller

w [K]

Z—l

Function
—>

Inertia Weight w
_—

4_><

Aw

A A
e
\%/ >i w [k>+1]

FIGURE 4 | Block diagram of fuzzy controller.
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Input 1 = Sun irradiance, in W/m2, and input 2 = Cell temperature, in deg.C.

Parameters Advanced |
Array data

Parallel strings 4
Series-connected modules per string |10

Module data
Module: Trina Solar TSM-250PA05.08
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< >

' Cancel '} 1' Help | Apply
=

FIGURE 6 | Parameter Configuration of PV arrays.

TABLE 3 | Particle swarm optimization parameters. TABLE 4 | Irridiance variations (W/m?).
Parameters FPSO Shading Condition PV Array1 PV Array2 PV Array3 PV Array4
Number of particles 6 Instancet 800 900 1,000 700
w Fuzzy adaptive Instance2 600 700 800 900
C1 1.2 Instance3 400 500 1,000 800
Co 1.8 Instance4 1,000 1,000 1,000 1,000
Maximum number of iterations 50
4
1 04 35 s 1 O T T T
355 . :
Local MPP Global MPP: 3r
3 . o
25¢ 1
25¢ Local MPP 1 -
- g of |
S 2t 1 o
% s
g g 1.5F 1
T 151 1
1 . e
1 L 4
0.5 ——FPSO| |
05¢ | ——PSO
0 . L . !
0 L L 0 0.1 0.2 0.3 0.4 0.5
0 500 1000 1500 Time(s)
Voltage(V)
FIGURE 8 | Startup response of the fuzzy adaptive PSO and the
FIGURE 7 | PV curve for irridiation 1. convential PSO MPPT for irridiation 1.
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power using fuzzy adaptive PSO and regular PSO controllers for
irradiation levels of instances 2, 3, and 4, respectively. The results show
that the fuzzy adaptive PSO controller is able to reach a steady state
faster than the regular PSO controller. A comparison of the
performance is quantified in Tables 5, 6. Table 5 shows that the
settling time for the adaptive fuzzy PSO controller is faster than the
regular PSO controller under all four irradiation conditions. Simulation
results show that the controller is able to track the global MPP under
PSC where multiple local MPP exist, as well as under uniform
irradiation. The settling time using the proposed controller is 14%
faster under PSC on average and 30% faster under uniform irradiation

4 4
5,500 1 . ; g 200 1 . ;
3+ 4 351 —_—
3 L 4
25¢ 1
— e 2 DA b
g 2f . S
] o 2f —
S sl IR
o 0
151 i
1t i
1 L = |
0.5r ——FPsO| ] 0.5 —FPSO|
—PSO —PSO
0 . L . ! 0 . L . !
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time(s) Time(s)
FIGURE 9 | Startup response of the fuzzy adaptive PSO and the FIGURE 11 | Startup response of the fuzzy adaptive PSO and the
convential PSO MPPT for irridiation 2. convential PSO MPPT for irridiation 4.
4 4
5 x10 ‘ . . 35210 . :
3 = -
151 1 o5l |
S g 2 ]
T 1f 1 g
2 2
n? 8 151 1
1k |
0.5r g
0.5F a
——FPSO
—PSO
0 . L . ! 0 L L
0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500
Time(s) Voltage(V)
FIGURE 10 | Startup response of the fuzzy adaptive PSO and the FIGURE 12 | PV curve for irridiation 2.
convential PSO MPPT for irridiation 3.

than the settling time using the regular PSO controller. Table 6
compares the output power and the maximum power point under
the specific irradiation conditions. It shows both controllers were able
to track the maximum power point under all four operating conditions.

6 CONCLUSION

A fuzzy adaptive PSO-based MPPT was designed to track the
maximum power point under partial shading conditions. The fuzzy
controller was designed based on knowledge of the plant and computer
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FIGURE 13 | PV curve for irridiation 3.
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FIGURE 14 | PV curve for irridiation 4.

TABLE 5 | Comparison of settling time for fuzzy adaptive PSO (FPSO) and conventional PSO.

Settling Time(s) Instance 1
FPSO 0.0983
PSO 0.1152
Reduction of settling time 15%

Instance 2 Instance 3 Instance 4
0.0872 0.0920 0.0397
0.1005 0.1073 0.0564

13% 14% 30%

TABLE 6 | Comparison of maximum power point (MPP), output power for fuzzy adaptive PSO (FPSO) and conventional PSO.

Output power Using FPSO (W)

Output power Using convential PSO (W)

Shading condition MPP (W)
Instance 30,387
Instance?2 26,169
Instance3 17,864
Instance4 39,914

29,879 29,813
22,314 22,200
15,349 15,359
34,609 35,253

simulations. The inertial weight was updated continuously by the fuzzy
controller. Simulation results show that the fuzzy adaptive PSO-based
MPPT was able to improve the global search process and increase the
convergence speed. Compared to conventional PSO, the proposed
controller achieved a faster response with accurate maximum power
tracking. Future work can apply the proposed fuzzy adaptive PSO-
based MPPT to isolated DC-DC converters such as flyback converters
and current-fed dual active bridge converters for large scale grid-
connected PV systems.
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