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Abstract

Matrix concentration inequalities provide information about the probability that a
random matrix is close to its expectation with respect to the /> operator norm. This
paper uses semigroup methods to derive sharp nonlinear matrix inequalities. The
main result is that the classical Bakry-Emery curvature criterion implies subgaussian
concentration for “matrix Lipschitz” functions. This argument circumvents the need
to develop a matrix version of the log-Sobolev inequality, a technical obstacle that
has blocked previous attempts to derive matrix concentration inequalities in this
setting. The approach unifies and extends much of the previous work on matrix
concentration. When applied to a product measure, the theory reproduces the matrix
Efron-Stein inequalities due to Paulin et al. It also handles matrix-valued functions on
a Riemannian manifold with uniformly positive Ricci curvature.
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1 Motivation

Matrix concentration inequalities describe the probability that a random matrix
is close to its expectation, with deviations measured in the ¢/, operator norm. The
basic models—sums of independent random matrices and matrix-valued martingales—
have been studied extensively, and they admit a wide spectrum of applications [Tro15].
Nevertheless, we lack a complete understanding of more general random matrix models.
The purpose of this paper is to develop a systematic approach for deriving “nonlinear”
matrix concentration inequalities.

In the scalar setting, functional inequalities offer a powerful framework for studying
nonlinear concentration. For example, consider a real-valued Lipschitz function f(Z)
of a real random variable Z with distribution p. If the measure p satisfies a Poincaré
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Matrix concentration via semigroup methods

inequality, then the variance of f(Z) is controlled by the total energy of f, which is further
controlled by the squared Lipschitz constant. If the measure satisfies a log-Sobolev
inequality, then f(Z) enjoys subgaussian concentration on the scale of the Lipschitz
constant.

Now, suppose that we can construct a semigroup, acting on real-valued functions,
with stationary distribution . Functional inequalities for the measure  are intimately
related to the convergence of the semigroup. In particular, the measure admits a
Poincaré inequality if and only if the semigroup rapidly tends to equilibrium (in the sense
that the variance is exponentially ergodic). Meanwhile, log-Sobolev inequalities are
associated with finer types of ergodicity.

In recent years, researchers have attempted to use functional inequalities and semi-
group tools to prove matrix concentration results. So far, these arguments have met
some success, but they are not strong enough to reproduce the results that are already
available for the simplest random matrix models. The main obstacle has been the lack of
a suitable extension of the log-Sobolev inequality to the matrix setting. See Section 3.5
for an account of prior work.

The purpose of this paper is to advance the theory of semigroups acting on matrix-
valued functions and to apply these methods to obtain matrix concentration inequalities
for nonlinear random matrix models. To do so, we argue that the classical Bakry-Emery
curvature criterion for a semigroup acting on real-valued functions ensures that an
associated matrix semigroup also satisfies a curvature condition. This property further
implies local ergodicity of the matrix semigroup, which we can use to prove strong
bounds on the trace moments of nonlinear random matrix models.

The power of this approach is that the Bakry-Emery condition has already been
verified for a large number of semigroups. We can exploit these results to identify many
new settings where matrix concentration is in force. This program entirely evades the
question about the proper way to extend log-Sobolev inequalities to matrices.

We begin with a treatment of Markov semigroups acting on matrix-valued functions
(Section 2). Afterward, in Section 3, we present our main results on matrix concentration
for nonlinear functions. Section 4 explains how these abstract results lead to many
concrete matrix concentration. For instance, our approach easily reproduces the matrix
Efron-Stein inequalities [PMT16]. Among other new results, we obtain subgaussian
concentration for a matrix-valued “Lipschitz” function on a positively curved Riemannian
manifold, such as the sphere or the special orthogonal group. The remaining sections of
the paper contain complete proofs.

2 Matrix Markov semigroups: foundations

To start, we develop some basic facts about an important class of Markov semigroups
that acts on matrix-valued functions. Given a Markov process, we define the associated
matrix Markov semigroup and its infinitesimal generator. Then we construct the matrix
carré du champ operator and the Dirichlet form. Afterward, we outline the connection
between convergence properties of the semigroup and Poincaré inequalities. Parts of
our treatment are adapted from [CHT17, ABY20], but some elements appear to be new.

2.1 Notation

Let M, be the algebra of all d x d complex matrices. The real-linear subspace
H,; contains all Hermitian matrices, and ]H; is the cone of all positive-semidefinite
matrices. Matrices are written in boldface. In particular, I is the d-dimensional identity
matrix, while f, g and h refer to matrix-valued functions. We use the symbol < for the
semidefinite partial order on Hermitian matrices: for matrices A, B € H,, the inequality
A < B means that B— A € H}.
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For a matrix A € IM,, we write ||A|| for the ¢; operator norm, ||A|us for the Hilbert-
Schmidt norm, and tr A for the trace. The normalized trace is defined as tr A := d~! tr A.
Nonlinear functions bind before the trace. Given a scalar function ¢ : R — R, we
construct the standard matrix function ¢ : H; — H, using the eigenvalue decomposition:

d d
w(A) = Z"O()‘i) u;u; where A= Z A uul

i=1 =1

We constantly use basic tools from matrix theory; see [Bha97, Car10].

Let €2 be a Polish space equipped with a Borel probability measure j:. Define IE,, and
Var,, to be the expectation and variance of a real-valued function with respect to the
measure ;. When applied to a random matrix, £, computes the entrywise expectation.
Nonlinear functions bind before the expectation.

2.2 Markov semigroups acting on matrices

This paper focuses on a special class of Markov semigroups acting on matrices. In
this model, a classical Markov process drives the evolution of a matrix-valued function.
Remark 2.1 mentions some generalizations.

Suppose that (Z;);>¢ C 2 is a time-homogeneous Markov process on the state space
Q) with stationary measure p. For each matrix dimension d € IN, we can construct a
Markov semigroup (P;);>o that acts on a (bounded) measurable matrix-valued function
f:Q — Hy according to

(Pof)(2z) :=E[f(Z;)|Zy=2] forallt >0andallzc Q. (2.1)

The semigroup property P,s = P,P; = P,P, holds for all s,¢ > 0 because (Z;);>¢ is a
homogeneous Markov process.

Note that the operator P, is the identity map: Pyf = f. For a fixed A € H,, regarded
as a constant function on €, the semigroup also acts as the identity: P, A = A for all
t > 0. Furthermore, E,[P, f] = E,[f] because Z; ~ ;. implies that Z; ~ p forall t > 0.
We use these facts without comment.

Although (2.1) defines a family of semigroups indexed by the matrix dimension d, we
will abuse terminology and speak of this collection as if it were as single semigroup.
A major theme of this paper is that facts about the action of the semigroup (2.1) on
real-valued functions (d = 1) imply parallel facts about the action on matrix-valued
functions (all d € IN).

Remark 2.1 (Noncommutative semigroups). There is a very general class of noncommu-
tative semigroups acting on a von Neumann algebra where the action is determined by
a family of completely positive unital maps [JZ15]. This framework includes (2.1) as a
special case; it covers quantum semigroups [CHT17] acting on H; with a fixed matrix
dimension d; it also includes more exotic examples. We will not study these models, but
we will discuss the relationship between our results and prior work.

2.3 Ergodicity and reversibility
We say that the semigroup (P,);>o defined in (2.1) is ergodic if
Pf - E,f inLy(p) as t—+4oo forall f:Q— R.

Furthermore, (P;):>¢ is reversible if each operator P, is a symmetric operator on L (u).
That is,
E.[(P:f)g) =E,[f (Pyg)] forallt>0andall f,g:Q—R. (2.2)

Note that these definitions involve only real-valued functions (d = 1).
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In parallel, we say that the Markov process (Z;);>¢ is reversible (resp. ergodic) if the
associated Markov semigroup (P;);>¢ is reversible (resp. ergodic). The reversibility of
the process (Z;);>o implies that, when Zy ~ pu, the pair (Z;, Zy) is exchangeable for all
t > 0. That is, (Z:, Zy) and (Zy, Z;) follow the same distribution for all ¢ > 0.

Our matrix concentration results require ergodicity and reversibility of the semigroup
action on matrix-valued functions. These properties are actually a consequence of the
analogous properties for real-valued functions. Evidently, the ergodicity of (FP;):>¢ is
equivalent with the statement

Pf - E,f inLy(p) as t— +oo forall f:Q — Hyand each d € IN. (2.3)

Note that the Lo (1) convergence in the matrix setting means lim; o, E, (P f—E, f)? =0,
which is readily implied by the L,(;) convergence of all entries of P, f — E, f. As for
reversibility, we have the following result.

Proposition 2.2 (Reversibility). Let (P,);>o be the family of semigroups defined in (2.1).
The following are equivalent.

1. The semigroup acting on real-valued functions is symmetric, as in (2.2).

2. The semigroup acting on matrix-valued functions is symmetric. That is, for each
deNN,
E.[(P:f)gl =E,[f (Pg)] forallt>0andall f,g:Q— H,. (2.4)

Let us emphasize that (2.4) now involves matrix products. The proof of Proposition 2.2
appears below in Section 5.2. It is based on the obsevation (5.1) that the product of
two matrices can be represented by products of scalars. We are grateful to Ramon van
Handel for this insight.

Owing to the same observation, many properties of matrix Markov semigroups
follows directly from their counterparts in the scalar case. Section 5.2 contains a
detailed discussion.

2.4 Convexity

Given a convex function @ : H; — R that is bounded below, the semigroup satisfies a
Jensen inequality of the form

(P f(z) =QE[f(Z:)| Zo = 2]) < E[®(f(Z;)) | Zg = 2] forall z € Q.
This is an easy consequence of the definition (2.1). In particular,
E, ®(Pf) <Ezu  E[Q(f(Zh)) | Zo = Z] = Ezyon[®(f(Z1))] = Ep (). (2.5)

A typical choice of ¢ is the trace function tr ¢, where ¢ : H; — Hy is a standard matrix
function.

2.5 Infinitesimal generator

The infinitesimal generator & of the semigroup (2.1) acts on a (nice) measurable
function f : Q — H, via the formula

(ZF)(2) :=lim

tlo

w forall z € Q. (2.6)

Because (P,);>0 is a semigroup, it follows immediately that

d
&Pt =ZP, =P% forallt>0.
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The null space of & contains all constant functions: £ A = 0 for each fixed A € H,.
Moreover,

E,[£f] =0 forall f:Q— H,. 2.7)

That is, the infinitesimal generator converts an arbitrary function into a zero-mean
function.

We say that the infinitesimal generator & is symmetric on Lo(1) when its action on
matrix-valued functions is symmetric:

E,[(£)g] = B,lf (Zg) forall f,g:Q — . 2.8)

The generator & is symmetric if and only if the semigroup (F;):>¢ is symmetric (i.e.,
reversible). Owing to Proposition 2.2, symmetry of the infinitesimal generator for real-
valued functions (d = 1) is equivalent with symmetry for matrix-valued functions (all
d € IN).

As we have alluded, the limit in (2.6) need not exist for all functions. The set of
functions f : Q2 — H, for which £ f is defined p-almost everywhere is called the domain
of the generator. It is highly technical, but usually unimportant, to characterize the
domain of the generator and related operators.

For our purposes, we may restrict attention to an unspecified algebra of suitable
functions (say, smooth and compactly supported) where all operations involving limits,
derivatives, and integrals are justified. By approximation, we can extend the main results
to the entire class of functions where the statements make sense. We refer the reader to
the monograph [BGL13] for an extensive discussion about how to make these arguments
airtight.

2.6 Carré du champ operator and Dirichlet form

For each d € N, given the infinitesimal generator &, the matrix carré du champ
operator is the bilinear form

[L(fg) — f<L(g) — £(f)g] € My for all suitable f,g: Q2 — Hy.  (2.9)

N | =

L(f.g):=

The matrix Dirichlet form is the bilinear form obtained by integrating the carré du
champ:

€(f,g9) =E,T(f,g) € My forall suitable f,g: Q — H,. (2.10)

We abbreviate the associated quadratic forms as I'(f) := I'(f, f) and €(f) := €(f, f)-
Proposition 5.1 states that both these quadratic forms are positive operators in the
sense that they take values in the cone of positive-semidefinite Hermitian matrices. In
many instances, the carré du champ I'(f) has a natural interpretation as the squared
magnitude of the derivative of f, while the Dirichlet form €( f) reflects the total energy
of the function f.

Using (2.7), we can rewrite the Dirichlet form as

1
€(f.9) =E,.I(f.9) = —5 E.[fZL(9) + Z(f)g] (2.11)
When the semigroup (Pt)tZO is reversible, then (2.8) and (2.11) indicate that

B(f,9) = —E.[fZ(g)] = —EL[Z(f)g]. (2.12)

These alternative expressions are very useful for calculations.
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2.7 The matrix Poincaré inequality

For each function f : 0 — Hy, the matrix variance with respect to the distribution u
is defined as

Var,[f] :==E, [(f - E, f)ﬂ =E,[f* — (E, f)? € HY.

We say that the Markov process satisfies a matrix Poincaré inequality with constant
a > 0if

Var,(f) < o-€(f) for all suitable f: Q — Hy. (2.13)

This definition seems to be due to Chen et al. [CHT17]; see also Aoun et al. [ABY20].

When the matrix dimension d = 1, the inequality (2.13) reduces to the usual scalar
Poincaré inequality for the semigroup. For the semigroup (2.1), the scalar Poincaré
inequality (d = 1) already implies the matrix Poincaré inequality (for all d € IN). Therefore,
to check the validity of (2.13), it suffices to consider real-valued functions.

Proposition 2.3 (Poincaré inequalities: Equivalence). For each d € IN, let (P,;);>0 be the
semigroup defined in (2.1). The following are equivalent:

1. Scalar Poincaré inequality. Var,[f] < o - €(f) for all suitable f : Q@ — R.

2. Matrix Poincaré inequality. Var,[f] < « - €(f) for all suitable f : Q@ — H,; and
alld € IN.

The proof of Proposition 2.3 appears in Section 5.2. This result also appears
in the companion paper [HT20a], and it has also been obtained in the independent
work [GKS20] of Garg et al.

2.8 Poincaré inequalities and ergodicity

As in the scalar case, the matrix Poincaré inequality (2.13) is a powerful tool for
understanding the action of a semigroup on matrix-valued functions. Assuming ergodicity,
the Poincaré inequality is equivalent with the exponential convergence of the Markov
semigroup (P;):>o to the expectation operator IE,. The constant o determines the rate
of convergence. The following result makes this principle precise.

Proposition 2.4 (Poincaré inequality: Consequences). Consider a Markov semigroup
(P;)¢>0 with stationary measure p acting on suitable functions f : Q — Hy for a fixed
d € N, as defined in (2.1). The following are equivalent:

1. Poincaré inequality. Var,[f] < o - €(f) for all suitable f : Q — H,.

2. Exponential ergodicity of variance. Var,[P,f] < e~/ . Var,[f] for all t > 0
and for all suitable f : Q@ — Hy.

Moreover, if the semigroup (P;);>o is reversible and ergodic, then the statements above
are also equivalent with the following:

3. Exponential ergodicity of energy. €(P,f) < e~ 2!/®.€(f) forallt > 0 and for all
suitable f : Q@ — Hy.

Proposition 2.4 is essentially the same as in the scalar case [VH16, Theorem 2.18].
We elaborate in Section 5.2.
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2.9 Iterated carré du champ operator

To better understand how quickly a Markov semigroup converges to equilibrium, it is
valuable to consider the iterated carré du champ operator. In the matrix setting, this
operator is defined as

Iy (f,g) = % [LT(f,9) —T(f,%(g)) —T(2£(f),g9)] € My for all suitable f,g: Q — H,.
(2.14)
As with the carré du champ, we abbreviate the quadratic form I's(f) := T2 (f, f). We
remark that this quadratic form is not necessarily a positive operator. Rather, I's(f)
reflects the “magnitude” of the squared Hessian of f plus a correction factor that reflects
the “curvature” of the matrix semigroup.
When the underlying Markov semigroup (F;):>o is reversible, it holds that

E.T2(f,9) =E,[2(f)£(g)] forall suitable f,g:Q — H,.

Thus, for a reversible semigroup, the average value E, I's(f) is a positive-semidefinite
matrix.

2.10 Bakry-Emery criterion

When the iterated carré du champ is comparable with the carré du champ, we can
obtain more information about the convergence of the Markov semigroup. We say the
semigroup satisfies the matrix Bakry-Emery criterion with constant ¢ > 0 if

I'(f) < c-T2(f) forall suitable f: Q — H,. (2.15)

Since I'(f) and I's(f) are functions, one interprets this condition as a pointwise inequality
that holds p-almost everywhere in 2. It reflects uniform positive curvature of the
semigroup.

When the matrix dimension d = 1, the condition (2.15) reduces to the classical Bakry-
Emery criterion [BGL13, Sec. 1.16]. For a semigroup of the form (2.1), the scalar result
actually implies the matrix result for all d € IN.

Proposition 2.5 (Bakry-Emery: Equivalence). Let (P,);>¢ be the family of semigroups
defined in (2.1). The following statements are equivalent:

1. Scalar Bakry-Emery criterion. I'(f) < c-I's(f) for all suitable f : Q — R.

2. Matrix Bakry-Emery criterion. I'(f) < c¢- I'y(f) for all suitable f : Q — Hy and
all d € IN.

See Section 5.2 for the proof of Proposition 2.5.

Proposition 2.5 is a very powerful tool, and it is a key part of our method. Indeed,
it is already known [BGL13] that many kinds of Markov processes satisfy the scalar
Bakry-Emery criterion (1). When contemplating novel settings, we only need to check
the scalar criterion, rather than worrying about matrix-valued functions. In all these
cases, we obtain the matrix extension for free.

Remark 2.6 (Curvature). The scalar Bakry-Emery criterion, Proposition 2.5(1), is also
known as the curvature condition C'D(p,oc) with p = ¢~!. In the scenario where the
infinitesimal generator & is the Laplace-Beltrami operator A, on a Riemannian manifold
(M, g) with co-metric g, the Bakry-Emery criterion holds if and only if the Ricci curvature
tensor is everywhere positive definite, with eigenvalues bounded from below by p > 0.
See [BGL13, Section 1.16] for a discussion. We return to this example in Section 4.3.

EJP 26 (2021), paper 8. https://www.imstat.org/ejp
Page 7/31


https://doi.org/10.1214/20-EJP578
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Matrix concentration via semigroup methods

2.11 Bakry-Emery and ergodicity

The scalar Bakry—Emery criterion, Proposition 2.5(1), is equivalent with a local
Poincaré inequality, which is strictly stronger than the scalar Poincaré inequality, Propo-
sition 2.3(1). It is also equivalent with a powerful local ergodicity property [vH16,
Theorem 2.35]. The next result states that the matrix Bakry-Emery criterion (2.15)
implies counterparts of these facts.

Proposition 2.7 (Bakry-Emery: Consequences). Let (P;);>0 be a Markov semigroup
acting on suitable functions f : ) — H, for fixed d € IN, as defined in (2.1). The following
are equivalent:

1. Bakry-Emery criterion. I'(f) < c-I's(f) for all suitable f : Q — H,.

2. Local ergodicity. T'(P,f) < e 2!/¢. P,T(f) for all t > 0 and for all suitable f :
Q— Hd.

3. Local Poincaré inequality. P;(f?) — (P,f)?> < c(1 —e~2t/¢). BT(f) forallt > 0
and for all suitable f : Q) — Hy.

The proof Proposition 2.7 follows along the same lines as the scalar result [VH16,
Theorem 2.36]. See Section 5.2 for a discussion.

Proposition 2.7 plays a central role in this paper. With the aid of Proposition 2.5,
we can verify the Bakry-Emery criterion (1) for many particular Markov semigroups.
Meanwhile, the local ergodicity property (2) supports short derivations of trace moment
inequalities for random matrices.

The results in Proposition 2.7 refine the statements in Proposition 2.4. Indeed, the
carré du champ operator I'(f) measures the local fluctuation of a function f, so the
local ergodicity condition (2) means that the fluctuation of P;f at every point z € Q
is decreasing exponentially fast. By applying IE, to both sides of the local ergodicity
inequality, we obtain the ergodicity of energy, Proposition 2.4(3).

If (P;)+>0 is ergodic, applying the expectation I, to the local Poincaré inequality (3)
and then taking ¢t — +oco yields the matrix Poincaré inequality, Proposition 2.4(1) with
constant o = ¢. In fact, a standard method for establishing a Poincaré inequality is to
check the Bakry-Emery criterion.

3 Nonlinear matrix concentration: main results

The matrix Poincaré inequality (2.13) has been associated with subexponential con-
centration inequalities for random matrices [ABY20, HT20a]. The central purpose of this
paper is to establish that the (scalar) Bakry—-Emery criterion leads to matrix concentra-
tion inequalities via a straightforward semigroup argument. This section outlines our
main results; the proofs appear in Sections 6 and 7. The key technical ingredient is a
novel chain rule inequality for the carré du champ operator.

3.1 Markov processes and random matrices

Let Z be a random variable, taking values in the state space (2, with the distribution u.
For a matrix-valued function f : Q — H,, we can define the random matrix f(Z), whose
distribution is the push-forward of i by the function f. Our goal is to understand how
well the random matrix f(Z) concentrates around its expectation E f(Z) = E, f.

To do so, suppose that we can construct a reversible, ergodic Markov process
(Z4)1>0 C © whose stationary distribution is ¢. We have the intuition that the faster that
the process (Z,);>o converges to equilibrium, the more sharply the random matrix f(Z)
concentrates around its expectation.
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To quantify the rate of convergence of the matrix Markov process, we use the Bakry-
Emery criterion (2.15) to obtain local ergodicity of the semigroup. This property allows
us to prove strong bounds on the trace moments of the random matrix. Using standard
arguments (e.g., see [PMT16, Section 3]), these moment bounds imply nonlinear matrix
concentration inequalities.

3.2 Polynomial concentration

We first introduce a general estimate on the polynomial trace moments of a random
matrix under a scalar Bakry-Emery criterion.

Theorem 3.1 (Polynomial moments). Let Q) be a Polish space equipped with a Borel
probability measure u. Consider a reversible, ergodic Markov semigroup (2.1) with
stationary measure p that acts on (suitable) functions f : 2 — H,;. Assume that the
semigroup satisfies the scalar Bakry-Emery criterion (2.15) with a constant ¢ > 0 and
with d = 1. Then, forq =1 and q¢ > 1.5,

(B, tr|f — B, £120]"%Y < \/c(2¢ — 1) [B, tr D(£)7) /20 3.1)

In addition, if the variance proxy vy = [|[[T'(f)|l| ) < +oo, then

(B, tr|f — B, £129]"®Y < a0\ /c(2g = 1) vy. (3.2)

We establish this theorem in Section 7.

With the polynomial moment bounds in Theorem 3.1, we can derive bounds for the
expectation and tails of | f — E, f|| using the matrix Chebyshev inequality; for example,
see [MJC*14, Proposition 6.2]. In particular, when vy < +o0o, we obtain subgaussian
concentration.

For noncommutative diffusion semigroups, Junge & Zeng [JZ15] have developed
polynomial moment bounds similar to Theorem 3.1, but they only obtain moment growth
of O(q) in the inequality (3.1). We can trace this discrepancy to the fact that they use a
martingale argument based on the noncommutative Burkholder-Davis-Gundy inequality.
At present, our proof only applies to the classical semigroup (2.1), but it seems plausible
that our approach can be generalized.

3.3 Exponential concentration

As a consequence of the Bakry-Emery criterion (2.15), we can also derive exponential
matrix concentration inequalities. In principle, polynomial moment inequalities are
stronger, but the exponential inequalities often lead to better constants and more
detailed information about tail decay.

Theorem 3.2 (Exponential concentration). Let 2 be a Polish space equipped with a Borel
probability measure . Consider a reversible, ergodic Markov semigroup (2.1) with
stationary measure p that acts on (suitable) functions f :  — H,;. Assume that the
semigroup satisfies the scalar Bakry-Emery criterion (2.15) with a constant ¢ > 0 and
with d = 1. Then

42
2ery(B) + 2t\/c/B

The function ry computes an exponential mean of the carré du champ:

Py Pmas(f — By ) 2 4} < - inf exp ( ) forallt > 0.
>

1 -
re(B) = Blog]EM tre®’) for g > 0.
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In addition, if the variance proxy vy := [[T'(f)|ll,_ ) < +oo, then

42

t
_ >t < d.
Py Ol =B ) = 1) < d-exp (5

) forallt > 0.

Furthermore,
Eu Amax(.f - EM f) S 2C’Uf lOg d.

Parallel inequalities hold for the minimum eigenvalue Ay;p.

We establish Theorem 3.2 in Section 7.4 as a consequence of an exponential moment
inequality, Theorem 7.2, for random matrices.

A partial version of Theorem 3.2 with slightly worse constants appears in [JZ15,
Corollary 4.13]. When comparing these results, note that probability measure in [JZ15]
is normalized to absorb the dimensional factor d.

3.4 Extension to general rectangular matrices

By a standard formal argument, we can extend the results in this section to a function
h : Q — M% >4 that takes rectangular matrix values. To do so, we simply apply the
theorems to the self-adjoint dilation

f(z)= [ h(g)* hgz) ] € Ha, 1a,-

See [Trol5] for many examples of this methodology.

3.5 History

Matrix concentration inequalities are noncommutative extensions of their scalar
counterparts. They have been studied extensively, and they have had a profound
impact on a wide range of areas in computational mathematics and statistics. The
models for which the most complete results are available include a sum of independent
random matrices [LP86, Rud99, Olil0, Trol2, Hual9] and a matrix-valued martingale
sequence [PX97, Oli09, Trol1, JZ15, HRMS18]. We refer to the monograph [Tro15] for
an introduction and an extensive bibliography. Very recently, some concentration results
for products of random matrices have also been established [HW20, HNWTW20].

In recent years, many authors have sought concentration results for more general
random matrix models. One natural idea is to develop matrix versions of scalar concen-
tration techniques based on functional inequalities or based on Markov processes.

In the scalar setting, the subadditivity of the entropy plays a basic role in obtaining
modified log-Sobolev inequalities for product spaces, a core ingredient in proving sub-
gaussian concentration results. Chen and Tropp [CT14] established the subadditivity
of matrix trace entropy quantities. Unfortunately, the approach in [CT14] requires awk-
ward additional assumptions to derive matrix concentration from modified log-Sobolev
inequalities. Cheng et al. [CH16, CHT17, CH19] have extended this line of research.

Mackey et al. [MJCT 14, PMT16] observed that the method of exchangeable pairs
[Ste72, Ste86, Cha05] leads to more satisfactory matrix concentration inequalities,
including matrix generalizations of the Efron-Stein-Steele inequality. The argument
in [PMT16] can be viewed as a discrete version of the semigroup approach that we use
in this paper; see Section 7.5 for more discussion.

Very recently, Aoun et al. [ABY20] showed how to derive exponential matrix con-
centration inequalities from the matrix Poincaré inequality (2.13). Their approach is
based on the classical iterative argument, due to Aida & Stroock [AS94], that operates
in the scalar setting. For matrices, it takes serious effort to implement this technique. In
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our companion paper [HT20a], we have shown that a trace Poincaré inequality leads to
stronger exponential concentration results via an easier argument.

Another appealing contribution of the paper [ABY20] is to establish the validity of a
matrix Poincaré inequality for particular matrix-valued Markov processes. Unfortunately,
Poincaré inequalities are apparently not strong enough to capture subgaussian concen-
tration. In the scalar case, log-Sobolev inequalities lead to subgaussian concentration
inequalities. At present, it is not clear how to extend the theory of log-Sobolev inequali-
ties to matrices, and this obstacle has delayed progress on studying matrix concentration
via functional inequalities.

In the scalar setting, one common technique for establishing a log-Sobolev inequality
is to prove that the Bakry-Emery criterion holds [vH16, Problem 3.19]. Inspired by
this observation, we have chosen to investigate the implications of the Bakry-Emery
criterion (2.15) for Markov semigroups acting on matrix-valued functions. Our work
demonstrates that this type of curvature condition allows us to establish matrix moment
bounds directly, without the intermediation of a log-Sobolev inequality. As a consequence,
we can obtain subgaussian and subgamma concentration for nonlinear random matrix
models.

After establishing the results in this paper, we discovered that Junge & Zeng [JZ15]
have also derived subgaussian matrix concentration inequalities from the (noncommu-
tative) Bakry-Emery criterion. Their approach is based on a noncommutative version
of the Burkholder-Davis-Gundy inequality and a martingale argument that applies to a
wider class of noncommutative diffusion semigroups acting on von Neumann algebras.
As a consequence, their results apply to a larger family of examples, but the moment
growth bounds are somewhat worse.

In contrast, our paper develops a direct argument for the classical semigroup (2.1)
that does not require any sophisticated tools from operator theory or noncommutative
probability. Instead, we establish a new trace inequality (Lemma 6.1) that mimics the
chain rule for a scalar diffusion semigroup.

4 Examples

Before we prove the main theorems, we first motivate the reader with some immediate
applications of our results. This section contains some examples of Markov semigroups
that satisfy the Bakry-Emery criterion (2.15). We will use these semigroups to derive
matrix concentration results for several random matrix models.

4.1 Product measures

Consider a product space 2 = ; ® 22 ® - -+ ® €, equipped with a product measure
=1 ® p2 ® -+ @ uy. We can construct a Markov process (Z:)i>0 = (2}, Z2, ..., Z1)t>0
on {2 whose stationary measure is u. Let (N})?_; be an independent family of standard
Poisson processes on the positive real line. At each time ¢ where N, increases for some
i, we replace the value of Z; in Z, by an independent sample from y; while keeping
the remaining coordinates fixed. It is known that this Markov process is ergodic and
reversible. We refer the reader to [vH16, ABY20] for a comprehensive introduction to
this Markov process.

The infinitesimal generator & of the associated Markov semigroup admits the explicit
form

Lf=-> 6f. (4.1)
=1
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The difference operator §; is given by
§if(z) = f(z) —Ez f((2;Z);) forall z € Q,

where (2;Z); = (2,..., 2171, Z% 21t .. 2"). The superscript stands for the index of the
coordinate. This infinitesimal generator & is well defined for all integrable functions, so
the class of suitable functions contains Lq(u).

Using the expression (4.1) for the infinitesimal generator &, we can compute the
(quadratic) matrix carré du champ operator I' and the (quadratic) iterated matrix carré
du champ operator I'; of the semigroup as follows:

M) = V) = 5 Bz [(£6) - £ 2)))’] (.2)
and
N0 = 7 30 {82 [(F6) - £ 200)%] + B2 B2 (£ 20) - £((=:200)]}

+ BB [(F) - £ 20 — F(= 205) + F (5 25 2,))°] - @3)

Here Ez := Ez.,, and the random variables Z and 7 are independent draws from the
measure p. These expressions are valid for all suitable f,g: (? — H, and all z € Q.

It is clear that the formula (4.2) for I" appears within the formula (4.3) for I';. We
immediately conclude that the Bakry-Emery criterion holds.

Theorem 4.1 (Product measure: Bakry-Emery). For the semigroup characterized by the
infinitesimal generator (4.1), the scalar Bakry—Emery criterion (2.15) holds with ¢ = 2.
That is, for any suitable function f : Q — R,

I'(f) <2T%(f).

Owing to Proposition 2.5, the semigroup also satisfies the matrix Bakry-Emery criterion
for alld € IN.

After completing this paper, we learned that Theorem 4.1 appears in [JZ15, Example
6.6] with a different style of proof.

Remark 4.2 (Matrix Poincaré inequality: Constants). Following the discussion in Sec-
tion 2.10, Theorem 4.1 implies the matrix Poincaré inequality (2.13) with o = 2. However,
Aoun et al. [ABY20] proved that the Markov process characterized by the infinitesimal
generator (4.1) actually satisfies the matrix Poincaré inequality with a = 1; see also
[CH16, Theorem 5.1]. This gap is not surprising because the averaging operation that
is missing in the local Poincaré inequality contributes to the global convergence of the
Markov semigroup.

Theorem 4.1 shows that there is a reversible ergodic Markov semigroup whose
stationary measure is 1 = p; @ pp ® --- @ i, and which satisfies the Bakry-Emery
criterion (2.15) with constant ¢ = 2. Therefore, we can apply Theorem 3.1 with ¢ = 2 to
obtain polynomial moment bounds for product measures.

Corollary 4.3 (Product measure: Polynomial moments). Let = 1 @ pa @ - - - ® uy, be
a product measure on a product space 2 = ;1 V- ®Q,. Let f: Q2 — Hy be a
suitable function. Then, forq =1 and q¢ > 1.5,

[E# tr ‘f _ E# f|2q} 1/(2q) < 2(2(] — 1) [E;L trv(f)q]l/(Qq) .

The matrix variance proxy V (f) is defined in (4.2).
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Corollary 4.3 exactly reproduces the matrix polynomial Efron-Stein inequalities
established by Paulin et al. [PMT16, Theorem 4.2].

We can also reproduce the matrix exponential Efron-Stein inequalities of Paulin et
al. [PMT16, Theorem 4.3] by applying Theorem 3.2 to a product measure. For instance,
we obtain the following subgaussian inequality.

Corollary 4.4 (Product measure: Subgaussian concentration). Let = 1 @ pio @ - -+ ® fiy
be a product measure on a product space 2 = Q1 Qs ®---®Q,. Let f: 1 — H, be a
suitable function. Define the variance proxy vy == [[[|[V(f)|ll;_ () where V (f) is given
by (4.2). Then

w)’

2
P{ax(f—E, f) >t} <d-exp (—47;) forallt > 0.
f

Furthermore,
E, Amax(f —E, f) < 24/vslogd.

Parallel results hold for the minimum eigenvalue Ayy.

4.2 Log-concave measures

Log-concave distributions [Pré73, ASZ09, SW14] are a fundamental class of prob-
ability measures on () = R” that are closely related to diffusion processes; the most
important example in this class is the standard Gaussian measure. A log-concave mea-
sure takes the form du = p*>(z)dz o« e~ (?) dz where the potential W : R" — R is
a smooth convex function, so it captures a form of negative dependence. The associ-
ated diffusion process naturally induces a reversible semigroup whose carré du champ
operator takes the form of the squared “magnitude” of the gradient:

n
T(f)(z) =Y (0:f(2))* forall z € R".
i=1
As usual, 9; ;== 9/0z; fori=1,...,n.

Many interesting results follow from the condition that the potential W is uniformly
strongly convex on R”. In other words, for a constant n > 0, we assume that the Hessian
matrix satisfies

(Hess W)(z) := [0;;W (2)]
In fact, the uniform strong convexity of W implies the ergodicity of the associated
Markov semigroup in the sense of (2.3). One can find more detailed ergodicity results in
[Hail6, JSY19].

Moreover, it is a standard result [BGL13, Sec. 4.8] that the strong convexity condi-
tion (4.4) implies the scalar Bakry-Emery criterion with constant ¢ = 1~!. Therefore,
according to Proposition 2.5, the matrix Bakry-Emery criterion (2.15) is valid for every
deNN.

This discussion implies that we can apply our main results to a log-concave probability
measure du o e~"V(*) dz on R™ whose potential IV satisfies the strong convexity condi-
tion (4.4). For instance, we can apply Theorem 3.1 with ¢ = 77_1 to obtain polynomial
moment bounds for p.

i1 =n-1, forallze R". (4.4)

Corollary 4.5 (Log-concave measure: Polynomial moments). Let dp e W) dz be a
log-concave measure on R" whose potential W : R" — R satisfies a uniform strong
convexity condition: Hess W = n - I, with constantn > 0. Let f € R" — H, be a suitable

function. Then, forq =1 and g > 1.5,
n a7 1/(2q)
E, tr (Z(ai f)2> ] .

i=1

2qg—1

1/(2
[E;t tI‘|f - Eu f‘Qq] ¢

IN
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Similarly, we can apply Theorem 3.2 with ¢ = 5! to obtain subgaussian concentration
inequalities.
Corollary 4.6 (Log-concave measure: Subgaussian concentration). Let du oc e~ (?) dz
be a log-concave probability measure on R"™ whose potential W : R" — R satisfies a
uniform strong convexity condition: Hess W = n - 1,, wheren > 0. Let f € R" — H, be a
suitable function, and define the variance proxy

n

Z(aif(z))2

i=1

Vf = SUDP,cRn

Then
2

—nt
]PH{AmaX(f—]EH_)"')>t}<d-exp(277 ) forallt > 0.
vf

E,u )‘max(f *E# f) S 27771’11]-' logd.

Parallel results hold for the minimum eigenvalue Ay, .

Furthermore,

4.2.1 Standard normal distribution

One of the core examples of a log-concave measure is the standard Gaussian measure 7,
on R". Its potential, W (z) = 22/2, is uniformly strongly convex with parameter n = 1.
The associated diffusion process induces the Ornstein-Uhlenbeck semigroup, which
satisfies the Bakry—Emery criterion (2.15) with constant ¢ = 1. Therefore, Corollary 4.6
gives subgaussian concentration for matrix-valued functions of a Gaussian random vector.
To make a comparison with familiar results, we present one of the basic examples.

Example 4.7 (Matrix Gaussian series). Consider the matrix Gaussian series

n
flz) = Z Z;A; where z = (Zy,...,Z,) ~ v, and A; € Hy are fixed.

i=1

In this case, the carré du champ is simply

L(f)(=) =) A}
i=1

Thus, the expectation bound states that

3 a2

=1

E,, Amax(f(2)) < \/2vglogd where vy =

Up to and including the constants, this matches the sharp bound that follows from
“linear” matrix concentration techniques [Trol5, Chapter 4].

Van Handel (private communication) has outlined out an alternative proof of Corol-
lary 4.6 with slightly worse constants. His approach uses Pisier’s method [Pis86,
Thm. 2.2] and the noncommutative Khintchine inequality [Buc01] to obtain the statement
for the standard normal measure. Then Caffarelli’s contraction theorem [Caf00] implies
that the same bound holds for every log-concave measure whose potential is uniformly
strongly convex with n > 1. This approach is short and conceptual, but it is more limited
in scope.
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4.3 Measures on Riemannian manifolds

The theory of diffusion processes on Euclidean spaces can be generalized to the
setting of Riemannian manifolds. Although this exercise may seem abstract, it allows us
to treat some new examples in a unified way. We refer to [BGL13] for a comprehensive
treatment of the subject, and we instate their conventions. For an introduction to
calculus on Riemannian manifolds, references include [Pet16, Leel8].

Consider an n-dimensional compact Riemannian manifold (M, g). Let g(z) = (9% (z) :
1 <4,7 < n) be the matrix representation of the co-metric tensor g in local coordinates,
which is a symmetric and positive-definite matrix defined for every x € M. The man-
ifold is equipped with a canonical Riemannian probability measure p4 that has local
density dyu, oc det(g(z))~'/? dz with respect to the Lebesgue measure in local coordi-
nates. This measure y,4 is the stationary measure of the diffusion process on M whose
infinitesimal generator & is the Laplace-Beltrami operator Ay. This diffusion process
is called the Riemannian Brownian motion.' Note that the Laplace-Beltrami operator
Ay is symmetric with respect to the measure p,, and hence the diffusion process is
reversible.

The associated matrix carré du champ operator coincides with the squared “magni-
tude” of the differential:

T(f)(x) =Y g"(z)0if(x) 0;f(x) for suitable f: M — H,. (4.5)
i,j=1
Here, 9; for i = 1,...,n are the components of the differential, computed in local coordi-

nates. We emphasize that the matrix carré du champ operator is intrinsic; expressions for
the carré du champ resulting from different choices of local coordinates are equivalent
under change of variables. In particular, if we compute the partial derivatives 9; in local
geodesic/normal coordinates, the corresponding co-metric tensor g is the identity matrix,
and thus the carré du champ operator has the simple form I'(f) = >, (9, f)*.

As mentioned in Remark 2.6, the scalar Bakry-Emery criterion holds with ¢ = p~! if
and only if the Ricci curvature tensor of (M, g) is everywhere positive, with eigenvalues
bounded from below by p > 0. In other words, for Brownian motion on a manifold, the
Bakry-Emery criterion is equivalent with the uniform positive curvature of the manifold.
Proposition 2.5 ensures that the matrix Bakry-Emery criterion (2.15) holds with ¢ = p~*
under precisely the same circumstances.

We remark that the uniform positiveness of the Ricci curvature tensor also leads to a
Poincaré inequality for the diffusion process on the manifold; see [BGL13, Section 4.8].
Therefore, Proposition 2.4 implies that the associated Markov semigroup is ergodic in
the sense of (2.3).

Many examples of positively curved Riemannian manifolds are discussed in [LedO1,
Gro07, CE08, BGL13]. We highlight two particularly interesting cases.

4.3.1 The sphere

Consider the n-dimensional unit sphere $” C R"*!, equipped with the Riemannian
manifold structure induced by R"*!. The canonical Riemannian measure on the sphere
is simply the uniform probability measure. The sphere has a constant Ricci curvature
tensor, whose eigenvalues all equal n — 1; see [BGL13, Section 2.2]. Therefore, the
Brownian motion on $" satisfies a Bakr‘y—Emery criterion (2.15) with ¢ = (n — 1)*1 for

1Many authors use an alternative convention that Riemmanian Brownian motion has infinitesimal genera-
tor %Ag.
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n > 2. Theorem 3.1 then implies that, for any suitable function f : $" — Hg,

2q—1
A [, T ()7

(B, tr|f — By, 0] <

where the carré du champ I'(f) is defined by (4.5). We can also obtain subgaussian tail
bounds in terms of the variance proxy vy := [|[I'(f)|ll}_(,,)- Indeed, Theorem 3.2 yields
the bound

—(n — 1)¢#2
Py {Mmax(f — B f) >t} < d-exp (W) for all t > 0.
f

To use these concentration inequalities, we need to compute the carré du champ I'( f)
and bound the variance proxy vy for particular functions f.

We give two illustrations where we compute the carré du champ by viewing the
sphere $” as a submanifold of the Euclidean space R"*!. From this perspective, the
carré du champ is simply the squared Euclidean length of the tangential gradient on
the sphere; we refer the reader to the arXiv version [HT20b] of this paper for detailed
calculations. In each case, let © = (x1,...,2,41) € $™ be a random vector drawn from
the uniform probability measure o,,. Suppose that (Ai,...,A,+1) C Hy is a list of
deterministic Hermitian matrices.

Example 4.8 (Sphere I). Consider the random matrix f(z) = Z?:ll x;A;. We can
compute the carré du champ as

n+1 n+1 2
P(f)) = 3 A% <inAi> 0.
=1 i=1

It is obvious that I'(f)(z) < Z?:ll A? for all z € $", so the variance proxy vy <
[z |
Compare this result with Example 4.7, where the coefficients follow the standard

normal distribution. For the sphere, the carré du champ operator is smaller because a
finite-dimensional sphere has slightly more curvature than the Gauss space.

Example 4.9 (Sphere Il). Consider the random matrix f(z) = 37"} 22 A;. The carré du
champ admits the expression

n+1

T(f)(x) =2 2la?(A; - A%

2,j=1

A simple bound shows that the variance proxy vy < 2max; ; |A; — A;||.

4.3.2 The special orthogonal group

The Riemannian manifold framework also encompasses matrix-valued functions of ran-
dom orthogonal matrices. Consider the special orthogonal group SO(d) C R%*? as a
Riemannian submanifold of R?*¢. The induced Riemannian metric is the Haar probabil-
ity measure on SO(d). For this manifold, it is known that the eigenvalues of the Ricci
tensor are uniformly bounded below by p = (d — 1)/4; see [Led01, p. 27]. Therefore,
the Brownian motion on the special orthogonal group SO(d) satisfies the Bakry-Emery
criterion (2.15) with ¢ = 4/(d — 1).

EJP 26 (2021), paper 8. https://www.imstat.org/ejp
Page 16/31


https://doi.org/10.1214/20-EJP578
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Matrix concentration via semigroup methods

As a direction extension, the Brownian motion on the product space SO(d)®" also sat-
isfies the Bakry-Emery criterion (2.15) with the same constant ¢ = 4/(d—1). Theorem 3.2
then implies that, for any suitable function f : SO(d)®™ — Hy,

—(d

1V42
71)t > forall ¢t > 0.
vf

IPM®n {Amax(.f - E,u@’" f) > t} <d- €xp < ]

Here is a particular example where we can bound the variance proxy.
Example 4.10 (Special orthogonal group). Let (A4,...,A,) C Hy(R) be a fixed list of

real, symmetric matrices. Suppose that Oy,..., 0, € SO(d) are drawn independently
and uniformly from the Haar probability measure p on SO(d). Consider the random
matrix f(O,...,0,) =, 0;A;0]. The carré du champ is

T'(£)(Ox,... - Zo { (tr[A2] — d" tr[A]2) Ty + d (A; — d~" tr[A)] .Idﬂ or.

Each matrix O; is orthogonal, so the variance proxy satisfies
vf<lzn:{tr[A?}— d™Mtr[A )P+ d - || A — d 7 r[AL] - 1| }
=3 i

We remark that the carré du champ has been obtained using the Lie group structure of
SO(d)®", so the derivatives can be conveniently calculated under the geodesic frame of
a tangent space. See the arXiv version [HT20b] for detailed calculations.

5 Matrix Markov semigroups: properties and proofs

This section presents some other fundamental facts about matrix Markov semigroups.
We also provide proofs of the propositions from Section 2. In particular, we argue that
many properties of matrix Markov semigroups follow directly from their analogs in the
scalar setting.

5.1 Properties of the carré du champ operator

Our first proposition gives the matrix extension of some classical facts about the
carré du champ operator I'. Parts of this result are adapted from [ABY20, Prop. 2.2].

Proposition 5.1 (Matrix carré du champ). Let (Z;);>o be a Markov process. The associ-
ated matrix bilinear form I" has the following properties:

1. For all suitable f,g: 2 — Hy and all z € ,

I(f,9)(z) = lim % E [(£(Z:) — £(Z0))(9(Z:) — 9(Z0)) | Zo = 2].

2. In particular, the quadratic form f — I'(f) is positive: T'(f) = 0.

3. For all suitable f,g: ) — Hy and all s > 0,
I(f.9) +T(g,f) < sT(f) + s ' T(g).
4. The quadratic form induced by I' is operator convex:
L(rf+(1—-7)g) <7T(f)+(1—7)I(g9) foreachr € [0,1].

Similar results hold for the matrix Dirichlet form, owing to the definition (2.10).
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Proof. The limit form of the carré du champ in (1) can be verified with a short calculation:

D(F.9)() = lim o [EIF(Z09(Z0) | 70 = 2] - F(2)g(2)]
1

~lim o [£()(Elg(Z0) | Z0 = 2] ~ 9(2))]

~ i o [(BIF(Z0) | 20 = 2] - £(2))g(2)]

= lim o B [£(Z09(Z) — $()g(Z0) ~ F(Z)g(2) + F(g(2) | % = 2]
1

TR [(F(Z:) = £(20))(9(Z:) — 9(Z0)) | Zo = z].

The first relation depends on the definition (2.9) of I' and the definition (2.6) of &£.
Statement (2) is a direct consequence of (1) with f = g, because the square of a matrix
is positive-semidefinite and the expectation preserves positivity. Statements (3) and (4)
are direct consequences of (2). O

The next lemma is an extension of Proposition 5.1(1). We use this result to establish
the all-important chain rule inequality in Section 7.

Lemma 5.2 (Triple product). Let (Z;);>o be a reversible Markov process with a stationary
measure p and infinitesimal generator &. For all suitable f,g,h : Q) — H, and all z € (),

lim % B [(£(Z) — £(Z0))(9(Z0) — 9(Z0)) (h(Z0) — h(Z0))] | Zo = 2]
= tr [£(fgh) — £(fg)h — £(hf)g — L(gh)f +<L(f)gh+ L(g)hf + L (h)fg](2).

In particular;
Bz lim % trE [(£(20) — £(Z0))(9(20) — 9(Zo)) (R(Z:) — h(20))] | Zo = Z] = 0.

Proof. For simplicity, we abbreviate

fi=1(Z), 9.=9(Z), h,=h(Z;) and fo= f(Zo), go=9(Zo), ho=h(Zy).

Direct calculation gives

li 5 0B [(£(2) — £(20) (9(%) — 9(20)) (Z) ~ h(Z0)) | 2 = 2

o1
= lflﬁ)l 7 trIE[figih: — figiho — figoh: + figoho
— fogihe + fogiho + fogoht — fogoho | Zo = 2]
1
= ltlg)l 7 tr I [(figehe — fogoho) — ((fige — fogo)ho)

— ((hefe — hofo)go) + ((f: — fo)goha)
— ((gthe — goho) fo) + ((g¢ hofo) + ((ht — ho) fogo) | Zo = 2]
= tr [Z(fgh)(z) — 2(fg)(2)h(2) — Sf(hf)(z)g(z) Z(gh)(2)f(2)
+ L(f)(2)g(2)h(2) + 2(9)(2)h(2) f(2) + L (h)(2) f(2)g(2)].

We have applied the cyclic property of the trace. Using the reversibility (2.8) of the
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Markov process and the zero-mean property (2.7) of the infinitesimal generator, we have

E,tr[Z(fgh) —2£(fg)h —2(hf)g — Z(gh)f +2£(f)gh +ZL(g)hf + Z(h)fg]
=tr[E,[£(fgh)] — E.[£(fg)h — fg£(h)]
~Eu[2(hf)g — hfZ(g)] —E.[ZL(gh)f — ghZ(f)]]
=0.

This concludes the second part of the lemma. O

5.2 Dimension reduction

In this section, we demonstrate that many properties of matrix Markov semigroups
introduced in Section 2 are equivalent with their analogs in the scalar setting (d = 1).
The pattern of argument was suggested to us by Ramon van Handel.

The technique is based on the simple observation that, for all vectors u,v € C? and
all matrices A, B € Hy,

d
u*(AB)v =) (u*Ae;)(e]Bv) =: Y _a;b
j=1 j=1
d
= Z [Re(a;) Re(bj) + Im(a;) Im(b;) — iRe(a;) Im(b;) + iIm(a;) Re(b;)]. (5.1)
j=1
We have defined a; := u*Ae; and b; := v*Ae; foreach j =1,...,d. Asusual, (e; : 1 <

j < d) is the standard basis for C. The real and imaginary parts of a complex number
w € C are given by Re(w) := 1(w + w*) € R and Im(w) := % (w — w*) € R, where *
denotes the complex conjugate.

As an example, we show how to use this observation to prove Proposition 2.2, which
states that reversibility of the semigroup (2.1) on real-valued functions is equivalent with
the reversibility of the semigroup on matrix-valued functions.

Proof of Proposition 2.2. The implication that matrix reversibility (2.4) for all d € IN
implies scalar reversibility is obvious: just take d = 1. To check the converse, we
consider two matrix-valued functions f,g : 0 — H,; and introduce the scalar functions
fi ==u"*fe; and g; :== v*ge; for each j = 1,...,d. The definition (2.1) of the semigroup
(P)+>0 as an expectation ensures that

u(Pf)e; = Pifj = Pi(Re(f;)) +1 P (Im(f;)) = Re(Pf;) + ilm(P f;).

The parallel statement holds for v*(Ptg)ej. Therefore, we can use formula (5.1) to
compute that

u" E,[(Ff) glv

- ZE/‘ fejejgv] = ZE,L[(Ptfj) 91

j=1

I
M& |

Ey, [(P; Re(f;)) Re(g;)+ (P Tm(f;)) Im(g;) —i(P; Re(f;)) Im(g;) +i(F; Im(f;)) Re(g;)]

<.
Il
—

[
M~

E,. [Re(f;)(P: Re(g;))+Tm(f;) (P Im(g;)) —iRe(f;) (P Im(g;)) + iIm(f;)(P; Re(g;))]

<.
Il
—

d

Eulf; (Pg;)) = 3 Eulu’ fese; (Pg)v] = u” B, [f (Pig)Jo.

j=1

I
M=

<.
I
—
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The matrix identity (2.4) follows immediately because u, v € C¢ are arbitrary. O

By applying formula (5.1) to the matrix products in the definitions (2.9) and (2.14) of
the carré du champ operators and using the linearity of the infinitesimal generator (2.6),
we immediately obtain the following result. It explains how to relate the carré du champ
operator of a matrix-valued function to the carré du champ operators of some scalar
functions.

Lemma 5.3 (Dimension reduction of carré du champ). Let (P;);>o be the semigroup
defined in (2.1). The carré du champ operator I' and the iterated carré du champ
operator I'y satisfy

M=

wT(flu = (F(Re(u*fej)) +F(Im(u*fej))) ;

<.
I
—

M=

uw T (flu = (Fg(Re(u*fej)) —l—FQ(Im(u*fej))) .

<.
Il
—_

These formulae hold for all d € N, for all suitable functions f : 0 — Hy, and for all
vectors u € C¢,

The proof involves calculations similar to those in the proof of Proposition 2.2, so we
omit the repetitive details. Lemma 5.3 helps us transform the scalar Poincaré inequality
and the scalar Bakry-Emery criterion to their matrix equivalents. For instance, if the
semigroup (P;);>o satisfies the scalar Bakry-Emery criterion in Proposition 2.5(1), then
for any vector u € C? and any suitable function f : Q — Hy,

> (r

(Re(u*fe;)) + T (Im(u* fe;)))

<.

d
1
d
<) (P2(Re(u” fe;)) + D2 (Im(u” fe;)))
j=1

=c-u'Ty(f)u.

Since u € C? is arbitrary, we immediately obtain the matrix Bakry-Emery criterion (2.15).
This proves Proposition 2.5. Similarly, Proposition 2.3 follows from the same type of
calculations.

Moreover, Lemma 5.3 implies that Proposition 2.4 and Proposition 2.7 are equivalent
with their counterparts in the scalar case [VH16, Theorem 2.18 & Theorem 2.36]. This
releases us from proving these results all over again in the matrix setting.

6 A chain rule inequality

In this section, we state and prove the key new technical result that we need to
establish polynomial and exponential matrix concentration inequalities (Theorems 3.1
and 3.2).

Lemma 6.1 (Chain rule inequality). Let ¢ : R — R be a scalar function for which ¢ := |¢'|
is convex. For all suitable f,g : Q@ — Hy,

B, 0 T(g. () < (Bt D) w(f)] - By e D) w()]) (6.1)

We use Lemma 6.1 to control the trace of the carré du champ within a standard
semigroup argument. The rest of this section is devoted to the proof of the lemma.
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To give some context, we remark that the carré du champ operator I' of a (scalar-
valued, reversible) diffusion semigroup satisfies a chain rule [BGL13, Sec. 1.11]:

L(g,¢(f)) =T(9)¢'(f) for smooth f,g,¢: R = R.

The formula (6.1) provides a substitute for this relation for an arbitrary reversible
Markov semigroup acting on matrices. In the scalar setting, the lemma is related to the
Stroock-Varopoulos inequality [Str84, Var85].

6.1 Mean value trace inequality
Lemma 6.1 relies on a new matrix trace inequality.

Lemma 6.2 (Mean value trace inequality). Let ¢ : R — R be a function such that
¢ :=|¢'| is convex. Forall A,B,C € H,,

tr [C (¢(A) — ¢(B))] < in

s>

%itr [(s(A—B)? + 5 C?) (4(A) + ¥(B))] .

Lemma 6.2 is a common generalization of [PMT16, Lemmas 9.2 and 12.2]. The proof
is similar in spirit, but it uses some additional ingredients from matrix analysis.

The key idea is to use tensorization to lift a pair of noncommuting matrices to a
pair of commuting tensors. This step gives us access to tools that are not available for
general matrices. For any two Hermitian matrices X,Y € I, define a linear operator
X ®Y :M; — My whose action is given by

(X®Y)(Z)=XZY forall Zc M,.

The linear operator X ® Y is self-adjoint with respect to the standard inner product
on IMy:

(Z1,( X @Y )(Z2))m, = tr[Z{ X ZY ] = tr [Y Z1 X Z5] = (X @ Y)(Z1), Z2)m,
forall Z,,Z> € My.

Therefore, for any function ¢ : R — R, we can define the tensor function (X ® Y') using
the spectral resolution of X ® Y. It is not hard to check that

(XD =p(X)®I and ¢(IRY)=I® o(Y).

Note that the tensors X ® I and I ® Y commute with each other, regardless of whether
X and Y commute.

Proof of Lemma 6.2. We can write
p(A) = o(B) = (p(A) ®I-1® ¢(B))(I)
— (pA®T) - (12 B))(I) = /01 Lo(rAT+(1-7leB)1)dr
Since A ® I commutes with I ® B, we have
%@(TA@I—F(I—T)I@B) = (TA®I+(1-7I®B)(A®I1-1® B).

As a consequence,
1
¢(A) — (B) = / ¢ (TA®I+(1-7)I®B)(A®I-1® B)(I)dr
0

_ /lwl(m@n (1-7)1® B)(A - B)dr =: /l/nT(A,B)(A—B)dT.
0 0
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Since JL,(A, B) is a self-adjoint linear operator on the Hilbert space IM,, we can apply
the operator Cauchy-Schwarz inequality [PMT16, Lemma A.2]. For any s > 0,

1
tr [C (o(A) — ¢(B))] = (C, ¢(A) — o(B))y, =/0 (C, Mt(A, B)(A = B))y, dr

71

</ [§<A—B, (A4, B)| (A = B))y, + “o (C, |U-(A, B)| (C))y, | dr. (6.2)

By assumption, ¢ := |¢’| is convex. Thus, for all T € [0, 1],
|- (A,B)|=|¢'(TA®I+ (1-7)I® B)|=¢(tA®I+ (1 -7)I® B)
K7 YvAD+(1-7)-v(I®B)=7-¢v(A)I+(1—-171) - I®¢(B).

The argument above exploits the commutativity of A ® I and I ® B, so we do not need v
to be operator convex. Hence, for any Z € My,

/ (Z. (A, B)|(Z))y, d7 < / (Z, (r-0(A) T+ (1= 1) - 12 6(B))(2))y,, dr
% N w1zz w(A) + (2 Z0(B)]). (6.3)

((Z. U(A) 2y, + (2, ZU(B))y,) =3

Applying (6.3) to (6.2), substituting A — B and C for Z, we arrive at
1 _
t[C (p(A) — ¢(B))] < ; tr [(s (A= B) + 57 C?) (¥(A) + ¥(B))]
Optimize over s > 0 to achieve the stated result. O

6.2 Proof of chain rule inequality

We are now ready to prove Lemma 6.1 from Lemma 6.2.

Proof of Lemma 6.1. For simplicity, we abbreviate

Fe=F(Z), g:=9(Z) and fo=f(Z), go=9(Zo).

By Proposition 5.1(1),

E, trT(g,¢(f)) = Ez.p trltiﬁ)l 2% E [(g: — 90) (0(f2) — o(f0)) | Zo = Z]
(6.4)

= Ezeulim 22 B [irllgr — g0) (o) — (fo))] | 20 = 2] .

Fix a parameter s > 0. For each ¢ > 0, the mean value trace inequality, Lemma 6.2, yields

tr [(g: — go) ((fi) — (fo))] < itr [(s (e = f0)? + 5" (91— 90)°) (¥(F1) + ¥(Fo))]
= S [(s (o = o) + 57" (a0 — 90)?) (o)
i [(s(f: — )2 +s (g —go) )(¢(ft) ¥(fo))] -

(6.5)

It follows from the triple product result, Lemma 5.2, that the second term satisfies

Ezeuli 5 0B [(s (= F0* + 57 (90— 90)?) (W(F) — 0(F0)) | 0= 2] = 0. (6.6
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Sequence the displays (6.4), (6.5) and (6.6) to reach

1 1
E, trT(g,o(f) < 5Bz, ltlfg 5

5 tr B [(s (fr — fo)* + 5~ (9: — 90)*) ¥(fo) | Zo = Z]

_ 1 : 1 2 _
= 5 Bzeptr | (s lm o BI(f — f0)* | Zo = 2]

57 lim o El(g — 90 Z0 = 2])0(£(2))

_ %EH tr [(sT(f) + s~ T(g)) v(£)] .

The last relation is Proposition 5.1(1). Minimize the right-hand side over s € (0,c0) to
arrive at
1/2

B, trD(g, 0(£)) < (Butr D) (f)]) " - (Butr [D(g) 6(£)])
This completes the proof of Lemma 6.1. O

7 From curvature conditions to matrix moment inequalities

The main results of this paper, Theorems 3.1 and 3.2, demonstrate that the Bakry-
Emery criterion (2.15) leads to trace moment inequalities for random matrices. This
section is dedicated to the proofs of these theorems. These arguments appear to be new,
even in the scalar setting, but see [Led92, Sch99] for some precedents.

7.1 A Markov semigroup argument

We first explain the common strategy that we will use to prove the main theorems. It
is the most essential part in our method.

Let us recall the hypotheses. Suppose that ) is a Polish space equipped with a
Borel probability measure p. We consider a reversible, ergodic semigroup (F;):>o with
stationary measure p that acts on suitable functions f : 2 — Hy. Without loss of
generality, we can fix a dimension d € IN, and we select an H,-valued function f with
zero mean: E, f = 0.

Our core assumption is that the semigroup satisfies the scalar Bakry-Emery crite-
rion (2.15) for a constant ¢ > 0. Proposition 2.5 states that the semigroup also satisfies
the matrix Bakry-Emery criterion for dimension d. Therefore, Proposition 2.7 guarantees
that the action of the semigroup on H;-valued functions is locally ergodic.

Let ¢ : R — R be a scalar function. The core idea is to estimate a trace moment of
the form E, tr[f ¢(f)] via a classical semigroup argument:

B, tlf ()] = B, 6P () ()] = Jim B, talP(A) (£ = [ 3B, 6P ol .

t—o0

By ergodicity (2.3), we confirm that lim;_, E, tr[P:(f) ¢(f)] = E, tr[(E, f) o(f)] = 0.
In the second term on the right-hand side, the time derivative places the infinitesimal
generator & in the integrand, which then yields

oo

E, trlf o(f)] = - /OOOEutr[i”(Ptf)so(f)]dt= / E,tT(Pf,o(f)dt.  (7.1)

The second equality above follows from the formula (2.12) and is the starting point for
our method.

Now, suppose that ¢ = |¢’| is convex. Then we can employ the chain rule inequality,
Lemma 6.1, to control the trace of the carré du champ:

B, 0 T(Pf.o(f) < (B, D) o) B0 o)) . @)
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To proceed, we invoke the local ergodicity property, Proposition 2.7(2), to estimate
['(P,f). Thatis, T'(P;f) < e 2//*P,T(f). Note that ¢)(f) = |¢'|(f) = 0. Thus, we have

E, tr[D(Pf) ()] < e /B, tr [(PL(f)) ¥(£)]. (7.3)
Sequencing the displays (7.1), (7.2) and (7.3) yields

By ulf o) < (B wn)]) [ et (Baier@ye) e o

Last, we apply the matrix decoupling techniques, based on Holder and Young trace
inequalities, to bound Etr [['(f) ¢ (f)] and Etr [(P.L(f)) ¥ (f)] in terms of the original
quantity of interest E, tr[f ¢(f)]. The subsequent sections supply full details in case ¢ is
a polynomial or exponential function.

Our approach incorporates some techniques and ideas from [PMT16, Theorems
4.2 and 4.3], but the argument is distinct. Section 7.5 gives more details about the
connection.

7.2 Polynomial moments

This section is dedicated to the proof of Theorem 3.1, which states that the Bakry-
Emery criterion implies matrix polynomial moment bounds.

7.2.1 Setup

Fix a suitable function f : 2 — Hy. Proposition 5.1(1) implies that the carré du champ
is shift invariant. In particular, I'(f) = I'(f — E, f). Therefore, we may assume that
E,f=0.

The quantity of interest is

By tr | f*7 = By tr [f -sgn (f) - [£P77] = By tr [f ()]

We have introduced the signed moment function ¢ : z — sgn (z) - |z[**"" for # € R. Note
that the absolute derivative 1(z) := |¢'(z)| = (2¢ — 1) |#|**"* is convex when ¢ = 1 or
when ¢ > 1.5.

Remark 7.1 (Missing powers). A similar argument holds when ¢ € (1, 1.5). It requires

a variant of Lemma 6.1 that holds for monotone v, but has an extra factor of 2 on the
right-hand side.

7.2.2 Decoupling

We can invoke the semigroup argument from Section 7.1 with the function ¢(x) =
sgn () - |z|*?". In this case, the inequality (7.4) reads
N2 [ o172
B, trl £ < a = 1) (B [T 11777]) 7 [ et (Bu [ 1 7])
0
(7.5)
Apply Holder’s inequality for the trace followed by Holder’s inequality for the expectation
to obtain
Bt [T(F) 1177] < (BT ()07 (e[ £120) 77,
(7.6)
_ -1
Byt [(PD(F) 1£7972] < (B tr (PT(F)DY7 - (Butr]17) 0

Introduce (7.6) into (7.5). Rearrange the expression to reach

(Butr[F1)"7 < (2 — 1) (B tr D)) 22 / T etV (B, (BO())VCD at. (7.7)
0

It remains to remove the semigroup from the integral.
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7.2.3 Endgame

The trace power tr[(-)?] is convex on H, for ¢ > 1; see [Carl0, Theorem 2.10]. Therefore,
the Jensen inequality (2.5) for the semigroup implies that

E, tr (PT(f))? < E, tr (). (7.8)

Substituting (7.8) into (7.7) yields

(B, tr [£27)9 < (2q — 1) (B, te T(£)7) /9 / T etledt = ¢ (2g — 1) (B, tr T(F)1) V7

0

This establishes (3.1).
Define the uniform bound vy := [[[T'(f)[l[[,__(,,)- We have the further estimate

(I, ox [D(f)7)" 2 < dM/ 0 .
The statement (3.2) now follows from (3.1). This step completes the proof of Theorem 3.1.

7.3 Exponential moments

In this section, we establish Theorem 3.2, the exponential matrix concentration
inequality. The main technical ingredient is a bound on exponential moments:

Theorem 7.2 (Exponential moments). Instate the hypotheses of Theorem 3.2. For all

(—v/BTe/BTe).

0°r5(B)
log By, freV—Bud) < 1S 7.9
og re 30— 0%/ 5) (7.9)
Moreover, if vy < +oo, then
— W(F_TF cvyh?
log E,, treff—Eu ) < —5— forall € R. (7.10)

The proof of Theorem 7.2 occupies the rest of this subsection. Afterward, in Sec-
tion 7.4, we derive Theorem 3.2.

7.3.1 Setup

Fix a suitable function f : ) — Hy. Again, we may assume that £, f = 0. Furthermore,
we only need to consider the case § > 0. The results for § < 0 follow formally under the
change of variables # — —6 and f — —f.

The quantity of interest is the normalized trace moment generating function (mgf):
m(0) := E, tre?f for 6 > o0.
We will bound the derivative of this function:
m'(0) = Byt [ 7] = B, G[f o(£))-

We have introduced the function ¢ : 2 — €% for 2 € R. Note that its absolute derivative
Y(x) := | ()| = 0e?* is a convex function, since 6 > 0.
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7.3.2 Decoupling

We invoke the semigroup argument from Section 7.1 with the function ¢(z) = e*. The
inequality (7.4) now states that

1/2

m'(0) < 0 (B, tr [D(f) e ])"* /we*t/c (B, tr [(PT(£)) e?7])"* at. (7.11)
0

To decouple the carré du champ operator in (7.11) from the matrix exponential, we need
to use an entropy inequality.

Fact 7.3. (Young’s inequality for matrix entropy) Let X be a random matrix in H,;, and
let Y be a random matrix in H} such that EtrY = 1. Then

Etr[XY] <logEtre* + Etr[YlogY].

This result appears as [MJC™ 14, Proposition A.3]; see also [Car10, Theorem 2.13].
Apply Fact 7.3 to see that, for any 5 > 0,

m — eff
E, tr [T(f)e?] = % E, tr {ﬂF(f)m(QJ
m B T e oOf
< é&) <log E, trexp (BT(f)) + E, tr [m(@) log m(@)}) (7.12)
eff

We have identified the exponential mean r(8) := 3~ log E, trexp (BL'(f)).
Likewise,

E, tr [(PI(f)) eaf] <

0 . 3 il
mé ) log E, trexp (BPL(f)) + % Iy, tr {e” log 7761(9)] '

The trace exponential trexp(-) is operator convex; see [Carl0, Theorem 2.10]. The
Jensen inequality (2.5) for the semigroup implies that

E, trexp (BRI (f)) < E,trexp (BL(f)) = exp (6r(5))

Combine the last two displays to obtain

_ 1 _ et
E, tr [(PI(f)) e ] <m(0)r(B) + 3 E, tr {eef log m(G)} ) (7.13)

Thus, the two terms on the right-hand side of (7.11) have matching bounds.
Sequence the displays (7.11), (7.12), and (7.13) to reach

m’(e)gce(m(e) (3)+ﬂE tr [e‘)flog Q(Z)D (7.14)

Next, we simplify this expression to arrive at a differential inequality.

7.3.3 A differential inequality
Since e’f = I, we have logm(6) > logtr I = 0 and hence
e¥f

m(6)

log—— =0f —logm(0) - I 0f.
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It follows that

_ eff _
E, tr {e” log m(e)] <OE, tr[fe] =0m/(0). (7.15)
Combine (7.14) and (7.15) to arrive at the differential inequality
cH?
m/(0) < cOm(0)r(B) + ?m'(Q) for 6 > 0. (7.16)

Finally, we need to solve for the trace mgf.

7.3.4 Solving the differential inequality

Fix parameters 6 and 8 where 0 < 6 < \/§/c. By rearranging the expression (7.16), we

find tht d Cr(B) Cr(B)
cQr cQr
— 1 < < f .
a ogm(¢) < 1= /3 S 1= ct?/5 or ¢ € (0,6]
Since log m(0) = log tr I = 0, we can integrate this bound over [0, §] to obtain
ch%r(B)
1 < —
o5 m0) < 3= cg2 /)

This is the first claim (7.9).
Moreover, it is easy to check that r(5) < vf. Since this bound is independent of 3, we
can take 8 — +oo in (7.9) to achieve (7.10). This completes the proof of Theorem 7.2.

7.4 Exponential matrix concentration

We are now ready to prove Theorem 3.2, the exponential matrix concentration
inequality, as a consequence of the moment bounds of Theorem 7.2. To do so, we use the
standard matrix Laplace transform method. For example, see [MJCT 14, Proposition 3.3].
The following proposition states a special case of this method.

Proposition 7.4. Let X € H, be a random matrix with normalized trace mgf m(0) :=
Etre?X. Assume that there are constants c1,co > 0 for which

log m(6) < _a®® heno<o< -
& = 2(1— c20) - e
Then for allt > 0,

—¢2
P ax (X > <d- _— .
P (X 2 1)} < d - exp (201 + 202t)

Furthermore,
EAnax(X) < +/2¢1 logd + cologd.
This result converts estimates on the trace mgf into bounds on the largest eigenvalue
of a random matrix. See [MJC*14, Section 4.2.4] for a proof.

Proof of Theorem 3.2 from Theorem 7.2. To obtain inequalities for the maximum eigen-
value A\max, we apply Proposition 7.4 to the random matrix X = f(Z) — E, f where
Z ~ p. To do so, we first need to weaken the moment bound (7.9):

— 0(f—T, f) cb*r(8) c0?r(B)
logE, tre §2(1—092/5)§2(1—9 )

Then substitute ¢; = ¢r(8) and ¢y = \/6/75 into Proposition 7.4 to achieve the results
stated in Theorem 3.2.

To obtain bounds for the minimum eigenvalue \,,;,, we apply Proposition 7.4 instead
to the random matrix X = —(f(Z) — E, f) where Z ~ p. O

for0 <0 < +/f/c
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7.5 Connection with Stein’s method

There is an established approach to proving matrix concentration inequalities using
the method of exchangeable pairs; see [Cha05] for the scalar setting and [MJC*14,
PMT16] for matrix extensions. The approach in our paper can be viewed as a continuous
version of this method. Let us detail the connection, glossing over some technical details.

First, we give an alternative account of the semigroup argument in Section 7.1. Let
f: Q — H, be a suitable function. Suppose that we solve the Poisson problem for the
semigroup:

go == (—Sf)‘lf:/o P,fdt.

We can justify the convergence of this integral when the semigroup satisfies a Poincaré
inequality (so is exponentially ergodic):

f=f-Buf=Pf-Puf=- [ GPfd—-% [ Pfa—-2g inLaln),
0 0
Consequently, we have

Eu[f o(f)] = —Eu[£(g0) p(£)] = EL T'(go, ¢(f))- (7.17)

Using the integral expression for gy and the linearity of the carré du champ form, we
can obtain

Eu[f o(f)] = /Ooo E,T(P.f, o(f))dt.

This formula coincides with the identity (7.1).

Paulin et al. [PMT16] use a discrete version of this argument to obtain the matrix
Efron-Stein inequalities. Given a reversible, exponentially ergodic Markov process
(Z¢)¢>0 with a stationary measure 4, one can construct an exchangeable pair as follows.
Fix a time ¢ > 0. Let Z be drawn from the measure p, and let 7 = Zy where Zy = Z. By
reversibility, it is easy to check that (Z, Z ) is an exchangeable pair; that is, (Z, Z ) has
the same distribution as (Z, Z).

For a zero-mean function f : 2 — H,, define the function g; : Q — H, by

Py— P\ s
o= (P77) st per

To justify the convergence of this series (in the product space case), Paulin et al. use a
standard coupling argument. We remark that the function g; is a solution to the Poisson
problem for the Markov chain with transition kernel P;. The function gy defined above is
simply the limit of g; as ¢t | 0.

The pair (f(Z), f(Z)) is called a kernel Stein pair associated with the kernel

Kt(Z, 2) = M

for all z, z € Q).
By construction, for all z, z € (2,
Ki(z,2) = —K(%, 2);
E|K.(2,2)|Z = z} — f(2). (7.18)

This construction is inspired by Stein’s work [Ste86]; see Chatterjee’s PhD thesis [Cha05,
Section 4.1]. The property (7.18) yields the identity

BIf(2) o(F(2))) = BIK.(Z.2) o(£(2))] = § B|Ku(2,2) (9((2)) — o(£(2))]
(7.19)
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This is roughly the analog of the continuous formula (7.17). In fact, the limit formula,
Proposition 5.1(1), implies that taking the limit ¢ | 0 on the right hand side of (7.19)
yields exactly the right hand side of (7.17).

Paulin et al. [PMT16] use a variant of (7.19) to establish matrix Efron-Stein inequal-
ities for product measures, much in the same way that we derive Theorem 3.1 and
Theorem 7.2. Instead of constructing K;(Z, Z’) using a continuous-time Markov pro-
cess, they construct the associated Stein kernel K(Z,Z’) in a similar way based on a
reversible, exponentially ergodic Markov chain. This Markov chain can be seen as a
discrete version of the Markov process introduced in Section 4.1. Correspondingly, they
obtain the kernel relation (7.19) with K;(Z, Z’) replaced by K(Z,Z"). Their argument
then consists of three major steps that are parallel with our method.

First, they use more specific versions ([PMT16, Lemmas 9.2 and 12.2]) of the mean
value trace inequality, Lemma 6.2, to bound the trace of the right hand side of (7.19):
for any s > 0,

The equality follows from the fact that (Z, Z’) is an exchangeable pair. This step rep-
resents a discrete version of the chain rule inequality (6.1). Second, they use the
exponential ergodicity of the constructed Markov chain to control the kernel K (Z, Z’)
in terms of the matrix variance proxy V (f) that is defined in (4.2). This step implicitly
relies on a discrete version of the local ergodicity condition, Proposition 2.7(2). Last,
they use the same decoupling techniques as in our arguments to obtain prior bounds of
the desired trace moments on the size of the kernel.

From this discussion, one can see that the Stein’s method for establishing concen-
tration inequalities is essentially an implementation of the semigroup approach in the
discrete setting. So far, this method only applies to product measures. For comparison,
our semigroup method is more general and technically simpler because it can directly
apply the ergodicity theories of many well-studied Markov processes. Nevertheless, our
work is strongly inspired by the tools and techniques developed by Paulin et al. [PMT16].
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