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2-D Circuit-based Bianisotropic Omega Media
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Abstract—In one dimension, a circuit network representa-
tion has been established for bianisotropic materials with an
omega response (omega media). However, 2-D circuit-based or
transmission-line metamaterials have been restricted to those
with only magnetic and electric responses. This paper proposes
a 2-D circuit-based metamaterial that is equivalent to an omega
medium. A lumped element unit cell composed of asymmetric
π-networks is proposed and validated using a circuit simula-
tor. A circuit analysis of the metamaterial is performed using
transmission (ABCD) matrices. A medium equivalency is then
established in the homogeneous limit. The application of a 2-
D omega medium as an impedance matching layer with phase
and power flow control is explored and a design procedure is
developed. The impedance matching layer is then implemented
using the proposed lumped element unit cell, and its performance
is confirmed using Keysight’s Advanced Design System (ADS).

Index Terms—bianisotropic media, periodic structures, elec-
tromagnetic propagation, circuit modeling

I. INTRODUCTION

PERIODIC circuit networks have been used to model
electromagnetic wave propagation in continuous media

since Heaviside introduced the transmission line model in the
late 19th century. The transmission line model uses a two-
port, lumped element unit cell to represent an infinitesimal
transmission line section. Performing circuit analysis on the
unit cell and taking the infinitesimal limit results in the well
known Telegrapher’s equations. In this way a link between
wave propagation on a transmission line and propagation in
a periodic circuit network is established. Further, the connec-
tion between transverse electromagnetic (TEM) waves in an
unbounded medium and a TEM mode on a transmission line
links unguided waves in continuous media to guided waves on
circuit networks.

These links provided by the transmission line model in-
spired artificial transmission lines used in telephonic transmis-
sion applications [1]. The model has also been used in numeri-
cal electromagnetics forming the basis of the transmission line
matrix (TLM) method, [5]. In the early 2000’s the introduction
of 1-D circuit-based or transmission-line (TL) metamaterials
renewed interest in circuit analogies of electromagnetic media
[2], [3]. This work allowed for the synthesis of a wide range of
effective material properties including a negative index. This
enabled several of the phenomena predicted by Veselago, [4],
to be observed [3], [7]. Following the introduction of 1-D
TL metamaterials, isotropic 2-D TL metamaterials followed
[12], allowing for the verification of sub-diffraction imaging
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using a negative index lens, [13]. Subsequently, it was demon-
strated that TL metamaterials can provide anisotropic [14] and
tensor material responses, aiding in the realization of a wide
range of transformation optics designs [17]–[19]. In [20], 1-
D bianisotropic metamaterials with an omega response were
introduced using asymmetric 1-D circuit networks. However,
a circuit-based equivalent to 2-D bianisotropic metamaterials
possessing an omega response has not been reported to date.

Lossless bianisotropic media with an omega response
(omega media) have complex wave impedances, making them
well suited for impedance matching. This property has been
exploited in bianisotropic metasurfaces that perform reflection-
less field transformations, [21]–[24], and wideband impedance
matching [25]. These metasurfaces locally conserve the normal
power density across their surface, i.e. in a pointwise man-
ner, limiting these metasurfaces to control over transmission
phase. Amplitude control can be achieved using a pair of
metasurfaces with an electrically large spacing between them
to reshape the power density profile, [26]–[28]. However,
these designs require conservation of normal power density
across each constitutive metasurface and are electrically large.
Another method to achieve discontinuities in normal power
density is to convert a propagating wave to a surface wave.
This can be achieved with either a reflective metasurface
that couples to a surface wave in the same region as the
incident wave [29], or a bianiostropic metasurface that locally
conserves normal power denisty and couples to a surface wave
in the transmitted region [30].

Typically, omega-type metasurfaces are realized with cas-
caded impedance sheets [21], [31]. Local conservation of
normal power density (neglecting transverse coupling) neces-
sitates extremely sub-wavelength spacings between the sheets
or metallic walls to isolate neighboring unit cells. However,
if transverse coupling is accounted for in the design of meta-
surfaces, the incident and transmitted power density profiles
could be made different. Metasurfaces that utilize transverse
coupling could offer greater design freedom and eliminate the
need to isolate neighboring unit cells.

In [32], it was established that tangential polarizabilities are
sufficient to establish any transmission phase without reflec-
tion. However, designs with only tangential polarizabilities
can exhibit significantly degraded performance when com-
pared to equivalent realizations utilizing normal polarizabilites.
Previously, it was shown that a material with tangential and
normal polarizabilities (an inhomogeneous 2-D anisotropic
medium) can control phase and power flow to perform field
transformations [33]. However, these devices were electrically
large because impedance matching and controlling transmis-
sion phase is not possible with an anisotropic medium. The
complex wave impedance of 2-D omega media could be used
to reduce the size of the these devices, providing a route
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to design electrically thin layers that do not require local
conservation of normal power density.

There are two major challenges associated with designing
a 2-D omega metamaterial: (a) synthesis of the necessary 2-
D omega material parameters and (b) simulating the omega
material design. This work aims to address these issues
through the development of a circuit-based model for omega
media. A circuit model will allow for the materials to be
fabricated as 2-D transmission line networks and simulated
using commercial circuit solvers. The circuit model is analyzed
as a general 2-D periodic circuit network composed of 1-
D asymmetric circuit networks. The dispersion relation and
wave impedance are then taken in the homogeneous limit to
establish an equivalence with a 2-D reciprocal and lossless
omega medium. This circuit equivalent is then used to design a
2-D omega slab that acts as an impedance matching layer. The
impedance matching layer provides a desired phase delay and
translates the power density profile of the incident wavefront.

II. 1-D BIANISOTROPIC OMEGA MATERIALS

The constitutive relations for a bianisotropic medium are,

D = ε ·E + a ·H (1)

B = µ ·H + b ·E (2)

If the medium has an omega response, the magneto-electric

dyadics are anti-symmetric: a = −aT and b = −b
T

. Further,
if it is lossless ε and µ are purely real and a and b are purely
imaginary. Additionally, reciprocity requires ε = ε

T , µ = µ
T ,

and b = −aT .
In [20], the equivalence between TEM propagation along

a lossless, reciprocal, omega medium and propagation in a
1-D periodic circuit network was established. The dispersion
relation and wave impedance for a lossless and reciprocal 1-D
omega medium are,

k±
2

= ω2(µε+ a2) (3)

η± =
ωµ

k± − ωa
(4)

where the permeability, µ, and permittivity, ε, are purely real,
the magneto-electric coupling, a, is purely imaginary, and
the wavenumber is k± = ±k′ − jk

′′
. The ± superscripts

are included to differentiate between forward and reverse
propagating waves.

Performing Bloch analysis on a periodic network with
period d, composed of a lossless and reciprocal electrical
network represented by a transmission (ABCD) matrix (see
Fig. 1), yields the following dispersion relation and Bloch
impedance

sin2 k±Bd = −BC +
(
j
D −A

2

)2

(5)

Z±B =
−jB

sin k±Bd− j
D−A

2

(6)

where the Bloch wavenumber k±B = ±k′B − jk
′′

B , [37]. Since
the network is lossless, A and D are purely real while B and
C are purely imaginary. Further, reciprocity requires that

AD −BC = 1. (7)

Fig. 1. Transmission (ABCD) matrix representing a unit cell of a one-
dimensional periodic circuit network.

In the homogeneous limit, |k±Bd| � 1, so (5) and (6) become,

(k±Bd)2 = −BC +
(
j
D −A

2

)2

(8)

Z±B =
−jB

k±Bd− j
D−A

2

(9)

Comparing (3) with (8), and (5) with (9), reveals the following
equivalency between the asymmetric network (A 6= D) and an
omega medium,

µ = −j B
ωd
, ε = −j C

ωd
, a = j

D −A
2ωd

(10)

It should be noted that although these expressions are different
from those presented in [20], they are equivalent.

III. 2-D BIANISOTROPIC OMEGA MATERIALS

A. Field Theory

There are two major classes of reciprocal bianisotropic
media: chiral and omega. This work focuses on TE polarized
plane waves in a lossless bianisotropic omega-type medium,
i.e. a reciprocal bianisotroic medium with an omega response.
To maintain a TE polarization it is assumed that the medium
preserves polarization. That is, induced magnetic flux densities
are along the same axes as the magnetic field and the induced
electric flux densities are along the same axes as the electric
field. For a TE plane wave propagating in the x-z plane, its
wavevector is k = kxx̂ + kz ẑ, and the relevant fields are,
E = Eŷ and H = Hxx̂ + Hz ẑ. The permittivity, ε, has
one relevant entry, εyy , and the remaining relevant material
parameters are,

µ =

[
µxx 0
0 µzz

]
(11)

a = b =

 0 −jaxy 0
jaxy 0 jazy

0 −jazy 0

 (12)

For an ejωt time convention and TE plane wave propagation
in the x-z plane, Faraday and Ampere’s laws can be written
as the following system of equations,

−kz
Ey
Hx

= ω(µxx − jaxy
Ey
Hx

) (13)

kx
Ey
Hz

= ω(µzz − jazy
Ey
Hz

) (14)

kz
Hx

Ey
− kx

Hz

Ey
= −ω(εyy + jaxy

Hx

Ey
+ jazy

Hz

Ey
) (15)
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Solving (13)–(15), the dispersion relation and wave
impedances along the principal axes of the medium can
be written,

k±x
2

+ (ωazy)2

ωµzz
+
k±z

2
+ (ωaxy)2

ωµxx
= ωεyy (16)

η±x =
Ey
Hz

=
ωµzz

k±x + jωazy
(17)

η±z = −Ey
Hx

=
ωµxx

k±z − jωaxy
(18)

where k±x = ±k′x − jk
′′

x and k±z = ±k′z − jk
′′

z . The ±
superscripts differentiate between the forward and reverse
propagating fields.

B. Circuit Theory

For comparison with a 2-D omega medium, a 2-D periodic
circuit network with the unit cell depicted in Fig. 2 will be
analyzed. It is composed of four branches of 1-D constituent
circuit networks. The two constituent networks along a single
direction (x or z) are the same. It is important to note that if
the constituent networks are asymmetric the overall unit cell
is asymmetric. The propagation characteristics of this network
can be determined using the analysis procedure presented in
[8]. The dispersion relation and Bloch impedances for the
network in Fig. 2 are,

sin2 k±Bxd

2 +
(
A1−D1

2

)2
jB1

(
jC1

A1+D1
+ jC2

A2+D2

)
(A1 +D1)

+

sin2 k±Bzd

2 +
(
D2−A2

2

)2
jB2

(
jC1

A1+D1
+ jC2

A2+D2

)
(A2 +D2)

= 1 (19)

Z±Bx =
−j 2B1

A1+D1

tan
k±Bxd

2 + j
(
A1−D1

A1+D1

) (20)

Z±Bz =
−j 2B2

A2+D2

tan
k±Bzd

2 − j
(
D2−A2

A2+D2

) (21)

where, k±Bx = ±k′Bx − jk
′′

Bx and k±Bz = ±k′Bz − jk
′′

Bz ,
and A1,2, B1,2, C1,2, and D1,2 satisfy the lossless and re-
ciprocal conditions for an ABCD matrix given by (7). Two
constraints are imposed on electrical lengths within the circuit
network. One constraint is on the electrical lengths of the
constituent networks and the second is on the electrical lengths
of the overall unit cell which, are not necessarily equiva-
lent conditions. The first constraint reduces spatial dispersion
within the unit cell, while the second constraint allows for
homogenization of the unit cell. The first constraint can be
satisfied by observing from 1-D periodic analysis that the
electrical length, kB1,2

d
2 , of each constitutive network is given

by cos(kB1,2

d
2 ) = (A1,2 + D1,2)/2. Therefore, requiring

the circuit networks to be electrically small is equivalent to
mandating that A1,2 +D1,2 ≈ 2, since cos(x) ≈ 1 as x→ 0.
Taking the homogeneous limit, i.e. (k

′′

Bx,zd, k
′

Bx,zd � 1),

Fig. 2. ABCD matrix representation of a two-dimensional periodic circuit
network with common constituent networks along each axis.

assuming the constituent networks are electrically small, and
C1 + C2 6= 0, (19)–(21) become,

(k±Bxd)2 +
(
A1 −D1

)2
j2B1

+

(k±Bzd)2 +
(
D2 −A2

)2
j2B2

= j2(C1 + C2) (22)

Z±Bx =
−j2B1

k±Bxd+ j(A1 −D1)
(23)

Z±Bz =
−j2B2

k±Bzd− j(D2 −A2)
(24)

Comparing these expressions to those from field theory reveals
a one-to-one relationship between (16)–(18) and (22)–(24).
Therefore, if the 1-D constitutive networks are electrically
small, and the unit cell can be homogenized, the 2-D network
shown in Fig. 2 behaves like an omega medium with material
parameters,

µxx = −j 2B2

ωd
, µzz = −j 2B1

ωd
, εyy = −j 2(C1 + C2)

ωd

axy =
D2 −A2

ωd
, azy =

A1 −D1

ωd
(25)

For a simpler comparison between the 1-D and 2-D effective
material parameters, consider the situation where the ABCD
parameters in all of the constitutive networks are halved, then
(25) becomes,

µxx = −j B2

ωd
, µzz = −j B1

ωd
, εyy = −j (C1 + C2)

ωd

axy =
D2 −A2

2ωd
, azy =

A1 −D1

2ωd
(26)

Comparing (26) to (10) reveals that the relationship between
a 1-D circuit network’s ABCD-parameters and its effective
material parameters is the same as a 2-D network’s with
the exception of the permittivity. The effective permittivity is
the sum of the permittivities of the constituent networks, as
previously observed in isotropic transmission-line grids [2].
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Fig. 3. ABCD matrix representation of a generalized two-dimensional
periodic circuit network where all constituent networks are different.

A notable feature of both (10) and (25) is that the magneto-
electric response is proportional to the difference between A
and D. Therefore, if there is no asymmetry in the constituent
networks the magneto-electric response disappears. This is
consistent with the fact that asymmetry gives rise to magneto-
electric effects in omega-type bianisotropic media, [20], [35].

C. Asymmetry in 2-D Periodic Circuit Networks

As previously noted, bianisotropic responses arise in pe-
riodic circuit networks if their unit cells are asymmetric. In
this section, different types of asymmetries and their effects
on the general 2-D unit cell composed of four constituent
networks, shown in Fig. 3, will be studied. The unit cell is
asymmetric in the x-direction if: (a) B1 6= B3 or (b) D1 6= A3.
Due to reciprocity, the condition C1 6= C3 is not a sufficient
condition to make the unit cell asymmetric if neither (a) or (b)
is satisfied. Similar conditions hold for the z-direction. To gain
understanding on the effects of these asymmetries, the periodic
network’s dispersion relation and Bloch impedances will be
studied for different conditions placed on the networks ABCD
parameters. The dispersion relation and Bloch impedances for
the network shown in Fig. 3 are,

4 sin2 k±Bxd

2 +
(
D1−A3√
A3D1

)2
j(B1A3 +B3D1)

+
4 sin2 k±Bzd

2 +
(
A4−D2√
A4D2

)2
j(B2A4 +B4D2)

= j
A3C1 +D1C3

A3D1
+ j

A4C2 +D2C4

A4D2
(27)

Z±Bx =

−j
(

ΣB13 +
( ∆B13√

ΣB13

)2
tan2 k±Bxd

2

)
ΣB13

B3D1+B1A3

2 tan
k±Bxd

2 − j
(

∆13 +
∆B13

ΣB13
Σ13 tan2 k±Bxd

2

)
ΣB13

B3D1+B1A3

(28)

Z±Bz =

−j
(

ΣB24
+
( ∆B24√

ΣB24

)2
tan2 k±Bzd

2

)
ΣB24

B4D2+B2A4

2 tan
k±Bzd

2 − j
(

∆24 +
∆B24

ΣB24
Σ42 tan2 k±Bzd

2

)
ΣB24

B4D2+B2A4

(29)

where ΣBij
= Bi + Bj , ∆Bij

= Bi − Bj , ∆13 = D1 −
A3, Σ13 = D1 + A3, ∆24 = D2 − A4, and Σ42 = A4 +
D2. In this generalized form, there is no medium equivalence.
However, the effects of the different types of asymmetry can
be understood. By comparing (17) to (28) one notices that the
asymmetry introduced by setting B1 6= B3 requires spatially
dispersive material parameters if the wave impedance is to
match that of an omega medium. This is due to the fact that
terms proportional to k±Bxd, occur in (28) when B1 6= B3. The
same effect occurs in the z-directed wave impedance when
B2 6= B4. To eliminate such spatial dispersion, the following
conditions are imposed on the constituent networks: B1 = B3

and B2 = B4. Under these constraints (27)–(29) become,

4 sin2 k±Bxd

2 −
(
jD1−A3√

A3D1

)2
jB1(A3 +D1)

+
4 sin2 k±Bzd

2 −
(
j A4−D2√

A4D2

)2
jB2(A4 +D2)

= j
A3C1 +D1C3

A3D1
+ j

A4C2 +D2C4

A4D2
(30)

Z±Bx =
−j 4B1

A3+D1

2 tan
k±Bxd

2 − j2D1−A3

A3+D1

(31)

Z±Bz =
−j 4B2

A4+D2

2 tan
k±Bzd

2 − j2D2−A4

A4+D2

(32)

If it is further assumed that the constituent networks and the
unit cells are electrically small, it can be shown that the unit
cell in Fig. 2 is required for a one-to-one relationship to exist
between (16)–(18) and (30)–(32). Therefore, to limit spatial
dispersion in the periodic network the asymmetric unit cell in
Fig. 2 was used rather than that in Fig. 3.

IV. EXAMPLES

A. Characterization of a Lumped Element Unit Cell

The equivalency between omega media and the proposed
circuit network in Fig. 2 is verified by comparing the simu-
lated dispersion characteristics of the circuit network with the
analogous medium’s. Isofrequency contours (the intersection
of a constant frequency plane with the surface described by
the dispersion relation) are used to compare the analogous
medium, (16), and the circuit network at a fixed frequency. In
order to simulate the proposed unit cell, Fig. 2, a suitable unit
cell is chosen such that the asymmetry of the unit cell can be
easily tailored. Lumped element T-networks and π-networks
are suitable building blocks (see Fig. 4), since they provide
asymmetric responses whenever Z1 6= Z2 or Y1 6= Y2. This
can be seen by examining the ABCD parameters of the π and
T-networks shown in Fig. 4,[

Aπ Bπ
Cπ Dπ

]
=

[
1 + ZY2 Z

Y1 + Y2 + ZY1Y2 1 + ZY1

]
(33)
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Fig. 4. (a) A lumped element π-network (b) A lumped element T-network.

TABLE I
LUMPED ELEMENT VALUES

Element Value Element Value
Lx 3.53 nH Lz 2.43 nH
Cx1 0.58 fF Cz1 0.94 fF
Cx2 3 fF Cz2 2.64 fF
The inductor and capacitor values necessary to synthesize a medium with
the effective material parameters: εyy = 2ε0, µxx = 5µ0, µzz = 7µ0,
axy = −ayx = j0.1

√
µ0ε0, and azy = −ayz = −j0.2√µ0ε0 at a

frequency of 10 GHz.

[
AT BT
CT DT

]
=

[
1 + Z1Y Z1 + Z2 + Z1Z2Y

Y 1 + Z2Y

]
(34)

In both cases, if Z1 6= Z2 or Y1 6= Y2 then A 6= D and
the network is asymmetric. The π-network will be examined
because it results in the simplest overall unit cell. To construct
the 2-D network, shown in Fig. 2, each constituent network is
an asymmetric π-network resulting in the unit cell shown in
Fig. 5. It can be further simplified by combining all the shunt
elements at the central node, as shown in Fig. 6.

Since C1 and C2 from Fig. 2 appear in (25) only as a
sum they can be set equal without any loss of generality.
Additionally, they only appear in the expression for εyy
so, it is equivalent to setting the permittivity of the two
constitutive networks equal. Using (25) and C1 = C2, or
Yx1 +Yx2 +Yx1Yx2Zx = Yz1 +Yz2 +Yz1Yz2Zz , the equivalent
material parameters in terms of the circuit elements are,

ωµxxd = −2jZz, ωµzzd = −2jZx

ωεyyd = −4j(Yx1 + Yx2 + Yx1Yx2Zx),

ωaxyd = Zz(Yz1 − Yz2), ωazyd = Zx(Yx2 − Yx1) (35)

Generally this unit cell produces a dispersive omega medium.
However, by choosing the magneto-electric coupling to satisfy
|axy| �

√
µxxεyy and |azy| �

√
µzzεyy , the π-networks

are low-pass circuits, thereby reducing the effects of dis-
persion below the cutoff frequency of the π-network: ωc =
2/
√
Lk(Ck1 + Ck2); where, Z = jωLk and Y1 = jωCk1 and

Y2 = jωCk2 in Fig. 4 (a). Let’s consider a medium with
the following material parameters at 10 GHz: εyy = 2ε0,
µxx = 5µ0, µzz = 7µ0, axy = −ayx = j0.1

√
µ0ε0, and

azy = −ayz = −j0.2√µ0ε0. To satisfy the homogeneous
limit assumption, the maximum phase delay for on axis
propagation is kBxd = π/5 rad at f0 = 10 GHz (d = 0.8
mm). Using (35) the lumped elements of the unit cell in Fig.

Fig. 5. A representation of the 2-D lumped element unit cell representing
a 2-D omega medium composed of 1-D asymmetric π-networks comprising
each constituent network.

Fig. 6. A representation of the 2-D unit cell used to implement a 2-D
omega medium composed of 1-D asymmetric π-networks in each constituent
network. It is constructed by combining the central elements in Fig. 5,
Y = Yx1 + Yx2 + Yz1 + Yz2.

5 are,

Zx = jω0Lx = j222Ω, Zz = jω0Lz = j159Ω

Yx1 = jω0Cx1 = j36.6µS, Yx2 = jω0Cx2 = j188µS

Yz1 = jω0Cz1 = j59.3µS, Yz2 = jω0Cz2 = j166µS (36)

where ω0 = 2πf0. These impedances and admittances are
implemented with the inductors and capacitors in Table I. Sub-
stituting (36) into (35) yields the following effective material
parameters,

µxx = 2
Lz
d

= 5.03µ0, µzz = 2
Lx
d

= 7.02µ0,

εyy =
4

d
(Cx1+Cx2−ω2Cx1Cx2Lx) = (2.02−0.014(

ω

ω0
)2)ε0,

axy = −ωLz(Cz1 − Cz2)

d
= 0.1

ω

ω0

√
µ0ε0,

azy = −ωLx(Cx2 − Cx1)

d
= −0.2

ω

ω0

√
µ0ε0 (37)

Considering the form of the material parameters in (37), the
permeability is non-dispersive and the permittivity does not
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exhibit significant dispersion if,

ω � min
( 1√

Lx(Cx1 + Cx2)
,

1√
Lz(Cz1 + Cz2)

)
(38)

due to the low-pass nature of the design. However, the
magneto-electric terms exhibit a linear frequency dispersion:
axy ∝ ω and azy ∝ ω. Therefore, even at low frequencies
there will be appreciable frequency variation in the magneto-
electric terms.

The equivalent material parameters for the unit cell with
circuit elements given in Table I are plotted in Fig. 7 over
a frequency range from 0 to 15 GHz. The permittivity and
permeability show no dispersion over this frequency range, but
there is dispersion in the magneto-electric terms, as expected.
Due to the relatively small magnitude of the magneto-electric
terms, compared to √µxxεyy and √µzzεyy , the dispersion
curves will not diverge significantly from the desired omega
materials response below 10 GHz. However, dispersion in the
magneto-electric term has significant effects on the imaginary
part of the wave impedance. At 9 GHz it has been reduced to
90% of its value at 10 GHz. This will ultimately place band-
width limitations on devices designed with these structures.

Using Keysight’s Advanced Design System (ADS), isofre-
quency contours were computed for the unit cell at 8, 9, and
10 GHz. The dispersion of the unit cell was characterized
by terminating its ports in the appropriate Bloch impedances
given by (20) and (21). The input terminals were driven in
the x and z-directions with voltage sources Vx and Vz such
that a plane wave was established in the periodic network. The
necessary relationship between the voltage sources to produce
a plane wave with a given wave vector kB = kBxx̂+kBz ẑ in
the periodic network is provided in [8]. The simulation was
performed by setting Vx to 1V and the input terminal in the
z-direction was driven with [8],

Vz(kBxd) =
A1 +D1

A2 +D2

cos(kBzd/2)

cos(kBxd/2)
ej

kBz−kBx
2 d (39)

The voltage excitation’s were defined to provide a desired
kBxd and the resulting kBzd was retrieved from the simu-
lation. This was done using the full dispersion relationship for
the network, (19), and expressing kBzd in terms of the network
parameters and kBxd. Therefore, (39) can be expressed solely
in terms of the network parameters and kBxd. To obtain the
isofrequency contours kBxd was swept from −π/5 to π/5
rad while measuring kBzd across the unit cell. The results
are shown in Fig. 8. There is close agreement between the
simulated isofrequency contours and the analogous omega
medium’s isofrequency contours. Thus, indicating that the
propagation characteristics match that of the omega medium
within this frequency range.

B. Omega Layers for Impedance Matching

In [25], a 1-D propagation model was used to impedance
match a normally incident plane wave with a Huygens’
bianisotropic metasurface separating two regions of dielectric.
Further, it was shown that an omega-type response could
be used to control the normal phase delay. In this section,

Fig. 7. Material parameters of the unit cell shown in Fig. 6, composed of
the elements given in Table I up to 15 GHz. (a) Relative permittivity and
permeabilities (b) Normalized magneto-electric coefficients, ayz/

√
µ0ε0 and

ayx/
√
µ0ε0.

a 2-D circuit-based omega medium will be used to design
an impedance matching layer that provides a desired normal
phase delay but also translates the incident power density
profile of a wavefront. The impedance matching condition and
desired transmission phase are controlled with the tangential
polarizabilities in the layer and the direction of power flow is
controlled by the normal polarizabilites.

To demonstrate this functionality, the circuit simulator ADS
is used to simulate two isotropic half spaces of different
materials separated by an omega medium slab with thickness
d. The slab is infinite in the x-y plane and has finite extent
in the z-direction. Therefore, ẑ is normal to the slab while x̂
and ŷ are tangential to the surface of the slab. The simulation
domain consists of three regions: medium 1, the omega slab,
and medium 2. The two isotropic regions (medium 1 and 2)
are implemented using the isotropic lumped element unit cells
shown in Fig. 9, and the unit cell shown in Fig. 6 was used to
realize the omega slab. At the edges of the domain, each region
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Fig. 8. Isofrequency contours at 8 GHz (inner), 9 GHz (middle), and 10
GHz (outer) for the unit cell shown in Fig. 6 with elements given in Table
I. The black circles are the dispersion characteristics extracted from an ADS
simulation of the unit cell. The red solid lines are calculated using (16) for
the equivalent omega medium.

is terminated in appropriate Bloch impedances to emulate an
unbounded medium, as shown in Fig. 10.

To design the slab, an omega medium separating two
dielectrics illuminated by a TE wave propagating in the x-
z plane is analyzed. The slab is designed to impedance match
the two regions, provide a transmission phase, φd, in the ẑ
(normal) direction and support a prescribed angle of power
flow, θS . A plane wave is incident from the first medium at
an angle, θi (relative to the z-axis). The angle of incidence
sets the normal wave impedance in medium 1, ηz1. Phase-
matching sets the tangential wavenumber in the slab, as well as
in medium 2. This determines the normal wave impedance in
medium 2, ηz2. The phase delay φd determines the necessary
normal wavenumber, kz . The normal wave impedance, ηz ,
in the omega medium is determined by ηz1 and ηz2. The
design equations are calculated using 1-D transmission-line
analysis (see Fig. 11). By setting the input impedance of
the transmission line equal to the incident wave impedance,
Zin = η1, and specifying the normal phase delay, φd, across
the transmission line, a system of equations can be written.
If φd 6= nπ for n ∈ Z then the system of equations can be
solved for the wavenumber and wave impedance of the omega
medium as follows,

tan kzd =

√
4ηz1ηz2 tan2 φd − (ηz2 − ηz1)2

ηz1 + ηz2
(40)

η′z =

√
4ηz1ηz2 tan2 φd − (ηz2 − ηz1)2

2 tanφd
(41)

η′′z =
ηz2 − ηz1
2 tanφd

(42)

There exist real solutions to (40) and (41) if the following
inequality is satisfied,

| cosφd| ≤
√
ηz1ηz2

(ηz1 + ηz2)/2
(43)

Fig. 9. (a) Lumped element unit cell used to implement a 2-D isotropic
medium, consisting of two identical symmetric branches along the principal
axes (x and z directions). (b) Lumped element unit cell used to implement
anisotropic medium, consisting of two different symmetric branches along the
principal axes.

The time-averaged Poynting vector for a TE plane wave
propagating in a lossless, reciprocal omega medium in the x-z
plane is given by,

S =
1

2
E ×H∗ =

Ey
2

(H∗z x̂−H∗x ẑ)

=
|Ey|2

2
(
ηx
|ηx|2

x̂+
ηz
|ηz|2

ẑ) = Sxx̂+ Sz ẑ (44)

The angle of power flow, θS , is defined as the angle that the
time-averaged Poynting vector makes with the z-axis. This
angle θS can be expressed in terms of the wave impedances
along the principal axes as follows,

tan θS =
<(Sx)

<(Sz)
=
η′x
η′z

(η′z2 + η′′z
2

η′x
2 + η′′x

2

)
(45)

where ηi = η′i + jη′′i for i = x, z. From (45), it is clear that
controlling power flow in the omega medium and impedance
matching in the x and z-directions is not possible. Specifying
the direction of power flow and impedance matching in the
normal direction leaves only one degree of freedom in (45).
As a result either the real or the imaginary part of the
transverse wave impedance, ηx can be matched, while the
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Fig. 10. A circuit network representation of two different isotropic half spaces separated by a slab of omega medium. The slab acts as a matching layer which
provides a desired phased delay φd in the z-direction. The omega impedance matching layer is shown in the middle between the two isotropic grids. The
boundary of the domain is terminated in the appropriate Bloch impedances to emulate an unbounded structure. The excitation is set by the voltage sources
on the boundary. In medium 1 and 2, the amplitudes (Vx1 and Vx2) and phases of the voltage sources are set by the desired incident and transmitted fields.
The source connected to the slab provides the amplitude (VxΩ) and phase necessary to emulate the standing wave that exists in the infinite slab.

other is determined by (45). Solving (16)–(18) for the material
parameters in terms of kx, kz , η′x, η′′x , η′z , and η′′z yields,

εyy =
1

ω
(
kz
η′z

+
kx
η′x

)

µxx =
kz
ω

η′z
2 + η′′z

2

η′z
, µzz =

kx
ω

η′x
2 + η′′x

2

η′x

axy =
kz
ω

η′′z
η′z
, azy = −kx

ω

η′′x
η′x

(46)

Therefore, an impedance matching omega slab that pro-
vides a desired phase delay and power flow direction can
be designed in the following manner. First, phase-matching
is applied at the two boundaries of the slab then (40)–(42)
and (45) are solved for the necessary normal wavenumber and
wave impedances in the slab. Next, (46) is used to determine
the necessary omega material parameters as a function of
either the real or imaginary part of the transverse wave
impedance. While the other component is given by (45).

As an example, an impedance matching omega slab is
designed for a TE plane wave propagating from medium 1
into medium 2. The wave is incident on the slab separating
the two regions of non-magnetic dielectrics. Medium 1 has
εr = 10 and medium 2 is free space. The angle of incidence
is θi = 10◦. The normal wave impedance in media 1 and
2 are ηz1 = 121Ω and ηz2 = 451Ω, respectively. To limit
spatial dispersion in all three regions, the unit cell dimension
is chosen to be d = λ0

10
√

10
= 0.95mm at 10 GHz. This results

Fig. 11. Front face: Transmission-line analogy for analyzing propagation
through a slab separating two half spaces characterized by their wave
impedances η1 and η2. Top face: Definition of the angles θi, θS , and θt in
the corresponding regions: medium 1 (right), omega slab (center), or medium
2 (left).

in the following lumped elements for the two isotropic grids
(see Fig. 9),

Zi1 = j37.4Ω, Yi1 = j5.3mS (a)

Zi2 = j37.4Ω, Yi2 = j0.53mS (b)
(47)

where Zi1 and Yi1 refer to medium 1 and Zi2 and Yi2 to
medium 2. In the design of the impedance matching slab the
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imaginary part of the tangential wave impedance, η′′x , is a free
variable and is chosen to be zero. In this case the real part of
the transverse wave impedance, or equivalently µzz , is used
to control the direction of power flow. In this example, the
direction of the Poynting vector is selected to demonstrate
extreme redirection of power to an unbound propagating wave
in the second medium. Using the design procedure outlined
earlier in this section, the slab is designed to provide a normal
phase delay of φd = 36◦ and support a Poynting vector at
θS = 89.5◦ relative to the z-axis. These conditions result in
the following material parameters for the slab: εyy = 28.6ε0,
µxx = 1.8µ0, µzz = 0.013µ0, axy = −ayx = −2.9

√
µ0ε0,

and azy = −ayz = 0. From (35), the necessary lumped
impedances and admittances to implement the slab, using Fig.
6, are calculated,

Zx = j0.48Ω, Zz = j67.4Ω, Yx1 = j1.89mS,

Yx2 = j1.89mS, Yz1 = −j2.95mS, Yz2 = j5.61mS (48)

For comparison, an anisotropic slab with the same power
flow angle and phase delay is designed. The necessary normal
wavenumber, kz , and wave impedance, ηz , for the anisotropic
slab is also determined using 1-D transmission-line analysis,
as shown in Fig. 11 with η′′z = 0. Solving for the normal
wavenumber in terms of the normal phase delay yields,

tan kzd =
ηz2
ηz

tanφd (49)

In order to minimize reflections, the normal wave impedance
of the slab is optimized since impedance matching with an
arbitrary phase delay is not possible with an anisotropic
medium. The normal wave impedance is optimized by solving
for the magnitude of the reflection coefficient as a function
of the normal wave impedance in the anisotropic medium,
|Γ(ηz)|. By applying the first and second derivative tests to
|Γ(ηz)|, the wave impedance is found in terms of the normal
phase delay, impedance of the incident wave (ηz1), and load
impedance (ηz2). This procedure yields the following optimal
wave impedance,

ηz =
| sinφd|ηz2√

(cos2 φd + (ηz2ηz1
)2 sin2 φd)1/2 − cos2 φd

(50)

Using the optimal normal wave impedance, ηz , for the
anisotropic medium, and the wavenumber from (49), the
following material properties are calculated for the anisotropic
medium: εyy = 125.3ε0, µxx = 2.8µ0, µzz = 0.0026µ0. The
anisotropic slab was implemented using the lumped element
unit cell shown in Fig. 9 with the following lumped elements,

Zx = j97.3mΩ, Zz = j104.8Ω, Y = j66.1mS (51)

The anisotropic and omega slabs were simulated in
Keysight’s ADS using a grid similar to Fig. 10. The results are
shown in Fig. 12 and 13, for a domain where each isotropic
region is 25x51 unit cells and the slabs are 1x51 unit cells.
In both cases there is a phase delay of 36◦. Since the optimal
wave impedance for the anisotropic slab results in a reflectance
of |Γ|2 = 0.13, there are appreciable reflections present in Fig.
12. However, there are no reflections for the omega slab, as

Fig. 12. Simulation results using Keysight’s ADS for the instantaneous
voltage (electric field) when a TE wave is incident at θi = 10◦ on an
anisotropic slab. The slab is designed to provide a phase delay φd = 36◦

in the z-direction and supports a Poynting vector directed at θS = 89.5◦.
The anistropic medium provides the appropriate phase delay, but suffers
from significant reflections even for an optimized impedance value. The three
regions are implemented using the lumped element unit cells in Fig. 9.

Fig. 13. Simulation results using Keysight’s ADS for the instantaneous
voltage (electric field) when a TE wave is incident at θi = 10◦ on an omega
slab that provides a phase delay φd = 36◦ in the z-direction and supports a
Poynting vector directed at θS = 89.5◦. In contrast to the anisotropic slab,
the omega slab provides the desired phase delay in a reflectionless manner.
The three regions are implemented using a lumped element grid similar to
Fig. 10.
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Fig. 14. Simulation results from Keysight’s ADS for the incident and
transmitted normal power density profiles along the boundaries of the omega
matching layer with a Gaussian illumination, w0 = 5.4λ0. The incident
power density (dashed line) profile is shifted in the transverse direction.
The lateral shift of the peak in transmitted power density (solid line) profile
corresponds to a lateral displacement of 0.63λ0 over a distance of 0.03λ0.
Note that the total power across the slab is conserved. The broadening of the
transmitted profile accounts for the observed decrease in peak amplitude, so
it is lossless and reflectionless as expected.

shown in Fig. 13.
To verify the direction of power flow within the omega

slab, the slab was illuminated by a Gaussian beam with a
beam waist, w0 = 5.4λ0. The incident and transmitted power
densities across the slab were simulated in Keysight’s ADS
for a 3x601 unit cell grid, similar to Fig. 10, where all three
regions are composed of 1x601 unit cell grids. In Fig. 14, it
is observed that the beam is laterally shifted by 0.63λ0 over a
distance of approximately 0.03λ0. This lateral shift does not
correspond to an angle of 89.5◦. This is due to the presence
of forward and reverse traveling waves in the impedance
matching omega slab, resulting in a different net power flow
angle. The theoretical net power flow angle across the slab
is calculated by determining the total fields in the slab and
finding the average transverse and normal power densities to
calculate the average Poynting vector. This procedure results in
a theoretical average power flow angle of 87.9◦ if θS = 89.5◦

in the slab. The simulated direction of power flow was found
to be 87.3◦, which is in close agreement with the theoretical
value. The 0.6◦ difference is likely due to the fact that the
Gaussian beam is not a plane wave and the theoretical value
assumes a plane wave illumination.

V. CONCLUSION

A circuit-based approach to synthesizing and simulating
2-D omega materials was presented. A 2-D periodic circuit
network, composed of four 1-D asymmetric transmission
(ABCD) matrices (constituent networks) was analyzed. Then
an equivalency between the periodic circuit network and an
omega medium was established in the homogeneous limit. For
validation, the propagation characteristics of a lumped element
unit cell emulating an omega medium was simulated in the
commercial circuit solver Keysight ADS. These results were in
close agreement with those of the analogous omega medium.

Additionally, a 2-D omega medium was used to design an

impedance matching layer that utilizes normal polarizabilities
to control power flow. The impedance matching layer provides
a desired normal phase delay and laterally translates an inci-
dent beam’s power density profile. The impedance matching
layer illustrates the extreme control over phase and power that
2-D omega media offer while remaining electrically small.
This capability makes them a promising candidate to reduce
the size of beamforming networks.

This work has focused on modeling and realizing 2-D
omega media with circuit networks. Practical structures with
2-D omega responses are necessary to realize microwave
devices. Practical structures with these material responses
could be realized as printed circuit structures, additively man-
ufactured structures composed of omega-particles, [38], or a
media composed of loaded loops and dipoles similar to [39].
Here polarization conserving media were considered however,
the circuit network model could include more general material
responses by extending Kron’s work, [40], to include bian-
isotropic media. This could be accomplished by developing
a dual network for transverse magnetic (TM) propagation in
an analogous manner to this work. By coupling the network
presented in this work to the dual network, polarization con-
version could be achieved allowing for the design of devices
with phase, amplitude and polarization control.
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