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Abstract: Lossless, reciprocal bi-anisotropic metasurfaces have the ability to control the ampli-1

tude, phase, and polarization of electromagnetic wavefronts. However, producing the responses2

necessary to achieve this control with physically realizable surfaces is a challenging task. Here,3

several design approaches for bi-anisotropic metasurfaces are reviewed that produce physically4

realizable metasurfaces using cascaded impedance sheets. In practice, three or four impedance5

sheets are often used to realize bianisotropic responses which can result in narrow band designs6

that require the unit cells to be optimized to improve the performance of the metasurface. To7

address these issues in a systematic manner the notion of a metasurface quality factor is intro-8

duced for three-sheet metasurfaces. It is shown that the quality factor can be used to predict9

the bandwidth of a homogeneous metasurface, and can also be used to locate problematic unit10

cells when designing inhomogeneous metasurfaces. Several design examples are provided to11

demonstrate the utility of the quality factor including an impedance matching layer with maximal12

bandwidth and a gradient metasurface for plane wave refraction. In addition to these examples,13

several metasurfaces for polarization control are also reported including an isotropic polarization14

rotator and an asymmetric circular polarizer.15

Keywords: Metasurfaces, bianisotropy, metasurface bandwidth16

1. Introduction17

Metasurfaces are the two-dimensional analogue of metamaterials, that interact with18

electromagnetic fields at a surface rather than throughout a volume [1]. They are often19

realized using electrically thin layers consisting of 2D arrays of subwavelength-spaced20

meta-atoms that can be homogenized. This allows for metasurfaces to be modelled21

using surface boundary conditions, called the generalized sheet transition conditions22

(GSTCs), which determine the interaction with an incident field through quasi-static23

surface polarizabilities, [2–4]. If the incident fields are time-varying, the surface po-24

larizabilities produce equivalent electric and magnetic polarization currents. These25

equivalent currents can be related to surface admittances and impedances, [12,18,20,34–26

37]. The mechanisms by which electric and magnetic surface currents are induced on27

a metasurface determine its classification as an electric, magnetic, electric and mag-28

netic, or bi-anisotropic metasurface. Purely electric metasurfaces contain only electric29

polarizabilites, which interact with only the electric field to produce electric currents.30

Purely magnetic metasurfaces contain only magnetic polarizabilities, which interact with31

only the magnetic field to produce magnetic currents. Electric and magnetic surfaces32

contain both electric and magnetic polarizabilities in a single sheet. Finally, a metasur-33

face that is bianisotropic can contain electric and magnetic polarizabilities as well, as34

electro-magnetic and magneto-electric polarizabilities, i.e. magnetic polarization due to35

an electric field and electric polarization due to a magnetic field.36
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Bianisotropic metasurfaces provide the metasurface designer with the most degrees37

of freedom, making them useful for the extreme manipulation of electromagnetic fields.38

Bianisotropic metasurfaces include a wide range of both reciprocal and non-reciprocal re-39

sponses. However, the focus here will be on design methods for reciprocal bianisotropic40

metasurfaces. Reciprocal bianisotropic metasurfaces can be split into two main classes:41

chiral and omega. Chiral metasurfaces contain meta-atoms that have broken mirror42

symmetry. This results in electric fields inducing magnetic currents along the imping-43

ing electric field, and magnetic fields inducing electric currents along the impinging44

magnetic field. These chiral responses alter the polarization state of the incident wave.45

On the other hand, omega metasurfaces contain meta-atoms with broken directional46

symmetry. This results in electric fields inducing magnetic currents orthogonal to the47

impinging electric field, and magnetic fields inducing electric currents orthogonal to the48

impinging magnetic field. This leads to an asymmetric scattering response from omega49

metasurfaces which maintains the polarization state.50

Applications for chiral and omega bianisotropic metasurfaces fall into two main51

categories: those that guide and radiate electromagnetic waves and those that control52

reflection and transmission from a surface. Guided-wave bianisotropic metasurfaces53

shape fields along the surface through guided or leaky waves, and can be used to54

produce desired radiation patterns [5,6]. Whereas, metasurfaces that control reflection55

and transmission interact with incident wavefronts to manipulate the amplitude, phase,56

and polarization of the scattered fields. There are many design synthesis methods and57

realizations of planar and cylindrical bianisotropic metasurfaces that control reflection58

and transmission at frequencies ranging from microwave to optical using both composite59

(metal/dielectric) and all-dielectric metasurfaces [7–27]. This is by no means a complete60

representation of all the work in bianisotropic metasurfaces. For a more complete review61

of the literature see [28].62

In this paper, the design and synthesis methods presented in [12] and [19] are63

reviewed and several design examples are provided. Additionally, a definition for64

the quality factor of a three-impedance-sheet metasurface is provided, that can be65

used to estimate the bandwidth of a homogeneous metasurface. This is demonstrated66

through the design of an impedance matching metasurface with maximal bandwidth. In67

addition to improving bandwidth, the quality factor can also aid designers in improving68

the performance of inhomogeneous metasurfaces. This is demonstrated by using the69

quality factor to guide the selection of appropriate unit cells in the design of a gradient70

metasurface for plane wave refraction.71

2. Scattering from Bi-isotropic Metasurfaces72

In this section, we describe the scattering performance of an omega-type bi-isotropic73

metasurface illuminated by a normally incident plane wave. The scattering analysis of74

bi-isotropic metasurfaces provided in this section follows that introduced in [12]. We75

consider a metasurface at a planar boundary between two regions of space, as shown in76

Figure 1, where the intrinsic wave impedance of region 1 is η1 =
√

µ1/ε1 and of region77

2 is η2 =
√

µ2/ε2. The metasurface is at the z = 0 plane separating the two regions, and78

is illuminated by normally incident plane waves.79

The interaction between the metasurface and an illuminating plane wave can be80

described via scattering parameters (S-parameters), which are the ratio between the81

scattered plane wave electric field and the incident plane wave electric field. The ratio of82

scattered electric field in region n to the incident electric field in region m for different83

polarizations is given as a 2× 2 matrix.84

Snm =

(
Sxx

nm Sxy
nm

Syx
nm Syy

nm

)
(1)
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Figure 1. Geometry of a metasurface between two regions with different material properties.
Equivalent surface current densities J (electric) and M (magnetic) describe the interaction of the
metasurface with the tangential fields. Under illumination by a normally incident plane wave,
each region can contain two plane waves denoted by + for a wave propagating toward the surface
or − for a wave propagating away from the surface.

When viewed from region 1, S11 is the reflection coefficient and S21 is the transmission85

coefficient. Similarly, when viewed from region 2, the reflection coefficient is S22 and the86

transmission coefficient is S12.87

In general, a bi-anisotropic metasurface can be modeled as a two-dimensional array88

of polarizable particles [4]. For time-varying illuminating fields, the polarizabilities can89

be effectively characterized using equivalent surface impedances [12,18,20,34–37]. The90

equivalent surface currents can then be related to the averaged, tangential electric and91

magnetic fields using surface parameters represented as 2× 2 tensors: the electric sheet92

admittance tensor Y , the magnetic sheet impedance tensor Z, and the magneto-electric93

coupling tensors χ and γ. With these parameters, the electric and magnetic surface94

currents induced on the metasurface can be related to the average tangential fields and95

compared to the boundary conditions across the metasurface.96 (
J

M

)
=

(
Y χ
γ Z

)(
Eavg
Havg

)
=

(
ẑ× (H̄2 − H̄1)
−ẑ× (Ē2 − Ē1)

)
(2)

The variables Y , χ, γ, and Z relate the x- and y-polarized averaged field components97

to the x- and y-polarized current density components induced on the metasurface.98

The various electric field vectors are E = [Ex Ey]T and the magnetic field vector is99

H = [Hx Hy]T (surface current quantities J and M are similarly defined), where100

the averaged fields are Eavg = (E1 + E2)/2 and Havg = (H1 + H2)/2. The electric101

admittance tensor is defined as102

Y =

(
Yxx Yxy
Yyx Yyy

)
(3)

with the other parameters similarly defined.103

For a reciprocal metasurface, Y = YT , γ = −χT , and Z = ZT [29]. Imposing104

isotropy on the surface parameters results in105

Y = YI, χ = −χn, γ = −γn, Z = ZI (4)

where I is the 2× 2 identity matrix and n =

(
0 −1
1 0

)
.106

Restricting the metasurface to omega-type bi-isotropy precludes polarization con-107

version by the metasurface. Therefore, the response for each polarization is identical.108

This allows us to analyze the metasurface as a two-port network for a single polarization,109
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instead of as a four-port network when all polarizations were considered. The two-port110

S-parameters relate the electric field of the incident and reflected plane waves as111

E− =

(
E1−
E2−

)
=

(
S11 S12
S21 S22

)(
E1+
E2+

)
= SE+ (5)

To calculate the S-parameters of the metasurface, consider an x-polarized plane112

wave as shown in Figure 1. Assuming the surface is isotropic, the boundary conditions113

of equation (2) simplify to114

Jx =
Y
2
(E1x + E2x) +

χ

2
(H1y + H2y) = −H2y + H1y (6)

My = −γ

2
(E1x + E2x) +

Z
2
(H1y + H2y) = −E2x + E1x (7)

From equations (6) and (7), we obtain four equations by considering illumination115

from region 1 (E2+ = 0) and region 2 (E1+ = 0) separately. These four equations116

relate the S-parameters to the surface parameters of the metasurface. In each case,117

E1− and E2− are expressed in terms of the S-parameters and the illuminating electric118

field. Additionally, the assumption of plane wave illumination allows us to express119

the magnetic field quantities in terms of the electric field and wave impedance of each120

region. These four equations are simplified and assembled into a matrix equation to121

express the surface parameters in terms of S-parameters.122

1
2

(
Y χ
−γ Z

)
=

(
1
η1
− S11

η1
− S21

η2
1
η2
− S22

η2
− S12

η1

1 + S11 − S21 −1− S22 + S12

)(
1 + S11 + S21 1 + S22 + S12
1
η1
− S11

η1
+ S21

η2
− 1

η2
+ S22

η2
− S12

η1

)−1

(8)

The form of equation (8) is convenient for calculating surface parameters which will123

implement desired S-parameters. However, re-arranging equation (8) and simplifying124

to solve for the S-parameter quantities gives125

S11 =
1
σ

(
−Y + Z

1
η1η2

+

[
1

4η1
[(2− γ)(2− χ) + YZ]− 1

4η2
[(2 + γ)(2 + χ) + YZ]

])
(9)

S12 =
1
σ

(
1

2η2
[(2− γ)(2 + χ)−YZ]

)
(10)

S21 =
1
σ

(
1

2η1
[(2 + γ)(2− χ)−YZ]

)
(11)

S22 =
1
σ

(
−Y + Z

1
η1η2

−
[

1
4η1

[(2− γ)(2− χ) + YZ]− 1
4η2

[(2 + γ)(2 + χ) + YZ]
])

(12)

σ = Y + Z
1

η1η2
+

[
1

4η1
[(2− γ)(2− χ) + YZ] +

1
4η2

[(2 + γ)(2 + χ) + YZ]
]

(13)

In the case of a lossless metasurface, the surface parameters Y = jB and Z = jX126

are purely imaginary while γ = χ = R are real quantities [29]. In this case, equations127

(9)-(12) can be further simplified as shown in equations (14)-(17). Note that S21 = S12128

only when η1 = η2, and S11 = S22 only when R = 0 and η1 = η2.129
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S11 =
1
σ

(
j
[

X
η1η2

− B
]
+

[
1

4η1

[
(2− R)2 − BX

]
− 1

4η2

[
(2 + R)2 − BX

]])
(14)

S12 =
1
σ

(
1

2η2

[
4− R2 + BX

])
(15)

S21 =
1
σ

(
1

2η1

[
4− R2 + BX

])
(16)

S22 =
1
σ

(
j
[

X
η1η2

− B
]
−
[

1
4η1

[
(2− R)2 − BX

]
− 1

4η2

[
(2 + R)2 − BX

]])
(17)

σ = j
[

X
η1η2

+ B
]
+

[
1

4η1

[
(2− R)2 − BX

]
+

1
4η2

[
(2 + R)2 − BX

]]
(18)

We can also determine the limitations placed on the S-parameters when passive,130

lossless, and reciprocal restrictions are enforced. For a bi-isotropic metasurface, the131

S-parameters represent a two-port network as described in equation (5). Each element132

is a complex number, so there are eight total variables (four real, and four imaginary133

quantities). For a reciprocal network, S21 = S12 when the port impedances are the same.134

This relationship shows that both transmission coefficients are the same in amplitude135

and phase. However, a different relationship is needed for the case of the bi-isotropic136

metasurface since the port impedances are different. Reciprocity is satisfied when137

the transmission phase shift and transmitted power is the same for each direction of138

illumination. When the port impedances are not equal, the electric field amplitude will139

change depending on the wave impedance of the medium in order to satisfy reciprocity140

conditions, so |S21| 6= |S12|.141

To determine the reciprocity relationship for a bi-isotropic metasurface, consider142

two cases: i) where the metasurface is illuminated from region 1 only and transmitted143

power is determined in region 2, and ii) the metasurface is illuminated from region 2144

only and transmission measured in region 1. By equating the transmitted power in both145

cases, we arrive at146

η1

η2
|S21|2 =

η2

η1
|S12|2 (19)

While equation (19) provides a relationship between the transmission coefficient147

magnitudes, reciprocity also requires that the transmission phase be the same. Applying148

this and assuming the wave impedance of each region is real, we arrive at149 √
η1

η2
S21 =

√
η2

η1
S12. (20)

Note that equations (15) and (16) satisfy this relationship since the metasurface parame-150

ters were restricted to be reciprocal.151

To enforce the lossless condition, the time-average power absorbed by the metasur-152

face must be zero. This is calculated as153

Pavg =
1
2

{([
E1+
E2+

]
+

[
E1−
E2−

])T([H1+
H2+

]
−
[

H1−
H2−

])∗}
= 0 (21)

By applying the plane wave relation between the electric and magnetic fields, and154

expressing E1− and E2− in terms of the S-parameters from equation (5), equation (21)155

becomes156

Pavg =
1
2

Re
{([

E+
]
+
[
S
][

E+
])T([1/η

][
E+
]
−
[
1/η

][
S
][

E+
])∗}

= 0 (22)
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where [
1/η

]
=

[
1/η1 0

0 1/η2

]
, [E+] =

[
E1+
E2+

]
. (23)

Simplifying equation (22) and utilizing the reciprocity relationship in (20) results in157

three equations which must be satisfied in order to implement a lossless and reciprocal158

metasurface.159

1 = |S11|2 +
η1

η2
|S21|2 (24)

1 = |S22|2 +
η1

η2
|S21|2 (25)

0 = |S11| cos(φS11 − φS21 + φE1+ − φE2+) + |S22| cos(φS21 − φS22 + φE1+ − φE2+) (26)

These three equations under-define the six independent scattering matrix variables.160

As a result, three variables can be chosen freely without violating the lossless and161

reciprocal conditions. Specifically, equations (24) and (25) provide the ability to choose162

one amplitude of the scattering matrix. If |S21| is chosen, as is commonly the case, then163

|S11| = |S22|, and a phase constraint is obtained from equation (26)164

φS11 − φS21 = φS21 − φS22 + π (27)

where two phase shifts of the S-parameters can be freely chosen.165

Therefore, for a bi-isotropic metasurface to be both lossless and reciprocal, three166

degrees of freedom exist in its S-parameters: one S-parameter amplitude, and two S-167

parameter phases. These three degrees of freedom are set through design choices of168

the metasurface. Recall, that enforcing lossless and reciprocal behavior in the surface169

parameters for the bi-isotropic metasurface results in Y = jB, Z = jX, and γ = χ = R.170

Thus, three distinct surface parameters can be chosen to achieve three desired scattering171

properties.172

3. Bi-isotropic Metasurfaces: Bandwidth and Quality Factor173

In practice, bi-isotropic metasurfaces typically rely on resonant structures to produce174

the strong field interactions required to perform desired field transformations. However,175

the use of resonances places inherent limitations on the bandwidth. In this section, the176

relationship between matching networks and bi-isotropic metasurfaces is considered,177

and the quality factor of a metasurface realized using three impedance sheets is defined.178

We demonstrate that the quality factor can be used as a metric to predict the metasurface179

bandwidth and identify unit cells that degrade the performance of inhomogeneous180

metasurfaces.181

To understand the relationship between impedance matching networks and bi-182

isotropic metasurfaces, we consider the following example. Suppose there is a planar183

interface between air and alumina (εr = 9.4), as in Fig. 2, and the goal is to maximize the184

power transferred across the interface. Since the intrinsic wave impedances of the media185

are real, this amounts to minimizing the amplitude of the reflected wave. To do this, the186

input impedance of the metasurface must be equal to the wave impedance of the incident187

wave, Zin. Since the two media have different wave impedances the metasurface must188

transform the wave impedance of the transmitted wave, ZL, to that of the incident wave,189

Zin. In this scenario, the metasurface acts as an impedance matching layer. Here, the190

impedance matching layer is analogous to an impedance matching network from circuit191

theory like an L or T-network, shown in Fig. 3. From circuit theory, it is known that a192

complex load impedance can be matched to complex source impedance using either an193

L-network, T- or π-network. The L-network contains two degrees of freedom allowing194

for the real and imaginary components of the input impedance to be matched. For195

an L-network, the solution is unique (all degrees of freedom are used) and no other196
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Figure 2. A metasurface at the interface between air and alumina half-spaces. The
metasurface is used to impedance match a normally incident plane wave travelling
from the region of air into the alumina.

Figure 3. L and T circuit network topologies used for impedance matching in circuit
theory.

characteristics of the impedance match, such as it’s bandwidth or the transmission phase,197

can be controlled. Adding a third degree of freedom to the L-network produces a T- or198

π-network. This additional degree of freedom can be used to control the bandwidth199

or the transmission phase. Bi-isotropic metasurfaces are like T-matching networks for200

fields. They have three degrees of freedom that allow impedance matching with phase or201

bandwidth control [33]. To illustrate this idea, we consider a metasurface that impedance202

matches a normally incident plane wave on an air-alumina (εr = 9.4) interface over a203

maximum bandwidth, as shown in Fig. 2.204

To design the impedance matching metasurface, recall that a bi-isotropic metasur-205

face can be viewed as a two-port network that controls one scattering amplitude and206

two scattering phases. Therefore, designing a lossless, reflectionless, bi-isotropic meta-207

surface is equivalent to designing a lossless two-port impedance matrix (Z-matrix)208

that impedance matches a load impedance ZL = |ZL|ejφL to a source impedance209

Zi = |Zin|ejφin with an arbitrary transmission phase φ21 [40]. To determine the Z-matrix210

that provides the desired functionality, consider a general lossless two-port Z-matrix,211 (
V1
V2

)
= j
(

X11 X12
X21 X22

)(
I1
I2

)
(28)

Imposing the impedance boundary conditions and enforcing power conservation on (28)212

produces the following system of equations,213 (
1

rvejφ21

)
= j
(

X11 X12
X21 X22

)(
1

−rvejφ21

)
(29)

where r2
v = ZL

Zin

∣∣∣ cos φin
cos φL

∣∣∣ and φ21 = ∠V2 −∠V1. Splitting (29) into its real and imaginary214

components allows for the elements of the Z-matrix to be solved for in terms of ZL, Zin215

and φ21,216
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Zin ZL

βd

ZS2ZS1 ZS3

Figure 4. Bi-isotropic metasurface realized using three impedance sheets separated by dielectric
spacers with thickness d.

(
X11 X12
X21 X22

)
=

(
|Zin| cos(φ21 − φL) |Zin|rv cos(φL)
|Zin|rv cos(φL) |ZL| cos(φ21 + φin)

)
csc(φ21 + φin − φL) (30)

From (30), it is clear that the required two-port network is reciprocal since X12 = X21,217

and has three degrees of freedom. As in [12], three cascaded sheet impedances, shown218

in Fig. 4, can be used to realize a metasurface with a Z-matrix given by (30).219

Expressing Fig. 4 in terms of it’s Z-matrix, and solving for the necessary impedance220

sheets, results in the following expressions for the sheets in terms of the elements of (30),221

Zs1 = −j
Z0 sin(βd)

cos(βd) + (X12+X22
det Z )Z0 sin(βd)

(31)

Zs2 = −j
Z2

0 sin2(βd)X12

det Z + X12Z0 sin(2βd)
(32)

Zs3 = −j
Z0 sin(βd)

cos(βd) + (X12+X11
det Z )Z0 sin(βd)

, (33)

where det Z is the determinant of the Z-matrix and β and Z0 are the wavenumber222

and wave impedance of the dielectric spacers, respectively. Once the input and load223

impedances, spacer thickness, and the transmission phase is specified, (30) can be used224

to determine the necessary impedance sheets to implement the metasurface.225

To maximize the bandwidth of the impedance match, a method is needed for226

comparing the metasurface bandwidth for different transmission phases. Here, an227

expression of the metasurface quality factor as a function of the transmission phase is228

derived for this purpose. The quality factor of the three sheet metasurface is defined as,229

Q = ω0
2We

Pd
, (34)

where ω0 is the angular resonant frequency, We is the average electric energy stored230

in the network at ω0, and Pd is the power dissipated in the network. To calculate the231

quality factor using (34), the impedance sheets (31)-(33) are expressed in terms of lumped232

capacitances and inductances. The dielectric spacers in the metasurface are assumed233

to be electrically thin, so they can be modeled as lumped π-networks. Therefore, if the234

dielectric spacers are electrically thin and the source and load impedances are purely235

real, then the quality factor of the metasurface can be expressed as236

Q =
ω0

2

(
Zin(Cs1 +

βd
2ω0Z0

) + Rint(Cs2 +
βd

ω0Z0
) + ZL(Cs3 +

βd
2ω0Z0

)

)
, (35)
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Figure 5. The quality factor, fractional bandwidth, and the magnitude of the frequency
response for metasurfaces that provide impedance matching with six different trans-
mission phases. (a) The quality factor is minimized when the transmission phase is
−68.5◦ (red circle). (b) The fractional bandwidth is maximized at −68.5◦ (red circle).
(c) Plots of the transmission amplitude over frequency for several transmission phases
and the maximum bandwidth is observed when the transmission phase is −68.5◦ as
predicted by the quality factor.

where, Rint =
Zin+ZL+

√
ZinZL cos φ21

sin2 φ21

(Z0 sin βd)2

ZinZL
, and Csi is the capacitance of the ith impedance237

sheet (if the sheet is inductive then Csi = 0). If the load impedances are not purely real,238

the imaginary part of the load can be absorbed into either Zs1 or Zs3, and (35) can still be239

used. The quality factor, Q, of the metasurface will be used to approximate the fractional240

bandwidth, FBW = BW/ f0, where BW is the 3 dB bandwidth of each unit cell. However,241

due to the presence of multiple resonances this approximation is only valid when the242

resonances are well separated in frequency.243

The quality factor expression (35) can be used to maximize the bandwidth of an244

impedance matching bi-isotropic metasurface. For a normally incident plane wave, the245

relevant impedance is Zin = 377Ω. Let’s assume that ZL = 123Ω, and the spacers are246

free-space with a thickness d = λ0/20. Using (35) to calculate the quality factor and the247

fractional bandwidth versus transmission phase, produces Fig. 5. Fig 5 (b) shows that248

the maximum bandwidth occurs at a transmission phase of φ21 = −68.5◦. Fig 5 (a) plots249

(35) and predicts that this transmission phase maximizes the bandwidth, as shown in250

Fig. 5 (c). The metasurface with this transmission phase is composed of the following251

impedance sheets: Zs1 = 1/(jωCs1) = −j468.9Ω, Zs2 = 1/(jωCs2) = −j641.9Ω, and252

Zs3 = jωLs3 = j38.5kΩ. The metasurface performance is simulated in Ansys HFSS253

using dispersive impedance sheets that correspond to the following lumped elements:254

Cs1 = 33.9 f F, Cs2 = 24.8 f F, and Ls3 = 612.7nH. The transmission magnitudes from this255

simulation are shown in Fig. 6, where they are compared to a quarter-wave transformer256

and the bare interface without any impedance matching. The metasurface has a size and257

bandwidth comparable to a quarter-wave transformer. However, it doesn’t require the258

realization of a medium with the dielectric constant εr =
√

9.4, which can be heavy and259

challenging to manufacture.260

In practice, a metasurface’s impedance sheets are typically realized using subwave-261

length metal or dielectric patterning on support structures. Here, we will consider the262

impact this has on the bandwidth of the metasurface. First, we will consider the effect of263

using subwavelength patterned sheets. Subwavelength unit cells that are non-resonant264

exhibit a response of either a capacitive or inductive sheet impedance [38,39]. This265

indicates that modeling the patterned sheets as impedance sheets should not result in266

a significant bandwidth reduction when the metasurface is realized in practice. How-267

ever, if extreme impedance values that are difficult to realize are required it may be268

necessary to modify the design to include additional impedance sheets to avoid extreme269

impedance values. If impedance sheets cannot be realized at the design frequency due270

to manufacturing difficulties, an alternative design approach may be required, such as271

using detuned resonant elements. Their responses will be more narrowband.272
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Figure 6. Plots of the transmission and reflection magnitudes for the interface with
the metasurface (φ21 = −68.5◦), a quarter-wave transformer, and with no impedance
matching (bare interface). The simulations of the metasurface were performed in
Ansys HFSS. The metasurface has a bandwidth that is comparable to a quarter-wave
transformer.

We will also consider the effect of using a dielectric spacer as the support structure.
For a metasurface designed using a non-magnetic dielectric spacer with a relative
permittivity εr its quality factor is given by,

Q =
ω0

2

(
Zin(Cs1 +

εrε0d
2

) + Rint(Cs2 + εrε0d) + ZL(Cs3 +
εrε0d

2
)

)
. (36)

If the dielectric spacer is electrically thin then the sheet capacitances can be approximated
as,

Cs1 =
1
ω

( 1
ωµd

+
X22 + X12

det(Z)
)
− εrε0d

2
(37)

Cs2 =
1
ω

( 2
ωµd

+
det(Z)

X12

1
(ωµd)2

)
− εrε0d (38)

Cs3 =
1
ω

( 1
ωµd

+
X11 + X12

det(Z)
)
− εrε0d

2
, (39)

when the sheet impedance Zsi is capacitive (see Appendix A). Otherwise, the impedance273

sheet is inductive and can be ignored in the calculation of the quality factor. Additionally,274

when the spacer is electrically thin Rint does not depend on the dielectric constant275

(see Appendix A). So the only terms in (36) that depend on the permittivity are the276

capacitance terms Csi,
εrε0d

2 , and εrε0d. Considering the terms Cs1 +
εrε0d

2 , Cs2 + εrε0d,277

and Cs3 +
εrε0d

2 individually and using (37)-(39) in them, it becomes apparent that for278

capacitive impedance sheets the quality factor is unaffected by the dielectric spacer.279

However, if any of the impedance sheets are inductive then the dielectric spacer will280

increase the quality factor, thereby reducing the bandwidth of the metasurface.281

In addition to bandwidth information, the quality factor also provides information282

that can guide the design of inhomogeneous metasurfaces where local periodicity is283

assumed. Obtaining good performance from a metasurface designed assuming local284

periodicity requires that neighboring unit cells produce fields that are approximately285

the same i.e. the fields vary smoothly along the surface without large discontinuities in286

amplitude or phase. In this work, it has been found that the quality factor and its first287

derivative with respect to transmission phase can help the designer select unit cells that288

satisfy the assumption of local periodicity.289

The quality factor, given by (35), is divergent at transmission phases near φ21 =290

0◦,−180◦, and−360◦, indicating that the unit cells required to achieve these transmission291

phases possess large quality factors. Large quality factors are associated with strong292
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resonances which are sensitive to perturbations in the surrounding environment and293

are lossy when realized in practice. Therefore, these unit cells should be avoided.294

Additionally, areas where (35) is not smooth (i.e. points where the first derivative is295

discontinuous or undefined) indicate transmission phases where the reactance of at296

least one of the impedance sheets changes sign. These points should also be avoided297

because they identify transmission phases where the required reactance values display298

asymptotic behavior. This introduces rapid variations in the values of the impedance299

sheets and fields in the metasurface that invalidate the assumption of local periodicity.300

To see how this information can be used, consider a metasurface embedded in free-301

space that refracts a normally incident plane wave to 70◦ at a frequency of f0 = 10GHz.302

This requires a gradient metasurface: an inhomogeneous metasurface that imposes a303

linear phase gradient on an impinging wave-front to produce reflection or refraction304

into a desired direction [31]. Refraction requires the metasurface to alter the transverse305

wavenumber of an incident plane wave (ki = k sin(θi)) to produce the desired refracted306

wavenumber (kt = k sin(θt)), where k is the wavenumber in the surrounding medium.307

Therefore, the metasurface must impart transverse momentum equal to ∆k = kt − ki.308

Practically, this is realized by discretizing the metasurface into N sub-wavelength unit309

cells of size D = 2π
N max(ki ,kt)

, each possessing a transmission phase φj such that ∆φ =310

φj+1 − φj = −∆kD. Each unit cell must be reflectionless to maximize the transmitted311

power into the refracted wave. This means impedance matching and phase control are312

required, so (31)-(33) can be used to design the unit cells of the metasurface.313

For this example, the metasurface will have 10 unit cells per transverse wavelength314

(in free-space) and the spacers will be assumed to be free-space with a thickness d =315

λ0/25. As a first pass at the design, the metasurface is designed to impose a linear phase316

gradient with the unit cell transmission phases shown in Table 1. The required sheet317

impedances, shown in Fig. 7 (b), are solved for using (31)-(33) and one period (10 unit318

cells) of the metasurface is simulated in COMSOL using periodic boundary conditions.319

The results are shown in Fig. 7 (c).320

The metasurface designed using this phase gradient exhibits significant reflections321

and the transmitted wave is not purely refracted. A slight perturbation of the linear322

phase gradient can be used to improve the performance. The appropriate perturbed323

phase gradient can found using the quality factor and its first derivative with respect324

to transmission phase. To find problematic transmission phases in the original design,325

plots of the quality factor and its first derivative are shown in Fig. 9. By inspecting the326

plots, four unit cells with problematic transmission phases are identified: 1, 5, 6, and327

10. Unit cells 1, 5, and 6 are problematic because they are near points where (35) is not328

smooth, and unit cell 10 is problematic due to its large quality factor. To improve the329

performance of the metasurface, the problematic transmission phases are adjusted as330

shown in Table 1. These phase shifts reduce the maximum unit cell quality factor by331

approximately 10 and force the reactance of the impedance sheet’s to change sign only332

once at φ21 = −180◦.333
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Figure 7. (a) Depiction of an inhomogeneous, bi-isotropic metasurface implemented
as a three sheet cascade in free-space. (b) Plots of the sheet reactances for different
transmission phases. The solid circles indicate the values used for the linear phase
gradient and the empty squares indicate the sheet values used for the perturbed phase
gradient. (c) Full-wave simulation results for the real part of the electric field using the
metasurface with a linear phase gradient. (d) Full-wave simulation results for the real
part of the electric field using the metasurface with a perturbed phase gradient.

Unit cell φ21 (original) φ21 (perturbed)

1 −18◦ −31◦

2 −54◦ −54◦

3 −90◦ −90◦

4 −126◦ −126◦

5 −162◦ −147◦

6 −198◦ −216◦

7 −234◦ −234◦

8 −270◦ −270◦

9 −306◦ −306◦

10 −342◦ −330◦

Table 1. Unit cell transmission phases (φ21) used
in the design of the gradient metasurface for
plane wave refraction. The original phase gradi-
ent corresponds to the linear phase gradient. The
perturbed phase gradient corresponds to the ad-
justed phases used to improve the performance
of the metasurface.

Figure 8. Comparison of the transmission phases
used for the original and perturbed phase gradi-
ents. The solid black circles indicate the transmis-
sion phases used for the linear phase gradient.
The empty red squares indicate the transmission
phases used for the perturbed phase gradient

334

335

The metasurface is redesigned with the modified transmission phases and the336

required sheet impedances are shown in Fig. 7 (b). Ten unit cells of the metasurface337

are again simulated in COMSOL using periodic boundary conditions, and the results338

are shown in Fig. 7 (d). We see that the redesigned metasurface performs significantly339

better than the analytical design. This indicates that avoiding transmission phases340

which require a large quality factor or exist near non-smooth or asymptotic regions of341

Q(φ21) can improve the performance of gradient metasurfaces designed using the local342

periodicity assumption.343
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Figure 9. (a) The quality factor of the metasurface unit cells versus transmission phase.
(b) The first derivative of the quality factor with respect to transmission phase. The
solid black circles indicate values corresponding to the linear phase gradient and the
hollow red squares indicate the adjusted values used for the perturbed phase gradient.

Violations of local periodicity (like those discussed above) can present challenges344

when realizing inhomogeneous metasurfaces where local periodicity has been assumed.345

Issues arising from these violations have been handled implicitly in the literature in a346

variety of ways. Such as in [20], where the phase gradient was altered to improve the347

metasurface’s performance by reducing transmission losses. On the other hand, [40–42]348

made the sheet spacers extremely thin d < λ/40. This generally increases the quality349

factor of the unit cells but, it has the benefit of shifting the transmission phases where all350

three impedance sheets transition from capactive to inductive to occur at the same point.351

This means that shrinking the spacings makes it easier to select transmission phases352

that avoid regions where (35) is not smooth. As a result, extremely thin spacings can353

improve the design performance at the expense increasing manufacturing difficulties354

and producing higher quality factors: lower bandwidths. Alternatively, PEC [43] or PMC355

[26] baffles have been used to eliminate inter-cell coupling to validate the assumption of356

local periodicity. However, in practice the use of PEC baffles presents a manufacturing357

challenge and PMC baffles cannot be realized. These examples indicate a design trade-off358

between manufacturability and performance when realizing inhomogeneous metasur-359

faces. Using the quality factor as shown in this section provides an alternative way to360

improve design performance. It can be used to systematically identify problematic unit361

cells and adjust them where possible to allow for the trade-off between performance362

and manufacturability to be balanced. An alternative to this approach is to avoid the363

assumption of local periodicity and model interactions between unique unit cells using364

homogenization and integral equations as reported in, [44].365

4. Scattering from Bi-anisotropic metasurfaces366

While scattering of plane waves was analyzed for the simplified case of a bi-isotropic367

metasurface in Section 2, it is worthwhile to consider the general case where isotropy is368

not assumed. Following the general process of Section 2, the boundary conditions of369

equation (2) can be expressed in terms of the S-parameters (where each S-parameter term370

is the 2× 2 matrix of equation (1)). Note that ẑ×
[
Ex Ey

]T
= n

[
Ex Ey

]T . Expressing371

the surface parameters in terms of the S-parameters gives [12]372

1
2

(
Y χ
γ Z

)
=

(
I

η1
− S11

η1
− S21

η2
I

η2
− S22

η2
− S12

η1

n(I + S11 − S21) −n(I + S22 − S12)

)(
I + S11 + S21 I + S22 + S12

n
(

I
η1
− S11

η1
+ S21

η2

)
−n
(

I
η2
− S22

η2
+ S12

η1

))−1

(40)

Equation (40) can also be re-arranged so that the S-parameters are expressed in373

terms of surface parameters.374

(
S11 S12
S21 S22

)
=

(
I

η1
+ Y

2 −
χn
2η1

I
η2

+ Y
2 + χn

2η2

−n + γ
2 −

Zn
2η1

n + γ
2 + Zn

2η2

)−1( I
η1
− Y

2 −
χn
2η1

I
η2
− Y

2 + χn
2η2

n− γ
2 −

Zn
2η1

−n− γ
2 + Zn

2η2

)
(41)
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As in the bi-isotropic case discussed in Section 2, analyzing the degrees of freedom375

helps determine the number of surface parameters required to realize a specificed S-376

matrix. In the bi-anisotropic case, both polarizations are taken into account, which377

leads to a 4× 4 scattering matrix and 16 complex numbers as its entries. In most cases,378

reciprocity is desired for metasurfaces, resulting in a symmetric S-matrix (assuming the379

port impedances are identical)380 (
S11 S12
S21 S22

)
=

(
S11 S12
S21 S22

)T

(42)

which indicates that only 10 out of the 16 entries are actually independent. Since each381

complex number contains its real part and imaginary part, there are 20 free variables in382

total under the reciprocal condition. If we further require the metasurface to be lossless,383

the S-matrix also has to be unitary:384

(
S11 S12
S21 S22

)T(S11 S12
S21 S22

)∗
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (43)

By incorporating the reciprocal condition (42) into the lossless condition (43), one can385

expand (43) into 10 different equations, which impose 10 additional restrictions on the386

20 free variables. Consequently, for a reciprocal and lossless bi-anisotropic metasurface,387

there are 10 degrees of freedom in total.388

A similar conclusion can be drawn by considering the surface parameters. Recall389

that Y = YT , γ = −χT , and Z = ZT for a reciprocal metasurface [29]. There are 3 free390

entries in both the Y and Z matrices, and 4 free entries in the γ or χ matrix. Moreover,391

for the metasurface to be lossless, Y and Z must have purely imaginary entries, while392

γ and χ must have purely real ones [29]. Again, it can be seen that the total degrees of393

freedom of the system is 10.394

In practice, several sheets are usually cascaded and separated by dielectric spacers to395

form bi-anisotropic metasurfaces. Typically, these sheets only possess electric responses396

characterized by admittance tensors Y , since they can be readily realized using metallic397

patterns. For bi-isotropic metasurfaces, or in the case where only a single polarization is398

of concern, we know that 3 sheets are enough to realize a specified response. However,399

the situation becomes more complicated for bi-anisotropic metasurfaces. When both400

polarizations are involved, a single lossless, reciprocal electric sheet provides three401

degrees of freedom under lossless and reciprocal conditions, i.e. the imaginary numbers402

Yxx, Yyy and Yxy = Yyy. Therefore, at most 4 sheets are required to realize an arbitrary403

reciprocal and lossless bi-anisotropic metasurface with 10 degrees of freedom. Although404

many bi-anisotropic metasurfaces can be realized with only 3 electric sheets, there405

are some cases in which introducing a fourth sheet is necessary. Examples include406

polarization rotators in [12], [19]. The fourth sheet not only provides the required degree407

of freedom but also enhances the operational bandwidth.408

In order to synthesize a cascaded sheet design, a network analysis technique known409

as the wave matrix approach was adopted in [19]. Wave matrices relate the forward and410

backward propagating electric fields on one side of the scatterer to those on the other411

side. For an arbitrary scatterer shown in Fig. 10 (a), the wave matrix M is defined as:412 (
E+

L
E−

L

)
= M

(
E+

R
E−

R

)
. (44)

Similar to S-matrices, wave matrices contain information about the incident and413

reflected waves. The advantage of using wave matrices is that they significantly simplify414

the analysis of cascaded structures like ABCD matrices. The wave matrix of a cascaded415

structure can be obtained by simply multiplying the wave matrices of its constitutive416
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(a) (b) (c)
Figure 10. Illustration of the wave matrix and the constitutive blocks of the cascaded structure. (a)
The definition of a wave matrix. (b) A metasurface interface between two dielectric media. (c) A
dielectric spacer.

Figure 11. A cascaded metasurface structure consists of three sheets with only electric
responses (γ = χ = Z = 0).

blocks. In our multi-layer metasurfaces, these blocks include metasurface interfaces417

across two dielectric media and dielectric spacers, as illustrated in Fig. 10 (b) and418

(c), respectively. Their corresponding wave matrices can be derived from boundary419

conditions and are explicitly shown in [19].420

The procedure for synthesizing a reciprocal and lossless S-matrix is briefly outlined421

here. First, the desired S-matrix, Sspec, is stipulated based on the required application. It422

is then converted to a wave matrix as follows [19]:423

Mspec =

(
I 0

S11,spec S12,spec

)(
S21,spec S22,spec

0 I

)−1

, (45)

where 0 represents a 2× 2 null matrix. This wave matrix Mspec is known and set as424

the synthesis goal. It is worth noting that if S21,spec has a zero determinant, taking the425

inverse matrix in (45) becomes invalid. In this case, a perturbation can be introduced426

into S21,spec to alleviate this problem. For simplicity, it is assumed that this S-matrix can427

be realized by cascading 3 sheets. Accordingly, the targeted structure is displayed in Fig.428

11 and the cascaded wave matrix that relates E±1 to E±4 is429

Mcasc = M(1)
sheetM

(2)
dielectricM(2)

sheetM
(3)
dielectricM(3)

sheet (46)

in which M(1)
sheet, M(2)

sheet and M(3)
sheet are the admittance tensors that need to be solved430

for. By setting Mspec = Mcasc, and with some algebraic manipulation, one can find the431

admittance tensor of the second sheet Y2 [19]:432

e⊗ Y2 =
1

A2
((e⊗ I)Mspec(e⊗ I)− (et1Φ2t2Φ3t3e)⊗ I). (47)

The symbol ⊗ in (47) represents the Kronecker product of matrices and A2 is some433

constant scalar. The matrix t1 contains information about the dielectric interface where434

the first sheet is located, Φ2 carries the phase information of the second dielectric spacer435

(t2 , t3 and Φ3 are similarly defined), and e is a constant matrix [19]:436

t1 =
1

2η2

(
η2 + η1 η2 − η1
η2 − η1 η2 + η1

)
, Φ2 =

(
ejϕ2 0

0 e−jϕ2

)
, e =

(
1 1
−1 −1

)
. (48)
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Similarly, the admittance tensors of the first and third sheets Y1 and Y3 can be437

expressed in terms of Y2,438

e⊗ Y1 =
1

A1

[
Mspec(e⊗ I)− (t1Φ2t2Φ3t3e)⊗ I − η2

2
(t1Φ2eΦ3t3e)⊗ Y2

]
·
(

I ⊗ (I +
B1

A1
Y2)
−1
)

e⊗ Y3 =
1

A3

(
I ⊗ (I +

B3

A3
Y2)
−1
)

·
[
(e⊗ I)Mspec − (et1Φ2t2Φ3t3)⊗ I − η2

2
(et1Φ2eΦ3t3)⊗ Y2

]
(49)

where A1, B1, A3 and B3 are constants explicitly calculated in [19]. A more complicated439

synthesis procedure involving 4 cascaded sheets is also discussed in [19], but the main440

idea follows the 3 sheet case shown here.441

5. Design Examples442

In this section, several polarization-converting design examples are shown and443

discussed to illustrate the broad applicability of bi-anisotropic metasurfaces. For the444

details of the analysis and synthesis procedure please refer to [19]. All devices consid-445

ered here are realized by cascading several electric sheets and thus can be realized in446

practice using subwavelength patterned surfaces. The admittances of the electric sheets447

can be characterized analytically [38,39,45], or through full-wave extraction methods.448

However, when the impedance sheets are cascaded to produce the bianisotropic unit449

cells, evanescent coupling resulting from the fine features of the patterning may shift450

the unit cell’s response. To account for this, the impedance sheets will need to be de-451

signed such that the desired response of the unit cell is maintained. Several examples of452

metasurfaces demonstrating the feasibility of this approach at microwave and millimeter453

wave frequencies can be found in [11,12,20,46].454

5.1. Asymmetric Circular Polarizer455

The first device presented here is an asymmetric circular polarizer. The device456

converts a right-hand circularly polarized incident wave to a left-hand circularly polar-457

ized transmitted wave. On the contrary, when the incident wave is left-hand circularly458

polarized, it is totally reflected. An illustration of the operation is provided in Fig. 12 (a)459

[19]. Accordingly, the device has S-parameters:460

S12,spec = ST
21,spec =

ejφ

2

(
1 j
j −1

)
, S11,spec = S22,spec =

ejφ

2

(
1 −j
−j −1

)
. (50)

for normal incidence.461

Let us synthesize this asymmetric circular polarizer using the wave matrix approach462

[19]. This specified S-matrix leads to a S21,spec with a vanishing determinant. Hence, a463

perturbation is required in this case, as noted in the previous section:464

S12,spec = ST
21,spec =

ejφ

2

(
1 j
j −ej1◦

)
. (51)

This device can be realized by cascading three sheets. A unit cell of the device465

is shown in Fig. 12 (b). In this example, we stipulate both dielectric spacers to have466

a dielectric constant ε2 = ε3 = 5. It is assumed that the phase delay φ = 0 and that467

the electrical lengths of both dielectric spacers are ϕ2 = ϕ3 = 2π/5. By substituting468

these parameters into the design equations, (47) and (49), the following sheet admittance469

tensors are obtained,470
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(a) (b) (c)
Figure 12. An asymmetric circular polarizer. (a) Polarization-converting operation of the metasur-
face [19]. (b) Unit cell of the asymmetric circular polarizer. (c) Simulated transmission coefficients.

(a) (b) (c)
Figure 13. A linear polarization rotator. (a) Polarization-converting operation of the metasurface
[19]. (b) Unit cell of the polarization rotator. (c) Simulated transmission coefficients.

Y1 =
j

η0

(
0.73 1.00
1.00 0.72

)
, Y2 =

j
η0

(
1268.31 5.52

5.52 1.43

)
, Y3 = Y1. (52)

For full-wave verification of the design, synthesized admittance values (52) are471

modeled in Ansys HFSS as anisotropic boundary conditions. At frequencies other than472

the design frequency, ω0, the sheet admittances are assumed to obey Foster’s reactance473

theorem. The eigenvalues of each sheet are first found by diagonalizing the tensors474

(52). If the resulting susceptances B0 are positive, we assume a capacitive frequency475

dependence,476

Bc(ω) =
ω

ω0
B0, if B0 > 0. (53)

On the other hand, negative susceptances are assumed to possess an inductive response477

Bl(ω) =
ω0

ω
B0, if B0 < 0. (54)

The assumptions, (53) and (54), are in fact reasonable since the admittances are realized478

by simple metallic patterns. The simulated frequency response of the asymmetric circular479

polarizer is displayed in Fig. 12 (c), where the transmission characteristics match the480

specified performance at the operating frequency (51).481

5.2. Polarization Rotator482

The second device considered in this section is a reflectionless polarization rotator483

which rotates the polarization of any linearly polarized incident wave by 90◦, as shown484

in Fig. 13 (a).485

The stipulated S-parameters for this example are,486
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S12,spec = ST
21,spec = ejφ

(
0 1
−1 0

)
, S11,spec = S22,spec = ejφ

(
0 0
0 0

)
. (55)

As discussed earlier, 4 sheets are required to reconstruct the stipulated S-matrix. With487

the unit cell shown in Fig. 13 (b), it is assumed that φ = π/4.5, ε2 = ε3 = ε4 = 3.5,488

and ϕ2 = ϕ3 = ϕ4 = π/5. Following the synthesis procedure outlined in [19], the489

admittance tensors of each sheet are calculated to be:490

Y1 =
j

η0

(
5.01 0.77
0.77 0.13

)
, Y2 =

j
η0

(
9.30 0

0 1.00

)
Y3 =

j
η0

(
7.59 −7.77
−7.77 2.71

)
, Y4 =

j
η0

(
2.57 −1.30
−1.30 2.57

)
.

(56)

The metasurface unit cell was simulated in Ansys HFSS, and the resulting frequency491

response is plotted in Fig. 13 (c). Again, the transmission characteristics match the492

specified performance at the design frequency.493

6. Conclusions494

In this paper, design procedures for realizing reciprocal bi-isotropic and bi-anisotropic495

metasurfaces using cascaded impedance sheets were reviewed. The design procedures496

use generalized sheet transition conditions (GSTCs) to relate bi-anisotropic surface pa-497

rameters to the scattering parameters of the cascaded sheet impedances. Such approaches498

allow for metasurfaces with arbitrary lossless, reciprocal, bianisotropic responses to be499

realized in practice. These design methods were then used to realize several examples500

of practical devices with phase and polarization control. Specifically, they were used to501

realize an asymmetric circular polarizer and a reflectionless, polarization rotator.502

In addition to these design procedures, the quality factor for metasurfaces composed503

of three impedance sheets was introduced. The quality factor was shown to predict the504

bandwidth of a homogeneous metasurface. This was demonstrated through the design505

of an impedance matching metasurface with maximal bandwidth. It was also shown506

that the quality factor could be used to improve the performance of inhomogeneous507

metasurfaces. This was demonstrated through the design of a gradient metasurface508

for plane wave refraction. The unit cell quality factor was used to identify cells that509

degraded the overall metasurface performance, and was used to select alternative unit510

cells that improved overall performance. Such an approach can be used to balance511

fabrication difficulty with performance for metasurface devices.512
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Appendix A528

Here, the approximations used to calculate the quality factor of a metasurface with529

electrically thin spacers are derived. First, we will show that the internal matching530

resistance, Rint, is independent of the spacer’s dielectric constant, εr. For an electrically531

thin spacer βd << 1. Using second-order small angle approximations, sin βd ≈ βd and532

cos βd ≈ 1− (βd)2

2 , in the expression for Rint yields,533

Rint =
Zin + ZL +

√
ZinZL cos φ21

sin2 φ21

(ωµd)2

ZinZL
, (A1)

which does not depend on the dielectric constant of the spacer.534

Next, we will derive the approximate expressions for the impedance sheets (31)-(33).535

Converting the sin(2βd) term in (32) to 2 sin(βd) cos(βd) and making the same small536

argument approximations in (31)-(33),537

Zs1 = −j
ωµd

1− ω2µεrε0d2

2 + (X12+X22
det Z )ωµd

(A2)

Zs2 = −j
(ωµd)2X12

det Z + 2X12ωµd(1− ω2µεrε0d2

2 )
(A3)

Zs3 = −j
ωµd

1− ω2µεrε0d2

2 + (X12+X11
det Z )ωµd

. (A4)

Since we only need to consider capactive sheets in the calculation for the quality538

factor, we can set (A2)-(A4) equal to a capactive element Zsi = 1/jωCsi. Setting (A2)-539

(A4) equal to 1/jωCsi, and solving for the sheet capacitances produces the following540

expressions,541

Cs1 =
1
ω

( 1
ωµd

+
X22 + X12

det(Z)
)
− εrε0d

2
(A5)

Cs2 =
1
ω

( 2
ωµd

+
det(Z)

X12

1
(ωµd)2

)
− εrε0d (A6)

Cs3 =
1
ω

( 1
ωµd

+
X11 + X12

det(Z)
)
− εrε0d

2
. (A7)
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