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Abstract: Lossless, reciprocal bi-anisotropic metasurfaces have the ability to control the ampli-
tude, phase, and polarization of electromagnetic wavefronts. However, producing the responses
necessary to achieve this control with physically realizable surfaces is a challenging task. Here,
several design approaches for bi-anisotropic metasurfaces are reviewed that produce physically
realizable metasurfaces using cascaded impedance sheets. In practice, three or four impedance
sheets are often used to realize bianisotropic responses which can result in narrow band designs
that require the unit cells to be optimized to improve the performance of the metasurface. To
address these issues in a systematic manner the notion of a metasurface quality factor is intro-
duced for three-sheet metasurfaces. It is shown that the quality factor can be used to predict
the bandwidth of a homogeneous metasurface, and can also be used to locate problematic unit
cells when designing inhomogeneous metasurfaces. Several design examples are provided to
demonstrate the utility of the quality factor including an impedance matching layer with maximal
bandwidth and a gradient metasurface for plane wave refraction. In addition to these examples,
several metasurfaces for polarization control are also reported including an isotropic polarization
rotator and an asymmetric circular polarizer.

Keywords: Metasurfaces, bianisotropy, metasurface bandwidth

1. Introduction

Metasurfaces are the two-dimensional analogue of metamaterials, that interact with
electromagnetic fields at a surface rather than throughout a volume [1]. They are often
realized using electrically thin layers consisting of 2D arrays of subwavelength-spaced
meta-atoms that can be homogenized. This allows for metasurfaces to be modelled
using surface boundary conditions, called the generalized sheet transition conditions
(GSTCs), which determine the interaction with an incident field through quasi-static
surface polarizabilities, [2—4]. If the incident fields are time-varying, the surface po-
larizabilities produce equivalent electric and magnetic polarization currents. These
equivalent currents can be related to surface admittances and impedances, [12,18,20,34—
37]. The mechanisms by which electric and magnetic surface currents are induced on
a metasurface determine its classification as an electric, magnetic, electric and mag-
netic, or bi-anisotropic metasurface. Purely electric metasurfaces contain only electric
polarizabilites, which interact with only the electric field to produce electric currents.
Purely magnetic metasurfaces contain only magnetic polarizabilities, which interact with
only the magnetic field to produce magnetic currents. Electric and magnetic surfaces
contain both electric and magnetic polarizabilities in a single sheet. Finally, a metasur-
face that is bianisotropic can contain electric and magnetic polarizabilities as well, as
electro-magnetic and magneto-electric polarizabilities, i.e. magnetic polarization due to
an electric field and electric polarization due to a magnetic field.
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Bianisotropic metasurfaces provide the metasurface designer with the most degrees
of freedom, making them useful for the extreme manipulation of electromagnetic fields.
Bianisotropic metasurfaces include a wide range of both reciprocal and non-reciprocal re-
sponses. However, the focus here will be on design methods for reciprocal bianisotropic
metasurfaces. Reciprocal bianisotropic metasurfaces can be split into two main classes:
chiral and omega. Chiral metasurfaces contain meta-atoms that have broken mirror
symmetry. This results in electric fields inducing magnetic currents along the imping-
ing electric field, and magnetic fields inducing electric currents along the impinging
magnetic field. These chiral responses alter the polarization state of the incident wave.
On the other hand, omega metasurfaces contain meta-atoms with broken directional
symmetry. This results in electric fields inducing magnetic currents orthogonal to the
impinging electric field, and magnetic fields inducing electric currents orthogonal to the
impinging magnetic field. This leads to an asymmetric scattering response from omega
metasurfaces which maintains the polarization state.

Applications for chiral and omega bianisotropic metasurfaces fall into two main
categories: those that guide and radiate electromagnetic waves and those that control
reflection and transmission from a surface. Guided-wave bianisotropic metasurfaces
shape fields along the surface through guided or leaky waves, and can be used to
produce desired radiation patterns [5,6]. Whereas, metasurfaces that control reflection
and transmission interact with incident wavefronts to manipulate the amplitude, phase,
and polarization of the scattered fields. There are many design synthesis methods and
realizations of planar and cylindrical bianisotropic metasurfaces that control reflection
and transmission at frequencies ranging from microwave to optical using both composite
(metal/dielectric) and all-dielectric metasurfaces [7-27]. This is by no means a complete
representation of all the work in bianisotropic metasurfaces. For a more complete review
of the literature see [28].

In this paper, the design and synthesis methods presented in [12] and [19] are
reviewed and several design examples are provided. Additionally, a definition for
the quality factor of a three-impedance-sheet metasurface is provided, that can be
used to estimate the bandwidth of a homogeneous metasurface. This is demonstrated
through the design of an impedance matching metasurface with maximal bandwidth. In
addition to improving bandwidth, the quality factor can also aid designers in improving
the performance of inhomogeneous metasurfaces. This is demonstrated by using the
quality factor to guide the selection of appropriate unit cells in the design of a gradient
metasurface for plane wave refraction.

2. Scattering from Bi-isotropic Metasurfaces

In this section, we describe the scattering performance of an omega-type bi-isotropic
metasurface illuminated by a normally incident plane wave. The scattering analysis of
bi-isotropic metasurfaces provided in this section follows that introduced in [12]. We
consider a metasurface at a planar boundary between two regions of space, as shown in
Figure 1, where the intrinsic wave impedance of region 1 is 1 = /41 /€1 and of region
21is #1p = \/ 2/ €2. The metasurface is at the z = 0 plane separating the two regions, and
is illuminated by normally incident plane waves.

The interaction between the metasurface and an illuminating plane wave can be
described via scattering parameters (S-parameters), which are the ratio between the
scattered plane wave electric field and the incident plane wave electric field. The ratio of
scattered electric field in region 7 to the incident electric field in region m for different
polarizations is given as a 2 x 2 matrix.

(S s
= (G S “)
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Figure 1. Geometry of a metasurface between two regions with different material properties.
Equivalent surface current densities | (electric) and M (magnetic) describe the interaction of the
metasurface with the tangential fields. Under illumination by a normally incident plane wave,
each region can contain two plane waves denoted by + for a wave propagating toward the surface
or — for a wave propagating away from the surface.

When viewed from region 1, Sq1 is the reflection coefficient and S; is the transmission
coefficient. Similarly, when viewed from region 2, the reflection coefficient is Sy, and the
transmission coefficient is Sqs.

In general, a bi-anisotropic metasurface can be modeled as a two-dimensional array
of polarizable particles [4]. For time-varying illuminating fields, the polarizabilities can
be effectively characterized using equivalent surface impedances [12,18,20,34-37]. The
equivalent surface currents can then be related to the averaged, tangential electric and
magnetic fields using surface parameters represented as 2 x 2 tensors: the electric sheet
admittance tensor Y, the magnetic sheet impedance tensor Z, and the magneto-electric
coupling tensors x and . With these parameters, the electric and magnetic surface
currents induced on the metasurface can be related to the average tangential fields and
compared to the boundary conditions across the metasurface.

()= ) G) - (o s) i

The variables Y, x, v, and Z relate the x- and y-polarized averaged field components
to the x- and y-polarized current density components induced on the metasurface.
The various electric field vectors are E = [Ey Ey]T and the magnetic field vector is
H = [H, Hy]T (surface current quantities J and M are similarly defined), where
the averaged fields are E;pg = (E1 + E2)/2 and Hupg = (Hy + Hz)/2. The electric
admittance tensor is defined as

Y — (lixx ll;xy) )
yx Yy
with the other parameters similarly defined.
For a reciprocal metasurface, Y = YT, ¥ = - XT, and Z = ZT [29]. Imposing

isotropy on the surface parameters results in
Y=YI, X = —Xxn, ¥ = —n, Z=7I 4)

where I is the 2 x 2 identity matrix and n = ((1) _01> .

Restricting the metasurface to omega-type bi-isotropy precludes polarization con-
version by the metasurface. Therefore, the response for each polarization is identical.
This allows us to analyze the metasurface as a two-port network for a single polarization,
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1o instead of as a four-port network when all polarizations were considered. The two-port
11 S-parameters relate the electric field of the incident and reflected plane waves as

Ei- Sn 512) <E1+>
E_= = =SE 5
(Ez—) (521 S2 ) \E24 + ©)
112 To calculate the S-parameters of the metasurface, consider an x-polarized plane

s wave as shown in Figure 1. Assuming the surface is isotropic, the boundary conditions
ua of equation (2) simplify to

Y
Jx = E(Elx + EZx) + %(Hly + HZy) = _HZy + Hly (6)
Z
My = —%(Eu + Eax) + E(Hw + Hyy) = —Eoy + E1x @)
115 From equations (6) and (7), we obtain four equations by considering illumination

ue from region 1 (E;+ = 0) and region 2 (E;; = 0) separately. These four equations
17 relate the S-parameters to the surface parameters of the metasurface. In each case,
us Ej_ and Ep_ are expressed in terms of the S-parameters and the illuminating electric
ue field. Additionally, the assumption of plane wave illumination allows us to express
10 the magnetic field quantities in terms of the electric field and wave impedance of each
iz region. These four equations are simplified and assembled into a matrix equation to
122 express the surface parameters in terms of S-parameters.

1 _5Sn_51 1 _5»_Sp 14 511+ Sp1 14 S+ S12 -
): I 1 _Su S1 _ 1,5 _ Sp ®)
14511 —-51 —1-Sun+Se/\uy Wm0 m T

123 The form of equation (8) is convenient for calculating surface parameters which will
124 implement desired S-parameters. However, re-arranging equation (8) and simplifying
125 to solve for the S-parameter quantities gives

i<_y+zml;72 + [41’71[(2—7)(2—;() +YZ] - 41172[(2+7)(2+x) +YZ]D ©)
2 (zle-ne+rn-v2) (10)
L (mle+ne-n-v2) )
i(nzmlm - [4}71[(27)(2%) +YZ] - 41,72[(2+7>(2+x> +YZ]D (12)
iz [ Lie-me-n+va e mesn -7 (13)

In the case of a lossless metasurface, the surface parameters Y = jB and Z = jX

127 are purely imaginary while y = x = R are real quantities [29]. In this case, equations
126 (9)-(12) can be further simplified as shown in equations (14)-(17). Note that Sp; = S1»
120 only when 1 = 12, and S1; = S only when R = 0 and 771 = #2.
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su =1 (1|5~ 8|+ | g [e-R2-8x] - e rP-Bx]]) a9
Spp = i_<21172[4—R2+BXD (15)
S = (17<21171[4—R2+BXD (16)
sa=1(i| 8| - |- [e-R2-8x] - e rP-Bx]])  an

a:j[mxm—kB]+[41’71{(Z—R)Z—BX}+41’72[(2+R)2—BXH (18)

We can also determine the limitations placed on the S-parameters when passive,
lossless, and reciprocal restrictions are enforced. For a bi-isotropic metasurface, the
S-parameters represent a two-port network as described in equation (5). Each element
is a complex number, so there are eight total variables (four real, and four imaginary
quantities). For a reciprocal network, Sy; = S1» when the port impedances are the same.
This relationship shows that both transmission coefficients are the same in amplitude
and phase. However, a different relationship is needed for the case of the bi-isotropic
metasurface since the port impedances are different. Reciprocity is satisfied when
the transmission phase shift and transmitted power is the same for each direction of
illumination. When the port impedances are not equal, the electric field amplitude will
change depending on the wave impedance of the medium in order to satisfy reciprocity
conditions, so |Sy1| # |S12].

To determine the reciprocity relationship for a bi-isotropic metasurface, consider
two cases: i) where the metasurface is illuminated from region 1 only and transmitted
power is determined in region 2, and ii) the metasurface is illuminated from region 2
only and transmission measured in region 1. By equating the transmitted power in both
cases, we arrive at

ﬂ|521|2 = @|512|2 (19)
2 m

While equation (19) provides a relationship between the transmission coefficient
magnitudes, reciprocity also requires that the transmission phase be the same. Applying
this and assuming the wave impedance of each region is real, we arrive at

,/ﬂszl = 1/@512- (20)
2 M

Note that equations (15) and (16) satisfy this relationship since the metasurface parame-
ters were restricted to be reciprocal.

To enforce the lossless condition, the time-average power absorbed by the metasur-
face must be zero. This is calculated as

= (B D) (] - 0 e

By applying the plane wave relation between the electric and magnetic fields, and
expressing Ej_ and E;_ in terms of the S-parameters from equation (5), equation (21)
becomes

Puog = sRe{ ([E) + [8] [E<)) (/] [E:] ~ (/) S} [E)) } =0 @)
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=" ] E= (R @)

Epy

Simplifying equation (22) and utilizing the reciprocity relationship in (20) results in
three equations which must be satisfied in order to implement a lossless and reciprocal
metasurface.

1=[Sy|*+ ﬂ|521\2 (24)
"2

1=Sn*+ ﬂ|521\2 (25)
12

0 = [S11| cos(¢ps11 — ps21 + PE1+ — PE2+) + |S22| COS(Psa1 — Pso2 + PE1 — PE2y) (26)

These three equations under-define the six independent scattering matrix variables.
As a result, three variables can be chosen freely without violating the lossless and
reciprocal conditions. Specifically, equations (24) and (25) provide the ability to choose
one amplitude of the scattering matrix. If |Sy; | is chosen, as is commonly the case, then
|S11] = |S22|, and a phase constraint is obtained from equation (26)

$s11 — Pso1 = Pso1 — Psp + 7T (27)

where two phase shifts of the S-parameters can be freely chosen.

Therefore, for a bi-isotropic metasurface to be both lossless and reciprocal, three
degrees of freedom exist in its S-parameters: one S-parameter amplitude, and two S-
parameter phases. These three degrees of freedom are set through design choices of
the metasurface. Recall, that enforcing lossless and reciprocal behavior in the surface
parameters for the bi-isotropic metasurface resultsin Y = jB, Z = jX,and v = x = R.
Thus, three distinct surface parameters can be chosen to achieve three desired scattering
properties.

3. Bi-isotropic Metasurfaces: Bandwidth and Quality Factor

In practice, bi-isotropic metasurfaces typically rely on resonant structures to produce
the strong field interactions required to perform desired field transformations. However,
the use of resonances places inherent limitations on the bandwidth. In this section, the
relationship between matching networks and bi-isotropic metasurfaces is considered,
and the quality factor of a metasurface realized using three impedance sheets is defined.
We demonstrate that the quality factor can be used as a metric to predict the metasurface
bandwidth and identify unit cells that degrade the performance of inhomogeneous
metasurfaces.

To understand the relationship between impedance matching networks and bi-
isotropic metasurfaces, we consider the following example. Suppose there is a planar
interface between air and alumina (e, = 9.4), as in Fig. 2, and the goal is to maximize the
power transferred across the interface. Since the intrinsic wave impedances of the media
are real, this amounts to minimizing the amplitude of the reflected wave. To do this, the
input impedance of the metasurface must be equal to the wave impedance of the incident
wave, Zj,. Since the two media have different wave impedances the metasurface must
transform the wave impedance of the transmitted wave, Z, to that of the incident wave,
Ziy. In this scenario, the metasurface acts as an impedance matching layer. Here, the
impedance matching layer is analogous to an impedance matching network from circuit
theory like an L or T-network, shown in Fig. 3. From circuit theory, it is known that a
complex load impedance can be matched to complex source impedance using either an
L-network, T- or r-network. The L-network contains two degrees of freedom allowing
for the real and imaginary components of the input impedance to be matched. For
an L-network, the solution is unique (all degrees of freedom are used) and no other
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212

| Metasurface

Figure 2. A metasurface at the interface between air and alumina half-spaces. The
metasurface is used to impedance match a normally incident plane wave travelling
from the region of air into the alumina.

L-network T-network

X1 | X1 [ X3

rzin Xz r Z ’—’Zin X2 r Zy,

Figure 3. L and T circuit network topologies used for impedance matching in circuit

theory.

characteristics of the impedance match, such as it’s bandwidth or the transmission phase,
can be controlled. Adding a third degree of freedom to the L-network produces a T- or
rm-network. This additional degree of freedom can be used to control the bandwidth
or the transmission phase. Bi-isotropic metasurfaces are like T-matching networks for
fields. They have three degrees of freedom that allow impedance matching with phase or
bandwidth control [33]. To illustrate this idea, we consider a metasurface that impedance
matches a normally incident plane wave on an air-alumina (e, = 9.4) interface over a
maximum bandwidth, as shown in Fig. 2.

To design the impedance matching metasurface, recall that a bi-isotropic metasur-
face can be viewed as a two-port network that controls one scattering amplitude and
two scattering phases. Therefore, designing a lossless, reflectionless, bi-isotropic meta-
surface is equivalent to designing a lossless two-port impedance matrix (Z-matrix)
that impedance matches a load impedance Z; = |Z;|e/L to a source impedance
Zi = |Zi |ej4’in with an arbitrary transmission phase ¢, [40]. To determine the Z-matrix
that provides the desired functionality, consider a general lossless two-port Z-matrix,

iy _ (X X\ (h
<V2> _](Xm Xzz) (12> 28)

Imposing the impedance boundary conditions and enforcing power conservation on (28)
produces the following system of equations,

1\ (X Xn 1
(rvej‘PZl) =] (XZl X —rvej‘PZl (29)
Cos ¢iy

—’ and ¢p; = £V, — ZVj. Splitting (29) into its real and imaginary

cos ¢,
components allows for the elements of the Z-matrix to be solved for in terms of Z;, Z;,,

and 4)21/

Z
her 72:_L
where 1 Zin
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pd  pd

’_) ZS 1 ZS2 ZSS ’_}

in L

Figure 4. Bi-isotropic metasurface realized using three impedance sheets separated by dielectric
spacers with thickness d.

<X11 X12> _ <|Zin| cos(po1 —¢r)  |Zin|ro cos(¢r)

Xo1 X |Zin|rocos(¢pr)  |Zr| cos(¢pp + ¢in)> csc(@21+ Pin = 91)  (30)

From (30), it is clear that the required two-port network is reciprocal since X1, = X»1,
and has three degrees of freedom. As in [12], three cascaded sheet impedances, shown
in Fig. 4, can be used to realize a metasurface with a Z-matrix given by (30).
Expressing Fig. 4 in terms of it’s Z-matrix, and solving for the necessary impedance
sheets, results in the following expressions for the sheets in terms of the elements of (30),

. Zysin(pd)
ZS = — 31
! ]cos(,Bd) + (%)ZO sin(Bd) G
B 72 sin?(Bd) X12
22 = I Got 7 + X1a Zo sin(2B4) (32)
Zs3 _ Z() sm(ﬁd) (33)

! cos(Bd) + (X2320)Z, sin(pd)’

where det Z is the determinant of the Z-matrix and B and Zj are the wavenumber
and wave impedance of the dielectric spacers, respectively. Once the input and load
impedances, spacer thickness, and the transmission phase is specified, (30) can be used
to determine the necessary impedance sheets to implement the metasurface.

To maximize the bandwidth of the impedance match, a method is needed for
comparing the metasurface bandwidth for different transmission phases. Here, an
expression of the metasurface quality factor as a function of the transmission phase is
derived for this purpose. The quality factor of the three sheet metasurface is defined as,

2W,

p;’
where wy is the angular resonant frequency, W, is the average electric energy stored
in the network at wy, and P, is the power dissipated in the network. To calculate the
quality factor using (34), the impedance sheets (31)-(33) are expressed in terms of lumped
capacitances and inductances. The dielectric spacers in the metasurface are assumed
to be electrically thin, so they can be modeled as lumped m-networks. Therefore, if the
dielectric spacers are electrically thin and the source and load impedances are purely
real, then the quality factor of the metasurface can be expressed as

Q=wp

(34)

“o
2

Q- (zm(cm pd >+Rim<csz+ﬁd>+zL<css+ﬁd>>, (35)

26()0 ZO wOZO Za)o Zo
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2 Quality factor Fractional Bandwidth Transmission amplitude
1 I ! ! I I I
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1 1 1 1
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360 270 -180 -90 i 0 -360 270 -180 -90 i 0 1 5 10 15 20 25
Transmission phase ¢,, (°) Transmission phase ¢,, (°) » Frequency (GHz)
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Figure 5. The quality factor, fractional bandwidth, and the magnitude of the frequency
response for metasurfaces that provide impedance matching with six different trans-
mission phases. (a) The quality factor is minimized when the transmission phase is
—68.5° (red circle). (b) The fractional bandwidth is maximized at —68.5° (red circle).
(c) Plots of the transmission amplitude over frequency for several transmission phases
and the maximum bandwidth is observed when the transmission phase is —68.5° as
predicted by the quality factor.

Zin+t 214/ ZinZ1 cos oo (Zg sin pd)?
sin? $1 ZinZy
238 sheet (if the sheet is inductive then C,; = 0). If the load impedances are not purely real,
230 the imaginary part of the load can be absorbed into either Z;; or Z,3, and (35) can still be
2e0 used. The quality factor, Q, of the metasurface will be used to approximate the fractional
21 bandwidth, FBW = BW/ fy, where BW is the 3 dB bandwidth of each unit cell. However,
2a2  due to the presence of multiple resonances this approximation is only valid when the
2a3  Tesonances are well separated in frequency.
244 The quality factor expression (35) can be used to maximize the bandwidth of an
25 impedance matching bi-isotropic metasurface. For a normally incident plane wave, the
26 relevant impedance is Z;, = 377Q). Let’s assume that Z; = 123(), and the spacers are
2a7  free-space with a thickness d = A(/20. Using (35) to calculate the quality factor and the
2e¢  fractional bandwidth versus transmission phase, produces Fig. 5. Fig 5 (b) shows that
2¢0  the maximum bandwidth occurs at a transmission phase of ¢o; = —68.5°. Fig 5 (a) plots
20 (35) and predicts that this transmission phase maximizes the bandwidth, as shown in
251 Fig. 5 (c). The metasurface with this transmission phase is composed of the following
=2 impedance sheets: Zg = 1/(jwCq1) = —j468.9Q), Zsp = 1/ (jwCsp) = —j641.9Q), and
w3 Zg = jwlg = j38.5k(). The metasurface performance is simulated in Ansys HFSS
=sa  using dispersive impedance sheets that correspond to the following lumped elements:
25 Cg1 = 33.9fF, Csp = 24.8fF, and Lg3 = 612.7nH. The transmission magnitudes from this
256 simulation are shown in Fig. 6, where they are compared to a quarter-wave transformer
=7 and the bare interface without any impedance matching. The metasurface has a size and
=ss  bandwidth comparable to a quarter-wave transformer. However, it doesn’t require the
20 realization of a medium with the dielectric constant e, = /9.4, which can be heavy and
260 challenging to manufacture.
261 In practice, a metasurface’s impedance sheets are typically realized using subwave-
262 length metal or dielectric patterning on support structures. Here, we will consider the
263 impact this has on the bandwidth of the metasurface. First, we will consider the effect of
20 using subwavelength patterned sheets. Subwavelength unit cells that are non-resonant
2es  exhibit a response of either a capacitive or inductive sheet impedance [38,39]. This
266 indicates that modeling the patterned sheets as impedance sheets should not result in
207 a significant bandwidth reduction when the metasurface is realized in practice. How-
208 ever, if extreme impedance values that are difficult to realize are required it may be
260 Necessary to modify the design to include additional impedance sheets to avoid extreme
270 impedance values. If impedance sheets cannot be realized at the design frequency due
2nn to manufacturing difficulties, an alternative design approach may be required, such as
22 using detuned resonant elements. Their responses will be more narrowband.

237 where, Rint =

,and Cg; is the capacitance of the ith impedance
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= = =No matching | = = =Ho maEhng
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Frequency (GHz) Frequency (GHz)
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Figure 6. Plots of the transmission and reflection magnitudes for the interface with
the metasurface (¢ = —68.5°), a quarter-wave transformer, and with no impedance
matching (bare interface). The simulations of the metasurface were performed in
Ansys HFSS. The metasurface has a bandwidth that is comparable to a quarter-wave
transformer.

We will also consider the effect of using a dielectric spacer as the support structure.
For a metasurface designed using a non-magnetic dielectric spacer with a relative
permittivity ¢, its quality factor is given by,

w ereod ereod
Q=7 (zm<csl + =55) + Rint(Caa + ereod) + Z1.(Ca + ’20)) (36)
If the dielectric spacer is electrically thin then the sheet capacitances can be approximated
as,

1 1 X + X192 gr€0d
st E(wyd det(Z2) ) 2 57)
1,2 det(Z) 1
Co2 = a(wyd X12 (wyd)Z) ~ &réod (38)
1.1 X1+ X2y &réod
€= (wyd det(Z) ) 2 (39)

when the sheet impedance Z; is capacitive (see Appendix A). Otherwise, the impedance
sheet is inductive and can be ignored in the calculation of the quality factor. Additionally,
when the spacer is electrically thin R;,; does not depend on the dielectric constant
(see Appendix A). So the only terms in (36) that depend on the permittivity are the
capacitance terms Cy;, #, and e,e0d. Considering the terms Cy; + #, Csr + €r€0d,
and Cg + # individually and using (37)-(39) in them, it becomes apparent that for
capacitive impedance sheets the quality factor is unaffected by the dielectric spacer.
However, if any of the impedance sheets are inductive then the dielectric spacer will
increase the quality factor, thereby reducing the bandwidth of the metasurface.

In addition to bandwidth information, the quality factor also provides information
that can guide the design of inhomogeneous metasurfaces where local periodicity is
assumed. Obtaining good performance from a metasurface designed assuming local
periodicity requires that neighboring unit cells produce fields that are approximately
the same i.e. the fields vary smoothly along the surface without large discontinuities in
amplitude or phase. In this work, it has been found that the quality factor and its first
derivative with respect to transmission phase can help the designer select unit cells that
satisfy the assumption of local periodicity.

The quality factor, given by (35), is divergent at transmission phases near ¢p; =
0°, —180°, and —360°, indicating that the unit cells required to achieve these transmission
phases possess large quality factors. Large quality factors are associated with strong
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resonances which are sensitive to perturbations in the surrounding environment and
are lossy when realized in practice. Therefore, these unit cells should be avoided.
Additionally, areas where (35) is not smooth (i.e. points where the first derivative is
discontinuous or undefined) indicate transmission phases where the reactance of at
least one of the impedance sheets changes sign. These points should also be avoided
because they identify transmission phases where the required reactance values display
asymptotic behavior. This introduces rapid variations in the values of the impedance
sheets and fields in the metasurface that invalidate the assumption of local periodicity.

To see how this information can be used, consider a metasurface embedded in free-
space that refracts a normally incident plane wave to 70° at a frequency of fo = 10GHz.
This requires a gradient metasurface: an inhomogeneous metasurface that imposes a
linear phase gradient on an impinging wave-front to produce reflection or refraction
into a desired direction [31]. Refraction requires the metasurface to alter the transverse
wavenumber of an incident plane wave (k; = ksin(6;)) to produce the desired refracted
wavenumber (k; = ksin(6;)), where k is the wavenumber in the surrounding medium.
Therefore, the metasurface must impart transverse momentum equal to Ak = k; — k;.
Practically, this is realized by discretizing the metasurface into N sub-wavelength unit
cells of size D = W’M, each possessing a transmission phase ¢; such that Ap =
Pj+1 — ¢; = —AkD. Each unit cell must be reflectionless to maximize the transmitted
power into the refracted wave. This means impedance matching and phase control are
required, so (31)-(33) can be used to design the unit cells of the metasurface.

For this example, the metasurface will have 10 unit cells per transverse wavelength
(in free-space) and the spacers will be assumed to be free-space with a thickness d =
Ag/25. As a first pass at the design, the metasurface is designed to impose a linear phase
gradient with the unit cell transmission phases shown in Table 1. The required sheet
impedances, shown in Fig. 7 (b), are solved for using (31)-(33) and one period (10 unit
cells) of the metasurface is simulated in COMSOL using periodic boundary conditions.
The results are shown in Fig. 7 (c).

The metasurface designed using this phase gradient exhibits significant reflections
and the transmitted wave is not purely refracted. A slight perturbation of the linear
phase gradient can be used to improve the performance. The appropriate perturbed
phase gradient can found using the quality factor and its first derivative with respect
to transmission phase. To find problematic transmission phases in the original design,
plots of the quality factor and its first derivative are shown in Fig. 9. By inspecting the
plots, four unit cells with problematic transmission phases are identified: 1, 5, 6, and
10. Unit cells 1, 5, and 6 are problematic because they are near points where (35) is not
smooth, and unit cell 10 is problematic due to its large quality factor. To improve the
performance of the metasurface, the problematic transmission phases are adjusted as
shown in Table 1. These phase shifts reduce the maximum unit cell quality factor by
approximately 10 and force the reactance of the impedance sheet’s to change sign only
once at ¢ = —180°.
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Figure 7. (a) Depiction of an inhomogeneous, bi-isotropic metasurface implemented
as a three sheet cascade in free-space. (b) Plots of the sheet reactances for different
transmission phases. The solid circles indicate the values used for the linear phase
gradient and the empty squares indicate the sheet values used for the perturbed phase
gradient. (c) Full-wave simulation results for the real part of the electric field using the
metasurface with a linear phase gradient. (d) Full-wave simulation results for the real
part of the electric field using the metasurface with a perturbed phase gradient.

Unitcell ¢ (original) ¢ (perturbed) Phase gradient

1 -18° -31° 5 °

2 —54° —54° < I

3 —90° —90° 5 9

4 —126° —126° 5

5 —162° —147° g 1807

6 —198° —216° @

7 —234° —234° E 2707

8 —270° —270° g

9 ~306° —306° = -360

10 _340° _1330° 12 3 4 5 6 7 8 9 10

Unit cell index
Table 1. Unit cell transmission phases (¢,1) used

in the design of the gradient metasurface for
plane wave refraction. The original phase gradi-
ent corresponds to the linear phase gradient. The
perturbed phase gradient corresponds to the ad-
justed phases used to improve the performance

of the metasurface phases used for the perturbed phase gradient

The metasurface is redesigned with the modified transmission phases and the
required sheet impedances are shown in Fig. 7 (b). Ten unit cells of the metasurface
are again simulated in COMSOL using periodic boundary conditions, and the results
are shown in Fig. 7 (d). We see that the redesigned metasurface performs significantly
better than the analytical design. This indicates that avoiding transmission phases
which require a large quality factor or exist near non-smooth or asymptotic regions of
Q(¢21) can improve the performance of gradient metasurfaces designed using the local
periodicity assumption.

Figure 8. Comparison of the transmission phases
used for the original and perturbed phase gradi-
ents. The solid black circles indicate the transmis-
sion phases used for the linear phase gradient.
The empty red squares indicate the transmission
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Figure 9. (a) The quality factor of the metasurface unit cells versus transmission phase.
(b) The first derivative of the quality factor with respect to transmission phase. The
solid black circles indicate values corresponding to the linear phase gradient and the
hollow red squares indicate the adjusted values used for the perturbed phase gradient.

Violations of local periodicity (like those discussed above) can present challenges
when realizing inhomogeneous metasurfaces where local periodicity has been assumed.
Issues arising from these violations have been handled implicitly in the literature in a
variety of ways. Such as in [20], where the phase gradient was altered to improve the
metasurface’s performance by reducing transmission losses. On the other hand, [40—42]
made the sheet spacers extremely thin d < A/40. This generally increases the quality
factor of the unit cells but, it has the benefit of shifting the transmission phases where all
three impedance sheets transition from capactive to inductive to occur at the same point.
This means that shrinking the spacings makes it easier to select transmission phases
that avoid regions where (35) is not smooth. As a result, extremely thin spacings can
improve the design performance at the expense increasing manufacturing difficulties
and producing higher quality factors: lower bandwidths. Alternatively, PEC [43] or PMC
[26] baffles have been used to eliminate inter-cell coupling to validate the assumption of
local periodicity. However, in practice the use of PEC baffles presents a manufacturing
challenge and PMC baffles cannot be realized. These examples indicate a design trade-off
between manufacturability and performance when realizing inhomogeneous metasur-
faces. Using the quality factor as shown in this section provides an alternative way to
improve design performance. It can be used to systematically identify problematic unit
cells and adjust them where possible to allow for the trade-off between performance
and manufacturability to be balanced. An alternative to this approach is to avoid the
assumption of local periodicity and model interactions between unique unit cells using
homogenization and integral equations as reported in, [44].

4. Scattering from Bi-anisotropic metasurfaces

While scattering of plane waves was analyzed for the simplified case of a bi-isotropic
metasurface in Section 2, it is worthwhile to consider the general case where isotropy is
not assumed. Following the general process of Section 2, the boundary conditions of
equation (2) can be expressed in terms of the S-parameters (where each S-parameter term
is the 2 x 2 matrix of equation (1)). Note that £ x [Ex Ey] T—n [Ex Ey] T Expressing
the surface parameters in terms of the S-parameters gives [12]

Uit 72 2 Uy m

Su _ Su I _Sn_ Sn )( I+ 811+ Sn I+ 82 + S12
n

-1
I _Suysn) _p(L_Sa S (40)
m n T ’72) n(ﬂz 2 T '71))
Equation (40) can also be re-arranged so that the S-parameters are expressed in
terms of surface parameters.

n

I ,Y_xn 1, Y_ xe\"ly/1 _Y_ xn 1 _Y_ xn
Su S LYy oo LYo\ —/L_y g LY,
< 1 12) - <’71 2 Zg}: m 2 2'72) (771 2 %’71 mno 2 2%1> (41)

—n+ - ont+y

_xy_Zn  _,_ ¥ Zn
2 "2 R T

2
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As in the bi-isotropic case discussed in Section 2, analyzing the degrees of freedom
helps determine the number of surface parameters required to realize a specificed S-
matrix. In the bi-anisotropic case, both polarizations are taken into account, which
leads to a 4 x 4 scattering matrix and 16 complex numbers as its entries. In most cases,
reciprocity is desired for metasurfaces, resulting in a symmetric S-matrix (assuming the
port impedances are identical)

T
<S11 512) _ <511 512) (42)
S21 S» S21 S22
which indicates that only 10 out of the 16 entries are actually independent. Since each
complex number contains its real part and imaginary part, there are 20 free variables in

total under the reciprocal condition. If we further require the metasurface to be lossless,
the S-matrix also has to be unitary:

. 1000
S21 S» S»1 S» 0 01O
0 001

By incorporating the reciprocal condition (42) into the lossless condition (43), one can
expand (43) into 10 different equations, which impose 10 additional restrictions on the
20 free variables. Consequently, for a reciprocal and lossless bi-anisotropic metasurface,
there are 10 degrees of freedom in total.

A similar conclusion can be drawn by considering the surface parameters. Recall
that Y = YT,y = —xT, and Z = ZT for a reciprocal metasurface [29]. There are 3 free
entries in both the Y and Z matrices, and 4 free entries in the 7 or x matrix. Moreover,
for the metasurface to be lossless, Y and Z must have purely imaginary entries, while
v and x must have purely real ones [29]. Again, it can be seen that the total degrees of
freedom of the system is 10.

In practice, several sheets are usually cascaded and separated by dielectric spacers to
form bi-anisotropic metasurfaces. Typically, these sheets only possess electric responses
characterized by admittance tensors Y, since they can be readily realized using metallic
patterns. For bi-isotropic metasurfaces, or in the case where only a single polarization is
of concern, we know that 3 sheets are enough to realize a specified response. However,
the situation becomes more complicated for bi-anisotropic metasurfaces. When both
polarizations are involved, a single lossless, reciprocal electric sheet provides three
degrees of freedom under lossless and reciprocal conditions, i.e. the imaginary numbers
Yxx, Yyy and Yyy = Y. Therefore, at most 4 sheets are required to realize an arbitrary
reciprocal and lossless bi-anisotropic metasurface with 10 degrees of freedom. Although
many bi-anisotropic metasurfaces can be realized with only 3 electric sheets, there
are some cases in which introducing a fourth sheet is necessary. Examples include
polarization rotators in [12], [19]. The fourth sheet not only provides the required degree
of freedom but also enhances the operational bandwidth.

In order to synthesize a cascaded sheet design, a network analysis technique known
as the wave matrix approach was adopted in [19]. Wave matrices relate the forward and
backward propagating electric fields on one side of the scatterer to those on the other
side. For an arbitrary scatterer shown in Fig. 10 (a), the wave matrix M is defined as:

() -~(3)

Similar to S-matrices, wave matrices contain information about the incident and
reflected waves. The advantage of using wave matrices is that they significantly simplify
the analysis of cascaded structures like ABCD matrices. The wave matrix of a cascaded
structure can be obtained by simply multiplying the wave matrices of its constitutive
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Figure 10. Illustration of the wave matrix and the constitutive blocks of the cascaded structure. (a)
The definition of a wave matrix. (b) A metasurface interface between two dielectric media. (c) A
dielectric spacer.
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Figure 11. A cascaded metasurface structure consists of three sheets with only electric
responses (y = x = Z = 0).

blocks. In our multi-layer metasurfaces, these blocks include metasurface interfaces
across two dielectric media and dielectric spacers, as illustrated in Fig. 10 (b) and
(c), respectively. Their corresponding wave matrices can be derived from boundary
conditions and are explicitly shown in [19].

The procedure for synthesizing a reciprocal and lossless S-matrix is briefly outlined
here. First, the desired S-matrix, Sspec, is stipulated based on the required application. It
is then converted to a wave matrix as follows [19]:

-1
I 0 Sle ec 5225 ec)
Mepec = o i 45
spec <S11,spec SlZ,Spec)( 0 I (45)

where 0 represents a 2 x 2 null matrix. This wave matrix Mgpec is known and set as
the synthesis goal. It is worth noting that if Sy1 spec has a zero determinant, taking the
inverse matrix in (45) becomes invalid. In this case, a perturbation can be introduced
into Sz1 spec to alleviate this problem. For simplicity, it is assumed that this S-matrix can
be realized by cascading 3 sheets. Accordingly, the targeted structure is displayed in Fig.
11 and the cascaded wave matrix that relates Efc to Eff is

Mease = Ms(}lu)eetM(El?glectricMs(fzu)eetMé?glectricMs(}?iZ:et (46)

in which M s(}léet’ Miﬁi ot and M S(iiet are the admittance tensors that need to be solved
for. By setting Mspec = Mcasc, and with some algebraic manipulation, one can find the

admittance tensor of the second sheet Y, [19]:

1
e®RY, = Af((e ® I)Mspec(e (%9 I) — (et1<I>2t2<I>3t3e) ® I). (47)
2
The symbol ® in (47) represents the Kronecker product of matrices and A; is some
constant scalar. The matrix #; contains information about the dielectric interface where
the first sheet is located, ®, carries the phase information of the second dielectric spacer
(t2 , t3 and @3 are similarly defined), and e is a constant matrix [19]:

_ 1 (m+m m—mnm (e 0 (1
tl_sz(nz—m mam) =0 eim) e=( ) @
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437

438

Similarly, the admittance tensors of the first and third sheets ¥; and Y3 can be
expressed in terms of Y3,

1
ewVi= - [Mspec(e @ I) — (51 @2t @3t3e) © I — %(th)zeq):;tg,e) ® Yz}

B
: (1@ (I+ A—lyz)*l)
1 1 . (49)
e@Ys=—(I®(I+-2Y;)""
3 A3( ( As 2) )
. {(E X I)Mspec — (et1<I>2t2<I>3t3) ®I— %(eth)zeq)g,tg) XY,

where A1, B1, A3 and B3 are constants explicitly calculated in [19]. A more complicated
synthesis procedure involving 4 cascaded sheets is also discussed in [19], but the main
idea follows the 3 sheet case shown here.

5. Design Examples

In this section, several polarization-converting design examples are shown and
discussed to illustrate the broad applicability of bi-anisotropic metasurfaces. For the
details of the analysis and synthesis procedure please refer to [19]. All devices consid-
ered here are realized by cascading several electric sheets and thus can be realized in
practice using subwavelength patterned surfaces. The admittances of the electric sheets
can be characterized analytically [38,39,45], or through full-wave extraction methods.
However, when the impedance sheets are cascaded to produce the bianisotropic unit
cells, evanescent coupling resulting from the fine features of the patterning may shift
the unit cell’s response. To account for this, the impedance sheets will need to be de-
signed such that the desired response of the unit cell is maintained. Several examples of
metasurfaces demonstrating the feasibility of this approach at microwave and millimeter
wave frequencies can be found in [11,12,20,46].

5.1. Asymmetric Circular Polarizer

The first device presented here is an asymmetric circular polarizer. The device
converts a right-hand circularly polarized incident wave to a left-hand circularly polar-
ized transmitted wave. On the contrary, when the incident wave is left-hand circularly
polarized, it is totally reflected. An illustration of the operation is provided in Fig. 12 (a)
[19]. Accordingly, the device has S-parameters:

j¢ ' i —
SlZ,spec = S;l,spec = % (j _]1> ’ Sll,spec = SZZ,spec = % (_1] _{) . (50)
for normal incidence.

Let us synthesize this asymmetric circular polarizer using the wave matrix approach
[19]. This specified S-matrix leads to a Sa1 spec With a vanishing determinant. Hence, a
perturbation is required in this case, as noted in the previous section:

j¢ '
Slz,spec = Sgl,spec = % (} _e]jl")' (51)

This device can be realized by cascading three sheets. A unit cell of the device
is shown in Fig. 12 (b). In this example, we stipulate both dielectric spacers to have
a dielectric constant e, = e3 = 5. It is assumed that the phase delay ¢ = 0 and that
the electrical lengths of both dielectric spacers are ¢, = @3 = 271/5. By substituting
these parameters into the design equations, (47) and (49), the following sheet admittance
tensors are obtained,
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Figure 12. An asymmetric circular polarizer. (a) Polarization-converting operation of the metasur-
face [19]. (b) Unit cell of the asymmetric circular polarizer. (c) Simulated transmission coefficients.
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Figure 13. A linear polarization rotator. (a) Polarization-converting operation of the metasurface
[19]. (b) Unit cell of the polarization rotator. (c) Simulated transmission coefficients.

_j {073 1.00 _j (126831 552 _
m= <1.00 072) 2= 552 143) BTN ©2)

For full-wave verification of the design, synthesized admittance values (52) are
modeled in Ansys HFSS as anisotropic boundary conditions. At frequencies other than
the design frequency, wy, the sheet admittances are assumed to obey Foster’s reactance
theorem. The eigenvalues of each sheet are first found by diagonalizing the tensors
(52). If the resulting susceptances By are positive, we assume a capacitive frequency
dependence,

w .
B.(w) = —By, if By >0. (53)
wo
On the other hand, negative susceptances are assumed to possess an inductive response

By(w) = %BO, if By < 0. (54)

The assumptions, (53) and (54), are in fact reasonable since the admittances are realized
by simple metallic patterns. The simulated frequency response of the asymmetric circular
polarizer is displayed in Fig. 12 (c), where the transmission characteristics match the
specified performance at the operating frequency (51).

5.2. Polarization Rotator

The second device considered in this section is a reflectionless polarization rotator
which rotates the polarization of any linearly polarized incident wave by 90°, as shown
in Fig. 13 (a).

The stipulated S-parameters for this example are,
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; 0 1 +(0 0
Slz,spec = Sgl,spec = e]lP <_1 O)/ Sll,spec = SZZ,spec = 614) (0 0)- (55)

As discussed earlier, 4 sheets are required to reconstruct the stipulated S-matrix. With
the unit cell shown in Fig. 13 (b), it is assumed that ¢ = 7/4.5, &0 = €3 = ¢4 = 3.5,
and ¢ = @3 = ¢4 = 11/5. Following the synthesis procedure outlined in [19], the
admittance tensors of each sheet are calculated to be:

yo _ J (501 077\ j (930 0
7 o\077 013)7 2T o\ 00 1.00

voo J (759 =777\ _ i (257 -130
3T o \—777 271 )0 *T e\ ~130 257 )

(56)

The metasurface unit cell was simulated in Ansys HFSS, and the resulting frequency
response is plotted in Fig. 13 (c). Again, the transmission characteristics match the
specified performance at the design frequency.

6. Conclusions

In this paper, design procedures for realizing reciprocal bi-isotropic and bi-anisotropic
metasurfaces using cascaded impedance sheets were reviewed. The design procedures
use generalized sheet transition conditions (GSTCs) to relate bi-anisotropic surface pa-
rameters to the scattering parameters of the cascaded sheet impedances. Such approaches
allow for metasurfaces with arbitrary lossless, reciprocal, bianisotropic responses to be
realized in practice. These design methods were then used to realize several examples
of practical devices with phase and polarization control. Specifically, they were used to
realize an asymmetric circular polarizer and a reflectionless, polarization rotator.

In addition to these design procedures, the quality factor for metasurfaces composed
of three impedance sheets was introduced. The quality factor was shown to predict the
bandwidth of a homogeneous metasurface. This was demonstrated through the design
of an impedance matching metasurface with maximal bandwidth. It was also shown
that the quality factor could be used to improve the performance of inhomogeneous
metasurfaces. This was demonstrated through the design of a gradient metasurface
for plane wave refraction. The unit cell quality factor was used to identify cells that
degraded the overall metasurface performance, and was used to select alternative unit
cells that improved overall performance. Such an approach can be used to balance
fabrication difficulty with performance for metasurface devices.
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s2s  Appendix A

520 Here, the approximations used to calculate the quality factor of a metasurface with
o electrically thin spacers are derived. First, we will show that the internal matching
sa1 resistance, Rj,y, is independent of the spacer’s dielectric constant, ¢,. For an electrically
thin spacer fd << 1. Using second-order small angle approximations, sin fd ~ $d and

o
w

o
w
N

s:3 cosPd~1-— @, in the expression for R;,; yields,

Zin + Z1 + /ZinZy, cos ¢ (wpd)?

Rint = ’
Sln2 q>21 ZinZy

(A1)

s« which does not depend on the dielectric constant of the spacer.

535 Next, we will derive the approximate expressions for the impedance sheets (31)-(33).
s Converting the sin(2fd) term in (32) to 2sin(pd) cos(Bd) and making the same small
sz argument approximations in (31)-(33),

o
w

wyd

Zsg = —] 2 (A2)
reod? Xpp+X.
1-¢ HSZSO +( g.;zn)wﬂd
7= i (wpd)*Xio (A3)
§2 = ]d w?peregd?
etZ + lezw}ld(l — f)
. wpd
Zg = —]j 5 . (A4)
r€0d? Xp+X
1- Lol | (St yopd
538 Since we only need to consider capactive sheets in the calculation for the quality

s factor, we can set (A2)-(A4) equal to a capactive element Z;; = 1/jwCs;. Setting (A2)-
s (A4) equal to 1/jwC;;, and solving for the sheet capacitances produces the following
sa1  eXpressions,

. l 1 X2 + X12 B er€0d
C1=3 (wyd det(Z) ) 2 (A5)
1,2 det(Z) 1
Co = Z(cuyd X12 (wyd)2) ércod (A6)
Cos = 1 1 X11 + X12 er€0d (A7)

(wyd det(2) )~ 2

Cw
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