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Abstract— Data centers are increasingly using high-speed cir-
cuit switches to cope with the growing demand and reduce
operational costs. One of the fundamental tasks of circuit switches
is to compute a sparse collection of switching configurations to
support a traffic demand matrix. Such a problem has been
addressed in the literature with variations of the approach
proposed by Birkhoff in 1946 to decompose a doubly stochastic
matrix exactly. However, the existing methods are heuristic and
do not have theoretical guarantees on how well a collection of
switching configurations (i.e., permutations) can approximate a
traffic matrix (i.e., a scaled doubly stochastic matrix). In this
paper, we revisit Birkhoff’s approach and make three contri-
butions. First, we establish the first theoretical bound on the
sparsity of Birkhoff’s algorithm (i.e., the number of switching
configurations necessary to approximate a traffic matrix). In par-
ticular, we show that by using a subset of the admissible permu-
tation matrices, Birkhoff’s algorithm obtains an ε-approximate
decomposition with at most O(log(1/ε)) permutations. Second,
we propose a new algorithm, Birkhoff+, which combines the
wealth of Frank-Wolfe with Birkhoff’s approach to obtain sparse
decompositions in a fast manner. And third, we evaluate the
performance of the proposed algorithm numerically and study
how this affects the performance of a circuit switch. Our results
show that Birkhoff+ is superior to previous algorithms in
terms of throughput, running time, and number of switching
configurations.

Index Terms— Scheduling algorithms, machine learning algo-
rithms, switches, Birkhoff decomposition.

I. INTRODUCTION

DATA centers are increasingly adopting hybrid switch-
ing designs that combine traditional electronic packet

switches with high-speed circuit switches [1]–[3]. In short,
packet switches are flexible at making forwarding decisions at
a packet level, but have limited capacity and are becoming
increasingly expensive in terms of cost, heat, and power.
In contrast, circuit switches provide significantly higher data
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rates at a lower cost but are less flexible at making forwarding
decisions. The main drawback of circuit switches is that they
have high reconfiguration times, which limit the amount of
traffic they can carry [1], [4], [5]. For instance, circuit switches
have reconfiguration times in the order of milliseconds (e.g.,
25 ms for off-the-self circuit switches [6], [7]), whereas the
reconfiguration times in electronic switches are in the scale
of microseconds. As a result, hybrid switching architectures
load balance and use circuit switches for high-intensity/bursty
flows [8], [9]1 and electronic switches for traffic that needs of
a more fine-grained scheduling (e.g., delay-sensitive applica-
tions).

The problem of computing switching configurations for
circuit switches is central to networking and has a direct
impact on the performance of nowadays data centers. Mathe-
matically, we can model a circuit switch as a crossbar,2 and
cast the problem of finding a small collection of switching
configurations as decomposing a doubly stochastic matrix3

as a sparse convex combination of permutations matrices.
In brief, for a given n × n doubly stochastic matrix X� (i.e.,
a scaled traffic matrix) and an ε ≥ 0, the goal is to find a
small collection of permutation matrices P1, P2, . . . , Pk (i.e.,
switching configurations) and weights θ1, θ2, . . . , θk > 0 (i.e.,
the fraction of time the switching configurations will be used)
with

∑k
i=1 θi ≤ 1 such that∥∥∥∥∥X� −

k∑
i=1

θiPi

∥∥∥∥∥
F

≤ ε, (1)

where ‖ · ‖F is the Frobenius norm (see definition in
Section III-A). The smaller ε is, the higher the throughput.
However, practical systems cannot use as many switching
configurations as desired as each inflicts a reconfiguration
time δ that affects the fraction of time the switch can carry
traffic.4 Or put differently, there is a constraint on the number
of configurations a switch can use to approximate a traffic
matrix.

Previous work has addressed the problem above with vari-
ations (e.g., [8], [14]–[16]) of the approach proposed by
Birkhoff in 1946 [17] to decompose a doubly stochastic matrix

1Traffic in data centers is often bursty [10], [11] and uses few input/output
ports [12].

2See, for example, [13, Section 4.1].
3A matrix is doubly stochastic if its entries are non-negative and the sum

of every row and column is equal to one. A permutation matrix is a binary
doubly stochastic matrix.

4Technically, a traffic matrix X� is valid for a time window period W ,
and the decomposition must satisfy

�k
i=1(θi + δ) ≤ W . That is, the time

spent transmitting (
�k

i=1 θi) and reconfiguring (δk) cannot exceed the time
window duration (W ).
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TABLE I

SPARSITY AND PERMUTATION SELECTION COMPLEXITY OF Birkhoff+
(THIS PAPER) AND PREVIOUS ALGORITHMS. LP AND QP STAND FOR

LINEAR AND QUADRATIC PROGRAM RESPECTIVELY

exactly (i.e., ε = 0). However, little is known about the behav-
ior or convergence properties of Birkhoff’s algorithm, and so
fundamental questions remain still unanswered. In particular,
how does the decomposition approximation ε in Eq. (1) depend
on the number of switching configurations? How much does
an additional switching configuration contribute to increasing a
circuit switch throughput? How is Birkhoff’s algorithm related
to other numerical methods in other fields, such as opti-
mization and machine learning? Answering these questions
is crucial to better understand the structure of the problem
and to design new algorithms that improve the performance
of circuit switches. To this end, the main contributions of the
paper are the following:

(i) Revisiting Birkhoff’s Approach: We revisit Birkhoff’s
algorithm and establish the first theoretical bound on its
sparsity (i.e., the number of permutations necessary to approx-
imate a doubly stochastic matrix). In particular, we show
that by selecting permutations from a subset of admissible
permutations, Birkhoff’s algorithm has sparsity O(log(1/ε))
(Theorem 1). That is, the number of permutations required to
obtain an ε-approximate decomposition increases logarithmi-
cally with the decomposition error. Our results also show that
previous Birkhoff-based algorithms that select permutations
using a Max-Min criterion (e.g., [8]) have logarithmic sparsity
(Corollary 1), and that Birkhoff’s algorithm is strongly con-
nected to block-coordinate descent and Frank-Wolfe methods
in convex optimization (Section IV-D.2 and Section V).

(ii) New Algorithm (Birkhoff+): We propose a new
algorithm that combines Birkhoff’s approach and Frank-Wolfe.
Specifically, permutation matrices are selected using a Frank-
Wolfe-type update with a barrier function, while the weights
as in Birkhoff’s approach. The proposed algorithm has theo-
retical guarantees (Corollary 2) and is non-trivial as a direct
combination of Birkhoff’s approach with Frank-Wolfe may not
converge (Theorem 4). Furthermore, Birkhoff+ is faster
than previous algorithms as it computes a new permuta-
tion/configuration by solving a single linear program (LP).
Table I contains a summary of the main differences between
Birkhoff+ and the state-of-the-art algorithms discussed in
Section II.

(iii) Numerical Evaluation: We evaluate Birkhoff+’s
performance in a circuit switch application and compare it
against existing algorithms for a range of matrices (dense,
sparse, skewed) that capture the characteristics of traffic in
data centers. Our results show that Birkhoff+ is superior

to previous algorithms in terms of throughput, running time,
and number of switching configurations. For instance, when
δ/W = 10−2 (the reconfiguration time over the time available
for transmission), Birkhoff+ has 7% more throughput than
the best state-of-the-art algorithm. If we consider, in addi-
tion, the time to compute the switching configurations as an
overhead, the throughput gain increases to 34% (switch with
n = 100 ports).

The outline of the paper is as follows. Section II presents
related work and Section III the preliminaries, which include
the notation and how to find a permutation matrix by solving a
linear program. In Section IV, we revisit Birkhoff’s approach
in a general form, establish its sparsity rate, and show how this
is connected to block-coordinate descent methods in convex
optimization. The latter also clarifies that selecting a permuta-
tion matrix can be seen as choosing a (gradient) descent direc-
tion. Section V shows how to use Frank-Wolfe algorithms to
decompose a doubly stochastic matrix, and how Frank-Wolfe
chooses a permutation matrix that provides “steepest descent.”
In Section VI, we present the new algorithm (Birkhoff+)
and in Section VII evaluate its performance against the state-
of-the-art algorithms. Finally, Section VIII concludes. All the
proofs are in the Appendix.

II. HISTORY AND RELATED WORK

A. Birkhoff’s Approach

This is the method employed by Birkhoff in 1946 to decom-
pose a doubly stochastic matrix exactly [17, first theorem].5

In brief, the method consists of finding permutations matrices
sequentially (e.g., with the Hungarian algorithm) and termi-
nates when it obtains an exact decomposition, which happens
with at most k = (n − 1)2 + 1 iterations/permutations [21],
[22] by Carathéodory’s theorem. The method, however, does
not guarantee that the decomposition (i.e.,

∑k
i=1 θiPi) is close

to the doubly stochastic matrix it aims to approximate (i.e.,
X�). In fact, the approximation is typically very poor until the
algorithm converges exactly in the last iteration (see Figure 3a
in Section VII for an example).

B. Related Mathematical Problems

The problem of finding the Birkhoff decomposition with the
minimum number of permutation matrices (min k s.t. X� =∑k

i=1 θiPi) was addressed in [15] and shown to be NP-hard.
In [23], the authors also show that the problem is not tractable
when the minimal decomposition can be expressed with k ≥ 4
permutations. The work in [24] formulates a similar problem.
For a demand matrix D = X� − S with S ∈ [0, 1]n×n,6 the
goal is to find a collection of weights {θi}k

i=1 and permutation
matrices {Pi}k

i=1 that minimizes
∑k

i=1(θi + δ) subject to∑k
i=1 θiPi ≥ D entry-wise. The problem is shown to be

NP-complete. The problem addressed in this paper is different

5The result is also known as Birkhoff-von Neumman (BvN) as it was
discovered independently by von Neumman [20]. We use Birkhoff instead
of BvN as the algorithm used in the literature is based on the method of
proof used by Birkhoff in [17].

6The entries of the demand matrix D are non-negative. Matrix S adds a
non-negative virtual load to demand matrix so that D+S is doubly stochastic.
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in spirit from the mathematical problems in [15], [24] because
we do not aim to find a (small) collection of objects (i.e., k)
subject to decomposition constraints (i.e., X� =

∑k
i=1 θiPi or∑k

i=1 θiPi ≥ D). Instead, our goal is to design an algorithm
that minimizes ‖X� − Xk‖F where Xk =

∑k
i=1 θiPi. The

convergence rate of the numerical method corresponds to the
number of permutations required to obtain an ε-approximate
decomposition.

C. Algorithms

The paper in [8] proposes Solstice, a Birkhoff-based
heuristic for finding a Birkhoff decomposition with few permu-
tations/configurations. Solstice picks permutation matrices
using a Max-Min type criterion, and the weights or configu-
rations durations are selected as large as possible provided
X� − ∑k

i=1 θiPi is non-negative entry-wise. The work in [9]
proposes Eclipse, a sub-modular-type algorithm for solving
the problem of the type introduced in [24]. Permutation
matrices and weights are selected jointly to maximize an
effective utilization criterion, which takes into account the
reconfiguration penalty δ. Also, [9] shows that the final
decomposition satisfies the optimal approximation ratio in
sub-modular optimization with cover constraints. Both algo-
rithms [8], [9] select permutation matrices by solving multiple
linear programs (LPs) with a simplex type method [25].
Finally, we note the recent works in [16] and [26]. The
first extends Eclipse to use a special type of weights/time
coefficients that do not constraint the decomposition to be
a scaled doubly stochastic matrix. The second addresses the
online version of the problem in [9]—in the machine learning
sense [27]—where the traffic matrix is learned a posteriori.

To conclude, we note the Frank-Wolfe algorithms [18], [28]
used extensively in machine learning. The Frank-Wolfe setup
is the following. Given a collection of discrete objects D and
a convex set X ⊆ conv(D), the goal is to minimize a convex
function by making convex combinations of the discrete
objects. The problem addressed in this paper can be seen
as a special case for Frank-Wolfe. The permutation matrices
correspond to the discrete objects, the Birkhoff polytope is the
convex set, and the objective function a metric that captures
the distance between the approximate decomposition and X�

(e.g., Frobenius norm or Euclidean distance). Also, unlike
Birkhoff-based approaches, Frank-Wolfe algorithms provide
sparsity guarantees and ensure that the approximate decom-
position is always a doubly stochastic matrix.

III. PRELIMINARIES

A. Notation

We use R+ and Rd to denote the set of nonnegative real
numbers and d-dimensional real vectors. Vectors and matrices
are written in lower and upper case respectively, and all vectors
are in column form. The transpose of a vector x ∈ Rd is
indicated with xT , and we use 1 to indicate the all ones
vector—the dimension of the vector will be clear from the
context. We use parenthesis to indicate an element in a vector,
i.e., x(j) is the j’th element of vector x. Similarly, the element

Algorithm 1 General Birkhoff

Input: Doubly stochastic matrix X�, ε ≥ 0, and kmax ≥ 1
Set: k = 1 and X0 = {0}n×n

while ‖Xk−1 − X�‖F > ε and k ≤ kmax do
• Compute Pk, θk that satisfy Eqs. (3)-(5)

Xk ← Xk−1 + θkPk

k ← k + 1
end while
return (P1, . . . , Pk−1), (θ1, . . . , θk−1)

in the i’th row and j’th column of a matrix X is indicated
with X(i, j). For two vectors x, y ∈ Rd, we write x � y
when x(j) > y(j) for all j ∈ {1, . . . , d}, and x 	 y when
x(j) ≥ y(j). Finally, we recall the Frobenius norm of a matrix
X is defined as ‖X‖F =

√∑
i,j |X(i, j)|2 =

√
Tr(XX∗)

and that [n] is the short-hand notation for {1, . . . , n}.

B. Finding Extreme Points by Solving Linear Programs

We will present algorithms that find extreme points (i.e.,
permutation matrices) by solving linear programs (LPs) over
a convex set (i.e., the Birkhoff polytope or set of doubly
stochastic matrices). We recall the following result from linear
programming.

Lemma 1: Let X be a bounded polytope from Rd, and E
denote its extreme points. For any vector c ∈ Rd, we have
that {argminx∈X cT x} ∩ E �= ∅.

That is, an extreme point in E is always a solution to
minx∈X cT x. In our case, X is the Birkhoff polytope and P
the set of permutation matrices. Throughout the paper, we will
cast linear programs as

LP(c,X ) : minimize cT x
subject to x ∈ X ,

(2)

and we will assume that the solution returned is always an
extreme point—which is the case if we solve the LP with a
simplex-type method [25].

IV. REVISITING BIRKHOFF’S ALGORITHM

This section revisits Birkhoff’s algorithm. The main techni-
cal contribution is Theorem 1, which establishes that the num-
ber of permutation matrices in Birkhoff’s approach increases
logarithmically with the decomposition error.

A. Approximate Birkhoff Decomposition Problem

The mathematical problem we want to solve is the follow-
ing. For a given n × n doubly stochastic matrix X� and an
ε ≥ 0, our goal is to find a small collection of permutation
matrices P1, P2, . . . , Pk and weights θ1, θ2, . . . , θk > 0 with∑k

i=1 θi ≤ 1 such that ‖X� − ∑k
i=1 θiPi‖F ≤ ε. Recall a

matrix X ∈ [0, 1]n×n is doubly stochastic if every row and
column sums to one. That is, X1 = 1 and 1T X = 1T . Also,
a doubly stochastic matrix is a permutation if its entries are
binary.
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B. Algorithm Description

The original Birkhoff algorithm is described in Algorithm 1,
and consists of two steps. First, the algorithm computes a
permutation Pk and a weight θk > 0 that satisfy the following
three conditions:7

Xk−1(a, b) + θkPk(a, b) ≤ X�(a, b) ∀a, b ∈ [n] (3)

θk > 0 ∀k ≥ 1 (4)∑k
i=1 θi ≤ 1 ∀k ≥ 1 (5)

The second step is to add θkPk to the previous approximate
decomposition, i.e., Xk = Xk−1 + θkPk . Hence, Xk(a, b) ≤
X�(a, b) for all a, b ∈ {1, . . . , n}. The algorithm terminates
when the approximate decomposition Xk is ε close to X�,
or when the maximum number of admissible permutations
(kmax) is reached. See [29, Fig. 2] for a decomposition exam-
ple.

C. Convergence

We proceed to establish the convergence of Birkhoff’s
algorithm. We start by presenting the following lemma, which
lower and upper bounds ‖Xk − X�‖F .

Lemma 2: Consider the setup in Algorithm 1. The following
two bounds hold:

‖Xk − X�‖F ≥
(

1 −
k∑

i=1

θi

)
(6)

‖Xk − X�‖F ≤
√√√√n

k∏
i=1

(
1 − nθ2

i

‖Xi−1 − X�‖2
F

)
(7)

where θi ≤ 1√
n
‖Xi−1 − X�‖F .

Proof: See the Appendix.
The bounds in Lemma 2 are very general as they hold for

any collection of permutation matrices and weights that satisfy
the conditions in Eqs. (3)-(5). The lower bound in Eq. (6)
tells us that the approximate decomposition error is at least
(1 − ∑k

i=1 θi), and so we will have an exact decomposition
(i.e., serve 100% of the traffic demand) only if

∑k
i=1 θi = 1.

The upper bound in Eq. (7) shows how the decomposition error
depends on the weights θi and the previous approximations
‖Xi−1 − X�‖2

F , i = 1, . . . , k. In particular, on the ratio
nθ2

i /‖Xi−1 − X�‖2
F , which captures how large θi is with

respect to the previous approximation. Note that the values
that θi can take depend on ‖Xi−1−X�‖2

F as we must always
satisfy the conditions in Eqs. (3)–(5). Finally, we note that
finding a joint collection of weights and permutation matrices
that minimize the RHS of Eq. (7) for a fixed k is as difficult as
minimizing ‖Xk − X�‖2

F directly, since the RHS of Eq. (7)
depends on ‖Xi−1 − X�‖F , i = 1, . . . , k. Because of the
latter, we study how to minimize the RHS of Eq. (7) in an
iterative manner: for a given collection of permutation matrices
Pi and weights θi with i = 1, . . . , k − 1, our goal is to find a

7The procedure proposed by Birkhoff in 1946 [17] does not specify how
to compute such permutation and weight. The subroutine PERM described in
Algorithm 2—which we will present in Theorem 1—returns a permutation
Pk and a weight θk that satisfy Eqs. (3)-(5).

Algorithm 2 Subroutine PERM

1: Input: X� and Xk−1 =
∑k−1

i=1 θiPi

2: α ← (1 − ∑k−1
i=1 θi)/n2

3: Pk ← P̂ ∈ Ik(α)
4: θk ← BIRKHOFF_STEP(X�, Xk−1, Pk) (Algorithm 3)

permutation matrix Pk and weight θk that decrease the RHS
of Eq. (7).

In the following, we study the algorithm’s progress in
terms of error for every additional permutation matrix in
the decomposition. Addressing this question is important to
bound the number of permutations required to obtain an
ε-approximate decomposition and to know how to select
“good” permutation matrices. To start, let µi := nθ2

i /‖Xi−1−
X�‖2

F and rewrite Eq. (7) as

‖Xk − X�‖F ≤
√√√√n

k∏
i=1

(1 − µi) (8)

Note that (1−µi) ∈ [0, 1) for all i = 1, 2, . . . since θi ≥ 0
and θi ≤ 1√

n
‖Xi−1 − X�‖F by Lemma 2. Hence, we have

that Xk → X� as k → ∞ and so the algorithm converges.
Now, suppose there exists a constant µmin > 0 such that
µmin ≤ µi for all i ≥ 1. Then, the bound in Eq. (8) simplifies
to

‖Xk − X�‖F ≤ √
n(1 − µmin)k/2. (9)

The last equation tells us that the approximation error
decreases exponentially with the number of permutations. For
example, if µmin = 1/2, we have that ‖Xk − X�‖F ≤√

n(1/2)k/2, which means that every additional permutation
in the decomposition decreases the approximation error by at
least half. The ratio κ := 1/µmin ≥ 1 can be regarded as
the condition number in convex optimization with a smooth
and strongly convex objective function [30][Section 9.1.2 and
9.3.1].

The following lemma establishes an upper bound on the
number of permutations required to obtain an ε-approximate
decomposition provided that a constant µmin > 0 exists.

Lemma 3: Suppose nθ2
i /‖Xi−1 − X�‖2

F ≥ µmin for all
i = 1, . . . , k for some constant µmin > 0. Then, Algorithm 1
obtains an ε-approximate decomposition with at most

k ≤ 2 log−1

(
1

1 − µmin

)
log

(√
n

ε

)

permutation matrices.
Lemma 3 says that if a constant µmin exists, then the number

of permutations required to obtain an ε-approximate decompo-
sition has a logarithmic dependence with ε. Hence, it remains
to show whether such constant exists. Or equivalently, that
we can select a θi such that nθ2

i /‖Xi−1 − X�‖2
F is uniformly

lower bounded by a strictly positive constant. We show that in
the following theorem, which is one of the main contributions
of the paper.
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Algorithm 3 BIRKHOFF_STEP

1: Input: X�, Xk−1, and Pk

2: return mina,b {(X�(a, b) − Xk−1(a, b) − 1)Pk(a, b) + 1}

Theorem 1: Consider Algorithm 1 and replace step • with
the subroutine PERM (Algorithm 2) where

Ik(α) = {P ∈ P | Xk−1(a, b) + αP (a, b) ≤ X�(a, b)}
(10)

with α =
√

µmin
n (1−∑k

i=1 θi) and µmin = 1/n3. Algorithm 1
obtains an ε-approximate decomposition with at most

k ≤ 2 log−1

(
1 − min

i∈[k]

nθ2
i

‖Xi−1 − X�‖2
F

)−1

log
(√

n

ε

)
(11)

permutation matrices.
Proof: See the Appendix.

Theorem 1 establishes that by selecting permutation matri-
ces from set Ik(α) ⊆ P , and weights as indicated in Algo-
rithm 2, then the number of permutation matrices required
to obtain an ε-decomposition increases logarithmically with
ε. Set Ik(α) is necessary to enforce that the conditions in
Eqs. (3)–(5) are satisfied, but also to push Birkhoff’s algorithm
to make sufficient progress in every iteration. Observe that
the threshold α is bounded away from zero and that this
depends on the constant µmin = 1/n3. Finally, we have written
mini∈{1,...,k} nθ2

i /‖Xi−1 − X�‖2
F instead of µmin in Eq. (11)

(c.f. Lemma 3) to emphasize two points. The first one is
that µmin is over-conservatively small, and that we can in
general obtain a much sharper upper bound. In the numerical
evaluation (Section VII-B.1), we show the condition numbers
(κ = 1/µmin) of different algorithms. The second point is that
nθ2

i /‖Xi−1−X�‖2
F is a quantity that we can measure and so

use as a criterion for selecting a “good enough” permutation
matrix. Importantly, note that the PERM subroutine does not
specify which specific permutation to select from set Ik(α),
which is in marked contrast to previous approaches (e.g., [8],
[9], [16]), which use a predefined criterion for selecting
permutation matrices and weights.

D. Discussion

1) Max-Min Birkhoff Algorithms: The most popular variant
of Birkhoff’s algorithm (e.g., [8], [15]) aims to find a permuta-
tion matrix with the largest associated weight. Such approach
corresponds to solving the following optimization problem:

maximize
θ>0,P∈P

θ

subject to Xk−1(a, b) + θP (a, b) ≤ X�(a, b)
∀a, b ∈ [n]

(12)

The strategy is also known as Max-Min because it is
equivalent to finding a permutation matrix P with the largest
smallest element X�(a, b) − Xk(a, b) provided P (a, b) = 1.
Hence, the set of solutions to the optimization in (12) is
a subset of Ik(α) since this includes all the solutions with

θ ≥ α > 0. Further, since Ik(α) �= ∅ by Theorem 1, the set of
solutions of problem (12) is also non-empty. We have arrived
at the following corollary to Theorem 1.

Corollary 1 (Theorem 1): The Birkhoff-type algorithms
that select permutation matrices using a Max-Min criterion
(e.g., [8]) have sparsity O(log(1/ε)).

To conclude, we would like to emphasize that solving the
problem in (12) is non-trivial. The typical approach is to fix
a weight θ, and then try to find a permutation matrix that
satisfies the constraint Xk−1(a, b) + θP (a, b) ≤ X�(a, b) for
all a, b ∈ [n]. The process is repeated for different weights,
which are selected with different strategies; for example, [8]
uses a halving threshold rule. The main issue with this method
is that it is slow, and so it does not suit applications that need to
carry out decomposition fast. For example, when we are given
a traffic matrix associated with a time window. The time spent
computing the switching configurations is time that the switch
cannot use for serving traffic.

2) Birkhoff’s Algorithm as a Block-Coordinate Descent:
The Birkhoff algorithm can be thought in convex optimization
terms. In particular, as solving the following convex optimiza-
tion problem

minimize
X∈Rn×n

‖X − X�‖2
F

subject to X(a, b) ≤ X�(a, b) ∀a, b ∈ [n]
X(a, b) ≥ 0 ∀a, b ∈ [n] (13)

using a block-coordinate descent method with X0 = {0}n×n

(see [31]–[33][Section 7.5.3]). Note that the objective is con-
vex and the constraints linear. The block-coordinate method
consists of the update8

Xk = Xk−1 + θkMk

where θk > 0 is a step size and Mk ∈ {−1, 0, 1}n×n a matrix
that indicates the direction in which to update each of the
coordinates. Birkhoff’s approach can be regarded as a special
case where the Mk matrices are permutations, and so have
constrains on the group of coordinates can be jointly updated.
Also, there are no negative coordinates since by selecting
X0 = {0}n×n as starting point the algorithm only needs to
“move forward.” To conclude, we note that our sparsity result
is connected to the linear convergence rate obtained by convex
optimization algorithms that exploit the smoothness and strong
convexity of the objective function [30, Ch. 4].

V. FRANK-WOLFE FOR THE APPROXIMATE BIRKHOFF

DECOMPOSITION

In this section, we show how the Frank-Wolfe (FW) algo-
rithm and its fully corrective variant (FCFW) can be used to
decompose a doubly stochastic matrix. The main contributions
are to give explicit sparsity bounds for the FW and FCFW
algorithms (Theorem 2 and 3) and to discuss their drawbacks
(low sparsity and high complexity, respectively). We also
compare how Frank-Wolfe and Birkhoff select permutation

8The method is usually expressed in vector form. In our case, we can create
a vector by stacking the matrix columns.
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Algorithm 4 Birkhoff (Vector Form)

1: Input: Birkhoff polytope B, x� ∈ B, ε ≥ 0, kmax ≥ 1
2: Set: k = 1 and x0 = 0
3: while ‖x� − xk−1‖2 > ε and k ≤ kmax do
4: ◦ pk ← LP (−�x� − xk−1�,B)
5: ✩ θk ← BIRKHOFF_STEP(x�, xk−1, pk)
6: � xk ← xk−1 + θkpk

7: k ← k + 1
8: end while
9: return (p1, . . . , pk−1), (θ1, . . . , θk−1)

matrices (Observation 1) and show that Frank-Wolfe pro-
vides the “steepest descent” permutation (Observation 2). The
latter will be key for selecting permutation matrices in the
Birkhoff+ algorithm we will present in Section VI.

A. Birkhoff Polytope and Algorithm in Vector Form

In the rest of the paper, it will be more convenient to write
n × n doubly stochastic matrices as n2-dimensional vectors9

in the set

B := {x ∈ Rd | x 	 0, Ax = b},
where d = n2, A ∈ {0, 1}2n×d, and b := {1}2n. Matrix
A contains the 2n equality constraints that characterize the
Birkhoff polytope (i.e., the sum of the columns and rows of a
doubly stochastic matrix must be equal to 1). The specific
structure of A can be derived easily and is given in the
Appendix. As before, we use set P ⊂ {0, 1}d to denote the set
of permutation matrices or extreme points, but now these are in
column form. The terms extreme point and permutation matrix
will be used interchangeably in the rest of the paper. Finally,
Algorithm 4 contains the procedure of the classic Birkhoff
algorithm [17] in vector form,10 which is a special case of the
more general Algorithm 1. Permutation matrices are selected
by solving the linear program LP (−�x� − xk−1�,B) and the
step sizes as large as possible provided xk � x� for all k ≥ 1
(see Section III-B).11 The LP (−�x� − xk−1�,B) returns any
admissible permutation matrix (see Section III) and �·� denotes
the entry-wise ceiling of a vector.

B. Frank-Wolfe Overview

In short, the Frank-Wolfe algorithm is a numerical method
for minimizing a convex function f over a convex set con-
tained in the convex hull of a set of discrete points or
atoms [28]. In our case, the convex set is the Birkhoff polytope
(B) and the atoms the set of permutation matrices (P). In each
iteration, the algorithm selects an extreme point with the
update

pk ∈ argmin
u∈P

∇f(xk−1)T u (14)

9Instead of having a matrix Z ∈ Rn×n
+ such that Z1 = ZT1 = 1,

we work with a vector x := (z1, . . . , zn) where zi is the i’th column of Z .
10The algorithm corresponds to the method of proof employed by Birkhoff

to show that a doubly stochastic matrix is an arithmetic measure of permuta-
tion matrices. See [17], theorem on page 1.

11This permutation choice satisfies Eqs. (3)-(5).

Fig. 1. Schematic illustration of the steepest descent permutation discussed
in Observation 2. The black dots with a red cross are the extreme points
that are non-descent directions. Frank-Wolfe with f(x) = (1/2)‖x� − x‖22
chooses the extreme point pk (i.e., the permutation) that minimizes the angle
between (pk − xk−1) and −∇f(xk) = (x� − xk−1).

and choses a step size θ > 0 such that f(xk−1 + θ(pk −
xk−1)) < f(xk−1). The essence of the algorithm is that
when f is smooth on B,12 there always exists an extreme
point that is a direction in which it is possible to improve
the objective function. The step size can be selected in a
variety of ways (e.g. constant, line search, etc.) and differently
from the previous section, Frank-Wolfe does not require
that xk−1 + θkpk � x� where x� is the doubly stochastic
matrix we want to decompose. Also, Frank-Wolfe ensures,
by construction, that xk is a convex combination of the
permutation matrices throughout the iterations. As objective
function, we use f(x) = (1/2)‖x − x�‖2

2 to streamline
exposition but also because it allows us to make the following
observations:

Observation 1 (Weighted Search Direction): For this par-
ticular choice of objective function, we have that ∇f(xk−1) =
−(x� − xk−1). Hence, the update in Eq. (14) becomes

pk ∈ arg min
u∈P

−(x� − xk−1)T u,

which is equivalent to solving the linear program LP
(−(x�−xk−1),B). That is, computing an extreme point with
Frank-Wolfe and Birkhoff (Algorithm 4) is the same except
for the ceiling.13 Note that by ceiling the vector −(x�−xk−1),
we are “weighting” all the components that are not equal to
zero equally. Without the ceiling, the Frank-Wolfe update takes
into account the geometry of the decomposition, i.e., how close
xk−1 is to x� entry-wise.

Observation 2 (Steepest Descent Permutation): The
extreme points selected by Frank-Wolfe corresponds to
obtaining the “steepest” descent direction, or direction
(pk − xk−1) that has the smallest angle with respect to
(x� − xk−1). Note that (x� − xk−1) = −∇f(xk−1) is the
direction that goes straight to the target value x�, and that

arg min
u∈P

∇f(xk−1)T u

(a)= arg min
u∈P

‖∇f(xk−1)‖2‖u‖2 cosφ〈∇f,u〉
(b)
= arg min

u∈P
cosφ〈∇f,u〉

12There exists a constant L such that f(y) ≤ f(x) +∇f(x)T (y − x) +
L
2
‖y − x‖22 for all x, y ∈ B.
13Recall also that with FW there is not requirement that x� � x.
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Algorithm 5 Frank-Wolfe (FW) With Quadratic Objective and
Line Search
1: As Algorithm 4, but set x0 ∈ P and replace lines ◦,✩, �

with
2: pk ← LP (−(x� − xk−1),B)
3: θk ← (x� − xk−1)T (pk − xk−1)/‖pk − xk−1‖2

2

4: xk ← xk−1 + θk(pk − xk−1)

where (a) follows from the dot product and (b) since ‖p‖2 =√
n for all p ∈ P , and ‖∇f(xk−1)‖2 does not depend on

p. The RHS of the last equation corresponds to maximizing
cosφ〈−∇f,p〉, which is equivalent to finding the p ∈ P that
minimizes the angle between −∇f(x) = (x�−x) and (p−x).
Furthermore, since the Birkhoff polytope is regular and the
number of extreme points increases factorially with n, we can
expect φ〈−∇f,p〉 to be small. Figure 1 shows, schematically,
how Frank-Wolfe selects the extreme point that has the smallest
angle with respect to (x� − x). The black dots with a red
cross are “non-descent” permutations that will not improve
the decomposition approximation.

Both observations rely on the objective function being
quadratic; however, we can expect similar properties for other
smooth convex objectives. For example, we could use f(x) =
(x� − x)T Q(x� − x) where Q is a positive definite matrix
that emphasizes which of the components in vector x� − x to
minimize. In Section VI, we will include a log-barrier function
to the objective. In the rest of the section, we will use a
quadratic objective function to streamline exposition.

C. Frank-Wolfe With Line Search

The procedure of the Frank-Wolfe algorithm is given in
Algorithm 5. Differently from Birkhoff’s approach, FW uses
an extreme point as a starting point instead of the origin. Note
that 0 /∈ B. The choice of step size is indicated in step 3, and
corresponds to carrying out line search. This can be easily
verified. Let xk := xk−1 + θk(pk − xk−1) be the k’th iterate,
and observe that we can write

1
2
‖xk − x�‖2

2 −
1
2
‖xk−1 − x�‖2

2

=
1
2
‖xk−1 + θk(pk − xk−1) − x�‖2

2 −
1
2
‖xk−1 − x�‖2

2

= θk(xk−1 − x�)T (pk − xk−1) +
θ2

k

2
‖pk − xk−1‖2

2.

The RHS of the last equation is a quadratic function in θk,
and its minimizer can be obtained in closed form. And since
equality holds in the last equation, minimizing the quadratic
function on the RHS is equivalent to minimizing the LHS with
line search. Hence, Algorithm 5 corresponds to Frank-Wolfe
with line search, and so from [28, Theorem 1]14 we have the
bound

‖xk − x�‖2
2 ≤ 4n

k + 2
. (15)

14The bound in Eq. (15) follows from Theorem 1 in [28] with δ = 0 (i.e.,
in our problem the gradients are noiseless) and Cf = maxu,v∈B ‖u−v‖22 =
2n.

Algorithm 6 Fully Corrective Frank-Wolfe (FCFW)

1: As Algorithm 4, but set x0 ∈ P and define V0 = ∅. Let
∆k be the k-simplex. Replace lines ◦,✩, � with

2: pk ← LP (∇f(xk−1),B)
3: Vk ← [Vk−1, pk]
4: (θ1, . . . , θk) ← argminu∈∆k

‖Vku − x�‖2
2

5: xk ← Vk(θ1, . . . , θk)

Rearranging terms in Eq. (15), we can obtain an upper
bound on the sparsity of FW.

Theorem 2 (FW Sparisty): Algorithm 5 obtains an
ε-approximate decomposition with at most k ≤ 4n/ε2

permutation matrices, where ε = ‖xk − x�‖2.
The bound in Theorem 2 says that the sparsity of FW is

of the order of O(1/ε2), so we may not be able to obtain
sparse decompositions if ε is small. One of the issues with first-
order-methods such as FW is the zig-zagging phenomenon15

when the approximate decomposition is close to x�. Hence,
even though FW selects the steepest descent direction, the step
size choice (θk) is not enough. One way to avoid zig-zagging
is to recompute the weights of all the atoms or extreme points
discovered so far, which is in essence what the fully corrective
variant of the algorithm does.

D. Fully Corrective Frank-Wolfe (FCFW)

This variant of Frank-Wolfe algorithm recomputes the
weights assigned to vectors p1, . . . , pk in every iteration k.
The FCFW procedure is described in Algorithm 6. Like the
FW algorithm, FCFW selects a x0 ∈ P and computes a
new permutation/extreme point by solving a linear program
LP (∇f(xk−1),B). The permutations are collected in matrix
Vk, and the weights (θ1, . . . , θk) are selected to minimize
‖Vk(θ1, . . . , θk)−x�‖2

2 subject to
∑k

i=1 θi = 1 and θi ≥ 0 for
all i = 1, . . . , k. Importantly, the (re)computation of weights
in Algorithm 6 involves solving a quadratic program (QP) of
dimension i = 1, . . . , k. By Theorem 1 in [19], we have the
bound

‖xk − x�‖2
2 ≤ ‖x0 − x�‖2

2 exp

(
− µ

4L

(
λ

M

)2

k

)
, (16)

where µ/L is the condition number and (λ/M)2 the eccentric-
ity16 of the Birkhoff polytope. These two parameters are usu-
ally not known, however, not in our problem since the Birkhoff
polytope and the objective function f(x) = (1/2)‖x − x�‖2

2

have remarkable structure. We establish the eccentricity of the
Birkhoff polytope in the next lemma.

Lemma 4: The eccentricity (λ/M)2 of the Birkhoff poly-
tope is lower bounded by 1/(2n3).

Proof: See the Appendix.
Using the last lemma and the fact that the condition number

of the objective function (µ/L) is equal to 1, we can obtain
the FCFW’s sparsity.

15See the discussion on page 2 in [19].
16The eccentricity of a set is similar to the condition number of a function;

see [30, pp. 461].
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Fig. 2. Schematic illustration of the (a) Birkhoff’s and (b) Frank-Wolfe
approaches and how they combine into the (c) new setup. The yellow polygon
represents the convex hull of xk−1 and the permutation matrices in Ik(α).

Theorem 3 (FCFW Sparsity): Algorithm 6 obtains an
ε-approximate decomposition with at most k ≤
8n3 log(2n/ε2) permutation matrices, where ε = ‖xk − x�‖2.

Proof: See the Appendix.
From the last theorem, we have that the number of extreme

points required to obtain an approximate Birkhoff decompo-
sition increases logarithmically with the decomposition error.
This is a huge improvement with respect to the sparsity result
obtained with the line search FW in Theorem 2. Unfortunately,
FCFW is less exciting in practice because recomputing the
weights is expensive computationally since the size of
the quadratic program (step 4 in Algorithm 6) increases with
the number of permutations. Furthermore, the accuracies of the
quadratic solvers such as SCS [34], Ipopt [35], and Gurobi [36]
are in the order of 10−6, which means that we cannot obtain
decompositions with accuracies below 10−3. The latter can
be observed in Figure 3a in the numerical evaluation.

VI. NEW ALGORITHM

Birkhoff and FCFW algorithms have both logarithmic
sparsity, but they are very different algorithmically. On the one
hand, weights are easy to compute in Birkhoff’s approach,17

but finding a good permutation matrix is slow as it requires to
solve multiple linear programs (e.g., [8]). In contrast, FCFW
can obtain a good permutation matrix by solving a single
linear program (see Observation 2), but it requires to solve
a quadratic program to (re)calculate the weights.

In this section, we present Birkhoff+ (Algorithm 7),
a variation of the original Birkhoff’s algorithm that uses the
intuition behind Frank-Wolfe to obtain sparse decompositions
in a fast manner. The performance of Birkhoff+ is evalu-
ated in Section VII.

A. Approach

The intuition behind our approach is shown schematically
in Figure 2. In brief, Birkhoff’s algorithm (Figure 2a) can
be seen as constructing a path from the origin (x0 = 0) to
the target value (x�) while always remaining in the dotted
box (i.e., xk � x� for all k = 0, 1, 2, . . . ). Frank-Wolfe
(Figure 2b), on the other hand, constructs a path from a permu-
tation matrix x0 ∈ P to the target value x� within the polytope
of doubly stochastic matrices (blue surface). Our approach

17Birkhoff’s step size requires to find the smallest of n elements.

(Figure 2c) can be regarded as using Frank-Wolfe within the
polytope conv(Ik(α) ∪ xk−1) (yellow polygon in Figure 2c)
with the additional constraint that the approximate decompo-
sition must be within the dotted box. That is, we want to
use the path or permutations that Frank-Wolfe would select
while remaining in the box that characterizes the Birkhoff’s
approach. It is important to use conv(Ik(α) ∪ xk−1) instead
of conv(P ∪ xk−1) (i.e., all permutations) as the algorithm
may otherwise not converge. The latter is shown formally in
the following theorem.

Theorem 4: Consider Algorithm 4 and replace line ◦ with
LP(−(x� − xk−1)). Then, there may not exist a k for which
‖xk − x�‖2

2 ≤ ε for any ε > 0.
We can prove the theorem by example. Suppose we want

to decompose the following n × n doubly stochastic matrix

1
n − 1




n − 2 0 · · · 0 1
0 n − 2 1
...

. . .
...

0 n − 2 1
1 1 · · · 1 0


 . (17)

That is, (i) the first n − 1 entries in the diagonal are equal
to (n − 2)/(n − 1), (ii) the first n − 1 entries of the last row
are equal to 1/(n − 1), and (iii) the first n − 1 entries of the
last column are equal to 1/(n − 1). Note the sum of each
row and column is equal to one. Next, suppose that f(x) =
(1/2)‖x� −x‖2

2 where x� is the matrix in Eq. (17) in column
form. In the first iteration (x0 = 0), Frank-Wolfe selects
a permutation by solving the linear program LP(−x�,B),
the solution of which is the identity matrix since the doubly
stochastic matrix in Eq. (17) is diagonally dominant. And
because the last entry of the matrix in Eq. (17) is equal to
zero, we have that BIRKHOFF_STEP(x�, xk−1, pk) = 0 and
therefore xk = xk−1. That is, the algorithm will be “stuck.”

In sum, a Birkhoff-type algorithm that selects permutation
matrices with Frank-Wolfe using all the permutation matrices
P may not converge. However, we can use Frank-Wolfe with
the permutations in the set Ik(α), which ensures not only that
the algorithm converges but that this has logarithmic sparsity
(Theorem 1).

1) Objective Function With Barrier: Since Birkhoff’s
approach restricts xk to remain in the Birkhoff’s dotted box
(see Figure 2), it is reasonable to use an objective function
that aims to construct a path to x� from within the box. For
that, we define

fβ(x) = f(x) − β

d∑
j=1

log(x�(j) − x(j) + ε/d), (18)

where β ≥ 0 and x(j) is the j’th component of vector x. Note
that fβ is convex as this is the composition of f plus a convex
penalty/barrier function −β

∑
j=1 log(x�(j)−xk−1(j) +ε/d).

The term ε/d in the barrier is used for numerical stability as
otherwise the barrier goes to +∞ when x�(j) = x(j). The
motivation for using a barrier function comes from interior
point methods in optimization, where parameter β is typically
tuned throughout the algorithm to allow xk → x�. Note that
fβ → f as β → 0.
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Algorithm 7 Birkhoff+

1: As Algorithm 4, but take β ≥ 0 also as input. Replace line
◦ with

2: α ← (1 − ∑k−1
i=1 θi)/n2

3: pk ← LP(∇fβ(xk−1), conv(Ik(α)))

Algorithm 8 Birkhoff+(max_rep) — With Permutation
Selection Refinement
1: As Algorithm 7, but replace line ◦ with
2: for i = 1, . . . ,max_rep do
3: pi ← LP(∇fβ(xk−1), conv(Ik(α))
4: θi ← BIRKHOFF_STEP(x�, xk−1, pk)
5: if (θi > α) α ← BIRKHOFF_STEP(x�, xk−1, pk)
6: else exit while loop
7: pk ← pi

8: end for

B. Birkhoff+ Algorithm Description and Complexity

The procedure of Birkhoff+ is described in Algorithm 7,
and consists of replacing how permutation matrices are
selected in Algorithm 4 with LP(∇fβ(xk−1), conv(Ik(α))),
where fβ is as defined in Eq. (18). Parameter β can be selected
to emphasize the barrier over the objective function f . In our
case, we do not need β → 0 as by selecting permutations from
Ik(α) is enough to allow the algorithm to make progress.
The convergence of the algorithm is stated formally in the
following corollary.

Corollary 2: Algorithm 7 obtains an ε-approximate decom-
position with at most k ≤ O(log(1/ε)) permutation matrices.

The complexity of Birkhoff+ per iteration is equal to
solving a linear program with a simplex type method. The
linear program LP(∇fβ(xk−1), conv(Ik(α)) can be carried
out with LP(∇fβ(xk−1)+bk,B) where bk = d/ε ·I{0,1}(x�−
xk−1 � α) is a penalty vector to force the solver to do not
select the components of vector (x� − xk) smaller than α.

Finally, we note that Birkhoff+ depends on how we
define set Ik(α). Algorithm 8 is a meta-heuristic for selecting
α based on Birkhoff’s step size. In particular, α is set to
(1 − ∑k

i=1 θi)/n2 in the first iteration and then equal to the
largest step size for the permutation selected using the Frank-
Wolfe-type update. The search for a large α terminates when
the maximum number of repetitions (max_rep) is reached
or the value of α does not increase. We call Algorithm 8
Birkhoff+(#), where # indicates the maximum number
of permutation refinements. Birkhoff+(1) is equivalent to
Birkhoff+ as it computes only one permutation matrix.

VII. NUMERICAL EVALUATION

In this section, we evaluate performance of Birkhoff+
and compare it to existing algorithms. Our goal is to illus-
trate the algorithms’ characteristics and how different traffic
matrices affect the performance of a circuit switch in terms
of throughput, configurations computation time, and number
of configurations. The code of Birkhoff+ is available as a
Julia package in [37].

A. Setup

The Birkhoff, FW, FCFW, Birkhoff+ and
Birkhoff+(#) algorithms are implemented in Julia [38]
and as indicated in Algorithms 4, 5, 6, 7 and 8 respectively.
Parameter β is fixed to 1 and the maximum number of
permutation refinements in Birkhoff+(#) to 10 —
however, we observe in the experiments that the actual
number of permutation refinements is usually less than 3.
Solstice corresponds to Algorithm 2 in [8], and Eclipse
to Algorithm 2 in [9]. The linear programs LP(·, ·) are carried
out with Clp [39] in all algorithms and return an extreme
point/permutation matrix. The quadratic programs in the
FCFW algorithm are carried out with Ipopt [35]. Both solvers
are open-source.

Traffic demand matrices are generated by sampling permu-
tations uniformly at random, and weights are selected to model
the type of load in data centers. In particular, we follow the
evaluation scenario in [9], where traffic matrices are sparse
and consist of 12 flows. Three of the flows are large and carry
the 70% of the load, while the rest are small flows and carry
the remaining 30% of the traffic. We note that the traffic matrix
in practical scenarios may be below the switch’s capacity (i.e.,
the sum of each row or column may be smaller than one), and
so we first need to add a virtual load to the traffic matrix to
make it doubly stochastic.18 For simplicity, we assume in the
evaluation that the demand matrices are doubly stochastic.

Finally, the numerical evaluation is carried out on a com-
puter equipped with an Intel i7 8700B (3.2 GHz) CPU and
32 GB of memory. The version of Julia is 1.3.1.

B. Experiments

We first study the algorithms’ characteristics, and then show
how those affect the performance of a circuit switch.

1) Decomposition Approximation vs. Number of Permuta-
tions and Time: We set n = 32 and sample traffic matrices as
indicated in Section VII-A. Also, we fix ε = 10−4, kmax = 300
and δ = 10−2 (just for Eclipse).19 Figure 3 shows the
algorithms decomposition error in terms of permutations and
time. The results are the average of 50 realizations.

Observe from Figure 3a that the decomposition error of
Birkhoff is large until it converges exactly in the last
iteration (k ≈ 250). On the other hand, FW progresses
quickly, but it slows down drastically around ε = 0.9. The
latter is due to the O(1/ε2) sparsity rate and the zig-zagging
phenomenon typical in first-order-methods (see Section V-C).
The FCFW has a better sparsity performance than FW, but
it cannot obtain decomposition with an ε below 0.5 · 10−3

due to the numerical accuracy of the quadratic solvers (see
Section V-D). Eclipse has a better performance than previ-
ous algorithms until it gets stuck between ε ∈ [10−2, 10−1].

18The work in [8] (see Section 4.2.1) uses the term “stuffing” for adding
virtual load to the traffic matrix. Stuffing can be seen as a special type of
projection of the demand matrix onto the Birkhoff polytope. Technically, for
a demand matrix D, we need to find a matrix S ∈ B − D. Matrix S may
not be unique and finding the best virtual load matrix for our algorithm is an
interesting problem but out of the scope of the paper.

19The value corresponds to having a switching cost of 10 ms.
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Fig. 3. Decomposition error (ε) of Birkhoff, FW, FCFW, Solstice,
Eclipse, Birkhoff+, and Birkhoff+(10) algorithms depending on
(a) the number or permutations and (b) time. The figure shows the average
of 50 realizations.

We conjecture the latter is because Eclipse selects permu-
tations using a Max-Weight-type matching, and so it may
face similar issues as when we combine Frank-Wolfe and
Birkhoff approaches directly; see discussion in Section VI-A.
Also, the performance guarantees of Eclipse given in [9]
are for the problem type in [24] (see Section II) and not for
decomposing a doubly stochastic matrix. Finally, observe that
Solstice, Birkhoff+, and Birkhoff+(10)20 have all
better sparsity performance than the previous algorithms and
that Birkhoff+(10) is noticeably better for ε < 0.1.
The last three algorithms have linear convergence/logarithmic
sparsity (y-axis is in log-scale) but different condition numbers
(1−µmin): 0.89, 0.85 and 0.82 respectively.21 Recall the condi-
tion number indicates how an additional permutation reduces
the decomposition error multiplicatively (see discussion in
Section IV-C).

Figure 3b shows the decomposition error against the running
time. Observe that Birkhoff+ is the fastest followed by
Birkhoff+(10). FW is also fast for ε > 0.1, but it
slows down afterward for the same reason explained above.
Solstice and Eclipse are both slower than Birkhoff+
by an order of magnitude since they need to solve multiple
linear programs to select a permutation matrix. The running
time of Birkhoff is in line with the sparsity results: it makes
slow progress until it converges exactly in the last iteration.
Finally, FCFW is the slowest as it has to recompute all the

20The number in the parentheses is the maximum number of permutations
refinements (max_rep).

21Average of the 50 first iterations.

weights (i.e., solve a quadratic program) every time it adds a
new permutation to the decomposition.

2) Circuit Switch Performance: We now evaluate the algo-
rithm’s performance when used to compute the switching
configurations for a circuit switch with n = 100 ports. The
performance metrics we evaluate are the throughput, the con-
figurations computation time, and the number of switching
configurations. We carry out three experiments where we vary
the reconfiguration cost, the skewness and sparsity of the
traffic matrix, and the configurations computation overhead.
Importantly, now the traffic matrix X� is associated with a
time window W that enforces the decomposition to satisfy∑k

i=1(θi+δ) ≤ W , i.e., the time spent transmitting (
∑k

i=1 θi)
and reconfiguring (δk) cannot exceed the time window dura-
tion (W ). Finally, we only evaluate Solstice, Eclipse,
Birkhoff+, and Birkhoff+(10) as (i) Birkhoff and
FW have a poor performance, and (ii) FCFW is very slow when
n ≥ 32 (see times in Figure 3b).

Experiment 1 (Impact of Reconfiguration Time): Figure 4
shows the algorithms’ performance in terms of throughput,
running time, and the number of configurations depending
on the ratio δ/W (the impact of the reconfiguration delay
proportionally to the time window duration). Observe from
the figure that Birkhoff+(10) outperforms the other algo-
rithms in terms of throughput. For instance, for δ/W = 10−2,
Birkhoff+(10) achieves a 7% more throughput than
Eclipse and Solstice. Birkhoff+ has almost the
same throughput than Eclipse and Solstice. Regarding
the time required to compute the switching configurations,
Solstice and Eclipse are slower than Birkhoff+
and Birkhoff+(10) by an order of magnitude; however,
the difference decreases as δ/W increases because we have
fewer switching configurations as a result of larger recon-
figuration penalties (c.f. Figure 4b and Figure 4c). Finally,
observe from Figure 4c that Birkhoff+(10) can obtain
decompositions with half of the configurations compared to
other algorithms when ε is small (i.e., 10−4). Conclusions:
Birkhoff+ has the same performance in terms of throughput
and number of switching configurations than Solstice and
Eclipse, but it is 10 times faster. Birkhoff+(10) obtains
higher throughput than all algorithms and it is only slightly
slower than Birkhoff+.

Experiment 2 (Sparsity and Skewness): Now we set
δ/W = 10−2 and evaluate the algorithms’ performance
depending on the skewness and the sparsity of the demand
matrix. In Figure 5, we vary the fraction of the load carried
by the small flows. Observe that as before, Birkhoff+(10)
outperforms the other algorithms, and that Birkhoff+,
Solstice, and Eclipse are almost the same in terms of
throughput for different demand matrices. Furthermore, there
is little variation on the running time and the number of
switching configurations—despite a slight bend in the curves
when the traffic matrix contains the same fraction of large and
small flows.

In Figure 6, we show the results when we vary the number
of permutations used to generate the demand matrix. Each
permutation matrix is sampled as explained in Section VII-A.
Observe from the figure that the sparsity of the traffic matrix
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Fig. 4. Circuit switch performance (throughput, running time, and number of configurations) depending on δ/W , where δ is the switching time and W the
time window duration. The figures show the average of 50 realizations.

Fig. 5. Circuit switch performance (throughput, running time, and number of configurations) depending on the load carried by the small flows. The figures show
the average of 50 realizations.

Fig. 6. Circuit switch performance (throughput, running time, and number of configurations) depending on the number of permutations matrices used to
generate the traffic matrix. The figures shows the average of 50 realizations.

has a significant impact on the throughput, running time,
and the number of the switching configurations. In par-
ticular, observe from Figure 6a that the throughput of all
algorithms decreases and that Eclipse is comparable to
Birkhoff+(10) as the traffic matrix becomes denser. How-
ever, the running time of Birkhoff+(10) does not explode
(see Figure 6b) and Birkhoff+(10) does not get stuck
when the traffic demand matrix is very sparse.22 Regarding
Birkhoff+, observe that now the running times difference
with Birkhoff+(10) becomes more noticeable as the
demand matrix becomes denser. Finally, observe from Fig-
ure 6c that the number of switching configurations increases
with the density of the traffic matrix for all algorithms.
Conclusions: The skewness of the demand matrix has little

22See discussion in Section VII-B.1.

impact on to the performance of all algorithms. The sparsity,
on the other hand, plays an important role. Eclipse has a
similar performance than Birkhoff+(10), but it is notably
slower.

Experiment 3 (Configurations Computation Overhead): This
experiment shows how time to compute the switching config-
urations affects the circuit switch’s throughput. In particular,
we set δ/W = 10−2 and truncate the decomposition to
satisfy

∑k
i=1(θi + δ) ≤ W − T , where T is the time to

compute the switching configurations. The values of T for this
particular setting are given in Figure 4b. Figure 7 shows the
throughput for different values of W in seconds. Observe from
the figure that the throughput increases with W for all algo-
rithms. When W is small (i.e., the decomposition computation
overhead is large), Birkhoff+ has a higher throughput than
Birkhoff+(10) because it is faster—recall Birkhoff+
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Fig. 7. Circuit switch throughput when the time to compute the switching
configurations is an overhead. The figure shows the average of 50 realizations.

selects a new switching configuration by solving a single linear
program. However, Birkhoff+(10)’s throughput is higher
when W > 5 since the reconfiguration time is larger than
the time to compute the switching configurations. Regarding
Eclipse and Solstice, observe that both are affected
heavily by the decomposition overhead. For instance, when
W = 5, Birkhoff+ has 67% and 34% more throughput than
Solstice and Eclipse respectively. Also, note that when
W = 1, Birkhoff+ can serve 80% of the traffic whereas
Solstice and Eclipse almost nothing. Conclusions:
Birkhoff+ outperforms Solstice and Eclipse and it is
slightly better than Birkhoff+(10) when the time windows
are short. As with the reconfiguration costs, the benefit of
computing switching configurations fast diminishes as the time
window duration increases.

VIII. CONCLUSION

This paper studies how to compute switching configurations
for circuit switches. We have revisited Birkhoff’s approach and
established its properties in terms of the number of switching
configurations required to obtain an approximate representa-
tion of a traffic matrix. A new algorithm (Birkhoff+) is
proposed, which obtains representations with fewer switching
configurations than previous work (Solstice, Eclipse)
and is 10-100 times faster depending on the setting. The latter
is important in terms of throughput when traffic bursts are
short-lived, and so the time required to compute the switching
configurations is a non-negligible overhead. We also propose
a variant of Birkhoff+ that is slightly slower but obtains
representations with even fewer switching configurations. The
performance of the proposed algorithms is evaluated through
exhaustive numerical experiments for traffic demand matrices
that capture traffic characteristics in data centers.

APPENDIX

A. Proofs of Section IV

We start by presenting two lemmas. The first lemma gives
an upper bound on the Frobenius norm of a doubly stochastic
matrix.

Lemma 5: ‖X‖F ≤ √
n for any doubly stochastic

matrix X .
Proof: Let ri be the i’th row of X and note ‖ri‖1 = 1

for all i ∈ {1, . . . , n}, i.e., the sum of a row is equal to 1.

Observe

‖X‖F =
√

Tr (XX∗) =

√√√√ n∑
i=1

‖ri‖2
2 ≤

√√√√ n∑
i=1

‖ri‖2
1 ≤ √

n,

where the first inequality follows because ‖ · ‖2 ≤ ‖ · ‖1.
The second lemma establishes that X� − Xk is a scaled

doubly stochastic matrix.
Lemma 6: Let Xk =

∑k
i=1 θiPi and suppose Xk(a, b) ≤

X�(a, b) for all a, b ∈ {1, . . . , n} and k ≥ 1. Then,

(a)
X� − Xk

1 − ∑k
i=1 θi

is doubly stochastic

(b) ‖X� − Xk‖F ≤ √
n

(
1 −

k∑
i=1

θi

)

Proof: We start with (a). By assumption, 0 ≤ Xk(a, b) ≤
X�(a, b) ≤ 1 for all a, b ∈ {1, . . . , n}. Hence, we only need
to show that the sum of each row and column is equal to one.
Observe

(1 − ∑k
i=1 θi)−1(X� − Xk)1

= (1 − ∑k
i=1 θi)−1(X� − ∑k

i=1 θiPi)1

= (1 − ∑k
i=1 θi)−1(X�1− ∑k

i=1 θiPi1)

= (1 − ∑k
i=1 θi)−1(1− 1

∑k
i=1 θi)

= 1(1 − ∑k
i=1 θi)−1(1 − ∑k

i=1 θi)
= 1

The same argument above can be used to show that (1 −∑k
i=1 θi)−11T (X�−Xk) = 1T , i.e., the sum of each column

is equal to one.
For (b), observe ‖(1 − ∑k

i=1 θi)−1(X� − Xk)‖F = (1 −∑k
i=1 θi)−1‖X� − Xk‖F ≤ √

n by Lemma 5. Rearranging
terms yields the result.

Proof of Lemma 2

We start by proving the lower bound. We first note ‖X‖F ≥
1 for any doubly stochastic matrix X . Recall

‖X‖F ≥ ‖X‖2 := sup
{‖Xu‖2

‖u‖2
with u ∈ Rn s.t. u �= 0

}
Let u = 1 in the equation above to obtain

‖X‖F ≥ ‖X1‖2

‖1‖2
=

‖1‖2

‖1‖2
= 1,

where X1 = 1 follows since X is doubly stochastic. Next,
since X�−Xk

1−�k
i=1 θi

is doubly stochastic by Lemma 6, we have

1 ≤
∥∥∥∥∥ X� − Xk

1 − ∑k
i=1 θi

∥∥∥∥∥
F

=

(
1 −

k∑
i=1

θi

)−1

‖X� − Xk‖F

Rearranging terms yields the lower bound.
For the upper bound, observe

‖Xk − X�‖2
F

(a) = ‖Xk−1 + θkPk − X�‖2
F

= ‖Xk−1 − X�‖2
F + θ2

k‖Pk‖2
F

+2θk

∑
a,b Pk(a, b)(Xk−1(a, b) − X�(a, b))
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(b) ≤ ‖Xk−1 − X�‖2
F + θ2

k‖Pk‖2
F − 2θ2

k

∑
a,b Pk(a, b)2

= ‖Xk−1 − X�‖2
F + θ2

k‖Pk‖2
F − 2θ2

kn

(c) ≤ ‖Xk−1 − X�‖2
F + θ2

kn − 2θ2
kn

= ‖Xk−1 − X�‖2
F − θ2

kn (19)

where (a) follows by Algorithm 1, (b) by Eq. (3), and (c) by
Lemma 5. Hence,

‖Xk − X�‖2
F ≤

(
1 − nθ2

k

‖Xk−1 − X�‖2
F

)
‖Xk−1 − X�‖2

F

Applying the argument recursively from i = 1, . . . , k

‖Xk − X�‖2
F ≤ ‖X0 − X�‖2

F

k∏
i=1

(
1 − nθ2

i

‖Xi−1 − X�‖2
F

)

Finally, since X0 = {0}n×n and ‖X�‖F ≤ √
n by

Lemma 5,

‖Xk − X�‖2
F ≤ n

k∏
i=1

(
1 − nθ2

i

‖Xi−1 − X�‖2
F

)

Taking square roots on both sides yields Eq. (7).
To conclude, we show that θi ≤ 1√

n
‖Xi−1 − X�‖F for

all i = 1, 2, . . . , k. From Eq. (19), 0 ≤ ‖Xk−1 − X�‖2
F −

θ2
kn. Rearranging terms and taking square roots on both sides

completes the proof.

Proof of Lemma 3

Since nθ2
i /‖Xi−1 − X�‖2

F ≥ µmin by assumption,
the upper bound in Lemma 2 becomes ‖Xk − X�‖F ≤√

n (1 − µmin)k/2. Next, let ε = ‖Xk − X�‖F and write
ε ≤ √

n (1 − µmin)k/2. Rearranging terms yields(
1

1 − µmin

)k/2

≤
√

n

ε
.

Taking logs on both sides and further rearranging terms
yields the result.

Proof of Theorem 1

We start by showing that we can design a subroutine PERM
that returns a permutation with an associated weight that
is uniformly lower bounded and satisfies the conditions in
Eqs. (3)–(5). We have the following lemma.

Lemma 7: Set Ik(α) with α = 1−�k−1
i=1 θi

(n−1)2+1 is non-empty.

Proof: By Lemma 6, X�−Xk−1

1−�k−1
i=1 θi

is doubly stochastic, and
so, by Carathéodory’s theorem, we can write it as the convex
combination of (n − 1)2 + 1 permutation matrices, i.e.,

X� − Xk−1

1 − ∑k−1
i=1 θi

=
(n−1)2+1∑

j=1

βjPj

where βj ≥ 0 and
∑(n−1)2+1

j=1 βj = 1. Next, note that since the
permutation matrices and weights are non-negative, we have
that

βjPj(a, b) ≤ X�(a, b) − Xk−1(a, b)

1 − ∑k−1
i=1 θi

(20)

holds for all a, b ∈ {1, . . . , n} and j ∈ {1, . . . , (n− 1)2 + 1}.
Furthermore, since

∑(n−1)2+1
j=1 βj = 1, we have that

βj ≥ 1
(n − 1)2 + 1

(21)

for at least one j ∈ {1, . . . , (n − 1)2 + 1}. Let α = βj such
that the last equation holds. Combining Eq. (20) and Eq. (21),
we obtain that

1 − ∑k−1
i=1 θi

(n − 1)2 + 1
P (a, b) = αP (a, b) ≤ X�(a, b) − Xk−1(a, b)

That is, there exists at least a permutation P such that
Xk−1 + αP (a, b) ≤ X�(a, b), and so set Ik(α) is non-empty.

We are now in position to present the proof of Theorem 1.

By Lemma 7, set Ik(α′) with α′ = 1−�k−1
i=1 θi

(n−1)2+1 is non-empty.

Now, observe that since α =
√

µmin
n (1 − ∑k

i=1 θi) ≤ α′

because µmin = 1/n3, we have that Ik(α′) ⊆ Ik(α) and
so Ik(α) is non-empty. The rest of the proof follows as in
Lemma 3 with µmin = mini∈{1,...,k} nθ2

i /‖Xi−1 − X�‖2
F .

B. Proofs of Section V

Birkhoff Polytope Representation in Vector Form: The Birk-
hoff polytope is the set that contains all doubly stochastic
matrices. Recall we say that a nonnegative matrix is doubly
stochastic if the sum of its rows and columns is equal to one.
This corresponds to having 2n equality constraints. We can
express these in vector form by defining matrices

A′(in + 1, in + j) =

{
1, i = 0, . . . , n − 1, j = 1, . . . , n

0, otherwise

A′′(j + in, j) =

{
1, i = 0, . . . , n − 1, j = 1, . . . , n

0, otherwise

and then collecting them in A = [A′; A′′]. Next, define b ∈
{1}2n. Any vector from Rd

+ such that Ax = b correspond to
having doubly stochastic matrix in vector form.

For example, with n = 3 we have

A =




1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1




, b =




1
1
1
1
1
1




.

Proof of Lemma 4

The eccentricity consists of two parameters. The diameter of
the polytope (M ) and its pyramidal width (λ). The diameter
of the Birkhoff polytope is the maximum distance between
two points in B, which is the maximum distance between two
vertices. Specifically, this is equal to ‖p− p′‖2 =

√
2n where

p, p′ ∈ P are two vertices such that pT p′ = 0, i.e. have ones
in different components.

It is possible to obtain a lower bound on the pyramidal width
of the Birkhoff polytope by using the fact that its extreme
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points are a subset of the extreme points of the unit cube in d
dimensions. Formally, P ⊂ {0, 1}d and so conv(P) := B ⊂
C := conv({0, 1}d). The latter means that the unit cube is
“extreme-point-wise denser” than the Birkhoff polytope and
so it has smaller pyramidal width. From Lemma 4 in [19] we
can obtain that the pyramidal width of the Birkhoff polytope is
lower bounded by 1/

√
d = 1/n.23 Hence, (λ/M)2 ≥ 1/(2n3)

as claimed.

Proof of Theorem 3

This theorem is an application of Theorem 1 in [19] with
the quadratic objective function f(x) = (1/2)‖x − x�‖2

2 and
set B. This theorem says that

‖xk − x�‖2
2 ≤ ‖x0 − x�‖2

2 exp

(
− µ

4L

(
λ

M

)2

k

)

The term ‖x0−x�‖2 can be upper bounded by
√

2n, which
is the maximum Euclidean distance between two points in
B (see the proof of Lemma 4). The condition number µ/L
is equal to 1 because the objective function is quadratic and
(λ/M)2 ≥ 1/(2n3) by Lemma 4. Hence,

‖xk − x�‖2
2 ≤ 2n exp

(
− k

8n3

)
.

To conclude, let ε2 = ‖xk − x�‖2
2 and write ε2 ≤

2n exp(−k/(8n3)). By expressing k as a function of ε in the
last equation, we obtain the stated result.
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