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Modeling in-ice radio propagation with parabolic equation methods
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We investigate the use of parabolic equation (PE) methods for solving radio-wave propagation in polar ice.
PE methods provide an approximate solution to Maxwell’s equations, in contrast to full-field solutions such as
finite-difference-time-domain (FDTD) methods, yet provide a more complete model of propagation than simple
geometric ray-tracing (RT) methods that are the current state of the art for simulating in-ice radio detection
of neutrino-induced cascades. PE are more computationally efficient than FDTD methods, and more flexible
than RT methods, allowing for the inclusion of diffractive effects, and modeling of propagation in regions that
cannot be modeled with geometric methods. We present a new PE approximation suited to the in-ice case. We
conclude that current ray-tracing methods may be too simplistic in their treatment of ice properties, and their
continued use could overestimate experimental sensitivity for in-ice neutrino detection experiments. We discuss
the implications for current in-ice Askaryan-type detectors and for the upcoming Radar Echo Telescope; two
families of experiments for which these results are most relevant. We suggest that PE methods be investigated

further for in-ice radio applications.

I. INTRODUCTION

Accurate modeling of radio wave propagation in the ice is
essential for experiments seeking to detect in-ice neutrino in-
teractions at the highest energies. These experiments (past,
present, and planned) consist of radio frequency (RF) anten-
nas above or buried in the ice from 0-200 m below the sur-
face, that seek to detect radio waves a) emitted by the cascade
produced by an ultra high-energy neutrino interaction in the
ice (the Askaryan effect[1-6]) or b) reflected from the ion-
ization deposit left in the wake of the cascade (the radar echo
method [7-10]). Due to the very low flux of neutrinos with en-
ergies in excess of 10'° eV (PeV), large volumes must be in-
strumented in order to detect a statistically significant number
of neutrinos. Radio-based methods for in-ice neutrino detec-
tion exploit the relative transparency of ice at radio frequen-
cies, which allows for radio detectors to instrument very large
volumes with sparse apparatus. In many cases, a radio sig-
nal will be propagating at least in part through a region with
a changing index of refraction (n(z) for the depth coordinate
z), typically the top 100-200 m of an ice sheet, called the firn.
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FIG. 1. An example of radio propagation modeled by the parabolic
solver, using the index of refraction profile from the south pole, de-
rived from SPICE [11] core data in the top 100 meters and a func-
tional fit below. For this figure we model 350 MHz continuous wave
radio from a dipole source 100 m below the surface.

Typically, such propagation is treated using a formalism of
ray tracing (RT) [12-17], where a ray is propagated along
a path with discrete straight-line segments according to the



rules of geometric optics, applicable when the wavelength is
much smaller than any feature size, and wave effects such as
diffraction and interference can be neglected. The direction
of each segment is dictated by the given refractive index pro-
file, which is typically a functional fit to data. These methods
are computationally efficient, reaching solutions on the order
of ms. This allows for use in Monte Carlo simulations. Re-
cent studies [18] have shown, however, that more complete
modeling of the firn, simulated using finite-difference-time-
domain (FDTD) methods, can replicate observed signal fea-
tures in data [19, 20] that ray-tracing solutions can not. More-
over, it has been shown that density fluctuations in the ice
can complicate propagation. A density profile (p(z)) can be
converted to an index of refraction profile (n(z)) via the ex-
pression n(z) = 1 + 0.845p(z) [21]. These fluctuations can
result in unexpected amplitudes as a function of source and
receiver geometry (if the exact density profile is not known,
which is typical), as well as horizontally propagating modes
for certain source and receiver configurations. These effects
are most pronounced at shallow depths, near the surface of
the ice, where density variations are maximized. So, while
RT methods have many strengths, they do not provide a full
picture of radio propagation, and therefore result in limitations
on event reconstruction, both for neutrino arrival direction and
primary energy, for which the properties of the received signal
spectrum are of paramount importance.

The FDTD formalism is robust [22], but is computation-
ally expensive. The entire purpose of using radio to instru-
ment large volumes of ice in search of ultra high energy neu-
trino interactions is to cover a massive volume with minimal
apparatus, and detect signals across great distances, yet it is
intractable (and in some cases impossible) to simulate wide
band time-domain signals over kilometer scale baselines using
FDTD methods. Therefore in this article we explore whether
simple parabolic equation (PE) solvers, similar to those used
for decades in atmospheric propagation studies [23] and un-
dersea acoustic studies [24—28], can be applied to the problem
of in-ice radio wave propagation. [29] An example of a PE so-
lution for 350 MHz continuous-wave radio from a transmitter
100 m beneath the ice is shown in Figure 1. We find that, while
prone to phase errors due to the rate of change of the n(z) pro-
file, PE methods generally provide a more accurate modeling
of the spectral content of a signal (using FDTD as a baseline)
than RT methods. A better modeling of the spectral content
of simulated signals may improve energy and arrival direction
reconstruction relative to methods currently being used.

The article is organized as follows. We first introduce
the PE method, and show validation studies against an open
source FDTD package (meep [30]) over a small domain
where FDTD routines are tractable. We compare also to ray
tracing solutions in the range of their validity. We then extend
the study to simulate time-domain signals at long baselines
with PE and RT methods. We conclude by discussing next
steps and the implications for current and future experiments.

II. IN-ICE SIMULATION METHODS

There are 3 simulation methods that we discuss in this
paper: the parabolic equation (PE), finite-difference time-
domain (FDTD), and ray-tracing (RT). In this section, we in-
troduce these, focusing on the PE methods which are being
introduced to the problem of in-ice radio detection of neutri-
nos for the first time.

A. Ray tracing methods

In-ice ray tracing is currently the standard simulation tech-
nique for experiments seeking to detect in-ice neutrino inter-
actions using radio. RT methods take the infinite frequency
limit, and solve for the multiple paths that a signal can travel
from source to receiver, often designated “direct” (the signal
that travels from a source to receiver on an arc without in-
tercepting the surface) and “reflected” (the signal that reflects
from air/ice interface). In general, a particular transmitter—
receiver geometry will admit one or two ray path solutions.
In all cases, rays travel along curved paths when traversing
the firn. RT methods have analytic solutions for some forms
of the index of refraction profile and in general are numer-
ical solvers that can provide vertexing (identification of the
location of the RF source) based on time-difference-of-arrival
(TDOA) of different antennas. If a receiver is in a geometry
where both direct and reflected signals are present, a TDOA
between direct and reflected can be an additional powerful
variable for vertex resolution. RT methods are computation-
ally efficient, and some implementations can use arbitrary (i.e.
non-functional) n(z) profiles. In all cases, however, they rely
on geometric optics to calculate propagation. In this article,
we use RT for a functional n(z) profile, as well as a data-
driven n(z) profile as explained below. To optimize the RT
simulation, the step size scale factor was reduced until con-
vergence, with time delay precision better than 0.1 ns.

B. Finite-difference time-domain methods

These methods solve Maxwell’s equations numerically on a
spatial grid in the time domain. They are a standard for time-
domain electromagnetic modeling in antenna design, interfer-
ence analysis, and numerous other applications. Because they
involve approximations only in the discretization of the prob-
lem, they are accurate as long as the grid spacing is sufficiently
small for the frequencies of interest (a good approximate rule
is a minimum of 10 cells per wavelength). In this work we
have simulated everything on a 5 cm grid for both FDTD and
the PE methods described below, which is sufficient for fre-
quencies up to 600 MHz, in excess of what we simulate in
the work. The primary draw-backs to FDTD methods are the
large memory requirements (which for cylindrical volume of
Rby Z with resolution r scales with RZr?) and the long com-
putational time (which scales with RZr3).



C. Parabolic equation methods

The parabolic equation (PE) is an approximation of the full
wave equation which can be solved to allow for stepping solu-
tions for field propagation. Simply, this means that in order to
calculate the electric field at some distance from your source
(the range coordinate, here denoted x) you only need the elec-
tric field at the previous range step. This stepping, as opposed
to solving for the electric field across the entire simulation do-
main at each time step (FDTD) results in significantly lower
computational cost. It does, however, come at the expense of
accuracy. The parabolic equation is only valid within a certain
angular range of the propagation direction (called the paraxial
direction), and only (at least for the simple simulation shown
here) includes forward propagating fields.

Our implementation of the PE method (a wide-angle, split-
step solver, described below) is based on the aforementioned
standard reference works for in-air EM and in-water acous-
tic PE solvers. We extend these standard methods with a
new, modified split-step approximation motivated by the in-
ice problem. We present the derivation and details of the PE in
Appendix A, including the updated split-step approximation.
Wide-angle means that the solution is valid at wider angles
to the paraxial direction (up to 90° depending on frequency).
Split-step means that at each step in range, the solution is split
into diffractive and refractive components, solved for sequen-
tially (this is equivalent, in this case, to splitting the solution
at each step into time and frequency domain components).
The cylindrically-symmetric field ¢)(z, 0, z), polarized along
0, is solved for via Equation 1, which shows the reduced field
u(z,2) = /ze 074 (assuming an e time dependence)
for a range step « + Ax. Use of the reduced field in this form
allows for the solution of the wave equation for ¥ (see Equa-
tion A4) in a convenient form. It is only dependent on the
previous range step, is cylindrically symmetric, and valid in
the far field.

Denoting by F and F ! a forward and backward Fourier
transform, respectively, and kg, k. the reference wavenumber
and the Fourier space wavenumber, respectively, the field at
range step « + Ax is given by
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where n = n(x, z) and ny is a reference index of refraction
corresponding to the reference wavenumber. This is built into
a FOSS python code [31] available on GitHub.

The PE method as described is a spatial solver. To imple-
ment the PE solver in the time domain, we decompose the
spectrum of a time-domain source pulse into the individual
Fourier modes and simulate each mode using the associated
complex amplitude. We then synthesize a received spectrum
in the same way at a particular receiver position, and take the
inverse transform to arrive at a received signal. An example of
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FIG. 2. Time domain (top) and frequency domain (bottom) compar-
isons between FDTD (thin solid line), PE (thick solid line), and RT
(dashed line) for a source at x,z = (0,—30) m and a receiver at
x,z = (100, —25) m, with a functional n(z) profile corresponding
to a fit to South Pole data. The two frequency domain plots cor-
respond to the direct (left) and reflected (right) pulses in the time
domain signal.

this is shown in Figure 2, where a time domain impulse, band-
limited from 90-250 MHz using a 4th order Butterworth filter,
is simulated in FDTD, PE, and RT from a transmitter at 30 m
depth. The received signal for a receiver 100 m away in range
at a depth of 25m, using a functional form for n(z) at the
South Pole (n(z) = A — Be~“#, with A = 1.78, B = 0.43,
and C' = 0.0132m™ 1), is shown. Clearly visible in all 3 time-
domain waveforms resulting from the 3 propagation methods
are the direct and reflected signals, as the signal will be seen
both directly, and reflected from the ice/air boundary for this
geometry. We also show the spectrum for the direct and re-
flected pulses separately. We will discuss the properties of
this waveform in detail in a later section, where we make more
comparisons between the 3 methods for a variety of transmit-
ter/receiver locations, and for different n(x, z) profiles.

The two main differences between the parabolic equation
and the FDTD solutions are the source definitions and bound-
ary conditions. In a typical FDTD simulation, a physical
source is defined, an excitation applied to this source, and the
fields are calculated as a function of position and time. For the
PE methods, a source is defined as the full reduced function
(see Appendix B) along a single range step (e.g. definition of
a source at range step O means defining the reduced function
at every point along z at that range step). Boundary conditions
in FDTD simulations are handled by solving the solutions nu-
merically for varying material properties on a grid. Boundary
conditions, including boundary roughness, are handled in the
PE in various ways. For the present studies, we implement
a flat surface with air above and an n(z) profile below cor-
responding to either a uniform density, or the density profile
of the south pole, but we implement this “boundary” as part



of a complete n(z) profile. That is, boundary conditions are
not put in “by-hand” as they sometimes are in PE applica-
tions, but instead, the fields are reflected from the surface as
though it were a density fluctuation within a continuous n(2)
profile. This results in good agreement with FDTD for direct
and reflected amplitudes when using the split-step approxima-
tion shown here. Further study is needed to verify the validity
of our implementation of this “boundary” treatment, but com-
parison to FDTD implies that it is a reasonable approach.

III. RESULTS

In this section we show several comparisons between the
various methods, for different geometries and n(z, z) profiles.
The first section presents the results for a selection of receiver
geometries and a functional profile for the ice at the South
Pole, which is the same profile at every range step x, hence
n = n(z). The functional form of n(z) is a 3 parameter
fit to the measured data as used in radio codes. The second
section shows the results for the same geometries, albeit with
data-derived n profiles. We show the case where we apply
the same n(z) profile to every range step for 2 different den-
sity data samples taken at the South Pole Ice Core Experiment
(SPICE) core [11]. These profiles are obtained from experi-
mental data, but applying them uniformly in range may result
in waveguide-like behavior, overestimating the effect of the
firn, so some care is needed in the interpretation of the results.
To address this, we also show the results for the case where
we linearly interpolate between the two SPICE cores along
the range domain of the simulation (hence n = n(z, 2)), a
scenario justified by experimental data, discussed below. In
the comparison figures in this article, we compare normalized
amplitudes to emphasize relative timings and spectral content.
All signals are aligned via cross-correlation in the time do-
main.

The source for all waveforms is a vertically-polarized (axis
along z at x = 0) dipole. This is implemented in FDTD as
a dipole current source, and in PE as an initial source model
(detailed in Appendix B). To get a time-domain waveform out
of RT [32, 33], one needs 4 parameters: the time of arrival
of the first pulse, the time of arrival of the second pulse, the
Fresnel coefficient for the reflection from the surface (if there
is a reflected path), and the “launch angle” of the transmitted
signal(s). We use this launch angle to select the appropriate
output pulse(s) at 1 m from the FDTD source. We then de-
lay the first and second pulses by their associated time delays,
and scale the second pulse by the (complex) Fresnel coeffi-
cient and by the relative path length difference between the
first and second pulse to obtain an amplitude (and appropri-
ate phase shift for pulses undergoing total internal reflection).
Ice signal absorption is not currently included in any of the
methods shown here, but will be investigated in future work.
In general, we find that PE consistently outperform RT (qual-
itatively) for agreement with FDTD in the time domain, and
most noticeably in the frequency domain.

A. Functional n(z) profile

An example of a received signal has been shown in Fig-
ure 2, as described above. In this configuration, the source
and receiver are at roughly the same depth, and the vertical
receiver is 100 m horizontally displaced from the source. In
such a configuration, both the direct and reflected pulses are
evident. The path from source to receiver is not described by
a straight line in either case. The wave front, instead of ra-
diating away with uniform velocity, as would be the case in
a uniform medium, progresses with a depth-dependent phase
velocity, distorting its shape. For a smoothly-varying index of
refraction that increases with depth, this results in lower veloc-
ities deeper down, higher velocities near the surface. Thus a
horizontally-propagating wavefront will be ‘bent’ down from
horizontal when moving through such a depth-dependent in-
dex of refraction profile. Small scale fluctuations will cause
local variations in the phase velocity, further distorting the
wave front.
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FIG. 3. A comparison for discrete range steps for the maximum
value of the received field, for PE (solid line) and FDTD (dashed
line). This is for a continuous-wave, 135 MHz signal, with the direct
and reflected interference pattern evident. From left to right, range
steps of 200 m, 275 m, and 350 m are shown. The curves have been
normalized to the peak z-axis value to assist comparison.

In Figure 3 we show the peak field at discrete range steps
in z for PE and FDTD for a 135 MHz continuous-wave sig-
nal. We note the following: First, the envelope of the two
shows good agreement. The depth of the troughs in the in-
terference pattern is a measure of the relative strength of the
direct and reflected signals as they interfere, and here we see
that the z profiles, normalized to their peak amplitude, show
good similarity throughout the depth. If, for example, the sur-
face reflection coefficient were higher, the peak/trough ratio in
the interference pattern would be increased, since the reflected
signal strength would be closer to the direct. In addition to the
depth of the troughs, the general shape of the envelopes (that



is, the overall trend with z of the left and right extent of the
interference pattern) is similar, indicating that the source func-
tion in PE is a decent approximation of the dipole simulated
by the FDTD methods. The envelopes would differ if, for ex-
ample, one were a directive antenna (which would see higher
amplitudes at the peak of the antenna’s gain pattern). Second,
the location of the “shadow zone” boundary, that is, where the
fields ‘turn on’ in depth, is well matched between the meth-
ods at all ranges. This is important for studies about horizon-
tal propagation, and will be discussed in more detail below.
Third, we see that there is some disagreement in the phase
of the interference pattern between the methods as a function
of depth. We found that some of this disagreement can be
mitigated by the use of an appropriate reference wavenum-
ber (discussed later), but some disagreement persists. Some
methods [27] have introduced modified indices of refraction
to solve this issue for the acoustic case, but as yet, we have
not found a suitable method to do so for the large values of
n(z) in ice. We believe this is a solvable problem. In any
case, this interference pattern does not seem to measurably
affect the time-domain signals being analyzed in this paper;
perhaps a detailed phase analysis would shed some light, but
for now this is beyond the scope of our introductory study.
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FIG. 4. The n(z) profile (top panel) as measured by the two SPICE
core [11] firn holes (core 1, thick solid line, core 2 thin solid line),
along with the functional fit (dashed line) to these data used for ray
tracing codes at the south pole. Residuals are shown below.

B. Measured n(z, z) Profile

The South Pole Ice Core Experiment (SPICE) [11] ex-
tracted a 1751-meter long ice core at South Pole. While
drilling the main core, two shallow samples were taken from
the top ~100m of the ice sheet (aka ’firn’). These shallow
cores were measured every half meter for density, and from
that, an index of refraction can be calculated. Figure 4 shows
the data for the 2 cores along with the functional fit used in RT.
It is clear that there are differences between the cores and the
functional fit, but also between the two cores themselves. The

dataset does not provide measurement errors on these density
measurements, though density measurements from other sites
in Antarctica and Greenland [34, 35] show similar variations
with depth. We use these measurements as-is for purposes of
investigating how changes in the density profile affect propa-
gation, and whether this can be modeled with PE methods.

RT methods do not (in general) take into account reflec-
tions from small-scale density fluctuations, which seem to
contribute to the overall change in the propagated signal. We
find, as one might expect, that when density fluctuations are
taken into account in PE, the agreement between FDTD and
PE improves, while the agreement between RT and the wave
methods gets worse. We simulate 3 different scenarios for the
data-driven case:

1. SPICE core #1 at all =
2. SPICE core #2 at all

3. n(z,z) with each slice in z linearly interpolated be-
tween SPICE core #1 at x = 0, and core #2 at x =
300 m
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FIG. 5. The residuals of the n(z) profile and the functional fit f(z),
as measured by the two SPICE core firn holes (core 1, thick solid
line, core 2 thin solid line), along with profiles linearly interpolated
at 1/4 (dashed) and 3/4 (dotted) interval between these two, used in
the interpolated n(z, z) case.

Note that in the following comparisons, the third case (lin-
ear interpolation) is shown compared to the RT result from
SPICE core #2. This is due to limitations in the RT imple-
mentation used, for which n cannot vary with range. This
limitation is present in all known RT methods for in-ice radio
propagation at the time of this writing.

From ground-penetrating radar (GPR) data [36, 37] we see
that fluctuations in n(z) remain more-or-less constant over
hundreds of meters to kilometers. Therefore, for this present
study, we have decided that 300 m is a reasonable range over
which to linearly interpolate between two different profiles in
order to simulate a more realistic ice profile. In Figure 5 we
show the 2 cores and 2 simulated cores at 1/4 and 3/4 of
the way in range, used to make the full n(z, z) map. The
full n(x, z) is likely the truest to the actual configuration of
the firn, though truly local defects are not included, and the



300 m correlation length is a data-driven approximation. Fu-
ture models can perhaps use the density information from
GPR surveys to back out a more accurate ice density model.
In reality, all three of these methods may over-or underesti-
mate the amplitude or the discretization of the n(x, z) pro-
file in either range or depth, and the present study is simply
meant to show that changes in the n(z) profile can alter the
received signal spectrum with respect to idealized ice models.
We note that this n(z, z) model also, in all three cases, pre-
serves the deviation in the top ~20m of the ice that has been
observed experimentally [19] to cause time-of-arrival inver-
sions for horizontally propagating signals.

First we show the same configuration as Figure 2
(source=(0, -30) m, RX=(100, -25) m), for each of the 3 con-
figurations listed above in Figures 6, 7, and 8 respectively.
Notice the agreement in waveform shape, timing of the di-
rect and reflected pulses, and the relative amplitudes of the
two pulses in each. For this configuration, where the first and
second pulses are clearly distinguishable, we show individ-
ual spectra for the direct and reflected pulses below the time
domain waveform, with each spectrum corresponding to the
pulse above it. The agreement between all three methods for
the functional profile is quite good; discrepancies become ap-
parent between RT and the wave methods as n(x, z) deviates
from the pure functional form. We do not explore in this arti-
cle whether modifications can be made to existing RT methods
to capture the physics of the wave methods.

Time [ns]
0 20 40 60 80 100
:
K=}
=
.2
a1
IR Y S N | 115
‘:b 1.5
g 10 A 1!
05 - -4 0.5
0.0 I 1 I 1 1 I I I 0
0 01020304 0 01020304

Time [ns]
0 20 40 60 80 100
04 T T T T
g
]
S
=
.9
43
' : 1.2
"3‘ 25 = (. — . 1 _ 1
S 20 A N ’ ‘ i
: / . X 0.8
%) 15 p B nl \ ) 06
= 1.0 4 : 104
0.5 . 10.2
0.0 i i | = J I i =

Frequency [GHz] Frequency [GHz]

FIG. 7. Time domain (top) and frequency domain (bottom) com-
parisons between FDTD (thin solid line), PE (thick solid line), and
RT (dashed line) for a source at z,z = (0,—30) m and a receiver
at z,z = (100, —25) m, with an n(z) profile corresponding to the
second of 2 SPICE core firn samples. The two frequency domain
plots correspond to the direct and reflected pulses in the time domain
signal.
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(dashed line) for a source at z,z = (0, —30)m and a receiver at
z,z = (100, —25) m, with an n(z) profile corresponding to the first
of 2 SPICE core firn samples. The two frequency domain plots cor-
respond to the direct and reflected pulses in the time domain signal.

We then show plots for the 3 different n configurations as
above, but this time for a source at (0, -100)m and RX at
(250, -2) m, in Figures 9, 10, and 11 respectively. We see that
the difference between RT and the wave methods becomes
pronounced, particularly in the frequency domain. There is

FIG. 8. Time domain (top) and frequency domain (bottom) com-
parisons between FDTD (thin solid line), PE (thick solid line), and
RT (dashed line) for a source at z,z = (0, —30) m and a receiver
at z,z = (100, —25) m, with an n(z, z) profile corresponding to a
linear interpolation between the first SPICE core at x = 0 and the
second SPICE core at z = 300 m.

some discrepancy between PE and FDTD in the frequency do-
main as well, but the overall shapes are qualitatively similar.
The wave solutions lose more low frequency power as they
advance spatially and temporally, and in some cases become
more peaked, which can be understood intuitively: the n(z, 2)
profile acts as a rough lens. As the field propagates through
this lens, a) low frequency power is lost more rapidly sim-



ply due to aperture, and b) certain frequencies are (de)focused
more than others for particular geometries. The envelope of
the RT spectrum is always bounded by the envelope of the
initial pulse (by construction, since the eventual signal is con-
structed from the initial pulse, shifted in time, scaled, and
in some cases phase shifted), but the wave methods allow
for physical, frequency dependent effects to be more read-
ily modeled. We also note that the alignment of the traces,
performed with cross-correlation, becomes poorer at this dis-
tance, as the shapes of the pulses diverge. In these cases, it
is instructive to look at the frequency domain plots to see the
spectral content, as the time-domain signals can show decep-
tive (dis)agreement. This is most evident in the pulses in the
interpolated n(z, z) case (Figure 11), where the time-domain
signals look similar “by-eye”, but the spectrum shows clear
peaking, and is quite similar for FDTD and PE. The loss of
low frequency power is significant; at 120 MHz for example,
the discrepancy between PE and RT is ~15 dB in power.
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FIG. 9. Time domain (top) and frequency domain (bottom) compar-
isons between FDTD (thin solid line), PE (thick solid line), and RT
(dashed line) for a source at z,z = (0, —100) m and a receiver at
z,z = (250, —2) m, with an n(z) profile corresponding to the first
of 2 SPICE core firn samples.

C. Shadow-zone propagation

A distinct advantage of wave methods is that they can be
used to simulate propagation in regions where RT methods
find no solution, the so-called “shadow” or “forbidden” zone.
This is the region beyond the most distant caustic of the field
that bends from source to receiver (in Figure | a receiver at
(z,z) = 325, —5 would find itself in the shadow zone). Wave
or field methods solve for the field at each point in the domain,
so there are no forbidden zones. We show in Figures 12 and 13
a comparison between FDTD and PE for a receiver position
for which ray-tracing does not permit a solution, because it is
in the shadow zone. Figure 12 is for a functional n(z) profile,
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FIG. 10. Time domain (top) and frequency domain (bottom) com-
parisons between FDTD (thin solid line), PE (thick solid line), and
RT (dashed line) for a source at z, z = (0, —100) m and a receiver
at ¢,z = (250, —2) m, with an n(z) profile corresponding to the
second of 2 SPICE core firn samples.
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FIG. 11. Time domain (top) and frequency domain (bottom) com-
parisons between FDTD (thin solid line), PE (thick solid line), and
RT (dashed line) for a source at z, z = (0, —100) m and a receiver
at z,z = (250, —2) m, with an n(z, z) profile corresponding to a
linear interpolation between the first SPICE core at x = 0 and the
second SPICE core at x = 300 m.

and Figure 13 is for the linearly interpolated n(z, z) profile.
There is decent agreement between FDTD and PE in time and
frequency in both cases (albeit with discrepancy in arrival time
of the second pulse for the functional n(z) parameterization,
see Figure 12, top right panel). The source of this discrepancy
is not known, but investigation of such signals could identify
the specific processes (see e.g. [38] for a tutorial on bound-
ary phenomena) behind these shadow zone signals. Since



shadow zone signals have been observed [19, 20], studied
with FDTD [18], and investigated phenomenologically [39],
any new simulation must include such effects, which the PE
method does (at least qualitatively). Further investigation into
these effects is underway.
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isons between PE (thick solid line), and FDTD (thin solid line) for a
source at =, z = (0, —30) m and a receiver at z, z = (250, —2) m,
with a functional n(z) profile for the South Pole. The columns in the
time and frequency domain plots correspond to the first and second
signals, respectively.
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FIG. 13. Time domain (top) and frequency domain (bottom) compar-
isons between PE (thick solid line), and FDTD (thin solid line) for a
source at z, z = (0, —30) m and a receiver at , z = (250, —2) m,
with n(x, z) corresponding to a linear interpolation between SPICE
core 1 at x = 0 and SPICE core 2 at x = 300. The columns in the
time and frequency domain plots correspond to the first and second
signals, respectively.

D. Larger simulation domain

The results presented so far have been shown for a domain
tractable for FDTD simulations, however, true neutrino ver-
tices are expected to be much deeper in the ice. The PE solver
can produce time domain waveforms over arbitrarily large do-
mains on manageable timescales. This code computes a time
domain waveform for the bandwidth in this paper on a 1.5 km
x 1.5 km domain in about 0.5 CPU thread hours (compared to
~40 for FDTD), and has not been optimized. The Fourier syn-
thesis time-domain method is well-suited for parallelization,
and is being explored. We note that, while these times offer
improvement over FDTD, they are still much longer than RT
solutions. Therefore PE solvers would not (at this stage) re-
place RT for all operations, but only for those in which greater
spectral accuracy is sought. In this section we present some
waveforms comparing RT and PE on a larger domain, and
summary figures showing how the spectrum of a waveform
changes as a function of viewing angle for a receiver, with
implications for experimental design and neutrino event re-
construction. We place a transmitter at 1050 m below the ice
surface and model the same band-limited pulse from a dipole
source as before. This time, however, the domain is large for
FDTD, so we only compare PE and RT. We use a SPICE pro-
file for n(z). In Figure 14, the receiver is placed at a horizontal
displacement of 1350 m, and a depth of 120 m beneath the ice
surface. The four panels correspond to the direct (left) and re-
flected (right) pulses in the time (top) and frequency (bottom)
domains. There are several things specifically to note. First,
the direct pulse has a spectrum that agrees fairly well between
PE and RT, with some distortion. Second, the reflected pulse
is far more distorted than the direct pulse, as this has traversed
more of the firn en route to the receiver. For this particular
geometry, the spectrum largely traces out the envelope of the
frequency-domain spectrum of the RT signal, but this may not
be true in general. Third, there is a time offset between PE
and RT for the reflected signal. Further work is needed to
investigate the source of this offset.

Next, Figure 15 plots the same setup but for a receiver just
2 m beneath the ice surface. Note the disagreement between
RT and PE. The time-domain signals are aligned by their max-
imum cross-correlation value, but the pulses are so dissimilar
that this alignment is largely meaningless here. There is ev-
idence of interference from the surface, but also the signal
in PE is more strongly peaked, indicating that there could be
evidence of waveguide-like phenomena at this particular dis-
tance. The envelopes of the spectra also do not agree well.

Finally, we show two plots that generalize (qualitatively)
the importance of developing a wave simulation method (PE
or otherwise) to apply to the in-ice radio propagation prob-
lem. In Figure 16 we plot the received spectra as a function of
depth for receivers in the top 200 m of the ice, at a horizontal
displacement of 1 km from a transmitter buried 1050 m in the
ice. This is the spectrum of the first 100 ns of a received pulse
(with the same parameters as the pulses in the rest of this ar-
ticle). We restrict the spectrum to this window to reduce the
effect of interference from direct + reflected signals (which
is still evident in the near-surface pulses for which direct and
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FIG. 14. Time domain (top) and frequency domain (bottom) com-
parisons between PE (thick solid line), and RT (thin solid line)
for a source at z,z = (0,—1050)m and a receiver at z,z =
(1350, —120) m, with a n(z) profile corresponding to the second of
2 SPICE core firn samples. The columns in the time and frequency
domain plots correspond to the direct and reflected signals, respec-
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FIG. 15. Time domain (top) and frequency domain (bottom) com-
parisons between PE (thick solid line), and RT (thin solid line)
for a source at x,z = (0,—1050)m and a receiver at x,z =
(1350, —2) m, with a n(z) profile corresponding to the second of
2 SPICE core firn samples.

reflected both lie within this 100 ns window. Note that, in gen-
eral, the direct pulse is affected less than the reflected pulse,
spectrally). This is for an index of refraction profile corre-
sponding to the first of two SPICE core profiles, applied at all
. While this may overestimate certain waveguide behavior,
it is also an appropriate guess for a possible realistic ice pro-

file, as discussed previously. Clearly visible near the surface
are interference patterns (from direct and reflected pulses in
close proximity) but also oscillations in the overall amplitude
of the spectrum with depth. These oscillations gradually di-
minish with depth, with the spectrum becoming smoother as
receivers get deeper, and are not an interference effect, but
a result of propagation through the firn. There is a band at
around —140 m that shows some deviation from the smooth
spectrum; this is perhaps some waveguide-like phenomena or
interference from multiple scattering.

Figure 17 shows the same, but for RT methods. The inter-
ference near the surface is evident, but the oscillatory behavior
as a function of depth is not.
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FIG. 16. Spectrum of the first 100ns of a received signal for varying
receiver (RX) depth using parabolic equations. This is for a trans-
mitter buried 1050 m in the ice, displaced 1km in range from the
receivers. The scale is dB (power) relative to the transmitter output.
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1050 m in the ice, displaced 1km in range from the receivers. The
scale is dB (power) relative to the transmitter output.



IV. IMPLICATIONS FOR CURRENT AND FUTURE
EXPERIMENTS

The initial results from this first work on in-ice PE suggest,
in agreement with previous studies using FDTD [18], that the
effect of the ice on propagation may be significant, particu-
larly for receivers in the firn. Specifically Figure 16, which
shows a marked difference in the spectral content received at
receivers shallow and deep from the same deep pulse, war-
rants further investigation into PE methods.

Preliminarily, these results suggest that to avoid the effects
of the firn, receivers should be placed below it, in the denser,
more uniform ice from centuries past. These results further
suggest, in agreement with previous studies, that ray-tracing
alone over-simplifies propagation through the ice in ways that
can have an effect on energy and position reconstruction for
in-ice neutrino detectors, particularly for shallow receivers
near the top of the domain in Figure 16. Receivers in this
location reside in regions with the most strongly varying den-
sity profile (Figure 4). In this section we briefly discuss the
potential implications for the two classes of radio based in-ice
neutrino detectors, Askaryan and radar echo.

A. Askaryan detectors

Askaryan detectors rely on detecting the impulsive signals
produced via the Askaryan effect. These impulsive signals are
broadband, and achieve their maximum bandwidth directly
at the preferred Cherenkov angle, which in deep ice is ap-
proximately 55° from the cascade axis. The spectral con-
tent of the received signal (via useful variables such as spec-
tral slope [40]) can elucidate where the received radio origi-
nated from with respect to this Cherenkov angle (radio at the
Cherenkov angle is typically called “on-cone” because this ra-
diation is radially symmetric on a cone at this angle about the
cascade axis). A knowledge of where on the cone radio orig-
inated from allows for a signal’s radio direction to be trans-
lated into a neutrino arrival direction, which can then be used
to look for sources on the sky.

The received signal is affected by propagation through the
ice in ways that affect the spectrum. For some geometries
(such as Figure 15) we see that the spectra are very differ-
ent for signals simulated with PE and RT. If an idealized ice
model is assumed, as in RT methods, then the received spec-
trum is assumed to be the source spectrum (i.e. no spectral
changes occur as a result of propagation). As such, measure-
ments of the spectral properties will lead to error in recon-
structing the neutrino arrival direction, due to spectral changes
that happened to the signal en-route. By studying and classify-
ing these changes, reconstruction of neutrino arrival direction
may be improved.

These results are not in tension with other studies, such as
Ref. [41], that show good vertex resolution for near-surface
systems. These studies rely on the time of arrival difference
between antennas (measured by cross-correlating the signals
in different receivers) to point back to the source (in the case
of Ref. [41] a transmitter lowered down the SPICE borehole),
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FIG. 18. Spectrum of the first 100ns of a received signal (using PE)
for a receiver at (z, 2)=1350,-2m as a function of apparent arrival
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FIG. 19. Spectrum of the first 100ns of a received signal (using PE)
for a receiver at (x, 2)=1350,-200 m as a function of apparent arrival
angle, measured with respect to the local horizontal of the receiver.

which does not rely on the shape of the pulse itself. The er-
ror in a measurement like this is then primarily down to the
ability to identify the arrival time of a pulse. Signals such as
those in Figure 15 may have different arrival times depend-
ing upon how this is measured, that being first rise above
some threshold, peak amplitude of some envelope, or cross-
correlation between channels, but this error results in a fairly
small error in actual pointing (and in fact, if relying on the
average of many pulses, tremendously precise measurements
may be achieved in this way [33]). However, the pulses in
Figure 15 themselves, and more importantly their spectra, are
significantly dissimilar such that if one wanted to extend a
study from vertexing a neutrino interaction to an arrival direc-
tion study, which requires analysis of the spectrum to know
where the event lies on the Cherenkov cone, these different
pulses would provide different results. Therefore, while RT
may allow for event vertexing with small error, the error on
the actual neutrino arrival direction could be significant. A
quantitative analysis of these effects is beyond the scope of
this article, but we suggest based on these results that such



analysis be performed. A more complete understanding of the
spectral content of received signals can lead to an improve-
ment in reconstruction over what is currently available in sim-
ulation codes.

Furthermore, if we look instead at the way an arrival spec-
trum changes for a fixed receiver as the transmitter is swept
in depth, we see another subtle issue with assuming an ideal-
ized ice model. In Figures 18 and 19 we see that the signal
in a single antenna does not change significantly except for
the interference pattern from the direct and reflected timing
and simple 1/r changes. But this information, coupled with
that in Figure 16 is cause for concern, because one may not
know whether they lie in the peak or trough of a large-scale
oscillation, or waveguide-like structure that may artificially
enhance or diminish certain frequencies, or the overall ampli-
tude. Therefore, for antennas in this part of the ice, in-situ
surveys with antennas at various depths and positions may be
able to give a handle on this potential reconstruction system-
atic.

B. Implications for radar echo detection

The Radar Echo Telescope (RET) is a new detector tech-
nology that seeks to detect in-ice neutrinos via active radar
sounding. When an UHE neutrino interacts in the ice, it
produces a cascade (the same cascade that emits radio via
the Askaryan effect). As this cascade moves relativistically
through the medium, it ionizes the medium, leaving behind a
short-lived cloud of ionization that can reflect incident radio
waves. RET plans to deploy transmitting antennas to illumi-
nate a volume of ice, as well as receiving antennas to monitor
that same volume of ice, in order to detect neutrino-induced
ionization deposits in this illuminated region. The radar echo
method has recently been validated in the laboratory [10], and
a prototype in-situ detector is under development.
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FIG. 20. Comparison of peak power received for the functional (top)
and data-driven (bottom) n(z, z) profiles, for 350 MHz continuous
wave radio transmitted from a source 10 m beneath the surface of the
ice.
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FIG. 21. Comparison of peak power received for the functional (top)
and data-driven (bottom) n(z, z) profiles, for 350 MHz continuous
wave radio transmitted from a source 1 m beneath the surface of the
ice.

The received signal that RET will detect is very different
from the Askaryan signal. Because RET uses active radar, the
received signal is largely a function of the transmitted signal,
coupled with the effects of the transmitter-cascade-receiver
geometry. Similarly to Askaryan methods, however, the radar
echo signal is subject to the effects of the ice density pro-
file in transit; perhaps even more so because the radar echo
signal makes 2 trips through the ice (transmitter—cascade,
cascade—receiver). Therefore an understanding of the ice is
essential to know what effects (geometry or the ice) are re-
sponsible for which signal characteristics, if the receivers are
placed in such a way as to detect radio that will travel through
the firn. Previous studies [8] have avoided this complication
by stipulating that receivers and transmitter lie in deep, uni-
form ice.

The NSF-supported pilot implementation of the RET is the
Radar Echo Telescope for Cosmic Rays (RET-CR), which
seeks to test the method in nature by detecting the in-
ice cascade produced when an ultra-high-energy cosmic ray
(UHECR) air shower impacts the ice. For a UHECR of suf-
ficient energy (= 10PeV) and a high enough ice elevation
(Z1.5km) a fraction 210% of the primary energy actually
reaches the ice. This energy is tightly collimated around the
cascade axis, and produces a dense, in-ice cascade near the
surface of the ice. RET-CR will place a transmitter and re-
ceivers below the surface to test the radar echo method on this
in-nature source. Because RET-CR will be situated near the
surface, the effects of the n(z) gradient will be pronounced.
This present study, which qualitatively confirms (albeit with
a different simulation method) the results from previous stud-
ies using FDTD [18], highlights the importance of accurate
modeling for near-surface propagation. For example, in Fig-
ure 20 we show two propagation maps for continuous-wave
radio from a receiver 10 m beneath the surface. We see that
the interference pattern changes drastically depending upon
which ice model is used. Therefore, accurate modeling is es-



sential for RET to calculate an effective collection area, and to
optimize the detector geometry. We also show, in Figure 21,
another important example of why wave methods like PE may
be useful for such a study. In this Figure, we have placed a
transmitter just 1 m beneath the surface. In the lower panel
we can see a very clear horizontally propagating mode, which
is likely trapped in the deep n(x, z) profile inversion visible
in Figure 4, which is not present in the functional profile (top
panel). While such effects may be local to only certain sites, it
is nonetheless critical to have an understanding of the effects
that different n(x, z) profiles can have on propagation for an
eventual radio system deployment.

V. DISCUSSION AND CONCLUSIONS

We note that this is the first application of PE methods to
the in-ice problem, and the simulation is still in an introduc-
tory state. Considerations such as propagation at extremely
large baselines, curvature of the earth’s surface, reflections
from the ice bottom, and ice surface roughness have not been
thoroughly investigated nor included in the public version of
the code. The effects of receiving antennas are not included;
these results represent the field as it would arrive at the an-
tenna. For a physical, extended receiver the effects could be
pronounced, especially if the antenna is spread across several
wavelengths in z, but this requires further study. The conclu-
sions we present here are those that we feel confident to draw
from the simulation as it currently exists, which show effects
of propagation through the firn, vetted by FDTD, that are not
modeled in current simulation codes.

We have presented the first application of parabolic equa-
tion methods to in-ice radio propagation, and have shown a
modified split-step solution that reduces overall phase error
for the in-ice case relative to existing solutions. We have
shown that the received spectrum of a signal is affected by
propagation through a medium with changing index of refrac-
tion, an effect which cannot be replicated with RT methods
due to the infinite-frequency approximation. We showed that
this effect is more pronounced when realistic n(z, z) profiles
are used, rather than the simplified functional n(z) profile of-
ten used in ray tracing codes. The results herein are from a sin-
gle RT implementation, courtesy of the ARA experiment sim-
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ulation package (AraSim) and have been validated by a sec-
ond RT implementation. We validated the PE method against
FDTD simulations, and then made comparisons between PE
and RT in realistically large domains.

In conclusion, we suggest that PE methods warrant further
investigation, and that wave simulations are critical for sim-
ulating in-ice radio propagation. We see qualitatively that
signals propagating through more of the firn have more sig-
nificant distortion than for receivers below the firn in more
uniform ice (see e.g. Figure 16). In agreement with previous
studies, we find that the ice has a significant effect on spec-
tral content and pulse shape. Though significant phase error is
present in the PE methods presented here (seen in their devi-
ation from FDTD), we can conclude that the PE formalism
is useful for the in-ice problem. To that end, a more rig-
orous split-step approximation—or other PE solving routine
entirely—would be welcome and useful. An understanding
of these apparent ice effects on the received signal is critical
for energy and direction reconstruction of neutrino events for
in-ice radio neutrino detectors.
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Appendix A: In-Ice Parabolic Equation

1. Derivation

We begin by assuming that we have a system with cylindri-
cal symetry (p, 0, z), which is appropriate for many RF appli-
cations. The PE literature uses symbol z for the cylindrical
radius p, which we adopt to assist comparison, but note that
this x is not the Cartesian-x. For an arbitrary field ¢ which is
polarized along 6, the scalar wave equation for a field (assum-
ing an e™°? time dependence) is

1

(V2= 50 =0 (A1)

V2 + kin*yp = 0 (A2)

where kg = wp/c and v = ¢/n for the vacuum speed of light
c and index of refraction n. Using

P = —=ue*o”, (A3)
we re-write Eq. A2 as

u

02u + 2iko0,u + 02u + ko(n* — Du = ——.
422

(A4)

The ansatz wu is called the “reduced function”, and is used
primarily because it allows for the convienent form of Eq. A4
to be solved. By inspection, it can be seen that in the far field,
that is, for large x, the r.h.s of Eq. A4 approaches zero. We
thus take this far-field approximation in what follows, which
is valid in general for the problems of interest in radio propa-
gation applications.

The parabolic approximation begins by formally factoring
Eq. A4,

(0n + k(1 = Q)) (00 + k(1 + Q))]u =0, (A5

where we have taken the far-field (x >> 0) approximation,
and introduced the pseudo-differential operator

Q= /% +n2 (A6)
We focus on solutions of the form
u(z,z) = uy(x,2) +u_(z,2) (A7)

(%Cui = —ik‘o(l — Q)ui (AS)
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where the + indicate forward and backward propagating
fields. The formal solution of the forward propagating field
is

u(z) = ethor(=1+Q) (A9)

Then, if we want to solve for u(z + Az),

u(a: + Al‘) — eiko(a:+A:c)(71+Q) — eikoAﬂ?(*lJrQ)u(x)’
(A10)
meaning that the solution at u(z + Ax) only relies upon the
previous solution w(z). This means that the solution can be
marched along in code, drastically simplifying the computa-
tional time needed to calculate a full domain. Focusing solely
on the forward propagating field is the crux of several so-
called parabolic approximations.

The operator () is non-local, and does not have simple an-
alytic properties, so much care is needed when attempting to
find ways to use it in numerical calculations. The simplest
thing to do is to take the lowest order expansion of (), which
results in the expression

O*u + 2ikoOpu + ki (n* — 1)u = 0, (A11)
which is called the “standard parabolic equation” (SPE) in the
literature. This approximation is quite good for small values
of n that change very slowly with height z, and for propaga-
tion angles within a few degrees of the propagation direction.
However, for many problems (such as in-water acoustic prop-
agation) it is useful to simulate propagation at wider angles
and for a more strongly varying n. To that end, a different
form of () attributed to Feit and Fleck [25, 26] is

92
Qrr ~ |1+ 5 +n—1
kg

This expression has the same lowest-order expansion as the
SPE, but differs at higher order. Notice this expression
splits the operator into two parts, which may be classified as
“diffractive”, involving the partial derivative with respect to
z, and “refractive”, dealing with the index of refraction. Such
splitting makes for efficient numerical solution. This splitting
will be discussed below, when addressing the implementation
of a solution in software.

Further inspection finds that this expression will be most
accurate for n ~ 1, which may be suitable for the in-air ra-
dio or in-water acoustic cases, but this approximation is not
suitable for the in-ice application. We therefore introduce a
reference index value ng and an in-ice approximation for @
that leads to efficient splitting,

(A12)

(A13)



This also has the same lowest-order expansion as the SPE,
differing at higher orders. We reach this approximation by
using a reference wavenumber equal to that at the depth of the
source. Meaning, instead of using kg = w/c, we use kg =
wn(zg)/c. Implementation shows improved agreement with
FDTD calculations, as presented in this article.

2. Numerical Solution

There are several methods to solve the parabolic equation.
The form of the PE above, using @ in the various approximate
forms shown here, is solved using what are called “split-step”
numerical methods in which the diffractive part of the field
is solved for in Fourier space, and the refractive part of the
field is solved for via simple multiplication. These solutions
are computationally efficient, but the manipulation of @ intro-
duces error. The analysis of this error and desire to minimize
it under certain use cases leads to the various approximations
of Q.

The split-step method hinges on the Fourier identities
F(0%u) = —k2F(u) and F(O,u) = 0,F(u) in order to
come to a solution that can be solved computationally, where
F is the forward Fourier transform and k. is the vertical
wavenumber bounded by +7/Az. We begin by showing the
solution for the SPE. First, we take the Fourier transform of
Eq. All, which gives

. 2
0,U = tko (n?—1) - ]iz U, (A14)

2 kg
where U(x,k,) = F (u(z,2)). By analogy to Eq. A9, we

find

iko 9 k2
Uz, k) =exp |- | (n* = 1) — 5 | z|, (A15)
2 kg
and then using the same stepping idea as Eq. A10, we write
U(z+ Az, k,) =

. 2
o [0 (w2 -1 - )] UGak) cate
0

From here, we take the inverse Fourier transform of Eq. A16,
taking the part that does not rely on the transform variables
outside of the transform, to arrive at

u(z + Az, z) = exp {ZkOQAm

(- 1)

_ 2
Fl {exp [ A k] Ulz, kz)} . (A17)
2 ko

This is the split-step solution to the SPE, Eq. A11. By a simi-
lar procedure, we use Q;.. from Eq. A13 to arrive at the form
of the split-step solution used in this article and in paraProp-
Python,
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2

u(zr+ Az, z)—exp zk0<n\/1+2—\/ o )Am]
o ng

F- {exp —zk;OAle——

where n = n(x, z) is written for clarity.

Ulz, k.) } (A18)

3. Implementation notes

Following [23, 42, 43], paraPropPython uses artificial filter-
ing at the top and bottom of the simulation domain to elimi-
nate artificial reflections. The simulation domain in paraProp-
Python is twice the maximum user-specified depth (e.g. it
simulates a region above the ice the same height in z as the
simulation domain is deep in z) plus a small buffer region
above and below. Future releases will allow the user to spec-
ify the exact simulation domain, to speed up computation, if
the in-air portion is not needed, but in all cases this buffer re-
gion above and below is necessary. For this reason, reflections
from the bottom of the ice are not considered currently in the
code.

Surface roughness is also not included at this current time,
though we expect this to have some impact on the reflected
signal properties. Surface roughness will vary from site-to-
site, and is an important feature to include in future versions
of the code.

The default implementation of paraPropPython is to use
the split-step approximation outlined here. The user can also
specify other split-step approximations for comparison pur-
poses, including the standard wide-angle, and the original Feit
and Fleck splitting.

Appendix B: Source Modeling

Many parabolic equations model a source as a Gaussian
beam of some width, to simulate a directional antenna over
the surface of the earth. We are interested in what the propa-
gation might look like from a dipole source, since it is much
simpler to bury a dipole deep into the ice than it is a high-
gain antenna. We therefore define a dipole at a depth zy with
halves of approximately L = \/4. We approximate this dis-
tance as closely as possible to the nearest grid spacing in the
simulation. We then define the reduced field within this source
region, for a vertically polarized dipole, by

w(0,20 — L: 20+ L) = A[f X € X )] 4, (B1)

where A is a (complex) amplitude, 7 is a unit vector that
points out radially from the dipole (such that 71,.(zo — L) = 0,
fiz(20) = 1, and 7, (29 + L) = 0), € is the polarization vec-
tor of the antenna (¢ = (0, 0y, 12) for a vertically polarized
antenna), and the subscript z indicates that the reduced field
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u corresponds to the Z component of this expression. Such antenna beam pattern along the halves of the source. Such
a formalism results in the typical sin?d pattern of a dipole a source shows better agreement with a dipole FDTD source
antenna. In 2-d, this results in a cross-sectional slice of the than sources typically used in the literature.
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