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rules of geometric optics, applicable when the wavelength is

much smaller than any feature size, and wave effects such as

diffraction and interference can be neglected. The direction

of each segment is dictated by the given refractive index pro-

file, which is typically a functional fit to data. These methods

are computationally efficient, reaching solutions on the order

of ms. This allows for use in Monte Carlo simulations. Re-

cent studies [18] have shown, however, that more complete

modeling of the firn, simulated using finite-difference-time-

domain (FDTD) methods, can replicate observed signal fea-

tures in data [19, 20] that ray-tracing solutions can not. More-

over, it has been shown that density fluctuations in the ice

can complicate propagation. A density profile (ρ(z)) can be

converted to an index of refraction profile (n(z)) via the ex-

pression n(z) = 1 + 0.845ρ(z) [21]. These fluctuations can

result in unexpected amplitudes as a function of source and

receiver geometry (if the exact density profile is not known,

which is typical), as well as horizontally propagating modes

for certain source and receiver configurations. These effects

are most pronounced at shallow depths, near the surface of

the ice, where density variations are maximized. So, while

RT methods have many strengths, they do not provide a full

picture of radio propagation, and therefore result in limitations

on event reconstruction, both for neutrino arrival direction and

primary energy, for which the properties of the received signal

spectrum are of paramount importance.

The FDTD formalism is robust [22], but is computation-

ally expensive. The entire purpose of using radio to instru-

ment large volumes of ice in search of ultra high energy neu-

trino interactions is to cover a massive volume with minimal

apparatus, and detect signals across great distances, yet it is

intractable (and in some cases impossible) to simulate wide

band time-domain signals over kilometer scale baselines using

FDTD methods. Therefore in this article we explore whether

simple parabolic equation (PE) solvers, similar to those used

for decades in atmospheric propagation studies [23] and un-

dersea acoustic studies [24–28], can be applied to the problem

of in-ice radio wave propagation. [29] An example of a PE so-

lution for 350 MHz continuous-wave radio from a transmitter

100 m beneath the ice is shown in Figure 1. We find that, while

prone to phase errors due to the rate of change of the n(z) pro-

file, PE methods generally provide a more accurate modeling

of the spectral content of a signal (using FDTD as a baseline)

than RT methods. A better modeling of the spectral content

of simulated signals may improve energy and arrival direction

reconstruction relative to methods currently being used.

The article is organized as follows. We first introduce

the PE method, and show validation studies against an open

source FDTD package (meep [30]) over a small domain

where FDTD routines are tractable. We compare also to ray

tracing solutions in the range of their validity. We then extend

the study to simulate time-domain signals at long baselines

with PE and RT methods. We conclude by discussing next

steps and the implications for current and future experiments.

II. IN-ICE SIMULATION METHODS

There are 3 simulation methods that we discuss in this

paper: the parabolic equation (PE), finite-difference time-

domain (FDTD), and ray-tracing (RT). In this section, we in-

troduce these, focusing on the PE methods which are being

introduced to the problem of in-ice radio detection of neutri-

nos for the first time.

A. Ray tracing methods

In-ice ray tracing is currently the standard simulation tech-

nique for experiments seeking to detect in-ice neutrino inter-

actions using radio. RT methods take the infinite frequency

limit, and solve for the multiple paths that a signal can travel

from source to receiver, often designated “direct” (the signal

that travels from a source to receiver on an arc without in-

tercepting the surface) and “reflected” (the signal that reflects

from air/ice interface). In general, a particular transmitter–

receiver geometry will admit one or two ray path solutions.

In all cases, rays travel along curved paths when traversing

the firn. RT methods have analytic solutions for some forms

of the index of refraction profile and in general are numer-

ical solvers that can provide vertexing (identification of the

location of the RF source) based on time-difference-of-arrival

(TDOA) of different antennas. If a receiver is in a geometry

where both direct and reflected signals are present, a TDOA

between direct and reflected can be an additional powerful

variable for vertex resolution. RT methods are computation-

ally efficient, and some implementations can use arbitrary (i.e.

non-functional) n(z) profiles. In all cases, however, they rely

on geometric optics to calculate propagation. In this article,

we use RT for a functional n(z) profile, as well as a data-

driven n(z) profile as explained below. To optimize the RT

simulation, the step size scale factor was reduced until con-

vergence, with time delay precision better than 0.1 ns.

B. Finite-difference time-domain methods

These methods solve Maxwell’s equations numerically on a

spatial grid in the time domain. They are a standard for time-

domain electromagnetic modeling in antenna design, interfer-

ence analysis, and numerous other applications. Because they

involve approximations only in the discretization of the prob-

lem, they are accurate as long as the grid spacing is sufficiently

small for the frequencies of interest (a good approximate rule

is a minimum of 10 cells per wavelength). In this work we

have simulated everything on a 5 cm grid for both FDTD and

the PE methods described below, which is sufficient for fre-

quencies up to 600 MHz, in excess of what we simulate in

the work. The primary draw-backs to FDTD methods are the

large memory requirements (which for cylindrical volume of

R byZ with resolution r scales withRZr2) and the long com-

putational time (which scales with RZr3).
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sential for RET to calculate an effective collection area, and to

optimize the detector geometry. We also show, in Figure 21,

another important example of why wave methods like PE may

be useful for such a study. In this Figure, we have placed a

transmitter just 1 m beneath the surface. In the lower panel

we can see a very clear horizontally propagating mode, which

is likely trapped in the deep n(x, z) profile inversion visible

in Figure 4, which is not present in the functional profile (top

panel). While such effects may be local to only certain sites, it

is nonetheless critical to have an understanding of the effects

that different n(x, z) profiles can have on propagation for an

eventual radio system deployment.

V. DISCUSSION AND CONCLUSIONS

We note that this is the first application of PE methods to

the in-ice problem, and the simulation is still in an introduc-

tory state. Considerations such as propagation at extremely

large baselines, curvature of the earth’s surface, reflections

from the ice bottom, and ice surface roughness have not been

thoroughly investigated nor included in the public version of

the code. The effects of receiving antennas are not included;

these results represent the field as it would arrive at the an-

tenna. For a physical, extended receiver the effects could be

pronounced, especially if the antenna is spread across several

wavelengths in z, but this requires further study. The conclu-

sions we present here are those that we feel confident to draw

from the simulation as it currently exists, which show effects

of propagation through the firn, vetted by FDTD, that are not

modeled in current simulation codes.

We have presented the first application of parabolic equa-

tion methods to in-ice radio propagation, and have shown a

modified split-step solution that reduces overall phase error

for the in-ice case relative to existing solutions. We have

shown that the received spectrum of a signal is affected by

propagation through a medium with changing index of refrac-

tion, an effect which cannot be replicated with RT methods

due to the infinite-frequency approximation. We showed that

this effect is more pronounced when realistic n(x, z) profiles

are used, rather than the simplified functional n(z) profile of-

ten used in ray tracing codes. The results herein are from a sin-

gle RT implementation, courtesy of the ARA experiment sim-

ulation package (AraSim) and have been validated by a sec-

ond RT implementation. We validated the PE method against

FDTD simulations, and then made comparisons between PE

and RT in realistically large domains.

In conclusion, we suggest that PE methods warrant further

investigation, and that wave simulations are critical for sim-

ulating in-ice radio propagation. We see qualitatively that

signals propagating through more of the firn have more sig-

nificant distortion than for receivers below the firn in more

uniform ice (see e.g. Figure 16). In agreement with previous

studies, we find that the ice has a significant effect on spec-

tral content and pulse shape. Though significant phase error is

present in the PE methods presented here (seen in their devi-

ation from FDTD), we can conclude that the PE formalism

is useful for the in-ice problem. To that end, a more rig-

orous split-step approximation—or other PE solving routine

entirely—would be welcome and useful. An understanding

of these apparent ice effects on the received signal is critical

for energy and direction reconstruction of neutrino events for

in-ice radio neutrino detectors.
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Appendix A: In-Ice Parabolic Equation

1. Derivation

We begin by assuming that we have a system with cylindri-

cal symetry (ρ, θ, z), which is appropriate for many RF appli-

cations. The PE literature uses symbol x for the cylindrical

radius ρ, which we adopt to assist comparison, but note that

this x is not the Cartesian-x. For an arbitrary field ψ which is

polarized along θ, the scalar wave equation for a field (assum-

ing an eiω0t time dependence) is

(∇2 − 1

v2
∂2t )ψ = 0 (A1)

∇2ψ + k20n
2ψ = 0 (A2)

where k0 = ω0/c and v = c/n for the vacuum speed of light

c and index of refraction n. Using

ψ =
1√
x
ueik0x, (A3)

we re-write Eq. A2 as

∂2xu+ 2ik0∂xu+ ∂2zu+ k0(n
2 − 1)u = − u

4x2
. (A4)

The ansatz u is called the “reduced function”, and is used

primarily because it allows for the convienent form of Eq. A4

to be solved. By inspection, it can be seen that in the far field,

that is, for large x, the r.h.s of Eq. A4 approaches zero. We

thus take this far-field approximation in what follows, which

is valid in general for the problems of interest in radio propa-

gation applications.

The parabolic approximation begins by formally factoring

Eq. A4,

[

(

∂x + ik(1−Q)
)(

∂x + ik(1 +Q)
)

]

u = 0, (A5)

where we have taken the far-field (x >> 0) approximation,

and introduced the pseudo-differential operator

Q =

√

∂2z
k20

+ n2. (A6)

We focus on solutions of the form

u(x, z) = u+(x, z) + u−(x, z) (A7)

∂xu± = −ik0(1−Q)u± (A8)

where the ± indicate forward and backward propagating

fields. The formal solution of the forward propagating field

is

u(x) = eik0x(−1+Q). (A9)

Then, if we want to solve for u(x+∆x),

u(x+∆x) = eik0(x+∆x)(−1+Q) = eik0∆x(−1+Q)u(x),
(A10)

meaning that the solution at u(x + ∆x) only relies upon the

previous solution u(x). This means that the solution can be

marched along in code, drastically simplifying the computa-

tional time needed to calculate a full domain. Focusing solely

on the forward propagating field is the crux of several so-

called parabolic approximations.

The operator Q is non-local, and does not have simple an-

alytic properties, so much care is needed when attempting to

find ways to use it in numerical calculations. The simplest

thing to do is to take the lowest order expansion of Q, which

results in the expression

∂2zu+ 2ik0∂xu+ k20(n
2 − 1)u = 0, (A11)

which is called the “standard parabolic equation” (SPE) in the

literature. This approximation is quite good for small values

of n that change very slowly with height z, and for propaga-

tion angles within a few degrees of the propagation direction.

However, for many problems (such as in-water acoustic prop-

agation) it is useful to simulate propagation at wider angles

and for a more strongly varying n. To that end, a different

form of Q attributed to Feit and Fleck [25, 26] is

QFF ∼

√

1 +
∂2z
k20

+ n− 1. (A12)

This expression has the same lowest-order expansion as the

SPE, but differs at higher order. Notice this expression

splits the operator into two parts, which may be classified as

“diffractive”, involving the partial derivative with respect to

z, and “refractive”, dealing with the index of refraction. Such

splitting makes for efficient numerical solution. This splitting

will be discussed below, when addressing the implementation

of a solution in software.

Further inspection finds that this expression will be most

accurate for n ∼ 1, which may be suitable for the in-air ra-

dio or in-water acoustic cases, but this approximation is not

suitable for the in-ice application. We therefore introduce a

reference index value n0 and an in-ice approximation for Q
that leads to efficient splitting,

Qice ∼

√

1 +
∂2z
k20

+ n

√

1 +
1

n2
0

−

√

1 +
n2

n2
0

. (A13)
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This also has the same lowest-order expansion as the SPE,

differing at higher orders. We reach this approximation by

using a reference wavenumber equal to that at the depth of the

source. Meaning, instead of using k0 = ω/c, we use k0 =
ωn(z0)/c. Implementation shows improved agreement with

FDTD calculations, as presented in this article.

2. Numerical Solution

There are several methods to solve the parabolic equation.

The form of the PE above, usingQ in the various approximate

forms shown here, is solved using what are called “split-step”

numerical methods in which the diffractive part of the field

is solved for in Fourier space, and the refractive part of the

field is solved for via simple multiplication. These solutions

are computationally efficient, but the manipulation ofQ intro-

duces error. The analysis of this error and desire to minimize

it under certain use cases leads to the various approximations

of Q.

The split-step method hinges on the Fourier identities

F(∂2zu) = −k2zF(u) and F(∂xu) = ∂xF(u) in order to

come to a solution that can be solved computationally, where

F is the forward Fourier transform and kz is the vertical

wavenumber bounded by ±π/∆z. We begin by showing the

solution for the SPE. First, we take the Fourier transform of

Eq. A11, which gives

∂xU =
ik0
2

[

(n2 − 1)− k2z
k20

]

U, (A14)

where U(x, kz) = F (u(x, z)). By analogy to Eq. A9, we

find

U(x, kz) = exp

[

ik0
2

(

(n2 − 1)− k2z
k20

)

x

]

, (A15)

and then using the same stepping idea as Eq. A10, we write

U(x+∆x, kz) =

exp

[

ik0∆x

2

(

(n2 − 1)− k2z
k20

)]

U(x, kz) (A16)

From here, we take the inverse Fourier transform of Eq. A16,

taking the part that does not rely on the transform variables

outside of the transform, to arrive at

u(x+∆x, z) = exp

[

ik0∆x

2
(n2 − 1)

]

F−1

{

exp

[

−i∆x
2

k2z
k0

]

U(x, kz)

}

. (A17)

This is the split-step solution to the SPE, Eq. A11. By a simi-

lar procedure, we use Qice from Eq. A13 to arrive at the form

of the split-step solution used in this article and in paraProp-

Python,

u(x+∆x, z) = exp

[

ik0

(

n

√

1 +
1

n2
0

−

√

1 +
n2

n2
0

)

∆x

]

F−1

{

exp

[

− ik0∆x

√

1− k2z
k20

+ 1

]

U(x, kz)

}

, (A18)

where n = n(x, z) is written for clarity.

3. Implementation notes

Following [23, 42, 43], paraPropPython uses artificial filter-

ing at the top and bottom of the simulation domain to elimi-

nate artificial reflections. The simulation domain in paraProp-

Python is twice the maximum user-specified depth (e.g. it

simulates a region above the ice the same height in z as the

simulation domain is deep in z) plus a small buffer region

above and below. Future releases will allow the user to spec-

ify the exact simulation domain, to speed up computation, if

the in-air portion is not needed, but in all cases this buffer re-

gion above and below is necessary. For this reason, reflections

from the bottom of the ice are not considered currently in the

code.

Surface roughness is also not included at this current time,

though we expect this to have some impact on the reflected

signal properties. Surface roughness will vary from site-to-

site, and is an important feature to include in future versions

of the code.

The default implementation of paraPropPython is to use

the split-step approximation outlined here. The user can also

specify other split-step approximations for comparison pur-

poses, including the standard wide-angle, and the original Feit

and Fleck splitting.

Appendix B: Source Modeling

Many parabolic equations model a source as a Gaussian

beam of some width, to simulate a directional antenna over

the surface of the earth. We are interested in what the propa-

gation might look like from a dipole source, since it is much

simpler to bury a dipole deep into the ice than it is a high-

gain antenna. We therefore define a dipole at a depth z0 with

halves of approximately L = λ/4. We approximate this dis-

tance as closely as possible to the nearest grid spacing in the

simulation. We then define the reduced field within this source

region, for a vertically polarized dipole, by

u(0, z0 − L : z0 + L) = A[n̂× ǫ̂× n̂]z, (B1)

where A is a (complex) amplitude, n̂ is a unit vector that

points out radially from the dipole (such that n̂x(z0−L) = 0,

n̂x(z0) = 1, and n̂x(z0 + L) = 0), ǫ is the polarization vec-

tor of the antenna (ǫ = (0x̂, 0ŷ, 1ẑ) for a vertically polarized

antenna), and the subscript z indicates that the reduced field
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u corresponds to the ẑ component of this expression. Such

a formalism results in the typical sin2θ pattern of a dipole

antenna. In 2-d, this results in a cross-sectional slice of the

antenna beam pattern along the halves of the source. Such

a source shows better agreement with a dipole FDTD source

than sources typically used in the literature.
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