
Towards Interactive, Reproducible Analytics at
Scale on HPC Systems

Shreyas Cholia
Lawrence Berkeley National Laboratory

Berkeley, USA
scholia@lbl.gov

Lindsey Heagy
University Of California, Berkeley

Berkeley, USA
lheagy@berkeley.edu

Matthew Henderson
Lawrence Berkeley National Laboratory

Berkeley, USA
mhenderson@lbl.gov

Drew Paine
Lawrence Berkeley National Laboratory

Berkeley, USA
pained@lbl.gov

Jon Hays
University Of California, Berkeley

Berkeley, USA
jthays@berkeley.edu

Ludovico Bianchi
Lawrence Berkeley National Laboratory

Berkeley, USA
lbianchi@lbl.gov

Devarshi Ghoshal
Lawrence Berkeley National Laboratory

Berkeley, USA
dghoshal@lbl.gov

Fernando Pérez
University Of California, Berkeley

Berkeley, USA
fernando.perez@berkeley.edu

Lavanya Ramakrishnan
Lawrence Berkeley National Laboratory

Berkeley, USA
lramakrishnan@lbl.gov

Abstract—The growth in scientific data volumes has resulted
in a need to scale up processing and analysis pipelines using High
Performance Computing (HPC) systems. These workflows need
interactive, reproducible analytics at scale. The Jupyter platform
provides core capabilities for interactivity but was not designed
for HPC systems. In this paper, we outline our efforts that
bring together core technologies based on the Jupyter Platform
to create interactive, reproducible analytics at scale on HPC
systems. Our work is grounded in a real world science use case
- applying geophysical simulations and inversions for imaging
the subsurface. Our core platform addresses three key areas of
the scientific analysis workflow - reproducibility, scalability, and
interactivity. We describe our implemention of a system, using
Binder, Science Capsule, and Dask software. We demonstrate the
use of this software to run our use case and interactively visualize
real-time streams of HDF5 data.

Index Terms—Interactive HPC, Jupyter, Containers, Repro-
ducible Science

I. INTRODUCTION

Scientific data is increasingly processed and analyzed on
HPC systems. These workflows are different from traditional
batch-queue workflows and require more support for a unified,
interactive, real-time platform that can operate on High Per-
formance Computing (HPC) systems and very large datasets.

In recent years, scientists across a wide variety of disciplines
have adopted the Jupyter Notebook as an essential element of
their discovery workflows. Jupyter combines documentation,
visualization, data analytics, and code into a single unit that
scientists can share, modify, and even publish. The Jupyter
platform and ecosystem is increasingly being deployed on
clusters and HPC systems to support scientific workflows.
However, there are gaps in the current Jupyter ecosystem that
need to be addressed to enable interactive and reproducible

analytics at scale. Our work addresses these gaps. There are
three key components driving our work:

• Reproducible Analytics: Reproducibility is a key com-
ponent of the scientific workflow. We wish to to capture
the entire software stack that goes into a scientific analy-
sis, along with the code for the analysis itself, so that this
can then be re-run anywhere. In particular it is important
to be able reproduce workflows on HPC systems, against
very large data sets and computational resources. Further,
we also need to capture any updates made to the analysis
on subsequent runs.

• Scalable Analytics: In order to run large scale interac-
tive workflows on HPC systems, we need to engineer
these interactive analyses to utilize multiple nodes, in a
distributed fashion. We need to be able to interface with
HPC batch queues and launch a set of workers that can
enable interactive analytics at scale.

• Interactive Analytics: Data analytics tends to be a highly
interactive process. While traditionally, these have been
run on desktops and stand-alone computers, the size of
the data is requiring us to consider the modalities of
these workflows at scale. There is an increased need
to support interactive analytics with human-in-the-loop,
large data visualizations and exploration at batch-oriented
HPC facilities, with the goal of pulling subsets of the data
into interactive visualization tools on-demand as needed.

Towards this end, we have developed a system that enables
these components for interactive workflows. The Jupyter Note-
book provides the core analysis platform, while the JupyterLab
extension framework allows us to add custom functionality for
interactive visualization. We use Binder [1], [2] and Science

47

2020 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)

U.S. Government work not protected by U.S. copyright
DOI 10.1109/UrgentHPC51945.2020.00011

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

Capsule [3] to capture a reproducible software environment.
Dask [4] (an open source framework and library for distributed
computing in Python) provides us with a backend to scale the
analyses on the National Energy Research Scientific Comput-
ing Center (NERSC) compute nodes. Finally, we developed a
JupyterLab extension to allow users to interactively work with
large volumes of data. Our system allows users to capture a
project specific set of Notebooks and software environment as
a Git repo, launches this as containers on HPC resources at
scale, and enables on-demand visualization to sub-select and
view data in real-time.

II. BACKGROUND

In this section, we describe Jupyter at NERSC, our science
use case, and our motivating user study.

A. Jupyter at NERSC

NERSC is the primary scientific computing facility for the
Office of Science in the U.S. Department of Energy. More
than 7,000 scientists use NERSC to perform basic scientific
research across a wide range of disciplines, including climate
modeling, research into new materials, simulations of the
early universe, analysis of data from high energy physics
experiments, investigations of protein structure, and a host of
other scientific endeavors.

NERSC runs an instance of JupyterHub - a managed multi-
user Jupyter deployment. The hub allows users to authenticate
to the service, and provides the ability to spawn Jupyter
Notebooks on different types of backend resources.

B. Use case

We motivate our work through a real-world science use case
involving geophysical simulations and inversions for imaging
the subsurface. Geophysical imaging is used for resource ex-
ploration in hydrocarbons, minerals, and groundwater, as well
as geotechnical and environmental applications. Subsurface
variations in physical properties such as density or electrical
conductivity can be diagnostic of geologic units or sought-
after natural resources. Geophysical data, such as gravity or
electromagnetic measurements, which are sensitive to these
physical properties, can be collected in the field and interpreted
using computational methods.

The computational building blocks that we require for
working with geophysical data include:

• The ability to simulate the governing partial differential
equations (PDEs). These are typically large-scale, require
parallel computation, and can generate large volumes of
data that are stored to disk for later analysis.

• The ability to run PDE constrained optimization to esti-
mate a model of the subsurface given geophysical data.
This requires many simulations to be run as well as mech-
anisms for estimating derivatives in the optimization.

More recently, machine learning (ML) techniques are being
used in physically-motivated scientific contexts, both as com-
panions/replacements for parts of traditional computational

pipelines (e.g. playing the role of effective models or accel-
erated solvers) and as tools capable of integrating multimodal
data for prediction, beyond what traditional physical models
could do. In the geosciences we have access to both of these
use cases, and the current project focuses on using ML tools
to develop accelerated models that can accurately represent
fine-scale physics that is computationally expensive to solve
for directly.

This requires generating a substantial amount of training
data from first-principles solvers, and then training the ML
pipelines on the data to capture the relevant physical features
at the required accuracy. This new ML-based effective model
then needs to be used in the complete pipeline, in this case,
opening the possibility of solving more physically realistic
problems in finite time thanks to this accelerated component.

This process is both data- and computationally-intensive
(and thus well suited for an HPC environment) but also
requires expert insight and evaluation throughout. It is critical
that the scientist with domain knowledge inspect the structure
of the solutions learned and produced by the ML system
to ensure that, in addition to the constraints encoded in the
underlying optimization problem, they have the right overall
physical structure. In the training process, visual and interac-
tive exploration of the complex data is necessary to understand
where issues may arise, as summary metrics such as total loss
are often insufficient to inform the scientist.

Since the simulation codes tend to be optimized in their
output formats and structure for computational efficiency,
they do not always automatically produce the variables most
convenient for interactive exploration. Furthermore, it would
be cumbersome to require such capabilities to be hard-coded in
the simulations themselves, as the requirements of interactive
exploration can vary from problem to problem based on
multiple conditions (questions being asked, bugs/issues found
in a particular run, parameter values, etc.). It is thus optimal to
separate the low-level capabilities of the code that generates
all the proper generic data, from the exploratory environment
where a scientist can probe the specific combinations of
quantities they need at a given time.

In this work, we design the right level of interactive capa-
bilities in the JupyterLab environment to allow the working
scientist to flexibly explore and query their data at multiple
levels, with a minimal amount of customization required of
the underlying simulation. Additionally, we tackle two issues
that are part of the entire lifecycle of research and that be-
come particularly acute in HPC contexts: how to improve the
experience of interfacing with the HPC system’s scheduling
environment for a scientist focused on exploratory questions,
and how that scientist can then best share the results of their
work with others in a self-contained, reproducible manner.

C. Jupyter User Study

Our work is also motivated by a qualitative user study
conducted with individuals who use Jupyter as part of their
work with user facilities [5] that investigated scientific needs
and requirements for Jupyter in HPC environments. We

48

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

interviewed thirty-two researchers, computer scientists, and
open source developers between September and December
2019. Subsequently, we surveyed recent users of NERSC’s
Jupyter installation between March - April 2020 (receiving 103
responses from over 900 users contacted). Combined, these
datasets explore how facilities are supporting their scientific
user’s work with Jupyter, how scientists are using Jupyter to
accomplish different research activities, and identifies gaps in
the alignment of Jupyter tools and HPC facility systems and
cultures.

Jupyter users at NERSC are frequently using this resource to
interactively explore and analyze data housed on the different
shared filesystems. A handful of individuals are prototyping
analysis code and running machine learning workflows, and
a few are executing batch processing jobs from Notebooks.
Sharing and collaboration centered around Jupyter Notebooks
also emerged as key topics in interviews and our survey. All
of our interviewees indicated they share Notebooks in some
way, typically with collaborators and at times the public or
their community. Additionally, 69% of our survey respondents
share Notebooks through one or more mechanisms including
email, version controlled repositories like GitHub, a shared
file system (NERSC supports shared global filesystems), and
cloud based sharing services like Slack, Dropbox, or Google
CoLab.

Sharing and collaborating on Notebooks is challenging for
a few common reasons. First, clean version controlling these
files requires using extra tools, like nbdime [6], that some
users are unaware of. Second, there is a need to share the
computational environment setup if a collaborator is going
to execute a shared Notebook on their own system. Related
to both of these issues, participants noted their work often
requires large datasets housed on shared filesystems. When
sharing Notebooks their colleagues require access to the data
to run and iterate on the work with its artifacts. When a
colleague doesn’t have access to the HPC system hosting the
data they either cannot fully use a shared Notebook, have to
obtain access to the system, or have to figure out how to
adapt and use a subset of the data. These challenges help
motivate our work to build a reproducible, shareable, and
scalable interactive data analysis pipeline using Jupyter tools,
the Science Capsule framework, and NERSC resources.

III. ARCHITECTURE

Figure 1 shows the prototype architecture we have devel-
oped that would let users start from a Git software repository
to create an interactive, shareable, and reproducible analysis
environment at NERSC. A user can use their locally cloned Git
repo along with a Science Capsule Docker environment and
the repo2Docker [7] tool to create a Docker [8] image that can
then be registered in a container registry. Subsequently, this
image is converted to a Shifter [9] image. Shifter is a container
technology that allows user-created Docker images to run at
NERSC. A user can come to NERSC and use JupyterHub to
launch the created image at NERSC. Using our tools, a user

is able to deploy their Notebooks and environment from their
desktop to an HPC machine.

A. Binder on HPC

Maintaining a consistent software environment to run a
given analysis presents a hidden cost to the scientist. Soft-
ware dependency management is a potentially time-consuming
task, and adds roadblocks as the scientist must grapple with
installing and managing a working software tool chain with
the analysis itself. It hinders reproducibility since one needs to
have a consistent software environment to be able to reproduce
a given analysis.

The Binder Project in the Jupyter ecosystem provides a
framework to capture software specifications starting from
a Git repo, converting them into containers and deploying
these into live computing environments. With Binder, users can
place Notebooks along with a dependency file in a repository,
and then simply share a link to the repository with others to
allow them to run the Notebook. Binder is designed to run
in a cloud environment with built-in containerization support
for Docker and Kubernetes [10]. However, it does not work
natively on traditional HPC systems.

Our goal has been to create a reproducible Notebook in
an HPC setting, such that we can run workflows against large
datasets that are being generated from experimental workflows
or simulations. We are looking at taking Binder’s container
based approach and applying it to reproducible environments
at HPC centers like NERSC. Our solution is based on adapting
the Binder toolset to HPC, using Shifter to allow user-created
Docker container images to be run at NERSC, along with the
Science Capsule software to capture provenance within the
container (described in Section 3.3).

In our current implementation, users store their analysis
Notebook in a remote Git repo (we use GitHub in our work),
and a software specification that goes along with it. Binder’s
repo2docker tool provides a standard set of protocols to
convert such a repo into a Docker container at the click of
a button.

We create an initial build of a Docker container that includes
the: a) software environment needed to run the Notebook code
b) underlying Git repo with the analysis notebooks and related
code, c) Science Capsule software to capture provenance for
reproducibility in a running environment, and d) Dask software
to scale up the analysis. This container is then pushed to the
NERSC Docker image registry.

Once an image is available to run we pull it from the registry
onto the HPC system (Cori) and convert it into a Shifter image,
so that it can run on NERSC systems. Shifter is NERSC’s
container implementation that allows Docker containers to run
on HPC nodes, and is similar to other HPC container tools like
Singularity [11] or CharlieCloud [12].

We use the NERSC Jupyterhub service to launch the
software environment. Jupyterhub is a service that provides
an institutional multi-user deployment of Jupyter Notebook
services. NERSC allows users to launch custom versions of
their Jupyter environment via Jupyterhub. In this case, we

49

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

HPC Facility
Create the analysis environment
Clone a git repo
Use ScienceCapsule image
Use repo2Docker
Push image to NERSC

Github
repository

DockerHub

JupyterHub

Convert to
Shifter

Run reproducible
environment

Using Shifter on HPC
machines

Fig. 1. The figure shows our prototype that allows users to build a reproducible environment to share. A user can start from a Git repository and an image
to create a customized analysis environment which can be pushed to NERSC. The registered image is then accessible to users to launch at NERSC.

point the NERSC Jupyter environment at the Shifter image
that was just built. This lets us launch this container on the
Cori supercomputer, and places the user into a live interactive
Jupyter environment.

We note that while this work was prototyped on NERSC
systems using a specific technology stack, we believe that
this overall approach is technology-agnostic. The Binder for
HPC approach should work for any container technology
compatible with Docker - it would involve replacing the Shifter
container run-time with an alternate engine (e.g., Singularity
or CharlieCloud), and converting the image to the desired run-
time on the HPC side. Using containerization ensures that the
process for packaging and building these tools remains the
same across different HPC backends.

B. Integration with Dask

Enabling our reproducible containers described in the pre-
vious section to run at scale on HPC resources presents a
new set of challenges and opportunities. We would like to
enable HPC users to easily share Notebooks that can be re-
run, including executing large-scale applications. This means
creating a seamless environment to allow existing Notebook-
based workflows to easily grow to larger scales across very
large datasets with minimal effort on the users end.

In order to scale up computations from a Jupyter Notebook,
it needs to interact with the HPC backend to utilize additional
compute resources. We use the Dask framework to manage
and launch interactive workers on HPC compute nodes.

In previous work, we developed a Dask-based backend
for the Jupyter interface [13], [14], where we demonstrated
the scale up of image processing for 4D STEM electron
microscope data across 1920 cores (achieving 100x to 600x
performance improvements). In this paper, we build on our

earlier work by adding Dask as a layer to enable scale-up of
our reproducible environments described in section 3.1. Dask
is included as a dependency in the container that we build
with Binder. This allows us to instantiate Dask from within
this container. We extend the Jupyter Notebook to use Dask
to leverage performance at scale on HPC systems — using its
advanced parallelism capabilities for Python based analytics,
to provide hooks to directly execute code in the Notebook
remotely. Dask workers enable us to farm out and vectorize
Notebook cells or functions. We can instruct the Notebook to
run selected code on remote Dask workers, and collect results
asynchronously back into the Notebook process, so that they
can be analyzed and visualized in the Notebook. This gives
us a powerful and simple mechanism to scale-up a piece of
interactive code on an HPC backend.

NERSC uses the Slurm batch scheduling system to manage
jobs on the Cori supercomputer. Using Dask’s Slurm Job
Queue integration, we were able to launch a set of workers
that were launched on Cori compute nodes through Slurm. In
collaboration with NERSC, we were able to determine the
appropriate set of queue characteristics to enable scalable,
interactive analytics. In particular it is very useful to have
a queue that offers nodes on-demand or with a short wait
time, since the user is expected to work interactively with the
analysis. To maintain these characteristic the queues needed to
be over-provisioned (so that free nodes were always available),
with limits on the maximum job size (so that a single job
couldn’t use up all the resources), along with a very high
priority boost (so that these jobs were always preferentially
run before others). NERSC provides interactive and real-
time queues that have a very short turnaround time, and
are suitable for these kinds of workloads. In future work,
we will be investigating ways to increase the efficiency of

50

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. JupyterLab HDF5 Slicer prototype that allows users to interactively explore 3D models simply by double-clicking the appropriately formatted HDF5
files.

provisioning Dask workers in an HPC environment, since Dask
Job Queue launches individual jobs for each worker, rather
than submitting a set of workers in bulk.

In our example, we worked with the SimPEG Geophysics
code, and were able to execute simulation runs remotely on
40 Dask workers using this approach. This enabled us to
streamline the setup for running of a large batch of simulations
used to generate data for a machine learning application.
Similarly, many other geophysical problems, such as frequency
domain electromagnetics, are readily parallelizable, enabling
us to also improve run-times of individual simulations.

C. Science Capsule environment
Science Capsule is a framework that helps scientists cap-

ture, curate, and revisit artifacts produced and used over the
lifecycle of their work. This framework is run in a Docker
container, or bare-metal on a machine, and monitors a user’s
specified computational workflows to automatically capture
events from the run-time environment. These events are then
used to generate detailed provenance information for future
reproduction of the work. Importantly, Science Capsule en-
ables scientists to incorporate their paper and digital notes
alongside this provenance information so that they can explore
and revisit their work in a web-based timeline (Figure 3). The

provenance generated by Science Capsule helps users make
their analyses more reproducible.

Fig. 3. The Science Capsule user interface displays a timeline of events
captured while allowing users to add notes and images for later use when
revisiting their work.

D. Rich, interactive visualization of HDF data

Interactive visualization is a key element of the scientific
analysis loop and allows the user a means to query and

51

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

inspect data and results from computational runs. Jupyter fits
naturally into this space, as it allows users to make use of
a vast ecosystem of front-end JavaScript data visualization
tools that can run in the browser, while connecting these with
the backend Python machinery to interrogate the data. In the
context of HPC and big data, this presents a unique set of
challenges, because the datasets can be very large; it may not
be practical or feasible to pull in the entire dataset into a
remote client browser for visualization.

In order to address this we developed a prototype Jupyter-
Lab extension that visualizes structured data in the Hierar-
chical Data Format version 5 (HDF5) format [15]. HDF5 is a
common format for representing very large, multi-dimensional
arrays of structured data. Our extension, the JupyterLab HDF5
slicer [16] allows users to sub-select and query data from a
multi-dimensional array in an HDF5 file using an HTTP API.

In our geophysics use case, the data that are produced
describe a 3D model of the subsurface at each iteration of
an optimization problem. These results are recorded to disk
using the HDF5 format. Being able to quickly preview these
results, during execution, enables users to assess the setup,
choice of hyper-parameters, and progress of the optimization
problem; this can be important for identifying and isolating
problems during the computation. Also, the ability to scan
through two-dimensional slices of results provides a way to
compare, visualize, and interpret 3D results in the context of
the geologic question being asked. The data is remote to the
user, in files residing on the HPC filesystem, while the user
visualizes data in JupyterLab from a web browser in their local
environment (e.g., laptop or desktop).

The extension allows a user to simply double-click on an
appropriately formatted HDF5 file and visualize the data,
which is shown in Figure 2. Data is fetched on-demand
for rapid visualization and to minimize unnecessary remote
data transfer for data not viewed, which could potentially
overwhelm the network and the browser. There is a server side
component that is launched through the Jupyter web service
backend (Tornado [17]) that can query HDF5 data directly
through the h5py library, and exposes this via an HTTP API.

In conjunction with the JupyterLab HDF5 extension [18],
our viewer provides a tool for rendering 2-dimensional or-
thographic views of 3-dimensional data, allowing users to
interactively slide through individual slices of data that are
pulled down from the server and rendered in real time.

Three interactive controls are provided: (1) normal axis
selector: a drop-down menu which determines which axis is
perpendicular to the screen (i.e., the dimension which is sliced
across); (2) slice selector: a slider which determines the current
slice index and allows the user to traverse the normal axis; (3)
color-scale selector: a drop-down menu which determines the
color scheme of the heat map. These controls enable us to
manage the data streaming to the interface from the backend
API.

IV. RELATED WORK

In this section, we detail some of the work in interactive,
collaborative, and reproducible analytics.
Interactive Computing and HPC Scientific workflows have
been used for composing and executing pipelines on dis-
tributed and HPC platforms and provide some interactive
computing capabilities [19]. There are a number of interac-
tive computing environments including Matlab, SAS, Excel,
Mathematica [20], and Apache Zeppelin [21]. There are
numerous electronic lab Notebook systems (ELNs), such as
Benchling [22] and SciNote [23], which serve more as lab-
oratory information management and documentation systems.
These types of ELNs are different from live computational
Notebooks like Jupyter which serve as interactive live code
environments that combine documentation and visualizations.
The Artificial Intelligence/Machine Learning (AI/ML) space
also has a number of interactive tools that specifically provide
integration with popular ML libraries. Tensorboard provides
a visual interactive interface for Tensorflow [24] based work-
flows.

There are numerous efforts at various DOE and NSF
facilities to enable Jupyter in HPC. Work done on
Batchspawner [25] at the University of Minnesota has enabled
a lot of the initial batch system integration in JupyterHub, and
is being used as the core to build a lot of the advanced resource
scheduling infrastructure at NERSC. Tools like Parsl [26],
Dask [4], Spark, and IPyParallel [27] manage backend workers
that can be used to facilitate farming out tasks to a distributed
set of nodes. We will be using one or more of these tools as
appropriate.
Reproducibility and Sharing Tools like GitHub and Bit-
Bucket let users share and version control code while archives
such as Zenodo [28], Dataverse [29], and Git LFS [30] provide
versioned control data. However, there are limited tools that
allow users to share an interactive analysis environment,
especially on HPC systems. Digital libraries are a collection
of data and associated metadata to support the information
needs of the users [31], [32]. Previous research has proposed
different ways to index and extract information from articles
in digital libraries [33], [34].

National Institute of Science and Technology (NIST) has
built CoRR (Cloud of Reproducible Records), a cloud infras-
tructure for automating interoperability and reproducibility of
experiments [35]. Burrito [36] is a Linux-based system that
captures a researcher’s computational activities and provides
user interfaces to annotate the captured provenance. Pop-
per [37] is a protocol and command language interpreter (CLI)
that uses DevOps practices to implement scientific exploration
pipelines such that researchers leverage existing tools and
technologies to enable reproducibility in computational exper-
iments. Science Capsule captures and preserves the human-
generated artifacts and provenance of a workflow life cycle as
digital objects for knowledge discovery.

Virtualization has been used to replicate execution environ-
ments in the cloud [38]. Recent work on container technologies

52

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

has enabled encapsulation of applications and associated data
into a single lightweight entity. Container technologies like
Docker ease the management of the life cycle of an entire
application or a workflow [39], [40] and provide data encap-
sulation for sharing. The Large Synoptic Survey Telescope is
using a custom Jupyter container based workflow [41], with
a domain science software stack that can be provisioned on
Kubernetes based resources, and allows scientists to reproduce
analyses for this project.

The LIGO Binder effort demonstrated the feasibility and
value of shareable Notebook repositories [42], [43] running on
these cloud instances. Pangeo [44] is a community platform
for big data geoscience, that uses a Jupyter deployment in the
cloud, to run reproducible workflows through Binder using
a pre-configured geoscience-specific software container, and
using tools like Dask for scalability.

V. CONCLUSION

Our work lays the foundation for enabling reproducible,
interactive analytics at scale in an HPC environment. Our work
has been informed by user studies, and is grounded in a real
world geophysics application. We have been able to build a
prototype at NERSC demonstrating the viability of this work.
We believe that this approach will be increasingly important
as a means to bridge usability and interactivity with traditional
HPC workflows, while providing a template for reproducible
scientific analyses.

It allows us to meaningfully address interactivity and re-
producibility at significantly higher scales. It allows a given
analysis to be run against larger or different datasets, while
maintaining an interactive real-time component. The Jupyter
Notebook allows the user to go back and forth between live
interactive analysis tools and large scale computations.

This ultimately enables scientific collaborations to maintain
a set of shared and curated analyses and their software
environments. This has the advantage that the analysis can
be re-run by anyone within the collaboration without needing
to configure and set up complex software requirements and
dependencies. Users can fork and re-run their own versions of
the analyses, while capturing new changes, thus completing
the scientific workflow loop. We believe that bringing this
approach to HPC provides immense value and a boost in the
scope of projects that can avail of this technology.

VI. ACKNOWLEDGMENTS

We thank Rollin Thomas for helping us with the Jupyter
support at NERSC. This work and the resources at NERSC
are supported by the U.S. Department of Energy, Office of Sci-
ence and Office of Advanced Scientific Computing Research
(ASCR) under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] P. Jupyter, M. Bussonnier, J. Forde, J. Freeman, B. Granger, T. Head,
C. Holdgraf, K. Kelley, G. Nalvarte, A. Osheroff, M. Pacer, Y. Panda,
F. Perez, B. Ragan-Kelley, and C. Willing, “Binder 2.0 - reproducible,
interactive, sharable environments for science at scale,” 01 2018, pp.
113–120.

[2] “Binder website,” https://mybinder.org/.
[3] “Science capsule,” https://sciencecapsule.lbl.gov.
[4] M. Rocklin, “Dask: Parallel computation with blocked algorithms and

task scheduling,” in Proceedings of the 14th python in science confer-
ence, no. 130-136. Citeseer, 2015.

[5] D. Paine and L. Ramakrishnan, “Understanding interactive and repro-
ducible computing with jupyter tools at facilities,” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-2001355, 2020.

[6] “nbdime jupyter notebook diff and merge tools,”
https://github.com/jupyter/nbdime, 2020.

[7] P. Jupyter, “repo2docker,” https://repo2docker.readthedocs.io/.
[8] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.
[9] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa,

J. Porter, and V. Tsulaia, “Shifter: Containers for hpc,” Journal of
Physics: Conference Series, vol. 898, p. 082021, 10 2017.

[10] “Kubernetes,” https://kubernetes.io/docs/reference/.
[11] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific

containers for mobility of compute,” PloS one, vol. 12, no. 5, 2017.
[12] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers

for user-defined software stacks in hpc,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3126908.3126925

[13] S. Cholia, M. Henderson, O. Evans, and F. Pérez, “Kale: A system for
enabling human-in-the-loop interactivity in hpc workflows,” 10 2018.

[14] M. L. Henderson, W. Krinsman, S. Cholia, R. Thomas, and T. Slaton,
“Accelerating experimental science using jupyter and nersc hpc,” in
Tools and Techniques for High Performance Computing. Springer,
2019, pp. 145–163.

[15] T. H. Group, “Hierarchical data format, version 5,” 1997–2016,
http://www.hdfgroup.org/HDF5/.

[16] J. Hays, “Jupyterlab slicer,” https://github.com/JonjonHays/jupyterlab-
slicer.

[17] M. Dory, A. Parrish, and B. Berg, Introduction to Tornado. O’Reilly
Media, Inc., 2012.

[18] P. Jupyter, “jupyterlab-hdf5,” https://github.com/jupyterlab/jupyterlab-
hdf5.

[19] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for
e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated, 2014.

[20] W. R. Inc., “Mathematica, Version 12.1,” champaign, IL, 2020.
[Online]. Available: https://www.wolfram.com/mathematica

[21] “Zeppelin website,” https://zeppelin.apache.org/.
[22] “Benchling website,” https://www.benchling.com/.
[23] “Scinote website,” https://www.scinote.net/.
[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[25] M. B. Milligan, “Jupyter as common technology platform for interactive
hpc services,” in Proceedings of the Practice and Experience on
Advanced Research Computing, ser. PEARC ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3219104.3219162

[26] Y. N. Babuji, K. Chard, I. T. Foster, D. S. Katz, M. Wilde, A. Woodard,
and J. M. Wozniak, “Parsl: Scalable parallel scripting in python.” in
IWSG, 2018.

[27] “ipyparallel,” https://github.com/ipython/ipyparallel, 2015.
[28] M.-A. Sicilia, E. Garcı́a-Barriocanal, and S. Sánchez-Alonso, “Com-

munity curation in open dataset repositories: Insights from zenodo,”
Procedia Computer Science, vol. 106, pp. 54–60, 2017.

[29] G. King, “An introduction to the dataverse network as an infrastructure
for data sharing,” 2007.

[30] C. Boettiger, “Managing larger data on a github repository,” Journal of
Open Source Software, vol. 3, no. 29, p. 971, 2018.

53

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

[31] C. L. Borgman, “What are digital libraries? competing visions,” Infor-
mation processing & management, vol. 35, no. 3, 1999.

[32] G. G. Chowdhury and S. Chowdhury, Introduction to digital libraries.
Facet publishing, 2003.

[33] S. Lawrence, C. L. Giles, and K. Bollacker, “Digital libraries and
autonomous citation indexing,” Computer, vol. 32, no. 6, pp. 67–71,
1999.

[34] W. Michener, D. Vieglais, T. Vision, J. Kunze, P. Cruse, and G. Janée,
“Dataone: data observation network for earth—preserving data and
enabling innovation in the biological and environmental sciences,” D-Lib
Magazine, vol. 17, no. 1/2, p. 12, 2011.

[35] “Corr,” https://mgi.nist.gov/cloud-reproducible-records/, 2020.
[36] P. J. Guo and M. I. Seltzer, “Burrito: Wrapping your lab notebook in

computational infrastructure,” 2012.
[37] I. Jimenez, A. Arpaci-Dusseau, R. Arpaci-Dusseau, J. Lofstead,

C. Maltzahn, K. Mohror, and R. Ricci, “Popperci: Automated repro-
ducibility validation,” in Computer Communications Workshops (INFO-
COM WKSHPS), 2017 IEEE Conference on. IEEE, 2017, pp. 450–455.

[38] B. Howe, “Virtual appliances, cloud computing, and reproducible re-
search,” Computing in Science & Engineering, vol. 14, no. 4, pp. 36–41,
2012.

[39] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on. IEEE, 2015, pp. 171–172.

[40] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof,
M. D’Souza, S. Devoid, D. a. Murphy-Olson, N. Desai et al., “Skyport:
container-based execution environment management for multi-cloud
scientific workflows,” in Proceedings of the 5th International Workshop
on Data-Intensive Computing in the Clouds. IEEE Press, 2014, pp.
25–32.

[41] J. M. Perkel, “Why jupyter is data scientists’ computational notebook
of choice,” Nature, vol. 563, no. 7732, pp. 145–147, 2018.

[42] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ack-
ley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., “Observation
of gravitational waves from a binary black hole merger,” Physical review
letters, vol. 116, no. 6, p. 061102, 2016.

[43] “Ligo collaboration open science tutorials,” https://www.gw-
openscience.org/tutorials, 2015.

[44] J. Hamman, M. Rocklin, and R. Abernathy, “Pangeo: a big-data ecosys-
tem for scalable earth system science,” in EGU General Assembly
Conference Abstracts, vol. 20, 2018, p. 12146.

54

Authorized licensed use limited to: Cornell University Library. Downloaded on August 13,2021 at 15:50:15 UTC from IEEE Xplore. Restrictions apply.

