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Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime
coordinates themselves to operators which do not commute. This approach is motivated from a quantum
gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been
tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a
previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommutativity,
(ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational
wave events, namely GW 151226, GW170608, GW170814 and GW 170817, and (iv) considering binary
pulsar observations. Using Kepler’s law that contains the noncommutative effect at second post-Newtonian
order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the
gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative
tensor @ in terms of the preferred frame direction with respect to the orientation of each binary. We find
that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the
noncommutative tensor normalized by the Planck length and time is constrained to be of order unity.
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I. INTRODUCTION

Since the advent of gravitational wave astronomy with
the detection of gravitational waves (GWs) by the LIGO/
Virgo collaboration (LVC), the theory of general relativity
(GR) has been directly testable to greater precision than
previously possible. Although no observations have yet
indicated any compelling deviations from GR, we are able
to study modifications to GR, alternative theories of gravity
and other fundamental physics using gravitational waves as
a probe [1-6]. Particularly, non-GR effects are highly
constrained by GW observations, which can be used to
explore many different theories. This has been done, for
example for Einstein-Aether theory [7], Einstein-dilaton-
Gauss-Bonet gravity [8,9], dynamical Chern-Simons grav-
ity [8] and others [10,11].

In addition to gravitational waves, pulsar timing obser-
vations are valuable tool in probing modifications to GR.
The system that we will be using to place constraints via
pulsar observations is the double pulsar binary system PSR
JO737-3039A/B. This system is quite unique, as both
neutron stars are radio pulsars, which allows for extremely
precise measurements and provides a rich background
for tests of general relativity and modified theories of
gravity [12,13].

In this paper, we will employ a combination of gravita-
tional wave and pulsar analysis to introduce two
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independent constraints on noncommutative theories.
Various noncommutative theories have been proposed
previously, originally introduced as a method of quantizing
spacetime [14]. The introduction of noncommutative geom-
etry [15] allowed this idea to be applied more broadly, with a
focus on noncommutative quantum field theories [16,17]
as well as multiple formulations of a noncommutative
extension to the Standard Model [18-21]. The idea of
noncommutative gravity stems from these theories.
Noncommuting conjugate variables are a cornerstone of
quantum mechanics, and it seems natural that one could
apply the same conventions that give rise to, for example, the
Heisenberg uncertainty principle in quantum mechanics, to
a gravitational setting [ 16,17]. Noncommutative gravity also
has string theory implications [22,23] and thus we have a
wide range of motivations for its study. The version that we
will be focused on is characterized by promoting spacetime
coordinates to operators which satisfy the following canoni-
cal commutation relation

[2.3] = iom. (1)

Here, 0" introduces a new fundamental quantum scale
which represents the “quantum fuzziness” of spacetime, in
analogy to £ in quantum mechanics.

Previous work [24] has placed a bound on the time
component of the noncommutativity scale 6% using
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GW150914. The authors worked in the post-Newtonian
(PN) formalism, in which quantities are expanded in
powers of (v/c¢)" with v representing the relative velocity
of the binary constituents, which are considered order
(n/2)PN [25]. Reference [24] found corrections entering at
2PN in the acceleration and the waveform phase. The
authors introduce the notation

901‘

I,

A (2)

where @' represents the components of a three-dimensional
unit vector @, which acts as a preferred direction that
induces precession of the orbital plane. For calculational
simplicity, the authors assumed that the orientation of the @
is orthogonal to the orbital plane as to place an approximate

upper bound on \/K which was found to be \/K < 3.5, at
the order of the Planck scale (see [26,27] for related works).

In this work we extend and generalize the above analysis
by considering the general case for the orientation of the
preferred direction @ with respect to the orbital plane by
adopting orbital averaging. We then place constraints by
employing posterior samples from the GWTC-1 catalog as in
[8], rather than explicitly using the bound on the non-GR
parameter at 2PN order found by LVC [1] as done in [24].
This new approach properly accounts for the uncertainties in
the masses. We derive bounds from four different gravita-
tional wave events with relatively small masses, namely
GWI151226, GW170608, GW170814, and GW170817.

We also place constraints on the time component of the
noncommutative tensor using the binary pulsar system PSR
JO737-3039A/B to act as an independent check on the
gravitational wave constraints. In the binary pulsar system,
the noncommutativity induces an additional contribution in
the pericenter precession beyond GR at 1PN, due to the
preferred direction @ that is induced by the inclusion of
noncommutative terms. Corrections to other observables,
such as the mass ratio and Shapiro delay, enter at higher PN
orders. Thus, we use the latter to determine the masses of
the double pulsar binary and use the pericenter precession
to constrain the theory (see, e.g., [28] for a related work on
constraining noncommutative gravity from the pericenter
precession of binary pulsars). We find that such bounds are
slightly weaker than the ones from gravitational wave
events.

The structure of the paper is as follows. In Sec. II we
derive the lowest order 2PN noncommutative corrections to
the binary system acceleration, beginning from the energy-
momentum tensor. We proceed to constrain the noncom-
mutative parameter with LVC data in Sec. III by computing
the 2PN noncommutative correction to the gravitational
waveform. We then use posterior samples for two different
waveform templates to constrain the noncommutativity
parameter, v/A, in terms of the quantity L-0.In Sec. IV

we then independently constrain V/A as a function of L. 0,

where L is a unit vector orthogonal to the orbital plane, by
computing the noncommutative correction to the GR
pericenter precession and using the binary pulsar event
PSR J0737-3039A/B. Finally, In Sec. V, we summarize our
results, and provide some concluding remarks as well as
directions for future work. We work in the geometric
units ¢ = G = 1.

II. NONCOMMUTATIVE CORRECTIONS
TO THE ACCELERATION AND ENERGY

In GR, one can approximate a binary system as two point
masses which have an energy momentum tensor given by

T (x. 1) = myy () (D4 () e =y ()] + 1 < 2. (3)

Here, m; are the masses of each body, y; the positions and
v the four velocities. y; is given by

1

Vi = ’
V9109 (0507 /)

(4)

where g, is the metric, g its determinant, and i = 1, 2 [25].
It was previously shown in [24] that noncommutative
corrections to the expression (3) can be found by consid-
ering that the black holes are sourced by a massive real
scalar field ¢ and incorporating the noncommuting oper-
ators X* by replacing the product of any two functions with
a Moyal product. It was found that the energy-momentum
tensor, including noncommutative corrections, can be
written as

TRe(x, 1) = my, (1) v+ (£)v* ()8 [x =y, (1)]
m3}’% ki 3
—I—va‘v”@ 0;0,8 [x —y,(1)]
+ (1" 0" 0,0 — 1 0;0")

h2 mthz kl 3
X <4mh+3—2® 3/(51)5 =y (1), (5)

where y; is the Lorentz factor and we define

QOkQOZ 90k9pl gkpglq
oK = +21)p—l3t +vpvq—l4 ) (6)
p°p p°p p

Here, 0 is the noncommutativity parameter defined by
Eq. (1) while /, and 7, are the Planck length and time
respectively. The second term in Eq. (5) is suppressed by a
factor of 4> and can be neglected. We will consider the
contribution from the first term in Eq. (6), which using the
convention that a term of order (v/c)" is of order (n/2)PN,
enters as a correction at the second Post-Newtonian order
(2PN). We will consider only lowest order noncommutative
corrections, and thus can make the approximation y; = 1.
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Then, for a binary system which considers only the lowest
order noncommutative corrections, the energy-momentum
tensor simplifies to

Tc(x, 1) = myy () v (6) v} ()5 (x =y, (1))
mjA?
8
t1o2, (7)

+ vﬁl(t) v’f(t)ekelak8153 (x-yi (t))

where we have defined a normalization of the noncommu-
tative tensor, A as in Eq. (2). In analogy to [24], we follow
the standard procedure to arrive at the acceleration, where
we consider only the leading order GR contribution and the
lowest order noncommutative correction entering at 2PN:

15M3(1 — 20)A?

o 040" 1. (8)

a; = (a;)gr

Here, M = m; + m, is the total mass, v = mm,/M? is
the symmetric mass ratio, and r is the binary separation
r = |y; —y»|. We have also introduced the quantity n such
that n = (y; —y,)/r to define

. 1
Mig = Ml = 5 (Sun; + Syny + Smy). )

From the acceleration we can also determine the correction
to the GR Lagrangian

3MPu(1 = 2v)A?

L=Lg+
GR 8r3

00y, (10)
and the conserved energy:

3MPu(l — 20)A?

E=Er - 8r’

040 iy, (11)

Here, p = m;m,/M is the reduced mass and

A 51(1
Ny = gy ———.

: (12)

In these expressions for the acceleration, conserved
energy and Lagrangian, the vector @ acts as a preferred
direction and will in general induce precession in the orbital
plane. Previous work simplified these expressions for the
acceleration, Lagrangian, and conserved energy by assum-
ing a constrained case in which the orbital plane is
perpendicular to the preferred direction, @ [24]. Given that
each binary is expected to be oriented randomly with
respect to the preferred direction, the chance of the above
assumption being satisfied is extremely low. To overcome
this, we perform an orbital averaging procedure as is
typically done for precessing [29,30] and magnetized
[31] binaries. We will consider the following relation as

an orbital average over the unit vector n and the preferred
direction @ as follows:

m- 00 =50-@E0).  (13)

Here, L is a unit vector orthogonal to the orbital plane, as
the projection of the angular momentum of the binary
system. L - @ = 1 corresponds to the limiting case in which
the preferred direction is perpendicular to the orbital plane.
Employing the orbital averaging procedure, we obtain for
the acceleration and conserved energy:

15M3(1 — 20)A?

a; = (ai)GR g4
, 12
X I’li(n'a) —*ni—*ei(n'a) s (14)
5 5
and
M3u(1 = 2v)A? s

ITII. GRAVITATIONAL WAVE CONSTRAINTS

In this section, we study bounds on noncommutative
gravity with gravitational wave observations. We first
derive corrections to the gravitational waveform phase.
We then find bounds on /A using posterior samples of
selected gravitational wave events produced by LVC.

A. Gravitational waveform

From the acceleration and the conserved energy, we can
compute noncommutative corrections to the gravitational
waveform to constrain the theory. We focus on a quasi-
circular orbit such that r is a constant. Defining the relative
position y(7) = y;(f) — y,(z), we can rewrite Eq. (14) as

a=-Q%+O(1/c). (16)

In order to find the leading noncommutative correction to
the waveform, we keep only the leading GR and 2PN NC
term. The angular velocity Q is given by

o M[, 302N
3

- I (-s-0p)2|. (17)

where we have defined the quantity

=—. 18

r=- (18)

Similarly, taking into account both the explicit 2PN

contribution to the energy as well as the 2PN correction
to Q2 in the leading order GR contribution, we have
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% {1 —%(1 —20)A2(1 = 3(L- 0)2);/2]. (19)

E=-
Then, inverting Eq. (17) and defining the quantity x =
(MQ)Z/ 3 which corresponds to relative velocity squared,
we can rewrite the conserved energy in terms of x:

1

E= —’%x {1 -3 (1 =20)A2(1 =3(L- 0)2))(2] . (20)

To determine the lowest order noncommutative correc-
tions to the energy radiated by gravitational waves, we
assume the energy balance equation

dE
—=-L. 21
o (21)

Here, £ is the gravitational wave luminosity, which is
defined by

1L &l
5df df

o(1/c%)]. (22)

where /;; is the traceless mass quadrupole moment. There
are two noncommutative corrections to the quadrupole
moment. The explicit 2PN noncommutative contribution is
time independent, as shown in [24], and will not contribute
to the gravitational wave luminosity. Thus, we only need to
consider the Newtonian part of /;;, which will lead to
noncommutative corrections through the acceleration. For
the leading order and 2PN noncommutative corrections to
the third derivative of the quadrupole moment, we find

SUM? (yv; + vy,
lyj== r 2

[+ B2 (- 0r- 1))

+ ovM*
454

A (1 =2v)(n-0)(0,v; + 6;v,). (23)

Squaring and keeping only the relevant lowest order terms,
we find after orbital averaging and inserting the result into
Eq. (22) that the full expression for the luminosity is

32 A (1 -2 .
L="vX1+ M(B —39(L-0)*)x*|. (24)
5 32

It is then straightforward to determine the evolution of
the orbital phase of the binary system. We define a new
parameter

@zSG—M(tC —1), (25)

where ¢, is the coalescence time, such that the energy
balance equation can be written as

dE dx _ SM

2
dxd® v (26)

This can then be solved order by order to find

1
Ty

We then invert this expression for x to find @,

A2(1-20)

1074 [35 —75(i-0)2}®—1/2}. (27)

A2(1-2v)

:ﬁ{_ = [35—75(i-0)2]x2}. (28)

O is related to the orbital phase by the following

d¢ 5 32
a@ D 2
do PR (29)

which can easily be solved to find

=572 5,
P {1__/\ (1=20)35—75(.-0)?)x

}. (30)

Then, as we have assumed that the velocity of each
binary component is small compared to ¢, we may use the
stationary phase approximation (SPA) [32], under which
the phase of the waveform in Fourier domain can be
written as

w(f) = 2aft; -7 - O(ty). (31)

t; is the time such that d®(¢;)/dt = f. It can be found
from (28), and ®(¢;) is found from (30) to obtain the full
expression for the inspiral phase including the leading order
term and explicit 2PN noncommutative correction:

3
——(aM )3
+128 (xMf)

5 5 Y 4/3
x {1—1—6/\ (1-20)[35-75(L-0)*(zM f)* }

l/ll(f):27Tftc_¢c

(32)

This expression follows the standard PN waveform format,

yi(f) =2xft.— .~ Z(p, aMf)U=). (33)

128

We will be interested in the ¢, coefficient, which enters
at 2PN. With the NC correction and the full 2PN GR
contribution [33], ¢, is
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15293365 27145 3085 ,
+ v

P+~ 508032 " s04 U T2
5 )
— SN -w)B5 =TS0 (34)

We can then define the fractional deviation from GR as

spc =24
(7
B 158760(1 — 2v)
435355202 4 54724320 + 3058673
x [=7 4 15(L - 0)?]A2.

(35)

We now employ this result to constrain the quantity
[~7 + 15(L - 8)2]A? from gravitational wave events.

B. Bounds on VA

Now that we have obtained the expression for the
noncommutative correction to ¢, it is straightforward to
compute bounds. However, one issue we still face is the
presence of v, the symmetric mass ratio, in the expression
5¢l€. One could simply take the central values given for
each binary component mass to compute v, however this
method lacks in precision, as it does not take into account
the uncertainties in the binary masses. As an alternative, we
will follow the method outlined in [8] and make use of the
LVC posterior samples for multiple events in order to
obtain 90% confidence bounds on the noncommutative
parameter. This follows from the LVC approach [5,6] in
which Markov-Chain Monte-Carlo simulations are per-
formed to obtain posterior distributions of the binary
parameters. This theory-independent approach allows

IMRP
Probability
0.012}
I — Gwi151226
ooto  —— GW170608
I — Gwi170814
00081 Gw170817

0.006]-
0.004]

0.002}

one to test GR and constrain non-GR theories in a
systematic way.

We use posterior samples from the GWTC-1 catalog for
gravitational wave events GW 151226, GW170608 and
GW170814 [5,34], as well as the binary neutron star event
GW170817, for which posterior samples are also avail-
able [6,35]. Data for events GW 150914 and GW170104 are
also available, however these two events are characterized
by large masses and thus a short inspiral period. This makes
it difficult to reliably probe non-GR effects through
corrections to the waveform [1], thus we do not include
constraints from these events.

Inverting Eq. (35) allows us to obtain an expression for
(=7 +15(L - 0)2)A? in terms of 8@y, m, and m,. Then,
using posterior samples for the two waveform templates
IMRPhenomPv2 (IMRP) and SEOBNRv4 (SEOB), we are
able to plot the histograms and probability distribution
functions (PDFs) for each event, shown in Fig. 1.

From the PDFs for each event, we calculate 90%
constraints on A>[=7 + 15(L - 8)?] as an upper and lower
bound. We can then use these upper and lower bounds to

constrain v/A as a function of L - @. These constraints are
shown in Fig. 2 for both waveform templates. From Fig. 2,

we see that there is a region of the L-o plane in which we
cannot constrain the noncommutativity parameter, specifi-

cally when L-o= v/7/15. However, given that we are
considering multiple gravitational wave events and L -6
varies from one binary to another, statistically the chance
that each of those events would be specifically at L - @ =
\/7/15 is low, thus we expect we can still place meaningful
bounds. In total, we can see that the 90% confidence

constraints on v/A as a function of L - @ is constrained to be
of order unity, in agreement with [24].

Probability
0.010 -

— GW151226
— GW170608
— GW170814
—— GW170817

0.008 -
0.006 -
0.004 -

0.002 -

0-000F

-100 0
A2 (77+ 15 (E ) 9)2)

-100 0
A2 (77+15 (F_ . e)z)

FIG. 1. Posterior distributions of A2(=7 + 15(L - §)?) for various gravitational wave events derived from the posterior samples using

the IMRP (left) and SEOB (right) waveform templates.
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SEOB and IMRP Constraints

VA
40}

— GW151226
35¢ — GW170608
sol — GW170814

GW170817
2.5F

205 22=====222

-
==
— e e

0.2 0.4 0.6 0.8 1.0

FIG. 2. Constraints on the noncommutative parameter A for
each gravitational wave event from SEOB (dashed) and IMRP
(solid) waveform templates.

IV. BINARY PULSAR CONSTRAINTS

We now turn to constraints on the noncommutativity
tensor from the double pulsar binary system PSR JO737-
3039A/B [12]. We first derive noncommutative corrections
to the pericenter precession. We then find bounds on v/A
using the double pulsar system.

A. Pericenter precession

Beginning from the acceleration, Eq. (14), we can easily
calculate the correction to the pericenter precession to
provide another independent bound on v/A. We will treat
the noncommutative correction to the acceleration as a
perturbing acceleration da. We can then define the orbital
parameters following a standard formulation of osculating
orbits explained, e.g., in [36] and find the correction to the
pericenter precession, given by

do 1 [p 2+ecosf . -
_— = —_— - R S ——— S
dt e M[ cosf +1—|—ecosfsmf
cot: M@+ )yl (36)
1 +ecosf

The relevant orbital elements here are the eccentricity e, the
inclination 1, the nodal angle €, the pericenter angle @ and
the semilatus rectum p, defined by p = a(1 — ¢?) where a
is the semimajor axis. Then, ¢ is the orbital phase as
measured from the ascending node, and f is the true
anomaly, defined by f = ¢ — w. Here the noncommutative
correction to the radial, cross-track and out-of-plane com-
ponents of the perturbing acceleration, R, S, and W are
given by

301 — v 2
Rue == 2 (@02 -3). 67

3(1 — 20 A2
sve = M2 G om0, 69)

M= o), (39)

where A is defined as dn/d¢ and h = n x A. Expanding out
these expressions in Cartesian coordinates in the equations
of motion yields a complicated expression that can be
further simplified as in [37] by introducing the variables

ep=nl,_, =eqgcosw+e, sinw, (40)
ep=4ly_, = —eqsinw +e, cosw, (41)
lAzEereQ:eQxel. (42)

Here, ep is a unit vector pointing toward the pericenter and
ep =h xep. eq is a unit vector which points along the

ascending node, and e, = h x eq. n and A can be analo-
gously translated into the P, Q, and & coordinates.

Next, we integrate Eq. (36) from O to 2z to find the
noncommutative correction to Aw. We find

3zMPA% (1 -2v)
8p
X (0, cosw +0psinw). (43)

Awone = — [2—36% —36% +2(L-6) cot]

In this expression there is both explicit @ dependence, as
well as implicit @ dependence in 8, and . Thus, it is more
enlightening to express everything in terms of eq and e .
We can then expand @ = @y + @'¢p and integrate over ¢.
For &/, it is sufficient to consider the GR contribution only
since Awyc above is already proportional to A”. Noting
that 62,462 + (L-0)>=1 and that for the J0737-3039A/B
system, 1 ~ /2, we obtain the correction to the pericenter
precession as

3aMPA%(1 - 2v)

52 [1-3(L-0)?. (44)

ACUNC =

Then, the noncommutative correction to the observable
quantity of pericenter precession @, which can be found by
dividing Aw by the orbital period, P}, is

43 7 R
ine =gy () A0 -2l =300
(45)

where we have used Kepler’s law to write p? in terms of the
orbital period. Adding this to the GR expression for @ [38]
we obtain
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.5 P\ 53 M?2/3 . 1 1 P, \ 23
v (27r> 1—62{ JrRl—e2 (277.’M>
xA2(1 = 20)[1 - 3(i-0)2]}. (46)

For completeness, we present the noncommutative correc-
tions to other orbital elements in the Appendix.

B. Bounds on vA

We now derive constraints on v/A with the double pulsar
system PSR J0737-3039A/B. We wish to use @ to constrain
the theory. To do so, we need to determine the masses from
other observables. Here, we use the Shapiro delay s, mass
ratio R, and the mass functions f,. The noncommutative
correction to these observables enter through the Kepler’s
law at 2PN or higher (see [39] for a similar analysis when
the metric is modified at 1PN order within the para-
meterized PN formalism), while the one in @ in Eq. (46)
enters at 1PN order. This justifies us to use the GR
expressions for s, R, and f, to determine the masses
and use @ to test the noncommutative gravity.

Figure 3 shows these observables plotted as a function of
the pulsar masses. The GR expressions for R, s, and the
region for which sin: (obtained from the mass function
measurements) is less than one are plotted. The overlapping
shaded region corresponds to the allowed mass parameter

mg (M)
1.265 -

1.260

1.255

1.250 ber??

: = mp (M)
1.338 1.340 1.342 1.344 1.346
FIG. 3. Testing noncommutative gravity with the double pulsar
binary. The two masses are determined from the mass ratio R, the
Shapiro delay parameter s and sinz < 1 using the GR expressions
(since the noncommutative corrections to these observables enter
at higher PN orders than that for @), with the allowed region
shown by the green shade. We then vary the noncommutative
parameter A in @ such that it is consistent with the green shaded
region to determined the bound on A. The thickness of @ in blue
corresponds to the measurement error on @.

Binary Pulsar Constraints

Jr

30
25}

20}

L. . . L . . 1 . . P . . . 1 . . — 1 I.9
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Bounds on v/A as a function of (L - @) for the double
pulsar binary.

space from these measurements. Any correction to @ must
remain within the region of overlap. The upper and lower
bounds for @ correspond to variations in the expression
A2[1 = 3(L - 6)?] such that the @& curve marginally passes
through the overlapping region. The thickness in each of
the curves corresponds to the uncertainty in the @ meas-
urement and the two curves correspond to the upper and
lower bounds on A2[l1 —3(L-6)%]. We find that the
acceptable range for the noncommutative contribution is

—15600 < A2[1 — 3(L - 0)%] < 1100. (47)

Then, as we did in the gravitational wave analysis, taking
this upper and lower bound, we can plot v/A as a function
of (L-@) as in Fig. 4. We can see that there is again a

particular value of (L - ) = \/1/3 that we are not able to
place a constraint as was the case for the GW analysis,
however we are still able to place bounds for the rest of the
range. We find that the binary pulsar bounds are actually
less stringent than those found from the gravitational wave
events by approximately an order of magnitude. However,
these constraints remain consistent with the general state-
ment that the noncommutativity parameter must be of
order unity.

V. CONCLUSION

We have explored noncommutative gravity in light of
observations from LVC gravitational wave events as well as
the binary pulsar system J0737-3039A/B. We have focused
on the lowest order noncommutative effects entering at
2PN in the binary system acceleration. The time component
of the noncommutative tensor, 6% enters as a 2PN correc-
tion to the acceleration. When this effect is propagated
through, we find that there is a phase shift in the
gravitational waveform again entering at 2PN, shifting
the @, coefficient. Similarly, in the case of binary pulsar
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dynamics, we find that the correction to the acceleration
leads to a noncommutative contribution to the pericenter
precession.

An updated and more rigorous analysis than in previous
work has been performed to use gravitational wave events
and the binary pulsar system PSR J0737-3039A/B to
constrain the space-time component of the noncommuta-
tivity tensor. We find that the gravitational wave events
including GW151226, GW170608, GW170814 and
GW170817 are more constraining than the binary pulsar
event PSR J0363-3039A/B by approximately an order of
magnitude. However, the more stringent GW constraints
are consistent with previous results, finding that the
quantity v/A is constrained to be of order unity.

A few different avenues exist for future work. For
example, it would be interesting to constrain the theory
from the preferred frame effect [37]. It would also be of
interest to investigate the effects of the spatial component
of the noncommutative tensor, 8/, which enters at 3PN
and has potential implications for, e.g., string theory.
Additionally, it would be valuable to explore the model
dependence of the effects that we have discussed, and work
toward a more general understanding of how noncommu-
tative gravity may come into play with these observables.

ACKNOWLEDGMENTS

We thank Neil Cornish for useful discussions. K.Y.
acknowledges support from NSF Grant No. PHY-1806776,
NASA Grant No. 8ONSSC20K0523, a Sloan Foundation
Research Fellowship and the Ed Owens Fund. K. Y. would
like to also acknowledge support by the COST Action
GWverse No. CA16104 and JSPS KAKENHI Grants
No. JP17H06358.

APPENDIX: NONCOMMUTATIVE
CORRECTIONS TO OSCULATING ORBITS

In addition to the noncommutative correction to the
pericenter precession, @, the noncommutative correction to
the acceleration also induces corrections to the other orbital
parameters, p, e, i, and Q, described in Sec. IV. The
“Lagrange planetary equations” for these quantities are [36]

dp 5 /p? S
M1+ecosf’

yTie (A1)

- 5-
%: /P Sin]-CR+2cosf+e+e_cosf8, (A2)
dt M 1+ ecosf

di Ip r

E = MW <;> COS ¢,
dQ p r\ sin@
dr MW (;) sinz

Plugging in the expressions for S, W, and ‘R obtained in
Sec. 1V, it is straightforward to obtain

(A3)

(A4)

APNC =0, (AS)
AeNC = 01 (A6)
3xMPA2(1-2v) .
A,NC:4—(L-0)(9pcosa)—9Qsmw), (A7)
4
3xMAAX (1 -20) .
AQyc :”—(U)(L -0)(0,cosw + 0y sinw)csci.

4p
(A8)

As in Aw there is both explicit and implicit @ dependence
in these expressions. Using the same expansion method, we
obtain for the noncommutative contributions to the orbital
parameters:
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