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Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime
coordinates themselves to operators which do not commute. This approach is motivated from a quantum
gravity perspective, as well as from other theoretical considerations. Noncommutative gravity has been
tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a
previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommutativity,
(ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational
wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) considering binary
pulsar observations. Using Kepler’s law that contains the noncommutative effect at second post-Newtonian
order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the
gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative
tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find
that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the
noncommutative tensor normalized by the Planck length and time is constrained to be of order unity.
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I. INTRODUCTION

Since the advent of gravitational wave astronomy with
the detection of gravitational waves (GWs) by the LIGO/
Virgo collaboration (LVC), the theory of general relativity
(GR) has been directly testable to greater precision than
previously possible. Although no observations have yet
indicated any compelling deviations from GR, we are able
to study modifications to GR, alternative theories of gravity
and other fundamental physics using gravitational waves as
a probe [1–6]. Particularly, non-GR effects are highly
constrained by GW observations, which can be used to
explore many different theories. This has been done, for
example for Einstein-Aether theory [7], Einstein-dilaton-
Gauss-Bonet gravity [8,9], dynamical Chern-Simons grav-
ity [8] and others [10,11].
In addition to gravitational waves, pulsar timing obser-

vations are valuable tool in probing modifications to GR.
The system that we will be using to place constraints via
pulsar observations is the double pulsar binary system PSR
J0737-3039A/B. This system is quite unique, as both
neutron stars are radio pulsars, which allows for extremely
precise measurements and provides a rich background
for tests of general relativity and modified theories of
gravity [12,13].
In this paper, we will employ a combination of gravita-

tional wave and pulsar analysis to introduce two

independent constraints on noncommutative theories.
Various noncommutative theories have been proposed
previously, originally introduced as a method of quantizing
spacetime [14]. The introduction of noncommutative geom-
etry [15] allowed this idea to be appliedmore broadly, with a
focus on noncommutative quantum field theories [16,17]
as well as multiple formulations of a noncommutative
extension to the Standard Model [18–21]. The idea of
noncommutative gravity stems from these theories.
Noncommuting conjugate variables are a cornerstone of
quantum mechanics, and it seems natural that one could
apply the same conventions that give rise to, for example, the
Heisenberg uncertainty principle in quantum mechanics, to
a gravitational setting [16,17]. Noncommutativegravity also
has string theory implications [22,23] and thus we have a
wide range of motivations for its study. The version that we
will be focused on is characterized by promoting spacetime
coordinates to operators which satisfy the following canoni-
cal commutation relation

½x̂μ; x̂ν� ¼ iθμν: ð1Þ
Here, θμν introduces a new fundamental quantum scale
which represents the “quantum fuzziness” of spacetime, in
analogy to ℏ in quantum mechanics.
Previous work [24] has placed a bound on the time

component of the noncommutativity scale θ0i using
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GW150914. The authors worked in the post-Newtonian
(PN) formalism, in which quantities are expanded in
powers of ðv=cÞn with v representing the relative velocity
of the binary constituents, which are considered order
ðn=2ÞPN [25]. Reference [24] found corrections entering at
2PN in the acceleration and the waveform phase. The
authors introduce the notation

Λθi ¼ θ0i

lptp
; ð2Þ

where θi represents the components of a three-dimensional
unit vector θ, which acts as a preferred direction that
induces precession of the orbital plane. For calculational
simplicity, the authors assumed that the orientation of the θ
is orthogonal to the orbital plane as to place an approximate
upper bound on

ffiffiffiffi
Λ

p
, which was found to be

ffiffiffiffi
Λ

p ≲ 3.5, at
the order of the Planck scale (see [26,27] for related works).
In this work we extend and generalize the above analysis

by considering the general case for the orientation of the
preferred direction θ with respect to the orbital plane by
adopting orbital averaging. We then place constraints by
employing posterior samples from theGWTC-1 catalog as in
[8], rather than explicitly using the bound on the non-GR
parameter at 2PN order found by LVC [1] as done in [24].
This new approach properly accounts for the uncertainties in
the masses. We derive bounds from four different gravita-
tional wave events with relatively small masses, namely
GW151226, GW170608, GW170814, and GW170817.
We also place constraints on the time component of the

noncommutative tensor using the binary pulsar system PSR
J0737-3039A/B to act as an independent check on the
gravitational wave constraints. In the binary pulsar system,
the noncommutativity induces an additional contribution in
the pericenter precession beyond GR at 1PN, due to the
preferred direction θ that is induced by the inclusion of
noncommutative terms. Corrections to other observables,
such as the mass ratio and Shapiro delay, enter at higher PN
orders. Thus, we use the latter to determine the masses of
the double pulsar binary and use the pericenter precession
to constrain the theory (see, e.g., [28] for a related work on
constraining noncommutative gravity from the pericenter
precession of binary pulsars). We find that such bounds are
slightly weaker than the ones from gravitational wave
events.
The structure of the paper is as follows. In Sec. II we

derive the lowest order 2PN noncommutative corrections to
the binary system acceleration, beginning from the energy-
momentum tensor. We proceed to constrain the noncom-
mutative parameter with LVC data in Sec. III by computing
the 2PN noncommutative correction to the gravitational
waveform. We then use posterior samples for two different
waveform templates to constrain the noncommutativity
parameter,

ffiffiffiffi
Λ

p
, in terms of the quantity L̂ · θ. In Sec. IV

we then independently constrain
ffiffiffiffi
Λ

p
as a function of L̂ · θ,

where L̂ is a unit vector orthogonal to the orbital plane, by
computing the noncommutative correction to the GR
pericenter precession and using the binary pulsar event
PSR J0737-3039A/B. Finally, In Sec. V, we summarize our
results, and provide some concluding remarks as well as
directions for future work. We work in the geometric
units c ¼ G ¼ 1.

II. NONCOMMUTATIVE CORRECTIONS
TO THE ACCELERATION AND ENERGY

In GR, one can approximate a binary system as two point
masses which have an energy momentum tensor given by

Tμν
GRðx; tÞ ¼ m1γ1ðtÞvμ1ðtÞvν1ðtÞδ3½x − y1ðtÞ� þ 1 ↔ 2: ð3Þ

Here, mi are the masses of each body, yi the positions and
vμi the four velocities. γi is given by

γi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

giðgαβÞiðvαi vβi =c2Þ
q ; ð4Þ

where gμν is the metric, g its determinant, and i ¼ 1, 2 [25].
It was previously shown in [24] that noncommutative
corrections to the expression (3) can be found by consid-
ering that the black holes are sourced by a massive real
scalar field ϕ and incorporating the noncommuting oper-
ators x̂μ by replacing the product of any two functions with
a Moyal product. It was found that the energy-momentum
tensor, including noncommutative corrections, can be
written as

Tμν
NCðx; tÞ¼mγLðtÞvμðtÞvνðtÞδ3½x− y1ðtÞ�

þm3γ3L
8

vμvνΘkl∂k∂lδ
3½x− y1ðtÞ�

þðημmηνn∂m∂n−ημν∂i∂iÞ

×

�
ℏ2

4mγL
þmγLℏ2

32
Θkl∂k∂l

�
δ3½x− y1ðtÞ�; ð5Þ

where γL is the Lorentz factor and we define

Θkl ¼ θ0kθ0l

l2pt2p
þ 2vp

θ0kθpl

l3ptp
þ vpvq

θkpθlq

l4p
: ð6Þ

Here, θ is the noncommutativity parameter defined by
Eq. (1) while lp and tp are the Planck length and time
respectively. The second term in Eq. (5) is suppressed by a
factor of ℏ2 and can be neglected. We will consider the
contribution from the first term in Eq. (6), which using the
convention that a term of order ðv=cÞn is of order ðn=2ÞPN,
enters as a correction at the second Post-Newtonian order
(2PN). We will consider only lowest order noncommutative
corrections, and thus can make the approximation γL ¼ 1.
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Then, for a binary system which considers only the lowest
order noncommutative corrections, the energy-momentum
tensor simplifies to

Tμν
NCðx; tÞ ¼ m1γ1ðtÞvμ1ðtÞvν1ðtÞδ3ðx − y1ðtÞÞ

þm3
1Λ2

8
vμ1ðtÞvν1ðtÞθkθl∂k∂lδ

3ðx − y1ðtÞÞ
þ 1 ↔ 2; ð7Þ

where we have defined a normalization of the noncommu-
tative tensor, Λ as in Eq. (2). In analogy to [24], we follow
the standard procedure to arrive at the acceleration, where
we consider only the leading order GR contribution and the
lowest order noncommutative correction entering at 2PN:

ai ¼ ðaiÞGR −
15M3ð1 − 2νÞΛ2

8r4
θkθln̂ikl: ð8Þ

Here, M ¼ m1 þm2 is the total mass, ν ¼ m1m2=M2 is
the symmetric mass ratio, and r is the binary separation
r ¼ jy1 − y2j. We have also introduced the quantity n such
that n ¼ ðy1 − y2Þ=r to define

n̂ikl ¼ ninknl −
1

5
ðδklni þ δilnk þ δkinlÞ: ð9Þ

From the acceleration we can also determine the correction
to the GR Lagrangian

L ¼ LGR þ 3M3μð1 − 2νÞΛ2

8r3
θkθln̂kl; ð10Þ

and the conserved energy:

E ¼ EGR −
3M3μð1 − 2νÞΛ2

8r3
θkθln̂kl: ð11Þ

Here, μ ¼ m1m2=M is the reduced mass and

n̂kl ¼ nknl −
δkl
3
: ð12Þ

In these expressions for the acceleration, conserved
energy and Lagrangian, the vector θ acts as a preferred
direction and will in general induce precession in the orbital
plane. Previous work simplified these expressions for the
acceleration, Lagrangian, and conserved energy by assum-
ing a constrained case in which the orbital plane is
perpendicular to the preferred direction, θ [24]. Given that
each binary is expected to be oriented randomly with
respect to the preferred direction, the chance of the above
assumption being satisfied is extremely low. To overcome
this, we perform an orbital averaging procedure as is
typically done for precessing [29,30] and magnetized
[31] binaries. We will consider the following relation as

an orbital average over the unit vector n and the preferred
direction θ as follows:

ðn · θÞðn · θÞ ¼ 1

2
ð1 − ðL̂ · θÞ2Þ: ð13Þ

Here, L̂ is a unit vector orthogonal to the orbital plane, as
the projection of the angular momentum of the binary
system. L̂ · θ ¼ 1 corresponds to the limiting case in which
the preferred direction is perpendicular to the orbital plane.
Employing the orbital averaging procedure, we obtain for
the acceleration and conserved energy:

ai ¼ ðaiÞGR −
15M3ð1 − 2νÞΛ2

8r4

×

�
niðn · θÞ2 − 1

5
ni −

2

5
θiðn · θÞ

�
; ð14Þ

and

E ¼ EGR −
M3μð1 − 2νÞΛ2

16r3
ð1 − 3ðL̂ · θÞ2Þ: ð15Þ

III. GRAVITATIONAL WAVE CONSTRAINTS

In this section, we study bounds on noncommutative
gravity with gravitational wave observations. We first
derive corrections to the gravitational waveform phase.
We then find bounds on

ffiffiffiffi
Λ

p
using posterior samples of

selected gravitational wave events produced by LVC.

A. Gravitational waveform

From the acceleration and the conserved energy, we can
compute noncommutative corrections to the gravitational
waveform to constrain the theory. We focus on a quasi-
circular orbit such that r is a constant. Defining the relative
position yðtÞ ¼ y1ðtÞ − y2ðtÞ, we can rewrite Eq. (14) as

a ¼ −Ω2y þOð1=c5Þ: ð16Þ

In order to find the leading noncommutative correction to
the waveform, we keep only the leading GR and 2PN NC
term. The angular velocity Ω is given by

Ω2 ¼ M
r3

�
1þ 3ð1 − 2νÞΛ2

16
ð1 − 3ðL̂ · θÞ2Þγ2

�
; ð17Þ

where we have defined the quantity

γ ¼ M
r
: ð18Þ

Similarly, taking into account both the explicit 2PN
contribution to the energy as well as the 2PN correction
to Ω2 in the leading order GR contribution, we have
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E ¼ −
μγ

2

�
1 −

1

16
ð1 − 2νÞΛ2ð1 − 3ðL̂ · θÞ2Þγ2

�
: ð19Þ

Then, inverting Eq. (17) and defining the quantity x ¼
ðMΩÞ2=3 which corresponds to relative velocity squared,
we can rewrite the conserved energy in terms of x:

E ¼ −
μx
2

�
1 −

1

8
ð1 − 2νÞΛ2ð1 − 3ðL̂ · θÞ2Þx2

�
: ð20Þ

To determine the lowest order noncommutative correc-
tions to the energy radiated by gravitational waves, we
assume the energy balance equation

dE
dt

¼ −L: ð21Þ

Here, L is the gravitational wave luminosity, which is
defined by

L ¼
�
1

5

d3Iij
dt3

d3Iij
dt3

þOð1=c2Þ
�
; ð22Þ

where Iij is the traceless mass quadrupole moment. There
are two noncommutative corrections to the quadrupole
moment. The explicit 2PN noncommutative contribution is
time independent, as shown in [24], and will not contribute
to the gravitational wave luminosity. Thus, we only need to
consider the Newtonian part of Iij, which will lead to
noncommutative corrections through the acceleration. For
the leading order and 2PN noncommutative corrections to
the third derivative of the quadrupole moment, we find

⃛Iij ¼ −
8νM2

r3

�
yivj þ viyj

2

�

×

�
1þ 15

8
Λ2ð1 − 2νÞ

�
ðn · θÞ2 − 1

5

�
γ2
�

þ 9νM4

4r4
Λ2ð1 − 2νÞðn · θÞðθivj þ θjviÞ: ð23Þ

Squaring and keeping only the relevant lowest order terms,
we find after orbital averaging and inserting the result into
Eq. (22) that the full expression for the luminosity is

L ¼ 32

5
ν2x5

�
1þ Λ2ð1 − 2νÞ

32
ð23 − 39ðL̂ · θÞ2Þx2

�
: ð24Þ

It is then straightforward to determine the evolution of
the orbital phase of the binary system. We define a new
parameter

Θ≡ ν

5GM
ðtc − tÞ; ð25Þ

where tc is the coalescence time, such that the energy
balance equation can be written as

dE
dx

dx
dΘ

¼ 5M
ν

L: ð26Þ

This can then be solved order by order to find

x¼ 1

4
Θ−1=4

�
1−

Λ2ð1−2νÞ
1024

½35−75ðL̂ ·θÞ2�Θ−1=2
�
: ð27Þ

We then invert this expression for x to find Θ,

Θ ¼ 1

256x4

�
1 −

Λ2ð1 − 2νÞ
16

½35 − 75ðL̂ · θÞ2�x2
�
: ð28Þ

Θ is related to the orbital phase by the following

dϕ
dΘ

¼ −
5

ν
x3=2; ð29Þ

which can easily be solved to find

ϕ¼−
x−5=2

32ν

�
1−

5

32
Λ2ð1−2νÞ½35−75ðL̂ ·θÞ2�x2

�
: ð30Þ

Then, as we have assumed that the velocity of each
binary component is small compared to c, we may use the
stationary phase approximation (SPA) [32], under which
the phase of the waveform in Fourier domain can be
written as

ψðfÞ ¼ 2πftf −
π

4
−ΦðtfÞ: ð31Þ

tf is the time such that dΦðtfÞ=dt ¼ f. It can be found
from (28), and ΦðtfÞ is found from (30) to obtain the full
expression for the inspiral phase including the leading order
term and explicit 2PN noncommutative correction:

ψ IðfÞ ¼ 2πftc−ϕc−
π

4
þ 3

128ν
ðπMfÞ−5=3

×

�
1−

5

16
Λ2ð1− 2νÞ½35− 75ðL̂ · θÞ2�ðπMfÞ4=3

�
:

ð32Þ

This expression follows the standard PN waveform format,

ψ IðfÞ¼ 2πftc−ϕc−
π

4
þ 3

128ν

X4
j¼0

φjðπMfÞðj−5=3Þ: ð33Þ

We will be interested in the φ4 coefficient, which enters
at 2PN. With the NC correction and the full 2PN GR
contribution [33], φ4 is
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φ4 ¼
15293365

508032
þ 27145

504
νþ 3085

72
ν2

−
5

16
Λ2ð1 − 2νÞ½35 − 75ðL̂ · θÞ2�: ð34Þ

We can then define the fractional deviation from GR as

δφNC
4 ≡ φNC

4

φGR
4

¼ 158760ð1 − 2νÞ
4353552ν2 þ 5472432νþ 3058673

× ½−7þ 15ðL̂ · θÞ2�Λ2: ð35Þ

We now employ this result to constrain the quantity
½−7þ 15ðL̂ · θÞ2�Λ2 from gravitational wave events.

B. Bounds on
ffiffiffiffi
Λ

p

Now that we have obtained the expression for the
noncommutative correction to φ4, it is straightforward to
compute bounds. However, one issue we still face is the
presence of ν, the symmetric mass ratio, in the expression
δφNC

4 . One could simply take the central values given for
each binary component mass to compute ν, however this
method lacks in precision, as it does not take into account
the uncertainties in the binary masses. As an alternative, we
will follow the method outlined in [8] and make use of the
LVC posterior samples for multiple events in order to
obtain 90% confidence bounds on the noncommutative
parameter. This follows from the LVC approach [5,6] in
which Markov-Chain Monte-Carlo simulations are per-
formed to obtain posterior distributions of the binary
parameters. This theory-independent approach allows

one to test GR and constrain non-GR theories in a
systematic way.
We use posterior samples from the GWTC-1 catalog for

gravitational wave events GW 151226, GW170608 and
GW170814 [5,34], as well as the binary neutron star event
GW170817, for which posterior samples are also avail-
able [6,35]. Data for events GW150914 and GW170104 are
also available, however these two events are characterized
by large masses and thus a short inspiral period. This makes
it difficult to reliably probe non-GR effects through
corrections to the waveform [1], thus we do not include
constraints from these events.
Inverting Eq. (35) allows us to obtain an expression for

ð−7þ 15ðL̂ · θÞ2ÞΛ2 in terms of δφ4, m1 and m2. Then,
using posterior samples for the two waveform templates
IMRPhenomPv2 (IMRP) and SEOBNRv4 (SEOB), we are
able to plot the histograms and probability distribution
functions (PDFs) for each event, shown in Fig. 1.
From the PDFs for each event, we calculate 90%

constraints on Λ2½−7þ 15ðL̂ · θÞ2� as an upper and lower
bound. We can then use these upper and lower bounds to
constrain

ffiffiffiffi
Λ

p
as a function of L̂ · θ. These constraints are

shown in Fig. 2 for both waveform templates. From Fig. 2,
we see that there is a region of the L̂ · θ plane in which we
cannot constrain the noncommutativity parameter, specifi-
cally when L̂ · θ ¼ ffiffiffiffiffiffiffiffiffiffi

7=15
p

. However, given that we are
considering multiple gravitational wave events and L̂ · θ
varies from one binary to another, statistically the chance
that each of those events would be specifically at L̂ · θ ¼ffiffiffiffiffiffiffiffiffiffi
7=15

p
is low, thus we expect we can still place meaningful

bounds. In total, we can see that the 90% confidence
constraints on

ffiffiffiffi
Λ

p
as a function of L̂ · θ is constrained to be

of order unity, in agreement with [24].

FIG. 1. Posterior distributions of Λ2ð−7þ 15ðL̂ · θÞ2Þ for various gravitational wave events derived from the posterior samples using
the IMRP (left) and SEOB (right) waveform templates.
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IV. BINARY PULSAR CONSTRAINTS

We now turn to constraints on the noncommutativity
tensor from the double pulsar binary system PSR J0737-
3039A/B [12]. We first derive noncommutative corrections
to the pericenter precession. We then find bounds on

ffiffiffiffi
Λ

p
using the double pulsar system.

A. Pericenter precession

Beginning from the acceleration, Eq. (14), we can easily
calculate the correction to the pericenter precession to
provide another independent bound on

ffiffiffiffi
Λ

p
. We will treat

the noncommutative correction to the acceleration as a
perturbing acceleration δa. We can then define the orbital
parameters following a standard formulation of osculating
orbits explained, e.g., in [36] and find the correction to the
pericenter precession, given by

dω
dt

¼ 1

e

ffiffiffiffiffi
p
M

r �
− cos fRþ 2þ e cos f̄

1þ e cos f̄
sin f̄S

− e cot ι
sinðωþ f̄Þ
1þ e cos f̄

W
�
: ð36Þ

The relevant orbital elements here are the eccentricity e, the
inclination ι, the nodal angle Ω, the pericenter angle ω and
the semilatus rectum p, defined by p ¼ að1 − e2Þ where a
is the semimajor axis. Then, ϕ is the orbital phase as
measured from the ascending node, and f̄ is the true
anomaly, defined by f̄ ≡ ϕ − ω. Here the noncommutative
correction to the radial, cross-track and out-of-plane com-
ponents of the perturbing acceleration, R, S, and W are
given by

RNC ¼ −
9M3ð1 − 2νÞΛ2

8r4

�
ðn · θÞ2 − 1

3

�
; ð37Þ

SNC ¼ 3M3ð1 − 2νÞΛ2

4r4
ðλ · θÞðn · θÞ; ð38Þ

WNC ¼ 3M3ð1 − 2νÞΛ2

4r4
ðĥ · θÞðn · θÞ; ð39Þ

where λ is defined as ∂n=∂ϕ and ĥ ¼ n × λ. Expanding out
these expressions in Cartesian coordinates in the equations
of motion yields a complicated expression that can be
further simplified as in [37] by introducing the variables

eP ≡ njϕ¼ω ¼ eΩ cosωþ e⊥ sinω; ð40Þ

eQ ≡ λjϕ¼ω ¼ −eΩ sinωþ e⊥ cosω; ð41Þ

ĥ≡ eP × eQ ¼ eΩ × e⊥: ð42Þ

Here, eP is a unit vector pointing toward the pericenter and
eQ ¼ ĥ × eP. eΩ is a unit vector which points along the

ascending node, and e⊥ ¼ ĥ × eΩ. n and λ can be analo-
gously translated into the P, Q, and h coordinates.
Next, we integrate Eq. (36) from 0 to 2π to find the

noncommutative correction to Δω. We find

ΔωNC ¼ −
3πM2Λ2ð1− 2νÞ

8p
½2− 3θ2P − 3θ2Q þ 2ðL̂ · θÞ cot ι�

× ðθp cosωþ θQ sinωÞ: ð43Þ

In this expression there is both explicit ω dependence, as
well as implicitω dependence in θp and θQ. Thus, it is more
enlightening to express everything in terms of eΩ and e⊥.
We can then expand ω ¼ ω0 þ ω0ϕ and integrate over ϕ.
For ω0, it is sufficient to consider the GR contribution only
since ΔωNC above is already proportional to Λ2. Noting
that θ2Ωþθ2⊥þðL̂ ·θÞ2¼1 and that for the J0737-3039A/B
system, ι ≈ π=2, we obtain the correction to the pericenter
precession as

ΔωNC ¼ 3πM2Λ2ð1 − 2νÞ
8p2

½1 − 3ðL̂ · θÞ2�: ð44Þ

Then, the noncommutative correction to the observable
quantity of pericenter precession _ω, which can be found by
dividing Δω by the orbital period, Pb is

_ωNC ¼ 3

16

M4=3

ð1 − e2Þ2
�
Pb

2π

�
−7=3

Λ2ð1 − 2νÞ½1 − 3ðL̂ · θÞ2�;

ð45Þ

where we have used Kepler’s law to write p2 in terms of the
orbital period. Adding this to the GR expression for _ω [38]
we obtain

FIG. 2. Constraints on the noncommutative parameter Λ for
each gravitational wave event from SEOB (dashed) and IMRP
(solid) waveform templates.
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_ω ¼ 3

�
Pb

2π

�
−5=3 M2=3

1 − e2

�
1þ 1

16

1

1 − e2

�
Pb

2πM

�
−2=3

×Λ2ð1 − 2νÞ½1 − 3ðL̂ · θÞ2�
�
: ð46Þ

For completeness, we present the noncommutative correc-
tions to other orbital elements in the Appendix.

B. Bounds on
ffiffiffiffi
Λ

p

We now derive constraints on
ffiffiffiffi
Λ

p
with the double pulsar

system PSR J0737-3039A/B. We wish to use _ω to constrain
the theory. To do so, we need to determine the masses from
other observables. Here, we use the Shapiro delay s, mass
ratio R, and the mass functions fA. The noncommutative
correction to these observables enter through the Kepler’s
law at 2PN or higher (see [39] for a similar analysis when
the metric is modified at 1PN order within the para-
meterized PN formalism), while the one in _ω in Eq. (46)
enters at 1PN order. This justifies us to use the GR
expressions for s, R, and fA to determine the masses
and use _ω to test the noncommutative gravity.
Figure 3 shows these observables plotted as a function of

the pulsar masses. The GR expressions for R, s, and the
region for which sin ι (obtained from the mass function
measurements) is less than one are plotted. The overlapping
shaded region corresponds to the allowed mass parameter

space from these measurements. Any correction to _ω must
remain within the region of overlap. The upper and lower
bounds for _ω correspond to variations in the expression
Λ2½1 − 3ðL̂ · θÞ2� such that the _ω curve marginally passes
through the overlapping region. The thickness in each of
the curves corresponds to the uncertainty in the _ω meas-
urement and the two curves correspond to the upper and
lower bounds on Λ2½1 − 3ðL̂ · θÞ2�. We find that the
acceptable range for the noncommutative contribution is

−15600≲ Λ2½1 − 3ðL̂ · θÞ2�≲ 1100: ð47Þ

Then, as we did in the gravitational wave analysis, taking
this upper and lower bound, we can plot

ffiffiffiffi
Λ

p
as a function

of ðL̂ · θÞ as in Fig. 4. We can see that there is again a
particular value of ðL̂ · θÞ ¼ ffiffiffiffiffiffiffiffi

1=3
p

that we are not able to
place a constraint as was the case for the GW analysis,
however we are still able to place bounds for the rest of the
range. We find that the binary pulsar bounds are actually
less stringent than those found from the gravitational wave
events by approximately an order of magnitude. However,
these constraints remain consistent with the general state-
ment that the noncommutativity parameter must be of
order unity.

V. CONCLUSION

We have explored noncommutative gravity in light of
observations from LVC gravitational wave events as well as
the binary pulsar system J0737-3039A/B. We have focused
on the lowest order noncommutative effects entering at
2PN in the binary system acceleration. The time component
of the noncommutative tensor, θ0i enters as a 2PN correc-
tion to the acceleration. When this effect is propagated
through, we find that there is a phase shift in the
gravitational waveform again entering at 2PN, shifting
the φ4 coefficient. Similarly, in the case of binary pulsar

FIG. 3. Testing noncommutative gravity with the double pulsar
binary. The two masses are determined from the mass ratio R, the
Shapiro delay parameter s and sin ι < 1 using the GR expressions
(since the noncommutative corrections to these observables enter
at higher PN orders than that for _ω), with the allowed region
shown by the green shade. We then vary the noncommutative
parameter Λ in _ω such that it is consistent with the green shaded
region to determined the bound on Λ. The thickness of _ω in blue
corresponds to the measurement error on _ω.

FIG. 4. Bounds on
ffiffiffiffi
Λ

p
as a function of ðL̂ · θÞ for the double

pulsar binary.
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dynamics, we find that the correction to the acceleration
leads to a noncommutative contribution to the pericenter
precession.
An updated and more rigorous analysis than in previous

work has been performed to use gravitational wave events
and the binary pulsar system PSR J0737-3039A/B to
constrain the space-time component of the noncommuta-
tivity tensor. We find that the gravitational wave events
including GW151226, GW170608, GW170814 and
GW170817 are more constraining than the binary pulsar
event PSR J0363-3039A/B by approximately an order of
magnitude. However, the more stringent GW constraints
are consistent with previous results, finding that the
quantity

ffiffiffiffi
Λ

p
is constrained to be of order unity.

A few different avenues exist for future work. For
example, it would be interesting to constrain the theory
from the preferred frame effect [37]. It would also be of
interest to investigate the effects of the spatial component
of the noncommutative tensor, θij, which enters at 3PN
and has potential implications for, e.g., string theory.
Additionally, it would be valuable to explore the model
dependence of the effects that we have discussed, and work
toward a more general understanding of how noncommu-
tative gravity may come into play with these observables.
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APPENDIX: NONCOMMUTATIVE
CORRECTIONS TO OSCULATING ORBITS

In addition to the noncommutative correction to the
pericenter precession, _ω, the noncommutative correction to
the acceleration also induces corrections to the other orbital
parameters, p, e, i, and Ω, described in Sec. IV. The
“Lagrange planetary equations” for these quantities are [36]

dp
dt

¼ 2

ffiffiffiffiffi
p3

M

r
S

1þ e cos f̄
; ðA1Þ

de
dt

¼
ffiffiffiffiffi
p
M

r �
sin f̄Rþ 2 cos f̄ þ eþ ecos2f̄

1þ e cos f̄
S
�
; ðA2Þ

dι
dt

¼
ffiffiffiffiffi
p
M

r
W

�
r
p

�
cosϕ; ðA3Þ

dΩ
dt

¼
ffiffiffiffiffi
p
M

r
W

�
r
p

�
sin θ
sin ι

: ðA4Þ

Plugging in the expressions for S, W, and R obtained in
Sec. IV, it is straightforward to obtain

ΔpNC ¼ 0; ðA5Þ

ΔeNC ¼ 0; ðA6Þ

ΔιNC¼
3πM2Λ2ð1−2νÞ

4p
ðL̂ ·θÞðθpcosω−θQsinωÞ; ðA7Þ

ΔΩNC ¼
3πM2Λ2ð1− 2νÞ

4p
ðL̂ · θÞðθp cosωþ θQ sinωÞcsc i:

ðA8Þ

As in Δω there is both explicit and implicit ω dependence
in these expressions. Using the same expansion method, we
obtain for the noncommutative contributions to the orbital
parameters:

ΔpNC ¼ 0; ðA9Þ

ΔeNC ¼ 0; ðA10Þ

ΔιNC ¼ 3πM2Λ2ð1 − 2νÞ
4p2

ðL̂ · θÞθΩ; ðA11Þ

ΔΩNC ¼ 3πM2Λ2ð1 − 2νÞ
4p2

ðL̂ · θÞθ⊥ csc i: ðA12Þ
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