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Precision tests of general relativity (GR) can be conducted by observing binary pulsars. Theories with
massive fields exist to explain a variety of phenomena from dark energy to the strong CP problem. Existing
pulsar binaries, such as the white dwarf-pulsar binary J1738þ 0333, have been used to place stringent
bounds on the scalar dipole emission, and radio telescopes may detect a pulsar orbiting a black hole in
the future. In this paper, we study the ability of pulsar binaries to probe theories involving massive scalar
and vector fields through the measurement of the orbital decay rate. With a generic framework, we describe
corrections to orbital decay rate due to (i) modification of GR quadrupolar radiation and (ii) dipolar
radiation of a massive field. We then consider three concrete examples: (i) massive Brans-Dicke theory,
(ii) general relativity with axions, and (iii) general relativity with bound dark matter and a dark force.
Finally, we apply direct observations of J1738 and simulations of a black hole–pulsar binary to bound
theory parameters such as field’s mass and coupling constant. We find new constraints on bound dark
matter interactions with PSR J1738, and a black hole–pulsar discovery would likely improve these further.
Such bounds are complementary to future gravitational-wave bounds. Regarding other theories, we find
similar constraints to previous pulsar measurements for massive Brans-Dicke theory and axions. These
results show that new pulsar binaries will continue to allow for more stringent tests of gravity.
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I. INTRODUCTION

At astrophysical scales, gravity is the sole long-range
force, and it is best described by general relativity (GR)
[1,2]. However, unobserved long-range interactions could
be a part of the unknown physics—dark matter, dark
energy, beyond Standard Model. One such long-range
modification could be from (light) massive scalar and
vector fields in our Universe. An additional massive field
could change the physics at astrophysical and cosmological
scales differently because the field is screened out above
a characteristic scale corresponding to the Compton length
of the field’s mass.
Astrophysical observations can find or constrain the

existence of a massive scalar/vector field by verifying the
consistency of GR as the sole force. So far, GR has been
strongly constrained by solar system tests [1], and cosmo-
logical observations are ongoing to study the gravity at
large scales [3]. On the other hand, precision measurements
of binary pulsars (PSRs) can be made through PSR timing
to test the strong field regime of gravity [4,5]. Furthermore,
gravitational-wave (GW) observations can probe the strong
field effects of gravity in a dynamical setting [6–14]. While
we know GR is an effective field theory (EFT) and must
break down at a certain energy [1,2], extra degrees of
freedom may become relevant at higher energy scales in a

gravitational theory. Thus, testing GR is a way to look for
signatures of new physics.
Let us now focus on binary PSR tests of gravity [4,5].

These systems consist of a PSR with a neutron star (NS),
white dwarf (WD), or even another PSR. Therefore,
measurements of PSR binaries allow us to study a system
of strongly self-gravitating objects. On the other hand, the
binary is widely separated, and correspondingly the veloc-
ities of the bodies are slow compared to the speed of light
(typically by a factor of 10−3 or smaller). Compared to GW
sources, PSR binaries are less dynamical which allows their
evolution to be more analytically tractable. Tests of GR
with binary PSRs are carried out with the measurement
of parameterized post-Keplarian (PPK) parameters. Radio
astronomy measurements of two PPK parameters give the
binary masses, and any additional PPK measurement can
be used to test GR.
Previously, we have studied tests of GR with PSR

observations with a black hole (BH)-PSR binary and a
triple PSR system. First, we found the discovery of a
BH-PSR binary allows stringent tests for some modified
theories of gravity [15]. We studied both the orbital decay
rate measurement of a stellar mass BH-PSR binary and the
quadrupole measurement of Sgr A* by a closely orbiting
PSR. We saw that a BH-PSR binary is strongest (compared
to NS-PSR or WD-PSR) for corrections entering at lowest
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post-Newtonian (PN) orders.1 The detection of a BH-PSR
binary would most stringently test a varying gravitational
constant (at −4PN) [15] and theories with scalar degrees
of freedom allowing scalar dipole radiation (at −1PN), such
as Einstein-dilaton Gauss-Bonnet gravity [16]. Second, we
probed massive scalar fields with strong equivalence
principle (SEP) violation constraints of the hierarchical
triple PSR system, PSR J0337þ 1715 [17]. Additional
scalar degrees of freedom induce SEP violation, and we
used this to constrain some massive scalars. We were able
to place the strongest constraint on massive Brans-Dicke
(BD) theory to date. Thus, we continue our previous work
here and investigate possible binary PSR constraints with a
BH-PSR or WD-PSR.
In this paper, we will examine tests of massive scalar/

vector fields primarily with two such binaries. The first
binary system is PSR-WD J1738þ 0333 (henceforth PSR
J1738) [18]. It is currently one of the best binary PSR
systems known to date to constrain dipolar radiation. It has
a precise measurement of the intrinsic orbital decay rate
which is consistent with the GR prediction. These features
make it a prime test of massive fields.
The second system considered in this paper is a BH-PSR

with the Square Kilometer Array (SKA) [19]. A BH-PSR
binary has not been found with radio astronomy. However,
SKA is a next-generation radio telescope which will vastly
increase the odds of finding one. Previous work on
population analysis has estimated there are around 3–80
BH-PSR binaries in the galactic disk, and an instrument
like Five-Hundred-Meter Aperture Spherical Radio
Telescope could detect up to 10% of them [20]. In this
paper, we will consider a BH in a binary with a millisecond
PSR because it allows a much higher timing precision and a
more accurate measurement of binary parameters. To make
projected bounds for a BH-PSR binary, we will use the
results of Ref. [19], which forecast measurement accuracies
with SKA. The binaries in the simulation have a distribu-
tion of periods, but we picked a specific period of three
days. We also use 10 M⊙ and 1.4 M⊙ for the BH and PSR,
and other binary parameters are discussed in Appendix B.
In comparison to a PSR-WD binary, a BH-PSR binary has
the strength of very precise orbital decay rate measurement
due to the significantly higher GW radiation.
We will begin by describing a generic formalism for the

orbital decay rate in a binary with additional massive fields.
This formalism will capture the leading order modification
away from solely GR. After this, we will consider some
example theories in the formalism and find the resulting
constraints from PSR J1738 and BH-PSR with SKA.
We will consider two specific theories with massive scalar

fields: (i) massive Brans-Dicke (MBD) theory [21,22] and
(ii) axions in GR [23,24]. We also consider a theory with a

massive vector field, namely, (iii) GR with bound dark
matter and a dark matter interaction [25]. MBD theory is a
scalar-tensor theory of gravity and a generalization of the
original BD theory with a massless scalar field [26]. The
axion is a hypothetical particle that aims to solve the strong
CP problem [27] in QCD.2 Strongly gravitating objects
can acquire significant axion charges, so its presence could
show up in astrophysical observations [23]. Finally, we
examine a generic description of dark matter interactions.
Dark matter could become bound inside compact objects
[29,30], and a (massive) dark matter mediator would create a
Yukawa term in the binary’s energy.
Let us now discuss our results. In MBD, we find that

PSR J1738 and a BH-PSR binary can place constraints that
are weaker than our previous PSR J0337 SEP violation
constraints [17]. We find that our binary PSR constraints on
the axion are similar to previous ones of PSR J0737 [23]
and PSR J0337 [17]. Regarding the dark force in a binary,
we can place constraints in a new region that characterizes
dark charge of an NS. While future GW observations can
bound wavelengths 102–108 km [25], binary PSRs can
constrain wavelengths above 1010 km. We find that PSR
J1738 places strong constraints on this region, and the
discovery of a BH-PSR would allow an improvement of an
order of magnitude.
The rest of the paper is organized as follows. In Sec. II,

we describe our formalism for the modification of the
orbital decay rate due to the addition of the new massive
field. We discuss the calculation of the orbital decay rate
modifications and how we use this to constrain theory
parameters with PSR measurements. After this, we focus
on each theory specifically in a different section and present
bounds possible with binary PSRs: MBD in Sec. III, axion
in Sec. IV, and dark force from bound dark matter in Sec. V.
Finally, we conclude and discuss future work in Sec. VI.
We also include appendices for our GW bounds on MBD in
Appendix A and binary PSR parameters in Appendix B.
For the remainder of the paper, we use geometric units of
c ¼ 1 and G ¼ 1.

II. FORMALISM

In this section, we explore an effective formalism that
describes the modification of the orbital decay rate in a
binary. We introduce theory dependent constants that char-
acterize the quadrupolar and dipolar radiation. Table I then
gives the theory constants for MBD, an axion, and a dark
matter mediator. We then explicitly show how a massive
field modifies Kepler’s third law and the orbital decay rate of
the binary. Finally, we describe our method for constraining
massive fields with observations of the orbital decay rate.

1A PN order of n refers to a correction proportional to ðv=cÞ2n
relative to the leading GR term.

2The XENON1T experiment has found excess events over the
background around 2–3 keV [28]. One possible explanation for
this observation is the measurement of solar axions, which is at
the 3.5σ significance.
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A. Generic formalism for orbital decay rate

We begin by constructing a generic formalism to
describe the modification of the orbital decay rate due to
the presence of an additional massive field. Recall that in
GR, the gravitational radiation causes an energy loss of the
binary, and in turn, this reduces its period. In GR without an
additional massive field, the orbital decay rate is given by
the Peters-Matthews formula,

_P0 ¼ −
192π

5
μM

2
3

�
P
2π

�
−5
3

; ð1Þ

where M is the total binary mass, μ is the reduced mass,
and P is the orbital period [31]. We consider a quasi-
circular binary in this formula because there are many
binaries with negligible eccentricities (e.g., PSR J1738 has
e ¼ 3 × 10−7). In an alternative theory of gravity, however,
there can be additional radiation from scalar/vector fields
and corrections to the quadrupole formula. This extra
radiation will cause the orbital decay rate to differ from
the standard GR case. The orbital decay rate is thus
modified as

_P ¼ _P0ð1þ δ _PÞ; ð2Þ

where _P is the orbital decay rate in the modified theory of
gravity, and δ _P is the fractional deviation from the standard
GR orbital decay rate.
We will work in a PN framework to have a generic

expression for δ _P that captures leading effects due to
massive fields. The PN formalism is a convenient way of
describing deviation from GR without an additional massive
field. The PN order describes the dependence of the relative
velocity v of a binary on the correction. A modification to
the orbital decay rate is said to have a correction of nPN
order relative to the leading GR term if the correction enters
at v2n. PSR binaries generally have v ∼ 0.001.
Massive fields induce correction to orbital decay rate in

two main ways: dipole radiation and modification of the
quadrupole radiation term. Dipole radiation enters at −1PN
order relative to the standard GR quadrupole radiation,
while the leading correction to the quadrupolar radiation
enters at the relative 0PN order. Following the typical

convention used in scalar-tensor theories, the orbital decay
rate in the presence of additional scalar/vector fields can be
expressed as

_P ¼ _P0

�
G−4=3 κ1

12
þ 5

96

κD
G1=3 S

2v−2
�
; ð3Þ

where κ1 and κD are theory-dependent constants character-
izing the quadrupolar and dipolar emission, respectively,
while S is the difference between the sensitivities or the
dimensionless scalar charges, and G is an effective gravi-
tational constant containing the effect of the extra field.
Rewriting the above equation in terms of the direct

observables, one finds the leading correction to _P as3

δ _P ¼ −1þ κ1
12

G−4
3 þ 5κD

96G

�
2πM
P

�
−2
3

S2; ð4Þ

where we used the modified Kepler’s third law discussed
in Sec. II B. Although the 1PN correction to the dipole
emission effect enters at the same PN order as the leading
quadrupole emission one, we do not consider such an effect
since it can never be the dominant correction. For a binary
PSR with a WD or BH companion, the scalar dipole
radiation correction dominates the correction to the stan-
dard GR orbital decay rate since it enters at lower PN order.
On the other hand, the 0PN correction may dominate the
−1PN dipole emission for a binary PSR with an NS
companion since S2 nearly vanishes. By using measure-
ments of the orbital decay rate of a binary PSR, we can
bound theory parameters by comparing their deviation from
observation.
With this formalism set in place, we calculated the orbital

decay rate parameters κ1 and κD explicitly for some theories
involving massive scalar or vector fields. In Table I, κ1 and
κD are given for MBD theory, GR with axion, and GR with
dark force. This formalism allows one to see the similarities
of how the theories modify the orbital decay rate. Each
expression in this table is derived in the section in which we

TABLE I. Orbital decay rate constants κ1 and κD of Eq (3) for each theory we consider in the paper. These constants correspond to the
quadrupole correction and the dipole emission, respectively. We also list the theoretical parameters for each theory and give references.

Theory κ1 κD

Theoretical
parameters References

Massive Brans-Dicke
(Sec. III)

G2½12 − 6ξþ ξΓ2ð1 − m2
s

4ω2Þ2Θð2ω −msÞ� 2Gξð1 − m2
s

ω2ÞΘðω −msÞ (ms, ωBD) [22]

Axion (Sec. IV) 12G2 1
8π Gð1 − m2

a

ω2Þ3=2Θðω −maÞ (ma, fa) [23,24]

Dark matter mediator (Sec. V) 12G2 2GΘðω −mvÞ (mv, α) [25]

3Although the total mass in the dipole term is not a direct
observable, it can be determined from other PPK parameters
under the GR assumption since MBD corrections to such
parameters enter at higher order than −1PN.
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fully consider the theory, but this table provides a summary
of corrections to _P in each theory.

B. Calculation of orbital decay rate

Next, let us examine how the orbital decay rate is
modified in a binary due to an additional massive scalar/
vector field. The massive field has a potential that is
described by a Yukawa potential to leading order,

Vϕ ∝ −m1m2

q1q2
r

e−msr; ð5Þ

where mi is the mass of body i, qi is the dimensionless
charge of body i, ms ≡ m̃s=ℏ is the rescaled mass of
the extra field with mass m̃s [22],4 and r is the binary
separation. In the Newtonian limit, the combined potential
is described as

V ¼ −G
Mμ

r
; GðrÞ≡G

�
1þ Vϕ

V0

�
; ð6Þ

where M and μ are the total mass and reduced mass,
respectively, while V0 is the Newtonian potential.
Furthermore, in this paper, we will be considering light
scalar fields (i.e., msr ≪ 1) so G is independent of r and
becomes an effective gravitational constant of a binary. In
this regime, we apply the virial theorem and the quasicir-
cular approximation to see that the total energy of the
binary is

E ¼ −
G
2

Mμ

r
¼ −

1

2
μv2: ð7Þ

Thus, we find a modified Kepler’s third law,

r3 ¼ GM
4π2

P2; ð8Þ

which allows us to write orbital separation r in terms
of orbital period P. This will be crucial for changing
variables containing orbital separation dependencies into
those containing only period dependencies [cf. Eq. (4)].
Notice that within the assumption of msr ≪ 1, the
conservative sector (binding energy and Kepler’s law) is
the same as the massless case. We will see later that the
dissipative sector (scalar/vector emission) acquires the
field’s mass dependence.
Now, let us compute modifications to orbital decay rate

due to additional radiation of a massive field. We compute
the orbital decay rate by using the chain rule to relate it to
radiation

_P ¼ dE
dt

�
dE
dω

�
−1 dP

dω
; ð9Þ

where ω ¼ πfGW is the orbital angular frequency. From
Eq. (7), we compute dE

dω ¼ 2
3
E
ω. Putting this into Eq. (9),

we find that orbital decay rate is directly related to energy
loss rate,

_P
P
¼ −

3

2

_E
E
: ð10Þ

Therefore, the existence of other fields will modify the
orbital decay rate from what standard GR predicts. One
final step is to define the fractional orbital decay rate
modification

δ _P≡ _P − _P0

_P0

¼
_E
E −

_E0

E0

_E0

E0

: ð11Þ

Measurements of binary PSRs will place bounds on the δ _P,
which will in turn constrain theoretical parameters.

C. Constraints from orbital decay rate

Using the results from Secs. II A and II B for the orbital
decay rate in modified theories of gravity, we next find how
measurements of binary PSRs can be used to constrain their
theory parameters.
PSR timing is used to measure the orbital decay rate

_Pobs. However, the measurement of the orbital decay rate
can be only made to a certain statistical precision. The
fractional 1-σ statistical error in orbital decay rate will be
denoted as δstat. Using this, we use the following constraint
with an n-σ uncertainty:

����
_Pobs − _Pth

_P0

���� < nδstat; ð12Þ

where we use _Pth to represent orbital decay rate with an
additional massive field. Furthermore, an orbital decay rate
measurement will slightly differ from that predicted from
GR without an additional massive field. This discrepancy
will be called the fractional systematic error δsyst,

_Pobs ¼ _P0ð1þ δsystÞ: ð13Þ

The fractional systematic error characterizes how well the
predictions of GR without an additional field match our
measurements. Using this, we can simplify Eq. (12) to be

jδ _Pth − δsystj < nδstat: ð14Þ

Henceforth, we will place constraints at 95% level (n ¼ 2).
Note that for all the PSR binaries we examine, the statistical

4For the rest of the paper, we will not distinguish between ms
and m̃s, which amount to effectively setting ℏ ¼ 1.
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error dominates the systematic error (δstat ≫ δsyst).
5 In this

way, we will use this in combination with the formalism
for orbital decay rate modification in Eq. (4) to constrain
modifications due to an additional massive field (for δ _Pth
depends explicitly on theory parameters).

III. MASSIVE BRANS-DICKE GRAVITY

A. Theory

Let us motivate MBD theory by looking at a general
action for scalar-tensor gravity

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

ϕ;μϕ
;μ þ M̃ðϕÞ

�

þ SMðgμν;ϕÞ; ð15Þ

with scalar curvature R, scalar field ϕ, coupling function
ωðϕÞ, metric gμν, cosmological function M̃ðϕÞ, and matter
field action term SMðgμν;ϕÞ [32]. The cosmological func-
tion adds two important effects to this theory [21]. First,
it acts like a cosmological constant in MBD (e.g.,
ΛðϕÞ ¼ −M̃ðϕÞ=2). Second, it causes the scalar field to
have a mass ms, and the scalar field is described by a
Yukawa term. Thus, this scalar gives a way to describe
cosmic acceleration of the Universe at large scales
r ≫ m−1

s , while scales less than the characteristic length
r < m−1

s of the scalar are modified differently.
For the rest of the paper, we will consider a specific case

of MBD theory. First, we restrict ourselves to a constant
coupling function ωBD ¼ ωðϕÞ: this matches the much
studied massless BD theory [26]. Furthermore, we assume
that the BD field has a nonzero value ϕ0 determined by its
cosmological evolution. Thus, the scalar field at any point
can be described as ϕ ¼ ϕ0 þ φ for some small perturba-
tion φ. One can show that this formulation of MBD
acquires a mass term equal to

M̃ðϕÞ ¼ 1

2
M̃00ðϕ0Þφ2 þOðφ3Þ: ð16Þ

The reason that we start at M̃00ðϕ0Þ is because asymptotic
flatness requires that M̃ðϕ0Þ ¼ M̃0ðϕ0Þ ¼ 0 [21]. This leads
to the scalar field mass equal to

m2
s ¼ −

ϕ0

3þ 2ωBD
M̃00ðϕ0Þ; ð17Þ

and the cosmologically imposed value of ϕ0 is

ϕ0 ¼
4þ 2ωBD

3þ 2ωBD
: ð18Þ

Last, the matter field contribution to the action is
described in the following way. For a system of pointlike
masses, the matter field contribution is equal to

SMðgμν;ϕÞ ¼ −
X
i

Z
dτimiðϕÞ; ð19Þ

where mi is the mass of each particle and τi is the proper
time for particle i. The gravitational constant G depends
on the scalar field and can be expressed as G ¼ ϕ0=ϕ. The
mass of an object is influenced by the scalar field: the mass
of body i is equal to [21]

miðϕÞ ¼ miðϕ0Þ
�
1þ si

�
φ

ϕ0

�

−
1

2
ðsi0 − s2i þ siÞ

�
φ

ϕ0

�
2

þO
��

φ

ϕ0

�
3
��

; ð20Þ

where the first and second sensitivities are defined to be

si ≡ −
∂ðlnmiÞ
∂ðlnGÞ

����
ϕ0

; s0i ≡ −
∂2ðlnmiÞ
∂ðlnGÞ2

����
ϕ0

: ð21Þ

With the sensitivities defined, we can now use this infor-
mation to understand the dynamics of a binary in MBD.

B. Binary pulsar bounds

Let us first calculate the orbital decay rate in MBD in
order to place constraints with binary PSR measurements.
For a binary, it is useful to define a couple of parameters
that are standard in the literature in order to simplify
expressions [21]

ξ≡ 1

2þ ωBD
; ð22aÞ

Γ≡ 1 − 2
s1m2 þm1s2

M
; ð22bÞ

where M ¼ m1 þm2 is the total binary mass. If one
considers the potential between two objects, the binary’s
effective gravitational constant is

G ¼ 1 −
1

2
ξ½1 − ð1 − 2s1Þð1 − 2s2Þe−msr�; ð23Þ

where we then take the light scalar field limit msr ≪ 0
and find

G≡ 1 − ξðs1 þ s2 − 2s1s2Þ: ð24Þ
5Conversely, a higher systematic error would signify astro-

physical systematics that were not accounted for, or beyond
(standard) GR effects.
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With this gravitational constant identified, the modified
Kepler’s third law has the form of Eq. (8).
Next, we calculate the orbital decay rate in MBD using

Eq. (10). To do this, we must know the amount of radiation
emitted in a binary due to GW and scalar fields.
Reference [21] calculated the contributions for this: GW
radiation (including modification of mass quadrupole
moment), scalar dipole radiation, and scalar quadrupole
radiation. The expressions for these radiation sources are

_EQ ¼ −
32

5

G2μ2M2v2

r4

�
1 −

1

2
ξ

�
; ð25aÞ

_EsD ¼ −
G2μ2M2ξ

r4

�
2

3
S2

�
1 −

m2
s

ω2

�
Θðω −msÞ

�
; ð25bÞ

_EsQ ¼ −
G2μ2M2ξ

r4

�
8

15
Γ2v2

�
1 −

m2
s

4ω2

�
2

Θð2ω −msÞ
�
;

ð25cÞ

where _EQ, _EsD, and _EsQ are the energy loss rate due to
mass quadrupole, scalar dipole, and scalar quadrupole
respectively. S2 ¼ ðs1 − s2Þ2 is the sensitivity difference
squared, and Θ is the Heaviside step function.6

With the expressions for radiation in MBD, we now
can calculate the orbital decay rate. We use Eq. (10) in
conjunction with the expressions for radiation in Eq. (25).
For a quasicircular binary, the leading corrections to the
orbital decay rate are given by Eq. (4) with

κ1 ¼ G2

�
12 − 6ξþ ξΓ2

�
1 −

m2
s

4ω2

�
2

Θð2ω −msÞ
�
;

κD ¼ 2Gξ
�
1 −

m2
s

ω2

�
Θðω −msÞ: ð26Þ

With this result in hand, we can obtain constraints of MBD
with binary PSR measurements.
The bounds from orbital decay rate measurement will

proceed as described in Sec. II C. There are two theory
parameters (ms and ωBD) to be bounded. An experimental
observation of the orbital decay rate will therefore create
constraints on the theory parameter space. This is done by
using the inequality from Eq. (14).
We will now use this formulation in conjunction

with binary PSR measurements. We use measurements
of PSR-WD J1738 [18], PSR J0348 [33], WD-WD J0651
[34], and BH-PSR simulations [19] in conjunction with the
constraints from Eq. (4). These full binary parameters are

given in Table III. We plot the results of these constraints
in Fig. 1.
Let us now put our PSR bounds in context and compare

it to other methods of constraining MBD. In Fig. 1, we have
color-coded each bound according to the type of system.
Binary bounds are shown for PSR-WD (green) and
simulated BH-PSR (red), where one can see a stronger
bound when ms < ω due to scalar dipole emission but is
bounded by quadrupolar modification for ms > ω. Dipolar
emission for WD-WD (pink) is suppressed since the binary
components are nearly identical. Bounds from PSR-WD,
BH-PSR, and WD-WD halt around ms ∼ 10−16 eV since
the approximation msr ≪ 1 breaks down. The best GW
bounds are from LIGO-Virgo BBH Catalog GWTC-1
(blue) [9]. We derive these bounds on MBD with GW in
Appendix A. We also investigated constraints from
GW170817 [7], but they were weaker than the BBH
catalog by about a factor of 5.
On the other hand, we plot results from our previous

paper which examined testing massive scalar fields with
SEP violation constraints [17]. In particular, we studied the
hierarchical triple PSR J0337 with an inner PSR-WD
binary and a WD orbiting the outside (cyan). This con-
figuration allows the constraints on SEP which we use to
constrain MBD. Additionally, measurements of the
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FIG. 1. The upper bound on the BD parameter ωBD as a
function of the scalar field’s massms. A larger ωBD corresponds
to a stronger bound because GR is the limit as ωBD → ∞. We
use simulated constraints from a BH-PSR binary through
measurements with SKA (red) [19]. The green lines are
constraints from current PSR-WD binaries: J1738 (solid green)
[18] and J0348 (dashed green) [33]. We also present the bounds
by the double WD (pink) [34] and LIGO-Virgo Catalog
GWTC-1 of binary BH (blue) [9]. We show the constraints
arising from the SEP measurement of the PSR triple system
J0337 (cyan) [17], and due to inverse square law measurements
(ISL) in purple: LLR (solid purple) [35] and planetary mea-
surements (dashed purple) [36].

6The step function arises in the following manner. The scalar
field propagates in a region with no sources with the following
field equation: ð−□þm2

sÞφ ¼ 0. This implies ω2 ¼ k⃗2 þm2
s .

Since k⃗2 is non-negative, the condition ω ≥ ms arises. Similarly,
the scalar quadrupolar radiation has a condition that 2ω ≥ ms.
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consistency of the inverse square law (ISL) can be used to
constrain MBD (dark purple). We plot these constraints
from Ref. [17] for lunar laser ranging (LLR) [35] and
planetary measurements [36].
In the end, the combination of ISL and SEP tests provide

stronger constraints on MBD than binary PSR measure-
ments. If a BH-PSR binary is found, it could provide
similar constraints for low masses that PSR J0337 SEP
constraints did. Additionally, a GW measurement of an
asymmetric binary (i.e., NS-BH) could provide strong
constraints on MBD since the sensitivity difference would
not be negligible like the NS-NS detection.

IV. AXION

A. Theory

The axion was first invented to solve the strong CP
(charge-parity) problem [27,37,38]. The theory of QCD
does not preserve CP symmetry generically; however,
experiments have found no evidence of CP violation in
QCD. For example, measurements of the neutron’s electric
dipole moment failed to find CP violation [39]. The axion
mechanism was introduced by promoting the QCD θ
parameter to be a dynamical field with a potential so that
it can naturally vanish and preserve CP symmetry. The
axion is characterized by its mass ma and axion decay
constant fa. These parameters are related as

ma ¼ 5.7 × 10−12 eV

�
1018 GeV

fa

�
ð27Þ

to solve the strong CP problem [40].
Moreover, there is significant physical motivation to

consider a generalization of the QCD axion. These are
referred to as axionlike particles (ALPs) and do not have
the massma and decay constant fa relationship in Eq. (27).
The compactification of string theories suggests the exist-
ence of ultralight ALP [41]. ALPs could also describe
dynamical dark energy [42] and are a candidate for dark
matter [40,43–45]. From now on, we will use axion to refer
to both the QCD axion and ALPs. For these reasons, we are
highly motivated to constrain axion parameter space with
observations.
Axions show up in binary PSRs because stellar objects

can acquire nonvanishing axion charges due to their
sufficiently high matter densities. In contrast, axions are
not sourced by, e.g., atomic nuclei [23], so binary PSRs are
a great laboratory for testing axions. When mar ≪ 1, the
axion field modifies the dynamics of the binary by creating
a Yukawa potential between the two bodies of the form in
Eq. (6) with [23,46]

G≡
�
1þ q1q2

4π

�
; ð28Þ

where qi is the dimensionless charge of body i and has the
form [46]

qi ¼ −
8πfaffiffiffi

ℏ
p

ln ð1 − 2mi
Ri
Þ ð29Þ

for massmi and stellar radius Ri. Previous work [23,24] has
given the axion charge as qi ∼ 4πfaRi=mi. This is related
to Eq. (29) by assuming a compact object (mi=Ri ≪ 1),
then one can arrive at the previous definition. We will use
the general expression for the axion in Eq. (29) in our
calculations. The axion charges are only nonvanishing for
sufficiently high stellar densities, and the conditions are

ρi ≳m2
af2a;

ffiffiffiffi
ρi

p ≳ fa
Ri

; ð30Þ

otherwise, the axion charge is vanishing.

B. Bounds

Measurements of binary PSRs can be used to constrain
the mass and coupling constant of an axion. Here, we
will once again use the orbital decay rate observable to
constrain deviation from GR without an axion presence.
Thus, scalar dipole radiation will create a sizable deviation
from standard GR in the orbital decay rate observable.
Also, conservative modifications to the potential can occur
as already explained, which will allow us to constrain some
other regions.
We begin by calculating the modification of _P. The

power radiated in a binary system consists of gravitational
quadrupolar radiation and scalar dipolar radiation which are
calculated to be [23]

_EQ ¼ −
32

5

G2M2μ2v2

r4
; ð31aÞ

_EsD¼−
1

24π

G2M2μ2S2

r4

�
1−

m2
a

ω2

�
3=2

Θðω2−m2
aÞ; ð31bÞ

where we define S2 ≡ ðq1 − q2Þ2. Using the relationship
between energy lost and orbital decay rate in Eq. (10) and
the modified Kepler’s law, we find the leading corrections
to the orbital decay rate as in Eq. (4) with

κ1 ≡ 12G2; ð32Þ

κD ≡ 1

8π
G
�
1 −

m2
a

ω2

�
3=2

Θðω −maÞ: ð33Þ

This result will allow us to bound the axion with binary
PSR observations.
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Using Eq. (4), we construct bounds for the axion. In
Fig. 2, we show the constraints possible using PSR J1738
(dark green) [18]. We also show the constraints with a
BH-PSR binary (red) based on its simulated detection
[19].7 The constraints from these binary PSRs mainly come
from those on dipolar radiation (which cuts off when
ma ¼ ω). The small sliver in J1738 comes from quad-
rupolar radiation modification, while the BH-PSR does not
have this since the BH charge is zero. We also add previous
constraints from solar [23], supernova SN1987A, and BH
superradiance constraints [48,49]. We see that our con-
straints are largely similar to those of previous PSR
constraints, i.e., the double PSR [23] and SEP violation
constraints with PSR J0337 [17]. We also show the
constraints on the axion by big bang nucleosynthesis
(BBN) if it is the dark matter particle [50]. Finally, we
plot the relationship between the axion decay constant and
axion mass from Eq. (27) if the axion is the QCD axion.

V. BOUND DARK MATTER

A. Theory

With the introduction of dark matter, it is natural to ask
whether dark matter can interact with itself. We refer to this
interaction as the dark force. It is well theoretically
motivated that dark matter can be gravitationally bound
inside an NS or WD [29,30,53]. Thus, with the accumu-
lation of excess bound dark matter in compact objects, a
dark force between bodies in a PSR binary could be
nonvanishing. In particular, we will consider a dark force
that is described by a massive mediator.
Measurements of binary PSRs can thus be used to

search and constrain the existence of a dark force. A dark
force would change the orbital evolution of the binary and
cause both conservative corrections from modification of
the Newtonian potential and dissipative corrections from
dipole and quadrupole radiation. While we are probing
dark forces with PSRs, they have a strong precedent for
many types of dark matter investigations. Binary PSRs
near the Galactic center are used to study the dark matter
halo through dynamical friction [54,55]. Binary PSRs
have also been used to probe oscillating dark matter
distributions and to constrain a coupling between dark
matter and standard model [56,57]. On the other hand,
there have been constraints on the dark force with binary
PSRs for a particular dark matter model through mod-
ifications of the conservative sector (periastron advance)
[58]. GWs can also probe the dark force through both
conservative and dissipative modifications from bound
dark matter [25,59,60].
We consider a generic way of constraining dark forces

[25]. This is because we are considering a widely separated
binary in which the EFT of the models would cause similar
phenomenology. However, we will make use of an example
to be more explicit. We could have a model of asymmetric
dark matter coupled to an Abelian gauge field [61–63].
Then a Lagrangian could be written as

LDM ¼ −
1

4
VμνVμν þ 1

2
m2

vVμVμ þ χ̄ðiγμDμ −mχÞχ; ð34Þ

with dark matter fermion χ with mass mχ , dark photon Vμ

with mass mv, gauge covariant derivative Dμ, and dark
photon field strength tensor Vμν. Then, the dark photon will
mediate a dark force between gravitationally bound dark
matter inside NSs.
For a widely separated binary, we can consider the

constituents as approximately point masses. The dark
photon’s interaction can be characterized as tree-level
scattering, which allows us to describe it with a Yukawa
potential in Eq. (6) [25]. Once again, we will consider a
very light particle so that orbital separation is much smaller
the characteristic length of the dark force mvr ≪ 1. Then,
binary’s effective gravitational constant is given by

FIG. 2. Constraints possible for the axion using PSR-WD
J1738 and BH-PSR [18]. We show the parameter space
disallowed by PSR J1738 (dark green) and BH-PSR measure-
ments with SKA (red). SEP measurements with the hierarchical
PSR triple system PSR J0337 (cyan) also give constraints
[17,51] (subsequent analysis has further improved the J0337
SEP constraint by 30% [52]). We also show the constraints
from measurements of the sun (yellow), supernova SN1987A
(light green), and the absence of black hole superradiance (BH
SR) (orange) [23,48,49]. If the axion is the dark matter particle,
then BBN measurements disallow the region above the dashed
gray line [50]. The black line represents the axion with finely
tuned parameters that solve the strong CP problem (i.e., the
axion is the QCD axion) [24]. The BH-PSR constraints are
weaker than PSR J1738 because a BH has no scalar axion
charge, so the system deviates less from GR.

7Others have shown that BH superradiance can be used to
constrain axions in a BH-PSR binary [47].
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G ¼ 1 − α; α≡ q1q2; ð35Þ

where α≡ q1q2, qi is the dimensionless charge of body i.
An antisymmetric dark matter model requires the inter-
action to be repulsive (α > 0). We will see that we can
constrain the maximum amount of dark matter charge in a
typical m ∼ 1.4 M⊙ NS. This is what we refer to as a
“generic test” of dark matter since the relationship between
dark charge and theory parameter depends on the dark
matter model.

B. Bounds

Now, we derive the deviation of the GR orbital decay rate
for a binary with a dark force. Using standard arguments,
energy loss due to GWemission and vector dipole radiation
are [25]

_EQ ¼ −
32

5

G2M2μ2v2

r4
; ð36Þ

_EvD ¼ −
2

3

G2S2μ2M2

r4
Θðω −mvÞ; ð37Þ

where S2 ≡ ðq1 − q2Þ2 as in the axion case.8 Using Eq. (10)
with the expressions for radiation with the dark force in
Eq. (36), the leading modifications of orbital decay rate are
described by Eq. (4) with

κ1 ≡ 12G2; ð38Þ

κD ≡ 2GΘðω −mvÞ: ð39Þ

From this, we see that the orbital decay rate is modified by
both the change in total energy at 0PN order (and hence
change in the quadrupolar radiation) and the vector dipole
radiation term at −1PN order.
With our expression for orbital decay rate modification

with a dark force, let us now use binary PSR measurements
to place constraints on it. We first specialize the orbital
decay rate modification for BH-PSR and PSR-WD bina-
ries. A BH has a vanishing dark charge because Bekenstein
showed that a BH has vanishing charges for a scalar field
or massive vector field [65]. Additionally, the amount of
bound dark matter in an NS will be much greater than that
of a WD. This is a consequence of the dark matter capture
rate being proportional to baryon density and escape
velocity squared [66], and thus bound dark matter in NS
dominates that of WD, qNS ≫ qWD. The result of all of this
is that we can use α ≈ 0 for a BH-PSR or PSR-WD binary.
With these assumptions made, let us constrain dark

forces with binary pulsar observations. With the expression
for orbital decay rate modification in Eq. (4), we can use

measurements of PSR J1738 to place an upper bound on
S2 ≈ q2NS. Similarly, we can use simulated measurement
accuracies for a representative BH-PSR binary with SKA to
place an upper bound on S2 ≈ q2NS.

9 Both of these con-
straints are shown in Fig. 3, along with other constraints
from GWobservations as discussed in [25]. In both of these
systems, the binary PSR constraints are complementary to
those made with GWobservations. It can constrain the very
light massive dark force part of the parameter space.

VI. CONCLUSION

In this paper, we have examined how one can use PSR
binaries to constrain massive scalar/vector fields. We began
by describing generic modifications of the orbital decay
rate due to massive fields. We then used two representative
systems to construct bounds: PSR-WD J1738 and a
simulated BH-PSR. We found that for MBD, SEP, and
inverse square law constraints are stronger than binary PSR
ones. For the axion, our constraints were similar to previous
PSR-NS and SEP violation constraints for the theory
parameter space. Finally, we saw that our binary PSR
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FIG. 3. The upper bound on S2 as a function of dark force
wavelength. We present the ones from PSR J1738 (green) and
from the future detection of a BH-PSR binary with SKA (red).
The cutoff of the PSR binaries occurs when the dipolar radiation
ends (ω ¼ mv ¼ λ−1v for the Compton length λv). The dashed
lines give forecasted constraints on S2 for a future GW detection
with aLIGO (dashed orange) and Einstein Telescope (dashed
blue) [25]. The GW bounds use a binary of masses ð5; 1.4Þ M⊙ at
150 Mpc (full parameters used in Fisher analysis in Table I of
[25]). Furthermore, note that the GW bounds constrain up to
λv ∼ 108 km, but Ref. [25] only shows up to λv ∼ 106 km. One
can see that measurement of binary PSRs is highly complemen-
tary to those made from GW.

8The vector dipole radiation differs by a factor of 2 from
previously examined scalar dipole radiation expressions [25,64].

9Note that the dark charge is dependent on the mass of the NS.
However, we can show these in the same figure since both NS are
approximately the same mass.
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constraints on a massive dark force are complementary to
previous GW results.
In the future, binary pulsars will be of continued

importance for testing massive fields. One important
direction is a more rigorous analysis of pulsar timing data.
Currently, we use parameter estimation results from the
TEMPO package which assumes only GR. However,
one could simultaneously estimate binary parameters and
theory parameters to increase constraint accuracy (see, e.g.,
[67]). More specifically, we could only probe the scalar
dipole variable S2 in dark matter, but with more sophis-
ticated analysis, one could constrain α by testing the
consistency of advance rate of periastron, mass ratio,
Shapiro time delay, and gravitational redshift with the
double PSR J0737. This would likely improve on what is
done in Ref. [58] which uses the Hulse-Taylor binary PSR
B1913. Recently, a new paper has derived the orbital decay
rate in MBD without assuming a very light scalar mass
(msr ≪ 1) [68]. One could use their results to have a more
accurate bound for more massive ms.
The continued discovery of new PSRs and instrumenta-

tion improvements mean that tests will become ever more
precise. While we demonstrated how SKA will improve
tests of massive fields with a BH-PSR binary, the next
generation of radio telescopes could discover many types of
exciting new pulsar systems. Pulsars will thus continue
being part of the toolkit for probing fundamental physics.
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APPENDIX A: MBD GRAVITATIONAL-WAVE
CONSTRAINTS

Let us now use GW observations to constrain MBD.
Measurements of the gravitational waveform can be used to
test the consistency of it with the GR waveform. To do this,
we will use the parameterized post-Einsteinian framework
[69] or the generalized IMRPhenom (gIMR) framework [6]
which both generically describe phase and amplitude
deviations to the waveform. The binary NS merger
GW170817 has provided new constraints on deviation of
the phase part of the gravitational waveform [7].
Specifically, it has constrained the phase deviation at
0PN and −1PN. We will see that the 0PN measurement
can constrain MBD most stringently because scalar dipole
radiation at −1PN is negligible since both NSs have similar
sensitivities.
First, let us describe the modification of the waveform

phase in MBD. The Fourier transform of the gravitational

waveform within the stationary phase approximation can be
written as

h̃ðfGWÞ ¼ Af−7=6GW eiψðfGWÞ; ðA1Þ

where A is an amplitude parameter, fGW is the GW
frequency, and ψðfGWÞ is the phase of the gravitational
waveform [70]. This phase is computed in the stationary
phase approximation (SPA) to be equal to [22]

ψðfGWÞ ¼ 2πfGWtc − ϕc −
π

4
þ 3

128ðπMfGWÞ5=3

×

�
1þ ζ −

5

84
η2=5ðπMfGWÞ−2=3

× ξS2ΘðπfGW −msÞ þO½ðπMfÞ2=3�
	
; ðA2Þ

where (tc, ϕc) are the time and phase at coalescence,
respectively, η≡ μ=M is the symmetric mass ratio, and
M≡ η3=5M is the chirp mass.10 ζ is defined as

ζ≡2

3
ξðs1þs2−2s1s2Þþ

ξ

2
−
ξΓ2

12
Θð2πfGW−msÞ: ðA3Þ

Since the GW frequency for the observed GW events is
much higher than the orbital frequency of binary PSRs, we
can assume πfGW ≫ ms in our regime of interest. Namely,
it is sufficient to consider the massless BD case. Then, the
modification of the waveform (up to 0PN order) reduces to

δψMBDðfGWÞ ≈ ζ −
5

84
η2=5ðπMfGWÞ−2=3ξS2; ðA4Þ

with

ζ ≈
2

3
ξðs1 þ s2 − 2s1s2Þ þ

ξ

2
−
ξΓ2

12
: ðA5Þ

These corrections to the GR waveform phase have been
constrained from the observed GW events as

TABLE II. A listing of GW constraints on MBD parameter. We
list the gIMR parameter constraints from GW170817 and BBH
cataloge GWTC-1. The MBD constraints are found from
Eqs. (A6) and (A7) due to each gIMR parameter.

gIMR parameter MBD bounds

GW170817 [7] δϕ0 < 3 × 10−1 ωBD þ 3=2 > 1.73
δϕ−2 < 2 × 10−5 ωBD þ 3=2 > 0.64

BBH [9] δϕ0 < 9 × 10−2 ωBD þ 3=2 > 8.30
δϕ−2 < 2 × 10−3 � � �

10Note that the GW frequency is twice the orbital frequency
fGW ¼ 2f ∝ v3, and thus fGW is of 1.5PN order.
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jζj < δϕ0; ðA6Þ
���� 584 ξS2

���� < δϕ−2; ðA7Þ

where δϕ0 and δϕ−2 are the gIMR parameters at 0PN and
−1PN orders, respectively. With these inequalities relating
MBD expressions with gIMR measurements, we can
constrain MBD.
The LIGO/Virgo Collaborations has released papers

putting constraints on gIMR parameters for both
GW170817 [7] and an analysis of BBH mergers [9].
Starting with GW170817, we use the constraints on
gIMR parameters δϕ0 and δϕ−2 as shown in Table II
[7]. We use the low-spin priors and the median mass
from GW170817 (m1 ¼ 1.48 M⊙ and m2 ¼ 1.265 M⊙).
Reference [4] calculated the sensitivities of NSs for typical
equations of state, and we use the values of (s1 ¼ 0.159 and
s2 ¼ 0.140) from Fig. 20. Considering constraints on both

0PN and −1PN with Eqs. (A6) and (A7), we calculate the
bounds on MBD in Table II. The strongest constraint is
ωBD þ 3=2 > 1.73 at 0PN order because the difference in
NS sensitivities is nearly vanishing for the scalar dipole
radiation at −1PN. We next use the BBHmerger analysis of
gIMR constraints. For this, a BH sensitivity is 1=2 so no
scalar dipole radiation contributes. One can use the gIMR
constraint in Table II in conjunction with Eq. (A6) to see
that ωBD þ 3=2 > 8.30. Since BBH give the strongest
bound from GW observations, we plot it in Fig. 1.

APPENDIX B: BINARY PARAMETERS

For completeness, we include all relevant binary param-
eters used in this paper’s calculations in this section. They
are listed in Table III. In this table, the binary masses are
estimated by the PPK parameters assuming that GR is the
correct theory.
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