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Gravitational-wave sources can serve as standard sirens to probe cosmology by measuring their
luminosity distance and redshift. Such standard sirens are also useful to probe theories beyond general
relativity with a modified gravitational-wave propagation. Many of previous studies on the latter assume
multimessenger observations so that the luminosity distance can be measured with gravitational waves
while the redshift is obtained by identifying sources’ host galaxies from electromagnetic counterparts.
Given that gravitational-wave events of binary neutron star coalescences with associated electromagnetic
counterpart detections are expected to be rather rare, it is important to examine the possibility of using
standard sirens with gravitational-wave observations alone to probe gravity. In this paper, we achieve this
by extracting the redshift from the tidal measurement of binary neutron stars that was originally proposed
within the context of gravitational-wave cosmology (another approach is to correlate “dark sirens” with
galaxy catalogs that we do not consider here). We consider not only observations with ground-based
detectors (e.g., Einstein Telescope) but also multiband observations between ground-based and space-
based (e.g., DECIGO) interferometers. We find that such multiband observations with the tidal
information can constrain a parametric non-Einsteinian deviation in the luminosity distance (due to
the modified friction in the gravitational wave evolution) more stringently than the case with
electromagnetic counterparts by a factor of a few. We also map the above-projected constraints on
the parametric deviation to those on specific theories and phenomenological models beyond general
relativity to put the former into context.
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I. INTRODUCTION

A historic detection of gravitational waves (GWs) was
made September 14, 2015, by the Laser Interferometer
Gravitational-wave Observatory (LIGO) in Hanford and
Livingston. The GWevent is known as GW150914 [1] and
consists of a merger of a binary black hole (BBH). So far,
nearly 50 BBH merger GW events have been found [2].
Another milestone observation was made in 2017 when
LIGO and Virgo detected GW signals from a coalescing
binary neutron star (BNS), known as GW170817 [3]. This
event marked the dawn of multimessenger astronomy as
not only GW signals but also their associated electromag-
netic (EM) counterparts were detected [4]. A second BNS
event, GW190425 [5], was found in the third observing run
by the LIGO/Virgo Collaboration (LVC), though no
electromagnetic counterpart is confirmed yet.
GW170817 serves as a standard siren to probe cosmol-

ogy, in particular measuring the Hubble constant [6–8].
This constant is inferred from the independent measure-
ment of the luminosity distance and the redshift of the
source. The former is measured from the GW amplitude
while the latter is obtained by identifying the host galaxy
through EM counterpart observations.

Another important application of GW170817 is to test
general relativity (GR). Going beyond GR is motivated by
the unification of GR and the Standard Model [9–11], and it
can also explain some of unsolved problems in cosmology,
such as dark matter and dark energy problems [12–16]. GR
has passed all the tests put to it, including solar system
experiments [17] in the weak-field regime, binary pulsar
observations [18,19] in the strong/nondynamical regime
and GW observations [20–24] in the strong/dynamical
regime. GW170817 has been used to probe the modified
dispersion relation of GWs. For example, the comparison
of the arrival time difference between GW and EM wave
signals placed a bound on the fractional difference in the
propagation speed of GWs with respect to the speed of light
to be one part in 10−15 [4].
Standard sirens like GW170817 can also probe other

aspects of the modified GW propagation, in particular the
modified friction term in the GW evolution. This in turn
modifies the GW amplitude from its GR counterpart, and
thus the luminosity distance measured with GWs may
differ from that measured through EM observations.
Alternatively, one can use the luminosity distance and
redshift measurement of standard sirens to probe both
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cosmology and modified GW propagation. This has been
demonstrated for future GW observations with advanced
LIGO with its design sensitivity, Einstein Telescope (ET),
and Laser Interferometer Space Antenna (LISA) [16,25–
27], assuming that the luminosity distance is measured
through GWs while the redshift is obtained from that of the
host galaxy that is identified through EM counterparts. If
there are no associated EM counterparts, one can still use
such GW sources “dark sirens” to probe cosmology
and gravity by taking their correlation with galaxy catalogs
[28,29].
In this paper, we study an alternative approach of using

standard sirens without EM counterparts to probe the
modified GW propagation through tidal effects of BNSs.
This idea was first proposed in [30] within the context of
probing cosmology with GW observations alone. The
authors in [30] realized that the tidal deformability that
characterizes tidal effects in a BNS depends on the intrinsic
mass, so together with the measurement of the redshifted
mass, one can infer the source’s redshift provided that one
knows the nuclear matter equation of state a priori.
We here apply the above methodology to tests of

modified GW propagation (or modified GW friction) to
study how much improvement one gains from the case
where one uses only BNSs with EM counterparts. We
follow [16,25] and work in a generic modified GW
parametrization (Ξ0; n), where Ξ0 represents the ratio
between the luminosity distance measured by GW and
EM signals at large z while n denotes the redshift
dependence on the ratio. Such a generic parametrization
has a known mapping to theoretical constants in some
specific non-GR theories [16]. We carry out a Fisher
analysis to derive projected bounds on Ξ0 for various n
with ET and multiband GW observations. The latter is a
joint observation between ground- and space-based inter-
ferometers [31–38]. Here, we focus on multiband obser-
vations between ET and DECihertz laser Interferometer
Gravitational wave Observatory (DECIGO) [39,40].
B-DECIGO, the scientific pathfinder of DECIGO, is
planned to be launched in the 2030s [40], while DECIGO
is expected to be launched at a later time.
We here present a brief summary of our findings. We first

compute the measurability of the BNS redshift with GW
observations alone, and find that multiband observations
improve the accuracy by ∼50% compared to the case with
ET only. Next, we show the bound on the modified GW
propagation parameter Ξ0. Figure 1 presents such a bound
against the fraction α of BNS events within the redshift
range of z ¼ ½0.1; 2� whose redshift is identified through
EM counterparts. We choose a representative case of n ¼
2.5 and SLy equation of state (EOS). Observe that the
addition of BNSs without EM counterparts improves the
bound by a factor of a few in the case of ET alone, and
the bound further improves further if one uses multiband
observations. Although the figure is only for n ¼ 2.5, we

find that the bound on Ξ0 is insensitive to the choice of n.
Lastly, we map the bound on Ξ0 to parameters in specific
non-GR theories. In the case of a scalar-tensor theory, for
example, the relevant parameter can be constrained to a
level of ∼10−2.
The organization of the rest of the paper is as follows.

In Sec. II, we briefly introduce the formalism of how the
modified luminosity distance is parameterized and the
mapping between this theory-agnostic parametrization
and constants in specific non-GR theories like scalar-tensor
theories and phenomenological models. In Sec. III, we will
explain how to estimate uncertainties of the redshift
measurement for a BNS event without EM counterpart
from the tidal effect in the gravitational waveform.
Section IV describes the Fisher analysis for parameter
estimation on the redshift and non-GR parameters. We
present our results on the measurability of the redshift,
modified GW propagation parameter and theory-specific
parameters in Sec. V. In Sec. VI, we give concluding
remarks and describe avenues for possible works. We use
the unit G ¼ c ¼ ℏ ¼ 1 throughout.

II. MODIFIED LUMINOSITY DISTANCE

GW sources can be used as standard sirens to probe
cosmology from the relation between the luminosity
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FIG. 1. Measurability of the modified GW propagation param-
eter Ξ0 as a function of the fraction α of the events with redshift
identification through EM counterparts. We show results for
(i) using only BNS events with EM counterparts (“EM” as in
Eq. (37), as done in previous literature) and (ii) combining BNS
events with and without EM counterparts (“GWþ EM” in
Eq. (38). We consider observations with ET alone and multiband
observations (with an observation time of 3 yrs for the latter). We
use SLy EOS and set n ¼ 2.5 in Eq. (3). The vertical dashed line
at α ¼ 2 × 10−3 corresponds to the typical fraction of BNSs with
EM counterparts [41]. Observe that the addition of BNSs without
EM counterparts improves the measurability from those with EM
counterpart by a factor of a few.
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distance dL and the redshift z [6,42,43]. Such sources can
also be used to probe gravity since the above relation not
only depends on cosmological parameters but also on the
underlying gravitational theory.

A. Formalism

One can, in particular, probe generic theories that
modifies the Hubble friction term in the propagation
equation of GWs [25]1:

h̃00A þ 2H½1þ αMðηÞ�h̃0A þ k2gwh̃A ¼ 0: ð1Þ

Here h̃A is the metric perturbation (or GWamplitude) in the
Fourier domain with A ¼ þ;× representing the plus and
cross polarization modes, a prime representing the deriva-
tive with respect to the conformal time η, kgw is the wave
number, H≡ a0=a with a denoting the scale factor, and
αMðηÞ is the modified friction term. The above equation
reduces to the one in GR when αM ¼ 0. The friction term
modification affects the GW amplitude, which can be
absorbed into the luminosity distance. This leads to a
difference in the luminosity distance measured through
GWs dgwL ðzÞ and EM waves demL ðzÞ as follows [25,46]:

dgwL ðzÞ ¼ demL ðzÞ exp
�Z

z

0

αMðzÞ
1þ z

dz

�
: ð2Þ

A useful parametrization has been proposed in [25] as

dgwL ðzÞ
demL ðzÞ ¼ Ξ0 þ

1 − Ξ0

ð1þ zÞn : ð3Þ

Here Ξ0 corresponds to the constant ratio of the luminosity
distance in the limit z → ∞ while n shows the redshift
dependence of the ratio. GR is recovered when Ξ0 → 1 and
this is the case when z → 0. Such a parametrization allows
us to treat the modification in the luminosity distance
measurement from GWs in a generic way, and at the same
time to map the modified GW propagation parameters
ðΞ0; nÞ to theoretical constants in known gravitational
theories beyond GR.

B. Mapping to scalar-tensor theories and
phenomenological models

In this paper, we consider scalar-tensor theories and
phenomenological models as specific examples [16].

1. Horndeski theories

Let us first review scalar-tensor theories. We consider, in
particular, theories within Horndeski theories [47], which
are most general scalar-tensor theories with field equations
containing up to second order derivatives (see, e.g., [48] for
a recent review). The action is given by [16]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li þ Lmðgμν;ψmÞ
�

ð4Þ

with Lagrangian densities

L2 ¼ G2ðϕ; XÞ;
L3 ¼ G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞR − 2G4Xðϕ; XÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕþ 1

3
G5Xðϕ; XÞ

× ½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�;

where ϕ is the scalar field, X ≡ ∂μϕ∂μϕ, R and Gμν

represent the Ricci scalar and Einstein tensor in the
Jordan frame metric gμν. Giðϕ; XÞ are arbitrary functions
of ϕ and X and GiX ≡ ∂Gi=∂X. The matter field ψm in
the Lagrangian density for matter Lm is minimally coupled
to gravity. Given that GW170817 placed a stringent
bound on the propagation speed of GWs cgw [4,49], we
consider G4X ¼ 0 and G5 ¼ const., which guarantees that
cgw ¼ 1 [50–52].
The correction to the Hubble friction term is related to

G4 through the effective Planck mass Meff as

αM ¼ d lnM2
eff

d ln a
; M2

eff ¼ 2G4: ð5Þ

Themodified GW propagation parameters are given by [16]

Ξ0 ¼ lim
z→∞

Meffð0Þ
MeffðzÞ

; n ≈
αM0

2ðΞ0 − 1Þ ; ð6Þ

where αM0 is αM at the present time.
As an example of Horndeski theories, we consider

fðRÞ gravity where the Einstein-Hilbert action is modified
with R → Rþ fðRÞ for an arbitrary function f. G4 then
becomes

G4 ¼
1þ fR

2
M2

P; ð7Þ

where MP is the Planck mass that is related to the effective
Planck mass as MP ¼ limz→∞MeffðzÞ. fR ≡ f0ðRÞ and a
prime represents a derivative with respect to R. For such a
model, Ξ0 and n are given by

1In general, the last term on the left-hand side of Eq. (1) can
acquire non-GR corrections that modify the propagation speed of
GWs and/or add a mass to the graviton, and an anisotropic stress
source term may arise on the right-hand side (see, e.g., [44,45]).
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Ξ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fR0

p
≈ 1þ 1

2
fR0; ð8Þ

n ≈
�
f0R
fR

�
0

; ð9Þ

where the subscript 0 corresponds to the present value. In
particular, we consider a model proposed by Hu and
Sawicki (HS). Ξ0 and n for the HS fðRÞ gravity are given
in Table I where n̄ is a positive integer and ΩM is the matter
energy density parameter.
fðRÞ gravity is a special case of Brans-Dicke theory [55].

G4 and G2 in the latter theory is given by

G4ðϕÞ≡M2
Pϕ

2
; ð10Þ

and G2 ¼ −UðϕÞ þ XωðϕÞ=ϕ, where ω is the Brans-
Dicke function and U is the scalar field potential. The
theory reduces to fðRÞ gravity when ω ¼ 0. The mapping
of ðΞ0; nÞ to Brans-Dicke theory is given in Table I,
where δϕ0 ≡ ϕ0 − 1.

2. Phenomenological models

The second model we consider is a phenomenological
parametrization on αM motivated by a time-varying effec-
tive Planck mass Meff . We consider two different para-
metrization for αM:

(i) power law:

αM ¼ αM0an̄; ð11Þ

(ii) dark energy density:

αM ¼ αM0

ΩΛðaÞ
ΩΛ0

; ð12Þ

where ΩΛ is the dark energy density parameter.
Once again, Ξ0 and n for these models are summarized in
Table I.

In Appendix A, we review other models within
Horndeski theories and phenomenological classes, and
give the mapping to ðΞ0; nÞ in Table I.

III. REDSHIFT INFERENCE THROUGH
TIDAL EFFECTS

To probe gravity from the luminosity distance-redshift
relation in Eq. (3), one needs an independent measurement
of dL and z. The former is measured from the amplitude of
GWs while the latter is more challenging to measure as it
typically degenerates with the mass. If a BNS event has an
associated EM counterpart, one can use the redshift
information of the host galaxy, which has been used for
GW170817 to measure the Hubble constant [6] and also to
give future forecasts on testing the modified GW propa-
gation [25]. However, BNS events with EM counterparts
are expected to be rare, with a fraction of only ∼10−3 or
so [41].
An alternative method to measure the redshift with GW

observations alone is to use the tidal effect [30]. Such an
effect in BNS is characterized by tidal deformabilities or
Love numbers that depend on the intrinsic (source-frame)
masses of NSs. Together with the redshifted mass meas-
urement, one can break the degeneracy between the redshift
and the mass to extract the former. This method requires
one to know the nuclear matter equation of state a priori
which still has relatively large uncertainties. One may use
future GW observations of nearby BNS sources (z≲ 0.1)
with EM counterparts to determine the equation of state,
and use those of BNSs with large z to probe the modified
GW propagation [30,59].
Let us explain this tidal method in more detail by taking

NRTidalv2 [60,61] as an example. The tidal contribution to
the gravitational wave phase in the frequency domain is
given by

ψTðxÞ ¼ −
13

8ν
κeffx5=2PðxÞ; ð13Þ

where x ¼ ðπMzfÞ1=3 with Mz ¼ ð1þ zÞM is the total
redshifted mass with M representing the intrinsic total
mass, ν representing the symmetric mass ratio mAmB=
ðmA þmBÞ2 and f is the observed GW frequency. PðxÞ is a
Padé-resummed function given by

PðxÞ ¼ 1þ n1xþ n3=2x3=2 þ n2x2 þ n5=2x5=2 þ n3x3

1þ d1xþ d3=2x3=2 þ d2x2
;

ð14Þ

where the coefficients can be found in [60]. κeff is related to
the tidal Love number k as

κeff ¼
2

13

��
1þ 12

XB

XA

��
XA

CA

�
5

kA þ ðA ↔ BÞ
�
: ð15Þ

TABLE I. Mapping of the modified GW propagation param-
eters ðΞ0; nÞ to parameters in scalar-tensor theories (top) and
phenomenological models for αM or the effective Planck mass
Meff (bottom) [16].

Non-GR Model Ξ0 − 1 n

HS fðRÞ [53] 1
2
fR0 3ðn̄þ1ÞΩM

4−3ΩM

designer fðRÞ [54] −0.24Ω0.76
M B0 3.1Ω0.24

M

Brans-Dicke [55] 1
2
δϕ0

3ðn̄þ1ÞΩM
4−3ΩM

power law αM [56] αM0

2n̄ n̄

DE density αM [56,57] − αM0

6ΩΛ lnΩM
− 3ΩΛ

lnΩM

power law Meff [58] 1
2
Ωþ n̄
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Here, subscript A and B denotes the two component stars,
XA ≡mA=M and the compactness is given by CA ≡
mA=RA with the stellar radius RA. Since k depends on
the intrinsic stellar mass instead of the redshifted one, the
tidal effect can be used to extract the redshift information
from a GW observation alone.

IV. FISHER ANALYSIS

In this paper, we carry out a parameter estimation based
on a Fisher analysis [62], which is valid for sources with
sufficiently large signal-to-noise ratios (SNRs). We perform
two different Fisher calculations, one for the redshift
estimate and another for the modified GW propagation
parameter estimate. Below, we will explain each of these
Fisher analyses in turn.

A. Redshift estimate

The first step is to estimate the measurability of the
redshift by using template gravitational waveforms of
BNSs, which we take as the (nonspinning) IMRPhenomD-
NRTidalv2 waveform [60,61,63,64]. It consists of the
IMRPhenomD waveform for point-particle binaries with
an updated tidal effect added to the phase. The waveform h̃
in the frequency domain can be written as

h̃ðfÞ ¼ ÃðfÞe−iψðfÞ; ð16Þ

where Ã is the IMRPhenomD amplitude2 while ψ is the
phase given by3

ψðfÞ ¼ ψppðfÞ þ ψTðfÞ: ð17Þ

Here ψpp is the (nonspinning) point-particle term that is
taken from the IMRPhenomD waveform while ψT is the
tidal contribution given in Eq. (13) that is parametrized by
the Love number k. In our analysis, we use the tidal
deformability λ≡ ð2=3ÞR5k, which is a function of the NS
mass m. It is convenient to Taylor expand λðmÞ about a
fiducial mass m0 as [30,59]

λ ¼ λ0 þ λ1ðm −m0Þ þO½ðm −m0Þ2�
¼ λ̃0 þ λ̃1mþO½ðm −m0Þ2�; ð18Þ

where λi are the Taylor coefficients about m0 while λ̃0 ¼
λ0 − λ1m0 and λ̃1 ¼ λ1.

One can compute the measurability of parameters
θi from a Fisher matrix as follows. We first assume that
the detector noise is stationary and Gaussian. Then, the
probability distribution of θi becomes also Gaussian as

pðθiÞ ∝ exp

�
−
1

2
Γijðθi − θ̂iÞðθj − θ̂jÞ

�
; ð19Þ

where θ̂i are the maximum likelihood parameters. Γij is the
Fisher matrix defined as

Γij ¼ 4ℜ
Z

fhigh

flow

∂ih̃∂jh̃

SnðfÞ
df; ð20Þ

where ∂i ≡ ∂=∂θi while Sn is the noise spectral density.
fhigh and flow are the high and low frequency cutoffs to be
discussed later.

Γ̃ij ¼
X
A

ΓðAÞ
ij ; ð21Þ

where A is the label of each detector. Finally, the 1σ root-
mean-square error on θi is given by

Δθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ̃−1Þii

q
: ð22Þ

In Fig. 2, we present Sn for ET and DECIGO, together
with the GW spectrum for GW170817 and a BNS with
ð1.35; 1.35Þ M⊙ at z ¼ 1. For ET, we choose the low and
high frequency cutoffs in the Fisher matrix in Eq. (20) as

fðETÞlow ¼ 1 Hz; fðETÞhigh ¼ minðfISCO; fcontÞ; ð23Þ
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FIG. 2. The noise spectral densities for ET [65] and DECIGO
[66]. We also present the GW spectrum for GW170817 and a
BNS with ð1.35; 1.35Þ M⊙ at z ¼ 1. For each GW spectrum, we
show the frequency at ISCO and that at 1 yr, 3 yr, and 5 yr before
coalescence.

2The NRTidal waveform also has a tidal correction to the
amplitude, though the tidal effect is mostly determined from the
phase and thus we do not include such effects in the amplitude
for simplicity.

3In this paper, we include the tidal phase only in the inspiral
part of the IMRPhenomD phase, though we have checked that
our results are unaffected even if we include the tidal phase also in
the intermediate portion of the waveform.
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where

fISCO ¼ 1

63=2πMz
; ð24Þ

is the frequency at the innermost stable circular orbit
(ISCO) while fcont is the (redshifted) contact frequency
of two NSs and is given by

fcont ¼
1

23=2πð1þ zÞ

ffiffiffiffiffiffi
M
R3

r
; ð25Þ

for an equal-mass BNS with R representing the stellar
radius. For a NS with a soft (stiff) EOS, the radius is
relatively small (large), and fISCO < fcont (fISCO > fcont).
On the other hand, for DECIGO, we choose the low and
high cutoff frequencies as

fðDECÞlow ¼ 0.233

�
1 M⊙

Mz

�
5=8

�
1 yr
Tobs

�
3=8

Hz;

fðDECÞhigh ¼ 100 Hz; ð26Þ

where Mz ¼ Mzη
3=5 is the redshifted chirp mass, Tobs

is the observation time and fðDECÞlow corresponds to the
(redshifted) frequency at Tobs before coalescence.
Let us now explain parameters θi specific to our analysis.

We use the sky-averaged waveform and the parameters are
given by

θi ¼ ðlnMz; η; tc;ϕc; lnA; ln zÞ: ð27Þ

Here η ¼ m1m2=M2 is the symmetric mass ratio with
individual masses mA, and tc and ϕc are the coalescence
time and phase respectively. The amplitude parameter A is
given by A ¼ M5=6

z =ð ffiffiffiffiffi
30

p
π2=3dgwL Þ, which corresponds to

the leading, sky-averaged amplitude in the frequency
domain without the frequency dependence [67]. We assume
the tidal parameters λ̃0 and λ̃1 are known a priori from
BNSs with z < 0.1 (we discuss how the imperfect knowl-
edge of the EOS affects the measurability of the redshift in
Appendix C). Regarding fiducial values for Fisher ana-
lyses, we choose m1 ¼ m2 ¼ m0 ¼ 1.35 M⊙, tc ¼ 0,
ϕc ¼ 0, and vary z or dgwL . Fiducial values for λ̃0 and λ̃1
are summarized in Table II in Appendix C for three EOSs
as representatives of soft, intermediate and stiff classes:
SLy [68], MPA1 [69] and MS1 [70].

B. Parameter estimation for modified GW propagation

We nowmove onto explaining the second Fisher analysis
for estimating the measurability of cosmological parame-
ters and the modified GW propagation parameter. We
consider a spatially flat Universe and work on the following
four parameters [25]:

pi ¼ ðlnH0; lnΩM; w0;Ξ0Þ: ð28Þ

Here H0 is the Hubble constant, ΩM is the matter energy
density parameter at present time,w0 is the equation of state
parameter for dark energy [71,72]4 while Ξ0 is the modified
GW propagation parameter in Eq. (3). The luminosity
distance measured by EM observations depends only on the
first three parameters in Eq. (28) as

demL ðzÞ ¼ ð1þ zÞ
Z

z

0

dz̃
Hðz̃Þ ; ð29Þ

with the Hubble parameter given by

HðzÞ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3þð1−ΩMÞð1þ zÞ3ð1þω0Þ

q
: ð30Þ

We can construct a Fisher matrix to estimate the
measurability of the parameters pi by studying how
ln dgwL depends on each of these parameters and comparing
it with a measurement error on ln dgwL . Combining infor-
mation from multiple events, we can write down the Fisher
matrix as [59]

FðAÞ
ij ¼

X
a

ð∂ ln dgwL =∂piÞð∂ ln dgwL =∂pjÞ
ðΔ ln dgwL Þ2ðAÞ

����
a
: ð31Þ

Here a labels each BNS while A ¼ ðgw; emÞ labels
whether the redshift is measured from GWs through the
tidal effects or from EM counterparts. ðΔ ln dgwL Þ2ðAÞ is the
total error on ln dgwL given by

ðΔ ln dgwL Þ2ðAÞ ¼ ðΔ ln dgwL Þ2gw þ ϵA

�∂ ln dgwL
∂z Δz

�
2

þ ðΔ ln dgwL Þ2lens; ð32Þ

TABLE II. Values of λ̃0½1036 g cm2 s2�, λ̃1½ð1036 g cm2 s2=M⊙Þ�
and their standard deviations for Gaussian priors for SLy and
MS1. The priors are taken from the results of two cases under the
detection of HLV in Sec. 5.4 in [59], the pessimistic case with
30 BNSs and the optimistic case with 384 BNSs.

SLy MS1
Pessimistic Optimistic Pessimistic Optimistic
(30 BNSs) (384 BNSs) (30 BNSs) (384 BNSs)

λ̃0 4.46 12.41
σλ̃0 0.039 0.014 0.029 0.009

λ̃1 −1.99 −3.35
σλ̃1 0.025 0.0125 0.019 0.009

4The equation of state for dark energy is given by PDE ¼
w0εDE where PDE and εDE are the pressure and energy density of
dark energy.
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with ϵgw ¼ 1 and ϵem ¼ 0. The first term on the right-hand
side is the measurement error on ln dgwL through GWs, the
second term is due to the measurement error on the redshift,
while the last term is due to the gravitational lensing
given by [73]

ðΔ ln dgwL Þlens ≃ 0.05z: ð33Þ

The first two terms are computed from Γij in the previous
subsection, either with ET alone or with the multiband
observations. For BNSs with redshift identified from EM
counterparts, the measurement error on the redshift is
typically negligible and we drop the second term in
Eq. (32) (i.e., ϵem ¼ 0) for such cases.
In this paper, we follow [59] and assume that all BNSs

are identical except for their redshifts. Under this
assumption, one can turn the summation in Fij into an
integral as

FðAÞ
ij ¼

Z
zmax

zmin

ð∂ ln dgwL =∂piÞð∂ ln dgwL =∂pjÞ
ðΔ ln dgwL Þ2ðAÞ

RðzÞdz: ð34Þ

We choose the minimum and maximum redshifts (zmin and
zmax) as zmin ¼ 0.1 and zmax ¼ 2. This is because we use
BNS sources with z < 0.1 (with EM counterparts) to
determine the NS EOS while the SNR becomes too small
for detection when z > 2.5 RðzÞ is the distribution of BNS
mergers which is given by [75]

RðzÞ ¼ 4πr2ðzÞ _n0sðzÞ
HðzÞð1þ zÞ Tobs; ð35Þ

in which _n0 ¼ 10−6 Mpc−3 yr−1 [76] is the current BNS
merger rate, rðzÞ is the comoving distance, and

sðzÞ ¼
�
1þ 2z ðz ≤ 1Þ
3
4
ð5 − zÞ ð1 < z ≤ 5Þ ; ð36Þ

shows the redshift evolution of the merger rate. We show
the BNS merger rate within each redshift bin and the
accumulated merger rate up to a given redshift in Fig. 3.
Unlike the multiband GW observations of stellar-mass

black hole binaries with ground-based detectors and LISA
whose rate is much lower than that with ground-based
detectors alone [31], the rate for joint detection of GWs
from BNSs with ETþ DECIGO is comparable or even
higher than ET alone. This is because the signal-to-noise
ratio (SNR) of BNS GW detection with DECIGO is higher
than that of ET, as can be seen from Fig. 2. Thus, DECIGO

can detect GW signals from BNSs whose signals can also
be detected with ET. Moreover, since DECIGO will be able
to give a precursor alert to ET, the detection SNR threshold
may be lowered (as we explain in footnote 5), which will
increase the rate compared to the case with ET alone.
Given that various cosmological observations, including

cosmic microwave background (CMB), baryon acoustic
oscillation (BAO) and supernovae, measured cosmological
parameters with some errors, one can impose prior on such
parameters for our Fisher analysis. For simplicity, we
impose Gaussian priors with standard deviation σ0pi for
each parameter. The Fisher matrix for BNSs with redshift
identification due to EM counterparts is given by

F̃ðemÞ
ij ¼ αFðemÞ

ij þ δij
ðσ0piÞ2 : ð37Þ

Here α is the fraction of total BNSs with which the redshifts
are identified through their EM counterparts [41]. One can
further add BNSs whose redshift is identified through the
tidal measurement of GWs as

F̃ðgwþemÞ
ij ¼ ð1 − αÞFðgwÞ

ij þ αFðemÞ
ij þ δij

ðσ0piÞ2 : ð38Þ

The 1-σ root-mean-square error on pi can be estimated as

Δpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF̃−1Þii

q
: ð39Þ

We end this section by describing the fiducial values and
priors forpi. For the former,weuseH0¼67.64kms−1Mpc−1,
ΩM ¼ 0.3087, w0 ¼ −1, Ξ0 ¼ 1. This corresponds to the
ΛCDM model in GR with the first two parameter values
being the best-fit values from CMB, BAO and supernovae
observations [25]. For the prior, we use [25]
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FIG. 3. The BNS merger rate per unit redshift (RðzÞ) and the
accumulated number of events up to a given redshift (

R
z
0 RðzÞdz)

as a function of z.

5The SNR for a sky-averaged BNS at z ¼ 2 with ET is 4.5
which may be smaller than the detection threshold SNR, though
the latter may be reduced if we have additional information from
DECIGO for multiband observations (see, e.g., [74] for a related
work).
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ðσ0Ξ0
; σ0ω0

; σ0lnH0
; σ0lnΩM

Þ ¼ ð∞; 0.0535; 0.018; 0.039Þ; ð40Þ

which is obtained from the same datasets as those for the
above fiducial values.

V. RESULTS

We now present our main results. We first show the
measurability of redshift with GW observations. We next
use this to compute the measurability of the modified GW
propagation parameter Ξ0 and cosmological parameters.
We finally map the projected bounds on Ξ0 to those on
example theories within the Horndeski class and example
phenomenological models.

A. Redshift inference

We begin by showing the measurement accuracy
of z with GW observations using ET and multiband
(ETþ DECIGO) detections in Fig. 4 for the three repre-
sentative EOSs. Observe that the redshift can be measured
to Oð10%Þ and is insensitive to the BNS redshift. Notice
also that the measurability of z increases as the EOS
becomes stiffer. This is because the NS radius becomes
larger and the tidal effect in turn becomes stronger. We
further see that the multiband detection improves the
measurability of z from the case with ET alone by
∼50%. The result for ET in Fig. 4 is consistent with that
in [30]. The difference originates from using, e.g., different
point-particle waveforms (IMRPhenomD v.s. Taylor F2)
and tidal effects (5 and 6PN v.s. NRTidal fit).
Before showing bounds on Ξ0, let us first present in

Fig. 5 different errors on the luminosity distance [Eq. (32)]
in the second Fisher matrix Fij. We chose SLy EOS and the
multiband observation. Notice that the error propagated

from the redshift measurement in Fig. 4 dominates
the other two errors (direct measurement of dgwL from
GWs and the lensing) for both ET alone and multiband
observations. On the other hand, when there is an EM
counterpart, the error from redshift is negligible and it is the
lensing (direct luminosity distance measurement) error that
gives the dominant contribution for multiband (ET alone)
observations.

B. Constraints on GW propagation parameter Ξ0

Having the redshift measurability at hand, we next
present the measurability of the modified GW propagation
parameter Ξ0. Figure 1 in Sec. I presents such a measure-
ment error on Ξ0 for n ¼ 2.5 against the fraction α of the
redshift identification of BNSs through EM counterparts
for ET and multiband observations. We show the results
using BNSs with EM counterparts only (whose redshifts
are identified), and combining BNSs with and without the
counterparts. We chose the SLy EOS and an observation
time of 3 yrs for DECIGO in the multiband observations
(see Appendix B for how the results change with a different
choice of EOSs and observation time). Notice first that
the addition of BNS events without EM counterparts
improves the measurability of Ξ0 from the case with EM
counterparts alone by a factor of a few. Notice also that for
the combined case, BNSs with EM counterparts have a
noticeable contribution when α≳ 0.1 for ET alone and
α≳ 0.01 for multiband observations (where the red curves
drop). Furthermore, when α ∼ 1 (i.e., most of BNSs have
EM counterparts), multiband observations significantly
improve the bound on Ξ0 from the case with ET alone.
This is because when α ∼ 1, the error budget in the
luminosity distance measurement is different between
ET and multiband cases as already explained in Sec. VA
and in Fig. 5.
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FIG. 4. The fractional uncertainty of the redshift as a function
of the source redshift with ET and multiband GW observations
(with a 3-yr observation for the latter). We present the results for
SLy (soft) [68], MPA1 (intermediate) [69] and MS1 (stiff) [70]
EOSs. Notice that the uncertainty is insensitive to z and is larger
for softer EOSs.
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FIG. 5. Various sources of the luminosity distance measure-
ment uncertainties in Eq. (32) as a function of the BNS redshift.
We use the SLy EOS and assume multiband observations (with a
3-yr observation time). Notice that the redshift uncertainty
dominates the error budget throughout.
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Next, Fig. 6 presents the measurability of Ξ0 against the
index n in the luminosity distance ratio expression [Eq. (3)]
for a multiband observation with combined BNS events
(both with and without redshift identification through EM
counterparts) for α ¼ 2 × 10−3.6 We show the results for
the three representative EOSs. Notice first that the meas-
urement error of Ξ0 is mostly insensitive to n and varies
only by ∼20%. Notice also that the error decreases for
stiffer EOSs (MS1), which is consistent with the measure-
ment error of z in Fig. 4.

C. Mapping to Horndeski theories

Finally, we consider mapping the bounds on the modi-
fied GW propagation parameter Ξ0 to those on scalar-tensor
theories and phenomenological models. The top panel of
Fig. 7 shows bounds on the HS fðRÞ gravity jfR0j and
Brans-Dicke theory jδϕ0j as a function of α for various
choices of the positive integer n̄. Observe that the addition
of BNSs with redshift identification through tidal mea-
surements and the use of multiband observations improve
the bounds on these theories from the case with ET
observations of BNSs with EM counterparts by a factor
of 2–10. Observe also that the bounds are insensitive to a
variation in n̄, especially for the multiband case.

Similarly, the bottom panel of Fig. 7 presents bounds on
αM0 in the two phenomenological models mentioned in
Sec. II B 2. Notice that the amount of improvement on the
bounds with the addition of BNSs without EM counterparts
and multiband observations is similar to those on scalar-
tensor theories in Fig. 7. Notice also that the variation in n̄
is larger for this case than that for scalar-tensor theories in
the top panel.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we considered using GWs from BNS
mergers both with and without EM counterparts to probe a
modified GW propagation effect in the amplitude due to a
modified friction in the tensor perturbation evolution. For
the events without EM counterparts, we use the tidal
information to break the degeneracy between the redshift
and the mass [30]. We found that by including BNSs
without EM counterparts and using multiband GW obser-
vations between ET and DECIGO, one can improve the
measurability on the modified GW propagation parameter
Ξ0 by a factor of a few compared to the case with ET
observations of BNSs with EM counterparts that has been
studied previously. We further mapped these projected
bounds on Ξ0 to those on specific non-GR theories and
phenomenological models. For example, we found that a
parameter in an fðRÞ gravity can be constrained to

1 2 3 4
n
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ΔΞ
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MS1

α=0.002

FIG. 6. Measurability of Ξ0 against the index n in the modified
GW luminosity distance in Eq. (3) for three representative EOSs.
We consider a multiband observation with combined BNS events
with and without EM counterparts. We fix the fraction of BNSs
with EM counterparts as α ¼ 2 × 10−3. The observational time is
3 years. Observe that the measurability is not very sensitive to the
choice of n.
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FIG. 7. Top: projected bounds on parameters in the HS fðRÞ
gravity (jfR0j) and Brans-Dicke theory (jδϕ0j) as a function of the
fraction α for redshift identification through EM counterparts. We
present the bounds for the following two cases: (i) GW obser-
vations of BNSs with ET where the sources’ redshifts are
identified through EM counterparts only (dashed), and (ii) multi-
band GW observations of BNSs whose redshifts are identified
through either EM counterparts or GW tidal effects (solid). For
each case, we show the bounds for two choices of the positive
index n̄. We assume 3-year observations and the SLy EOS. The
dashed vertical line at α ¼ 2 × 10−3 [41] corresponds to an
example value for the fraction of BNSs with redshift identifica-
tion. Bottom: a similar bound on the phenomenological αM
models in Eqs. (11) and (12).

6The fraction α ¼ 2 × 10−3 is derived for short gamma-ray
bursts assuming that 2% of them points to us and only 10% of
them can have measurable redshift due to noisy spectrum,
dimming at high redshift, etc. [41]. This fraction can be larger
for other sources, such as kilonova, or if we take into account off-
axis emission.
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jfR0j≲ 10−2. These findings show the impact of using the
tidal information and multiband observations to probe a
modified GW propagation (or modified friction) effect
entering in the waveform amplitude.
We end by presenting possible directions for future

avenues. One could improve the analysis here by carrying
out a Bayesian parameter estimation study (instead of a
Fisher analysis) and drawing BNSs from a population
model to allow for different parameters (like masses). One
should also relax the sky-averaged assumption and
account for sky location and orientation of a BNS. This
could be important given that there was a strong corre-
lation between the luminosity distance and the inclination
angle for GW170817 [77]. However, in Appendix D, we
carried out an additional analysis by relaxing the sky-
averaged assumption for DECIGO and showed that in
most cases, the measurement error for the luminosity
distance is still smaller than that from the redshift
measurement. This suggests that the result presented here
with the sky-averaged analysis should not change much
for multiband observations even if one accounts for the
correlation. It would be also important to take into account
systematic uncertainties due to imperfect knowledge of
the EOS and certain universal relations may help to break
the degeneracy among various tidal parameters [78–82].
Lastly, one could also attempt to combine the tidal method
presented here with other approaches that do not require
EM counterparts, such as correlating dark sirens with
galaxy catalogs [28,83,84] or using the known NS mass
distribution [85,86].
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APPENDIX A: ADDITIONAL SCALAR-TENSOR
THEORY AND PHENOMENOLOGICAL MODEL

In this Appendix, we present the mapping between the
modified GW propagation parameters ðΞ0; nÞ to additional
scalar-tensor theories and phenomenological models, and
present future projected bounds on these theories/models
through tidal measurement of BNS mergers. The mapping
is summarized in Table I.

(i) Designer fðRÞ gravity [54]: Other than the HS
model, an interesting fðRÞ gravity model includes
the designer model that exactly reproduces the
standard cosmological expansion history. The
model is characterized by the Compton wavelength
parameter

B0 ≡ Hf0R
H0ð1þ fRÞ

����
0

≈ −2.1Ω−0.76
M fR0: ðA1Þ

The top panel of Fig. 8 presents the bound on jB0j
with GWs from BNSs using a three-year observa-
tion of a multiband network as a function of α. We
used n ¼ 2.34, which is close to n ¼ 2.5 in Fig. 1
and thus follows the same trend. Observe that the
bounds on B0 increases by a factor of 2–5 if we add
BNS events without EM counterparts.

(ii) power law Meff : On top of the phenomenological
models for αM, we consider a phenomenological
model on the effective Planck mass Meff . As an
example, we consider a simple power law model for
M2

eff given by [58]

M2
eff ¼

1

8π
ð1þ Ωþan̄Þ; ðA2Þ

where Ωþ and n̄ are constant parameters. αM in this
model is given by

αM ¼ n̄Ωþan̄−1

1þ Ωþan̄
: ðA3Þ

Using the mapping in Table I, we present in the
bottom panel of Fig. 8 the projected bounds on jΩþj
for BNSs with and without EM counterparts for
various n̄. Observe that the addition of BNSs with-
out EM counterparts improve the bound by an order
of magnitude for small α and n̄. On the other hand,
the improvement is by a factor of a few irrespective
of n̄ when α ∼ 1.
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FIG. 8. Similar to Fig. 7 but for the bounds on the Compton
wavelength parameter jB0j in the designer fðRÞ gravity (top) and
jΩþj in the power law Meff formalism (bottom).
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APPENDIX B: OBSERVATION TIME AND
EOS DEPENDENCE ON ΔΞ0

In this Appendix, we carry out some additional
investigations on the measurability of Ξ0 with multiband
GW observations. Figure 9 presents how ΔΞ0 depends
on the observation period. Notice that the observation
time has the most significant effect when α ∼ 1. For this
case, the error on the luminosity distance measurement
is dominated by the lensing that is independent of the
observation time. Moreover, the prior on the second
Fisher matrix F̃ij in Eq. (37) is less important and the

measurability scales with T−1=2
obs since the number of

BNS events increases linearly with Tobs [see Eq. (35)].
On the other hand, for smaller α, the prior on F̃ij

becomes more important and the above scaling breaks
down. Notice also that the observation time has a larger
effect on the case with all BNSs (with and without EM
counterparts) than BNSs with EM counterparts only.
This is because for the former, the error on the
luminosity distance measurement is dominated by the
redshift uncertainty, and a longer observation time helps
more to break the degeneracy between the redshift and
other parameters.
Figure 10 presents ΔΞ0 with multiband observations

for the three representative EOSs. For the case with
BNSs with EM counterparts alone, EOS only affects the
first Fisher matrix Γ̃ij through the maximum frequency
cutoff. Since the effect is small, we only consider the
SLy EOS for this case. Notice that the measurability of
Ξ0 improves as we make the EOS stiffer. This is as
expected from the measurability of the redshift from
Fig. 4.

APPENDIX C: INCLUSION OF λ̃0 AND λ̃1

In this Appendix, we study how the imperfect knowledge
of the EOS may affect the measurability of the redshift. For
this, we include λ̃0 and λ̃1 into a search parameter set θi in
Eq. (27) for the first Fisher analysis:

θi ¼ ðlnMz; η; tc;ϕc; lnA; ln λ̃0; ln λ̃1; ln zÞ: ðC1Þ

For simplicity, we follow [62,87] and assume a Gaussian
prior with standard deviations σλ̃0 and σλ̃1 . The effective
Fisher matrix now becomes

Γ̃ij ¼
X
A

ΓðAÞ
ij þ δij

ðσθiÞ2
: ðC2Þ

To give an example, we consider a prior for λ̃0 and λ̃1
that corresponds to measuring them through a network of
LIGO Hanford/Livingston and Virgo (HLV) shown in
Table II that is taken from [59]. Following this reference,
we assume that all BNSs with z < 0.1 detected through
such a network has EM counterparts and can be used to
measure λ̃0 and λ̃1. This is somewhat optimistic, though the
authors in [59] found that the measurability of these tidal
parameters do not change much even if one only uses BNSs
with z < 0.05.
Figure 11 presents the measurability of the redshift for

multiband GWobservations where λ̃0 and λ̃1 are included in
the search parameter for Fisher analyses for the SLy and
MS1 EOSs. We consider a pessimistic (optimistic) case
with 30 (384) detected BNSs with z < 0.1 for a 3-yr
observation. For reference, we show the result without λ̃0
and λ̃1 in the search parameter set from Fig. 4. Notice that
the uncertainty in the EOS affects the measurability of the
redshift only for BNSs with low z. Moreover, such an
uncertainty on the EOS will be reduced if one uses ET
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instead of LHV. We thus expect the effect of imperfect
knowledge of the EOS to be small and neglect them in the
main text.

APPENDIX D: DEGENERACY BETWEEN
LUMINOSITY DISTANCE AND BINARY

ORIENTATION

In this Appendix, we estimate the amount of degeneracy
between the luminosity distance and binary orientation for
multiband observations. Since the measurability of the
luminosity distance for the multiband observation is
mostly determined by observations with DECIGO (due
to its high SNR and a large effective baseline of 1 AU), we
focus on the latter for simplicity. The binary inclination
varies over time due to the motion of DECIGO, and thus it
is useful to work in a barycentric frame (centered at the
Sun) [67,88–90]. In such a frame, we can describe the sky
location of a BNS by ðθs;ϕsÞ and the direction of its
orbital angular momentum as ðθL;ϕLÞ. Following [90], we
perform a new Fisher analysis with search parameters
given by7

θi ¼ ðlnMz; η; tc;ϕc; lnA; θs;ϕs; θL;ϕLÞ; ðD1Þ

and we take into account the motion of the detectors. We
use a restricted post-Newtonian waveform where we only
consider the leading Newtonian contribution for the
amplitude while we include up to 2PN order in the phase.
We carry out a Monte Carlo simulation in which we
consider 103 BNSs at z ¼ 1 with the angle parameters
randomly drawn from a uniformly distribution in cos θs,
ϕs, cos θL and ϕL [67,89,90].
Figure 12 presents the distribution of the luminosity

distance measurability for a 3-yr observation with
DECIGO for BNSs at z ¼ 1. For comparison, we also
show the measurability when we use a sky-averaged
waveform as done in the main part of this paper, which
roughly agrees with the blue solid curve in Fig. 5 at
z ¼ 1 (suggesting that the error is indeed determined
from the DECIGO measurement for multiband obser-
vations). Notice that although the sky-averaged analysis
underestimates the error, the measurement error is
below 10% for most of BNSs and thus does not exceed
the error on the luminosity distance from the redshift
measurement. This shows that the bound on Ξ0 for
multiband observations found in this paper through
the sky-averaged analysis will not be affected much
even if we include the effect of binary sky location and
orientation.
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FIG. 11. The measurability of the redshift with multiband GW
observations for the case where (i) the EOS is known a priori and
(ii) λ̃0 and λ̃1 are obtained from a network of HLV observations
[59]. For the latter, we consider both pessimistic (30 BNSs) and
optimistic cases (384 BNSs) for 3-yr observations. We show the
results for SLy (soft) and MS1 (stiff) EOS.

FIG. 12. Histogram for the probability of the luminosity
distance measurability with DECIGO for at z ¼ 1 whose sky
location and orientation are randomly distributed. The black
dashed vertical line shows the measurability with the sky-
averaged case. Notice that most of binaries have the fractional
error of less than 10% even if we account for the degeneracy
between dgwL and binary orientations.

7In this Appendix, we do not include z since we focus on
DECIGO which is insensitive to the effect close to merger. This
does not affect the luminosity distance measurement since the
amplitude parameters are mostly uncorrelated with the phase
parameters.
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