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Abstract: A substantial reduction in global transport and industrial processes stemming from the
novel SARS-CoV-2 coronavirus and subsequent pandemic resulted in sharp declines in emissions,
including for NO;. This has implications for human health, given the role that this gas plays in
pulmonary disease and the findings that past exposure to air pollutants has been linked to the
most adverse outcomes from COVID-19 disease, likely via various co-morbidities. To explore how
much COVID-19 shutdown policies impacted urban air quality, we examined ground-based NO;
sensor data from 11 U.S. cities from a two-month window (March-April) during shutdown in 2020,
controlling for natural seasonal variability by using average changes in NO, over the previous
five years for these cities. Levels of NO, and VMT reduction in March and April compared to
January 2020 ranged between 11-65% and 11-89%, consistent with a sharp drop in vehicular traffic
from shutdown-related travel restrictions. To explore this link closely, we gathered detailed traffic
count data in one city—Indianapolis, Indiana—and found a strong correlation (0.90) between traffic
counts/classification and vehicle miles travelled, a moderate correlation (0.54) between NO, and
traffic related data, and an average reduction of 1.11 ppb of NO, linked to vehicular data. This
finding indicates that targeted reduction in pollutants like NO, can be made by manipulating traffic
patterns, thus potentially leading to more population-level health resilience in the future.

Keywords: air pollution; NO,; traffic counts

1. Introduction

Due to a 13-fold increase in Coronavirus disease 2019 (COVID-19) cases outside of
China on 11 March 2020, the World Health Organizations Director General characterized it
as a pandemic [1]. At the time of this writing, on 5 August 2021, the Centers for Disease
Control reported that there were over 35 million cases of COVID-19 in the U.S., with the
total deaths exceeding 600,000 [2]. This pandemic has resulted in stay-at-home orders
being instituted around the world, which has many negative externalities associated with
it, but one positive one has been a marked decrease in many criteria air pollutants due to
decreases in transportation volumes and industrial production [3,4], including reduced
concentrations of nitrogen dioxide (NO,) [5-8]. This change has also been quantified
via satellite imagery, which indicates a substantial drop in NO, tropospheric column of
over 20% from January to April 2020 versus the same time frame in 2019 over parts of
China, Western Europe, and the United States [9] and similarly in 20 North American
cities. Goldberg et al. (2020) calculated decreases in NO, during this similar timeframe;
when adjusted for seasonality and meteorology in a North American city study, they were
between 9% and 43%. It is important to note that satellite data, due to its analysis being
based on the entire tropospheric column and its spatial and temporal coverage limitations,
can misreport on the ground-pollutant measurements. Additionally, urban regions versus
remote regions can have daily NO, retrievals varying up to 40% [10].
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As anthropogenic activities of nitrogen oxide (NOXx) far surpass natural emissions [11],
they have resulted in a three- to six-fold increase in nitrogen oxide (NOx = NO + NO5,)
emissions since the pre-industrial era [12]. Anthropogenic sources of NOx include fossil
fuel/biofuel combustion, industry, and the transportation sector, and natural sources of
NOx include soil nitrification-denitrification processes, wild fires, and lightning [11]. NO,
from traffic emissions have profound and measurable health implications, such as heart
disease or upper respiratory infections, in populations with increase in nonaccidental
mortality [13,14]. Besides increasing acidification, exacerbating global climate change,
decreasing visibility, and increasing ozone and aerosol in the troposphere [15], NOx also
induces small-particle formation and has shown to be positively correlated to adverse
health conditions as a result of long-term exposure [16,17].

High vehicular emissions can result in corridors of heavy air pollution [18] in rural
and urban regions. NO, pollution, a tracer for vehicular emissions, has been linked to
adverse health effects for increased asthma events in predominantly urban areas [19]. A
20 ppb increase in NO; has been found to increase chronic obstructive pulmonary disease
(COPD) hospital visits, cardiovascular disease, lung cancer in adults, and respiratory
mortality [13,14].

Recent COVID-19 research has consistently shown reduction of vehicular travel as the
cause of NO, decreases; however, the one knowledge gap in this body of research is simply
that the vehicle type (cars versus multiple-axled vehicles) is nearly as important as the
vehicle number, and this varies substantially between cities. The onset of COVID-19 and
the stay-at-home orders in March and April have posed a unique opportunity to examine
these changes in vehicular NO, emission as a result of reduction of vehicle volume and
type in the U.S. To examine changes in NO, in cities and how that relates to vehicular
traffic during the COVID-19 lockdown, we examine the impact of stay-at-home orders in
March through April 2020 versus a five-year average of calibrated high-quality data from
March-April from 2015-2019. We utilize 2020 daily raw data for NO, from EPA-grade
sensors in 11 large cities around the U.S. Additionally, NO, concentrations in Indianapolis,
IN, are assessed and compared to vehicle volume broken down by classification with the
premise that truck-traffic volumes (with varying axles) are a good metric for vehicular
emissions in cities.

2. Materials and Methods
2.1. NO; and Vehicle Miles Travelled (VMT) Data

To examine the impact of stay-at-home orders, daily NO, data from roadside con-
tinuous ground level sensors from 11 major cities in the U.S. were downloaded from the
respective state agencies for our study period [20-23]. These cities were chosen for their
population size and the availability of comparable data for air quality. Based on Federal
Audits required by the Environmental Protection Agency (EPA), the uncertainty associated
with the measurement (sum of possible deviations due to the different sources of error that
may appear) must remain below 15% [24].

Data for NO; over the months of March and April 2020 were used as lockdown
reference months, acknowledging that some states were phasing in lockdowns during
March and that states and cities often had different shutdown policies. This was compared
to January 2020 data from those same sensors to determine in-year changes. The 2020 data
are also compared to the mean 5-year sensor data (2015-2019) for March and April to take
the meteorological conditions into account. We identified two fixed monitors within most
regions [25]; however, due to excessive number of missing days of data for San Antonio and
Austin, we utilized data from one sensor each in those locations. Additionally, for Queens
(at Queens College) and San Francisco, we were able to identify only one fixed continuous
monitor maintained by the state. For the remaining cities, we averaged NO, data from
two fixed sensors each for 2020 and 2015-2019 (Indianapolis—at Washington Park and
I-70 sensor; Los Angeles—at Main Street and VA; San Jose—at Jackson Street an K Avenue;
San Diego—Rancho and Kearny; Dallas—Cam 63 and Cam 1067, Fort Worth—Cam 13
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and Cam 17; Austin—Cam 1068, San Antonio—Cam 23, Houston—Cam 416 and Cam 403;
Dallas—Cam 1067 and Cam 63; San Diego—at Rancho and Kearny) [20-23].

Aggregate VMT data, generated at the county level, were accessed from StreetLight
Data to examine changes in traffic patterns and emissions to obtain a uniform scale of
vehicle usage [26]. Streetlight runs over 100 billion location data points gathered from
smart phones and navigational devices connected to vehicles (cars and trucks) into an
algorithm to aggregate and normalize travel patterns by region. Their metrics are validated
not only against public sources or external sources but also using private data in all states
except Hawaii and Alaska [27]. The percentage of population in the study area (versus the
full country population) was used to normalize the VMT data.

2.2. Indianapolis Traffic Sensor Data

Traffic counts are used in numerous studies to connect urban pollution like NO, to
examine regions, their health impacts, and the socio-economic disparities that occur as a
result of it [25,28,29]. For this study, we downloaded daily traffic volume and classification
data of vehicles from 5 continuous sensors placed on major roadways in Indianapolis, iden-
tification numbers 990362, 950109, 990309, 990311, and 991392, reported by the Indianapolis
Department of Transportation (INDOT). These data are publicly available via INDOT’s
online Traffic Count Database System (TCDS). March and April 2020 daily counts were
examined against the count and classification data from January 2020 for the referenced
continuous sensors. INDOT has 15 vehicle classifications; however, we focused on total
vehicular traffic, total cars, and classification of motorcycle, car, pickup, and bus as a
sub-category (1-4) and heavy emitters (excluding sub-category 1-4). Classification 5 and
above were primarily trucks with varying axles [30]

3. Results
3.1. NO,

The percentage drop in NO; values when 2020 values are compared to the 5-year aver-
ages between January and March range from 11-56% and 4-43%, respectively (Tables 1 and 2),
while January and April reflect a NO, drop ranging from 14-65% in 2020 and a drop of
13-51% in the 5-year averages (Tables 1 and 2). Between January and March, San Antonio
was the only location where the 2020 percent change was lower than the 5-year average
percent change (Figure 1). From January to April (Figure 1), the percent changes in 2020 and
the 5-year averages of San Antonio and Austin were almost the same, while the other nine
locations showed a sharp reduction in NO, values in 2020 compared to the same 2-month
window from 2015-2019 (Figure 1). Excluding the cities of Austin and San Antonio from
January to April in 2020, Indianapolis had the smallest reduction of NO; at 33%, and San
Francisco had the largest reduction of NO; values at 65% (Table 1).

Table 1. 2020 NO; averages and percent changes in 2020.

Location Jan Mar Apr 2020 Change 2020 Change
(NO; Sensors) (ppb) (ppb) (ppb) (Jan to Mar) (Jan to Apr)

LA 21.40 9.44 8.33 —55.89% —61.08%
Indianapolis 10.54 9.38 7.08 —11.03% —32.90%
San Francisco 13.84 7.81 4.85 —43.59% —64.93%
Ft. Worth 10.15 6.56 5.35 —35.39% —47.32%
Houston 11.70 7.04 7.11 —39.79% —39.25%
San Antonio 8.06 4.96 4.04 —38.39% —49.82%
Austin 12.43 10.26 10.75 —17.42% —13.51%
Dallas 11.38 6.82 6.07 —40.05% —46.67%
San Jose 16.74 9.45 6.07 —43.55% —63.76%
San Diego 14.99 7.83 6.80 —47.76% —54.62%

Queens, NY 20.55 12.04 9.12 —41.39% —55.61%
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Table 2. NO; averages of January, March, and April from 2015-2019.

5-yr Change  5-yr Change
(Jan to Mar) (Jan to Apr)

Location

(NO; Sensors) Jan (ppb) Mar (ppb)  Apr (ppb)

LA 22.01 16.60 13.68 —24.57% —37.85%
Indianapolis 13.79 13.23 11.83 —4.00% —14.18%
San Francisco 18.21 11.45 8.88 —37.12% —51.21%
Ft. Worth 10.26 7.69 6.07 —25.09% —40.88%
Houston 15.00 10.42 10.02 —30.54% —33.20%
San Antonio 9.64 5.54 4.71 —42.56% —51.10%
Austin 15.42 13.83 13.35 —10.32% —13.44%
Dallas 12.57 8.73 7.25 —30.61% —42.34%
San Jose 18.11 12.98 10.80 —28.31% —40.38%
San Diego 15.32 12.93 11.41 —15.64% —25.51%
Queens, NY 20.60 17.68 14.35 —14.14% —30.31%
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Figure 1. January to March and January to April NO, changes for 2020, the average of the previous 5-years of non-COVID

conditions, and the decrease from annual averages.

Seasonal changes in NO, naturally occur and must be considered. In summer, NOx
and other volatile organic compounds from traffic and other sources result in photochem-
ical smog, with December through February having seasonal maximum in the U.S. [31].
Oxidation by photochemically produced OH in the summer reduces NOXx, while lower
concentrations of OH in the winter months results in an increased lifetime of NOx [32].
Extrapolating further from Table 1, we see this in our multi-city data, with an average
decrease in 2020 NO; values in March and April ranging from —40% to —50% compared to
their respective average January values. In April 2020, Austin had the smallest reduction
of —13.51%, with San Francisco having the largest reduction of —64.93% (Table 1). These
decreases constitute seasonal changes plus any change related to COVID lockdown policies
in the various cities.

To determine the typical seasonal decrease in NO, values and thus remove this from
the COVID-related signals, we calculated the 5-year averages for each city to normalize for
weather-related variations year-on-year. We found that the typical seasonal decreases were
significantly less than the COVID-impacted 2020 decreases (Figure 1). With the exception
of Ft. Worth, San Antonio, and Dallas, rest of the cities had a greater than 20% drop in
March-April averages in 2020 versus the 5-year averages (Figure 2). On average, between
January and March and January and April in 2020, NO, values decreased by 14% when
compared to their respective 5-year averages from 2015-2019 (Tables 1 and 2), indicating
the significant impact of lockdowns and agreeing with the more regional results obtained
by satellite analysis [33]. We can visualize such impacts from the free use of tropospheric
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NO; monthly mean averages from GOME-2 sensor from www.temis.nl over the U.S. from
April 2019 when compared to April 2020 (Figure 3) [34].

March and April NO, Averages
from 2020 and 5-year (2015-2019)
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Figure 2. March and April combined NO,; averages in parts per billion (ppb) from 2020 versus 5 -year (2015-2019).
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Figure 3. NO; averages from April in 2019 and 2020.

3.2. VMT and NO,

Similar to the NO; trends between January, March, and April in 2020 (Figure 4), VMT
in all the locations significantly dropped with the implementation of stay-at-home orders
(Figure 5). March showed a significant reduction in VMT between 11-51%, with NO,
reduction being between 11-56% (Table 3). April in comparison to January showed a much
higher reduction of VMT between 62-89% (Table 3), with NO, reduction being between

14-65% (Table 3, Figure 6).
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Figure 4. NO, averages from January, March, and April in 2020.
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Figure 5. Vehicle miles travelled (VMT) for 11 cities from January, March, and April of 2020.
Table 3. NO; and VMT changes between January to March and January to April 2020.
Location NO; Jan to Mar VMT Jan to Mar NO; Jan to Apr VMT Jan to Apr
LA —55.89% —40.11% —61.08% —75.97%
Indianapolis —11.03% —23.95% —32.90% —61.87%
San Francisco —43.59% —49.12% —64.93% —89.07%
Ft. Worth —35.39% —13.57% —47.32% —66.50%
Houston —39.79% —19.38% —39.25% —65.29%
San Antonio —38.39% —10.73% —49.82% —65.29%
Austin —17.42% —30.97% —13.51% —78.88%
Dallas —40.05% —21.63% —46.67% —64.91%
San Jose —43.55% —50.62% —63.76% —86.35%
San Diego —47.76% —40.69% —54.62% —78.99%
Queens, NY —41.39% —40.29% —55.61% —82.66%




Sustainability 2021, 13, 9030 7 of 13

VMT Percent Change of March and April from January 2020
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Figure 6. VMT changes between January to March and January to April in 2020.
Comparing the trends of NO, and VMT from January to March 2020, the percentage
changes of NO, of Indianapolis, San Francisco, Austin, and San Jose are higher than the
VMT percent changes in the same time frame. For LA, Ft Worth, Houston, San Antonio,
Dallas, and San Diego, VMT percent changes, causes of which were not investigated, are
lower than the NO, percent changes, with Queens being about the same (Figure 7). For
April, a month into the shutdown period in most states, NO, changes are consistently
higher than the VMT percent changes in that time (Figure 8).
NO, and VMT Percent Change
(January to March 2020)
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Figure 7. NO, and VMT percent changes between January and March in 2020.
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Percent Change
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Figure 8. NO; and VMT percent changes between January and April 2020.

Spearman rank-correlation statistics was calculated between NO, and VMT, with
alpha level set at 0.05 to examine the strength of their relationship. It ranges between —1 to
+1, with zero indicating no association between two variables; —1 indicating a perfectly
inverse strength of relationship; and a +1 indicating a perfect strength of association. This
analysis revealed that San Diego, San Jose, and Indianapolis have higher significant corre-
lation (r = 0.43-0.53) and LA, Houston, San Francisco, and Queens have lower significant
correlations (r = 0.29-0.39) (Table 4). High p-values for the four cities in Texas (Ft. Worth,
San Antonio, Austin, and Dallas) indicate that, in those locations, we do not have strong
evidence of a relationship between NO, and VMT variations, thus preventing us from
understanding the relationship with this dataset. Examining the ratios of NO, to VMT for
January to April 2020 for all 11 cities, we find that, on average, a 1,000,000 reduction in
VMT resulted in a reduction of 0.24 ppb in NO; for all cities. Austin was well below that
average, at 0.06 ppb, and San Francisco had the highest impact of the decreased VMT (with
a reduction of 0.65 ppb) for an average of a 1,000,000 reduction in VMT (Table 5).

Table 4. Spearman correlations between NO, and VMT in March and April of 2020 (alpha = 0.05).

Location X Y Correlation Coefficient p-Value p-Value < 0.05
LA NO, VMT 0.3543 0.0051 X
Indianapolis NO, VMT 0.4569 0.0002 X
San Francisco NO, VMT 0.3230 0.0111 X
Ft Worth NO; VMT 0.1329 0.3072
Houston NO, VMT 0.2910 0.0229 X
San Antonio NO, VMT 0.2225 0.0848
Austin NO; VMT 0.0454 0.7285
Dallas NO; VMT 0.1173 0.3679
San Jose NO, VMT 0.4295 0.0006 X
San Diego NO; VMT 0.5320 0.0000 X
Queens NO, VMT 0.3916 0.0028 X
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Table 5. NO; and VMT ratios from January to April 2020 for cities.

Location VMT Avg Chg NO; Avg Chg in NO,/VMT = A/B
(Jan-Apr) = [B] ppb (Jan-Apr) = [A] (all Cities)
LA —70,802,793.41 —13.07 0.18 x 107°
Indianapolis —22,364,196.21 —3.47 0.16 x 10~°
San Francisco —13,824,506.67 —8.99 0.65 x 10
Ft. Worth —31,308,793.60 —4.80 0.15 x 10~°
Houston —67,843,483.92 —4.59 0.07 x 10~
San Antonio —45,369,086.33 —4.01 0.09 x 10~°
Austin —30,210,481.83 —1.68 0.06 x 10~°
Dallas —36,617,918.66 —5.31 0.15 x 10~
San Jose —21,531,553.94 —10.67 0.50 x 10~°
San Diego —33,359,270.66 —8.19 0.25 x 10~
Queens —33,089,110.33 —11.43 0.35 x 107°
Average 0.24 x 107°

3.3. Indianapolis Road Sensor Data

Given that the Spearman correlation between NO; and VMT in Indianapolis is sig-
nificant, we examined the city further. An expanded Spearman correlation test indicates
that the correlation between VMT, NO,, and vehicle counts in March and April 2020 are all
highly significant, with moderate correlations between VMT and NO; and high correlations
between total vehicles and VMT, as expected (Table 6).

Table 6. Spearman correlation between vehicles and VMT and NO, in Indianapolis, March—April 2020.

Location X Y Correlation Coefficient p-Value
Indianapolis Avg Total Vehicles VMT 0.90 <0.005
Indianapolis Avg Total Vehicles NO, 0.54 <0.005
Indianapolis VMT NO, 0.46 <0.006

Average counts of total vehicles, vehicle classification excluding categories 14 (ex-
cluding motorcycle, car, pickup, and bus—proxy for trucks), NO;, and VMT show a
decline in all categories in March and April when compared to January 2020 (Table 7).
VMT percentage reduction in April versus January is almost two times that of the average
total vehicles in Indianapolis and of the NO, percentage reduction in that time period
(Table 8), indicating that a percentage reduction in the average total vehicles results in
almost an equivalent percentage reduction in NO; in the city in that month. Extrapolating
from Table 8, we can make the following observation regarding the change from January
to April:

An average of 1876 (38,494-36,618)-unit reduction in average total vehicles, excluding
motorcycle, car, pickup, and bus, is equivalent to a 32% [35] or an 1.11 ppb (0.32 x 3.46)
average burden reduction of NO; in Indianapolis.

Table 7. Indianapolis vehicle count, NOy, and VMT in 2020.

Avg Total Avg Total Avg Vehicles Avg Vehicles Avg NO, Avg VMT

Month  Vehicles Cars (1to4) (Excl 1 to 4) 2020 (ppb) 2020
Jan 336,971 239,289 298,476 38,494 10.54 36,147,631
Mar 310,327 210,699 268,216 42,111 9.38 27,490,875

Apr 220,784 137,125 184,166 36,618 7.08 13,783,435
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Table 8. Percentage and unit change of vehicles, VMT, and NO, from January to April to January 2020.

Variable January April (J[i :f;;{l% (JI; C;:g;f)

Avg VMT 36,147,631 13,783,435 —22,364,196 —61.87%

Avg NO,(ppb) ! 10.54 7.08 —3.46 —32.83%
Avg_tot_veh 2 336,971 220,784 116,187 —34.48%
Avg_tot_cars 3 239,289 137,125 102,164 —42.69%
Avg veh (1-4) 298,476 184,166 114,310 —38.30%
Avg_veh (excl 1-4) ° 38,494 36,618 1876 —4.87%

1 NO, averaged from two sensors in Indianapolis. 2 Total count of vehicles averaged over the 5 sensors in
Indianapolis. ® Total count of cars averaged over the 5 sensors in Indianapolis. * Total count of vehicle class 1-4
(motorcycle, car, pickup, and bus) averaged over the 5 sensors in Indianapolis. > Total count of a proxy for trucks
averaged over the 5 sensors in Indianapolis.

4. Discussion

The onset of COVID-19 and the stay-at-home orders in March and April have pre-
sented an opportunity to examine the changes in NO, concentrations and their relationship
to VMT in 11 cities in the U.S., with implications for local health outcomes.

Our analysis of the impacts of stay-at-home orders utilized ground-based sensor data
from 11 U.S. cities. We found an average reduction of NO; of 45% measured in March and
April 2020 when compared with their 5-year averages of 29% (2015-2019) (Tables 1 and 2).
January to April 2020 resulted in a NO; drop between 14-65% versus its respective 5-year
average drop between 13-51%. Four Texas cities had poor correlation between VMT and
NO, (Ft. Worth, San Antonio, Austin, and Dallas). This offset compared to studies using
satellite data is likely due to differences in the air being sampled with each approach
(i.e., ground-level versus troposphere scale). San Diego, San Jose, and Indianapolis had
the strongest strength of relationship between VMT and NO,, as is illustrated from the
correlation analysis.

The VMT reduction in April 2020 ranged between 62% and 89% (Table 3) when
compared to January 2020. Average ratios of NO,/VMT for the 11 locations indicates
that for every 1,000,000 less VMT, NO, decreases by an average of 0.24 ppb (Table 5). A
1,000,000 average VMT drop in San Francisco resulted in the most significant decrease
in NO; (0.65 ppb), and Houston resulted in the least significant decrease (0.07 ppb). The
petrochemical industry in Texas, and particularly in the greater Houston area, probably
plays a significant role in NO, production [36], and thus the VMT-NO, relationship is not
likely the only significant factor influencing the scale of observed decreases in NO,.

The lack of observed significant correlations between NO;, and VMT for the four
Texas cities remains unresolved. We suggest two options: (1) the locations of the fixed
AQ sensors’ locations in relation to emission sources as related to traffic and non-traffic
need to be identified and incorporated with meteorology, as their absence may not be ideal
for capturing the more regional emission sources that are better characterized by satellite
observations [33] that might be an issue for more sprawling cities, and/or (2) VMT along
with specific traffic volume and classification analysis from platforms like StreetLight may
be a more robust metric for extrapolating local impacts of NO, emissions from vehicle
sources. A much denser array of high-quality, ground-based sensors would likely have
to be in place to address option (1) above, but with option (2), we can, at least for one of
the cities (Indianapolis), compare NO, to actual vehicle count and classification data for
several locations to address the issue.

Since VMT may not be the best indicator of pollution impacts, we can use traffic counts
and vehicle classifications in addition to VMT to create localized indices that can assist
local governments to plan and/or to adjust traffic flows to address the impacts of high
NO, values. In future studies, placement of NO, sensors in relation to the NO, sources,
which would also impact the sensors readings, should be considered. This NO, /VMT ratio
(Table 5) should be tested in other cities in different seasons, which could be then used
as a proxy in examining NO, production in different regions while gauging the impact
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of transportation changes. This can assist in classifying the impact of traffic changes in
regions from the most sensitive to the least. In addition to sensor placement, meteorological
conditions, like temperature, wind speed, relative humidity, and precipitation, also play
a role in the transport of atmospheric gases [37], which were also not considered in this
analysis. Such conditions are not uniform spatially and have shown to cause column NO,
readings to differ by about 15% over monthly timescales [33]; high winds in particular can
play a role in dispersing NO, pollutant concentrations throughout the year [38].

A deeper look into vehicle counts and classification in Indianapolis indicates that
the drop in average total vehicles percentage is almost identical to the percentage drop in
its NO; values (Table 8). An 1876-unit reduction in proxy truck average in Indianapolis
results in lowering VMT, which in turn should yield a decrease in average NO, values by
1.11 ppb (Table 8). Building on this process in time and space, this calculation can be useful
in examining regions that should be targeted first and would have the biggest impact of
the reduction in NO, through traffic manipulation. In places like Houston, where there is a
presence of other significant industrial emissions of NOj, their emission impacts should
also be incorporated for a more comprehensive understanding.

In qualitative terms, the observed substantial reductions in NO, would, all other
things being equal, provide some benefits to human health. With the return to business-
as-usual practices, these health benefits will be transitory. Satellite measurements of NO,
are outstanding for capturing regional trends, but the heterogeneity of NO; at the ground
level in a given city [39] is not well-captured and thus pinpointing that emission sources
that are proximal to population centers at the fine scale should be a high priority for
city planners and transportation design. This latter point is critical in that the highest
concentrations of NO; and many other criteria air pollutants are disproportionately located
in lower-income communities [25,40]. The overlapping issues of poor air quality and
particular susceptibility, likely via co-morbidities, of these same communities to severe
COVID disease [41] speaks to the need to better constrain ground-level air pollution levels
with an eye toward applying health equity solutions in cities.

5. Conclusions

The pandemic-driven shutdown policies instituted in cities across the U.S. substan-
tially decreased many harmful air pollutants, including NO; [33,42]. We found this stable
reduction within cities using ground-based monitors, and it is largely tied to reduced
traffic volume, with other factors, such as industrial emissions, playing a variable role.
Although ground-based monitoring ties the concentration data much more closely to com-
munities and local health impacts than does more regionally comprehensive satellite data,
the paucity of monitors and likely disconnects between metrics that are meant to capture
traffic volume reduces their effectiveness from a public health standpoint.

This observed reduction in urban NO, concentrations ranging between 11% and 65%,
a rare silver lining of the devastating pandemic, is likely temporary, but it does point
to the tight connection between traffic-related pollution sources and local impacts. This
connection highlights a two-fold issue: that local air-pollution hotspots may exacerbate
diseases like COVID and are currently under-studied, especially when it comes to exam-
ining pollutant burden by taking vehicle classifications into account, as we illustrated in
Indianapolis, where we accounted for an average of 1.11 ppb reduction in NO,. Two actions
that city planners can take to promote health equity in their communities are to implement
environmental-monitoring programs that link data points (i.e., monitors) more strategi-
cally to population density and to implement local transportation and zoning policies that
examine and protect community health and build health equity into the system.
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