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ARTICLE INFO ABSTRACT

Communicated by Chung wen Lan Horizontal ribbon growth (HRG), in which a thin sheet of solidified material is pulled horizontally from the
surface of a molten pool, is proposed as an efficient technique for growth of single-crystal silicon sheets. Despite
recent results, some details of the process are still not understood, in particular the solidification mechanism at
the triple junction point (TJP) where the solid, the liquid, and the surrounding gas meet. The solidification
mechanism in the HRG process is investigated in this paper both analytically and numerically, incorporating the
solidification kinetics that lead to faceted growth. The conventional solid-liquid problem in the HRG process is
formulated analytically in the vicinity of the triple junction point (TJP). The temperature distribution is obtained
for the liquid and solid regions as a function of the underlying parameters of the HRG process, such as the
material properties, the ribbon pull speed, and the cooling heat fluxes. Using the analytical results, the TJP
temperature, the facet length, interfacial temperature gradients, and liquid supercooling can be predicted. The
analytical formulation is validated against accurate numerical simulations of the same problem, showing a good
agreement in predicting the temperature gradients and the facet growth. The findings of this study suggest that
using the analytical model, the behavior of the solid ribbon and the existence of a supercooled region in the
liquid in the HRG process can be predicted without the need for numerical simulations. The model also gives
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criteria for optimal performance of the HRG process.

1. Introduction

Crystal growth techniques are used for the production of silicon
wafers for application in photovoltaic devices such as solar cells [1,2].
There are various techniques for growing crystals such as Czochralski
[3,4], edge-defined film-fed (EFG) [5,6], and horizontal ribbon growth
(HRG) [7-9]. The Czochralski process, in which large diameter ingots
are made by vertical crystal growth, is the most commercially used.
However, relatively slow growth speeds and large kerf losses during
wafer cutting reduce the efficiency of this process [10]. In contrast, HRG
methods, in which wide thin sheets of materials are pulled horizontally
from the cooled and solidified surface of a molten pool, are reported to
achieve much larger growth speeds and do not suffer from cutting losses
[11,12]. However, the gaps of knowledge of the physics involved in the
HRG process have resulted in a considerable difference between theo-
retical expectations and experimental observations, hindering attempts
at commercializing this technique [13].

The solidification front in any solidification process terminates at a
point (or line) in contact with a solid wall [14-17], or a gas domain
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[18-20]. The termination point (line) is usually called a triple junction
[21]. In HRG processes, in particular, the shape and temperature dis-
tribution of the solidification front at the triple junction can have a
significant influence on the stability and maximum performance of the
process [22,23].

Despite several attempts at theoretical analysis of the HRG process
and its stability in various configurations [8,11,23-26], very few studies
have analyzed the physics of the triple junction in detail. Anderson and
Davis [27] solved the Stefan problem and obtained the flow and tem-
perature fields in the vicinity of the triple junction. They concluded that
the solidification front is perpendicular to the free surface at the junction
when the free surface is adiabatic. The same conclusion can be made for
droplet solidification problems where the heat transfer is mainly
through the solid-liquid interface [14]. Helenbrook [22] included the
heat transfer through the gas domain in the Stefan problem. He found
that a non-zero wedge angle, i.e., the angle between the solidification
front and the free surface, is only possible if there is a jump in heat
transfer at the triple junction or when there is a non-zero growth angle (i.
e., the angle between the growth direction of the triple junction point
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and the incoming free surface tangent). A jump in heat transfer is highly
probable due to different radiative emissivity between the liquid and the
solid phases of materials such as silicon. The formed wedge angle at the
triple junction was found to be a function of the ribbon pull speed, the
latent heat release rate, the heat removal jump, and the growth angle
[22].

In contrast to the theoretical predictions, experimental observations
of the HRG process have shown that the solidification front close to the
triple junction is more like a facet that is usually aligned with {111}
planes, and not a wedge [28,29]. For example, Helenbrook et al. [28]
took a side-view picture of a sample ribbon after shutting off the cooling
jet and showed that the ribbon leading edge is planar, making a 55°
angle with the ribbon top surface (refer to Fig. 3 of the reference).
Moreover, the experiments have all shown a finite limit for the pull
speed [11,12], unlike predictions from wedge-based theories. One
important distinction between the aforementioned analytical studies
and the experiments is that the temperature at the solidification front is
assumed to be constant and equal to the equilibrium melting tempera-
ture in the analyses. However, this assumption is only valid if the so-
lidification kinetics are fast [28].

Solidification kinetics play an important role in the formation of the
solidification front in the HRG processes. Kinetic undercooling models
have been used in different numerical simulations for the evaluation of
interfacial temperatures and supercooled regions [30,31]. For example,
Helenbrook et al. [28] showed that there is a supercooled region right in
front of the facet formed in the vicinity of the triple junction where 2D
nucleation and step propagation mechanisms are dominant. They also
showed that increasing the pull speed retracts the triple junction (the
leading edge of the ribbon) away from the cooling region. This trend
continues until a turning point is reached in the variation of the
converged triple juction position versus the pull speed, after which
dendritic growth occurs and there is no stable steady solution. As such,
any theoretical modeling of the HRG process requires the inclusion of
solidification kinetics.

In this study, the HRG process is investigated analytically and
numerically. A model is formulated that incorporates the solidification
kinetics and focuses on the vicinity of the triple junction, where the
solidification process and the formation of the solid ribbon are initiated.
The findings of this work can be extended to other similar solidification
processes as long as a triple junction exists in the domain. The manu-
script is organized as follows: The HRG configuration is described in
Section 2. An analytical formulation for the solid-liquid temperature
field in the vicinity of the triple junction is obtained in Section 3 by
inclusion of the solidification kinetics, which is explained in Section 4. A
procedure for numerical simulation of the same problem is discussed in
Section 5. The results of the analytical model are compared and vali-
dated against the numerical solutions in Section 6 and a discussion of the
model and the criteria for liquid supercooling is provided.

2. Problem description

In the HRG configuration, all the interfaces (solid-liquid, solid-gas,
and liquid-gas) are joined at the triple junction located at the solid
leading edge. Fig. 1(a) shows a schematic of the liquid domain, Q;, and
the floating solid sheet, Q;. It is assumed in this configuration that the
width of the sheet, W, is much larger than the crucible depth, d, such that
the problem can be considered as two-dimensional and the triple junc-
tion can be assumed to be a point (TJP). A closeup view of the solidifi-
cation front in the vicinity of the TJP is shown in Fig. 1(b), where three
coordinate systems are defined with their origin positioned at the TJP.
Coordinate x is aligned with the solid—gas interface. The x"-y" and the
polar r-0 coordinates are aligned with the solid-liquid interface (the
solidification front), such that y* is normal to the interface and facing the
solid domain, r is the distance from the TJP, and @ is the angle relative to
the interface with a counter-clockwise (CCW) positive sign.

Journal of Crystal Growth 555 (2021) 125958

@ og
N e
. JLs .
: — Upull
d X Q \‘i
b qs
(b) @ :
I
I
3

Fig. 1. Schematic of the HRG crystallization with a) configuration of the do-
mains, b) close view of the solidification front in the vicinity of TJP and the
prescribed coordinate systems.

The solid ribbon is pulled in the x-direction in Fig. 1, which is aligned
with a [100] crystal direction, with a pulling speed of . In the steady-
state condition, the liquid solidification balances the pulled solid mass,
such that the TJP is stationary. The problem is analyzed in the limit of
r < e, where e<d, and therefore, all interfaces can be approximated as
straight lines. In the r < e limit, the solidification front forms a facet
with a constant facet angle of 6. In all of the studied cases in this work, it
is assumed that the crystal is seeding with the [1 00] direction oriented in
the ribbon pulling direction and a (111) facet plane 55deg from the x-
direction. The liquid surface also forms a growth angle of 6, with the —x
direction. In the polar coordinates, the solid-gas interface is positioned
at 0 = 6 and the liquid-gas interface (the free surface) is positioned at
0=0+nr —9g.

Heat is removed through the gas domain by convection and radiation
from the solid and the liquid top surfaces. A cold helium jet provides the
convection heat removal, which is assumed continuous across the TJP.
Heat is also radiated to an assumed cold far-field. Because the emissiv-
ities of liquid and solid materials are usually different (e.g., emissivity of
solid silicon is larger than its liquid), there is a jump in the radiated heat
at the TJP location, as shown in Fig. 1(b). Since the problem is investi-
gated in the r < e limit, the heat flux from the liquid surface is assumed
constant and equal to g, and equivalently, constant and equal to g, from
the solid surface. Due to the jump in radiation, g, and g; are not equal.

3. Analytical formulations
3.1. Governing equations

The governing equation for heat balance in this problem in both the
liquid (€) and solid () domains can be stated as
WET) 4 9. () +9-( ~ kVE) =0, )
where subscript i = ;s refers to either of the domains, T and u are the
temperature field and the velocity vector, respectively, and p,c, and k are
the density, specific heat, and thermal conductivity of each domain,
respectively.

In order to simplify Eq. (1), a few assumptions are made. The prob-
lem is assumed to reach a steady-state condition, and therefore, the first
term from the left vanishes. The material density is assumed constant
and equal for both the liquid and the solid close to the TJP in ther <
limit. This means the velocity field is continuous across the solidification
interface according to the continuity equation. As such, the liquid ve-
locity close to the TJP is equal to the solid velocity, which is equal to
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upu“f, where 7 is the unit vector in the x-direction (see Fig. 1).

After simplifying and substituting the non-dimensional variables of
X =x/e,y =y/e,and T = (T —Ty)/Tn, where < is the radius of the
small region of interest near the TJP and T, is the equilibrium melting
temperature, Eq. (1) can be re-written as

/

dT; ,
Pe,— — V?T. =0, 2
e v (2)

i

where Pe; = pciupune/k; is the Peclet number, which is negligible in the
e—0 limit. As such, the convective term can be ignored for the solution
of the temperature distribution in the vicinity of the TJP and the gov-
erning equation is reduced to V2T; = 0.

In order to solve the Laplacian equation for temperature, the
boundary conditions must be specified. At the liquid-gas and solid-gas
interfaces, the boundary conditions are —k;VT;-1i; = ¢;, where g; is the
heat flux through the solid or the liquid surfaces and 7; in the unit vector
of the outward normal to these boundaries. At the solidification inter-
face, the net heat flux normal to the boundary must balance the rate of
heat release due to the solidification process, such that

[ kVT;7)) = s, ©)

where the double-brackets indicate the jump in heat flux at the interface,
L¢ is the latent heat of fusion, and m = p(u; —u;)-n; is the rate of mass
added to the solid normal to the liquid-solid interface, where u, and u;
are the solid and interface velocity vectors, respectively, and 7, is the
outward unit normal to the solid at the interface. In the steady-state

condition in the configuration of interest, u; = 0 and u; = upyi.
3.2. Linear approximation

At leading order, it is assumed that the temperature very close to the
TJP (r < €) is a linear function of the x" and y* coordinates. Defining a
new variable of ® = T —Trjp, where Tryp is the temperature at the TJP,
the distribution of temperature difference from the TJP in both domains
can be expressed as

O =ax +by, 4)

where a; and b; are constants for each domain. For the temperature
distribution to be continuous across the solidification front, where y* =
0, we should have a; = a; =a’.

For simplicity, the liquid-gas interface is assumed horizontal, which
means that the growth angle (6,) is equal to zero. Consequently, the
boundary conditions at the solid—gas and liquid-gas interfaces with ni; =

fiy = —sin(6;)i +cos(6)j can be written as

ks[a"sin(6r) — b.cos(6r)] = g, (5)
ki[a"sin(6;) — b, cos(6r)] = qi.

Similarly, the boundary condition at the solidification front (Eq. (3))

with niy = —lf'.,ﬁl = 1]A'", and i = cos(af)i“‘ +sin(6)f)]A'“ states that

boks — b ki = — pLiupusin(6y). ®)
3.3. Analytical model of the solid-liquid problem

As shown in Fig. 1, the heat removal rate through the gas domain is
uniform on either side of the TJP but is discontinuous at the TJP, usually
due to different liquid and solid emissivities. By subtracting the two
parts of Eq. (5) and combining with Eq. (6), an expression for a” can be
obtained as

« _ pLiupuncos(6r) qs — q
Ry (ki — ky)sin(6r) @
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This is the linear temperature gradient along the interface (x"-direction)
required to maintain growth at a constant facet angle. It can be seen that
the tangential temperature gradient is a function of the pull speed, the
jump in heat flux (not the heat flux magnitudes), the difference in solid
and liquid thermal conductivities, and the latent heat.

After substituting the obtained expression for a” into Eq. (5), the
temperature gradient normal to the interface (y"-direction) in both do-
mains is given by

« _ pLetyysin(6y)

b. =

q4s —q qi
: - (8

" (k — ky)cos(6;)  kicos(6y)

Ultimately, the temperature field close to the TJP can be obtained in the
original x-y coordinate system using a coordinate transformation, such
that

T =Twpe — %)""
©)]

Liu ul s i
<l])q 1;}{11 _ Zl — Z: [cot(6r) + tan(6;)] — %tan(ﬂf) >x.

Note that this simplified temperature solution is derived by assuming
negligible liquid flow, constant heat fluxes, equal solid and liquid den-
sities, and zero liquid growth angle in the vicinity of the TJP. However, it
was observed during additional numerical simulations (not shown here
for brevity) that relaxing these assumptions has negligible effects on the
solution in the small radius of interest. This is mainly because the
convective terms in Eq. (2) can be ignored because of the small Pe in the
close proximity of the TJP.

When the temperature gradient in the x direction in Eq. (9) is posi-
tive in the liquid domain at the TJP (dT/dx > 0), it means a supercooled
region exists with the minimum temperature located in the liquid
domain. The criteria for liquid supercooling is discussed in detail in
Section 6.4. In Eq. (9), the TJP temperature is still unknown, which is
obtained by incorporating the solidification kinetics, as explained in the
following section.

4. Solidification kinetics
4.1. Solidification mechanisms

It was previously mentioned that the temperature at the solid-liquid
interface is not usually equal to the equilibrium melting temperature
and depends on the solidification mechanism. There are three solidifi-
cation mechanisms that can occur at the solid-liquid interface: the two-
dimensional (2D) nucleation of crystals on a facet, propagation of steps
down the facet face, and roughened growth without any identifiable
facet [28].

In this work, a slightly modified version of the kinetics model pro-
posed by Weinstein and Brandon [30] is used for quantifying the three
mechanisms. The specific model and its constants are identical to that
used by Helenbrook et al. [28]. This model states that the deviation of
interface temperature, T}, from the melting temperature, T,,, is obtained
by

ATl = TI - Tm = K(gmay ATI)("S - ul)'ﬁsa (10)

where K is a solidification kinetic coefficient and 6,,,, referred to as the
misalignment angle, is the CCW angular deviation of the actual interface
from the @ = 0 line. As stated before, u; = 0 in the steady-state condition
and u,-fi; is less than or equal to zero in the current configuration.

The kinetic coefficient is composed of the three solidification
mechanisms and its value is a function of the local interface condition.
Roughened growth occurs in directions away from the facet direction
and has a constant kinetic coefficient of Kouen = 1/0.0126 [K/(m/s)].
Step propagation occurs along the facet and models the growth of a
molecular layer on the facet with a kinetic coefficient that is a function



A. Pirnia and B.T. Helenbrook

of O, and is given by Kyep = Kin/[sin0pa |, where Ky, = 1/0.63 [K/(m/s)]
is a constant. Lastly, 2D nucleation describes when a new facet layer is
initiated. The kinetic coefficient for 2D nucleation is a function of the
temperature deviation and is given by Kiyp = Kappexp(Aapn/|ATi|),
where Kop, = 1/1.5€10 [K/(m/s)] and Azp, = 140 [K] are constants. The
2D nucleation typically occurs at the coldest location in the liquid,
where liquid supercooling is appreciable, and can be as fast as the
roughened growth when |AT;| > 5 [K] [29].

Close to the TJP and along the facet, the solidification mechanism
with the least kinetic coefficient (Kap or Ky,) will occur, as a smaller K is
more physically probable [30]. Far from the facet at large misalignment
angles, the K, expression is no longer valid and roughened growth will
occur. As such, the kinetic coefficient should not be less than K;qug, along
the interface. In the analytical and numerical models in this study, it is
assumed that the coldest temperature, and consequently 2D nucleation,
only occurs at the TJP and therefore Krjp = Kap. To effectively model
the solidification mechanism along the rest of the solidification front,
the following expression is used in this study.

K(amav ATI) = maX(Kslcm Kmugh)- 1)

4.2. Faceted solidification

The region of interest in this study is close to the TJP and along the
facet, as discussed in Section 3. In this region, the misalignment angle is
small (fa<<1) and Kyep>>Krouen, and therefore, roughened growth does
not occur and can be ignored. The solidification is nucleated at the TJP,
as it is the only feasible location in this configuration. Therefore, the
temperature at the TJP can be obtained from Eq. (10) using the kinetic
coefficient for 2D nucleation, such that

ATrp = — Kopnexp( *Aan/ATTJP)MpuuSin(gf)- 12)

Note that if the actual solidification front deviates from a line with the
constant facet angle by 6,,, degrees, then the component of pull speed
normal to the solidification front is equal to (us—u)-ns =

—Upusin(0f —0ma). However since 0y, is small, it can be ignored in the
equation. It can be seen from Eq. (12) that the temperature at the TJP is
then only a function of the pull speed.

The nucleated step at the TJP is propagated along the facet by the
step propagation mechanism. Combining Eq. (4) with Eq. (10) using the
kinetic coefficient for step propagation, the temperature distribution
along the facet in the r—e¢ limit is governed by

x K, . * %
Ti(x')=Tn 7mupuusm(9f —Oma) =Trp+ax. 13)

considering that 6,,,<6;, the misalignment angle in the vicinity of the
TJP can be estimated as

o Kt sin(6k)

Oma(x') = (14)

Tp— Trp —a'x™’

It can be concluded from Eq. (14) that the misalignment angle be-
comes large as the interface temperature approaches the equilibrium
melting temperature. When 6,,, becomes sufficiently large, roughened
solidification starts to develop. The misalignment angle at which this

0
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transitions occurs can be found by equating Ko and Ky, such that
SiN(Oyans) = Kin/Krougn- Plugging this value into Eq. (14), the location of
transition on the solidification front (x

trans

) can be obtained. In this study,

xtran S

is defined as the facet length.
5. Numerical procedure

The analytical formulations described in Section 3.3 and Section 4.2
provide an estimation for the temperature distribution and the shape of
the solid-liquid interface in the vicinity of the TJP in the HRG config-
uration. To validate these estimates, a high-order accurate numerical
procedure is used that solves the temperature and flow fields in both the
liquid and solid domains and determines the interface position while
accounting for the solidification kinetics [32].

The employed method is a hp-finite element formulation with 4th
order approximation polynomials and a triangular arbitrary Lagran-
gian-Eulerian (ALE) moving mesh. The interface is tracked by the
moving mesh and sharp gradients in the domains are resolved using a
mesh adaptation algorithm. For the solution of the numerical formula-
tions, an A-stable diagonally implicit Runge-Kutta temporal scheme is
used. The temporal and spatial orders of accuracy for this method are
reported to be 3 and 5, respectively [32]. For a more detailed description
of the numerical procedure refer to references [28,32].

A sample of the initial mesh used in the numerical method for the
configuration shown in Fig. 1(a) is displayed in Fig. 2. It can be seen that
the solid () and the liquid (©;) domains are non-dimensionalized by
the crucible depth, d. The domains are extended by 4d from the TJP in
both directions to ensure uniform inlet conditions and a stabilized
maximum thickness of the ribbon resulting from the fact that the top
heat removal and bottom heat addition fluxes balance at either end of
the domain. In order to simplify the flow solution, the liquid surface
tension is assumed constant, and therefore, the Marangoni effects are
ignored. The top boundary of the liquid (the free surface) is set as a slip
boundary. The left boundary is set as an inflow and the bottom boundary
is set as a moving wall, both with a uniform velocity of u,;. The right
boundary of the liquid is defined as an outflow with zero stress condi-
tion. With these specified boundary conditions, the entire flow field is
uniform and equal to u,,;, which is also the specified convective rate for
the solid domain.

For the solution of the energy equation, the inflow boundary of the
liquid has a Dirichlet thermal boundary condition, which varies linearly
from a top point temperature, T;, to a bottom point temperature, T;.
Both specified temperatures are greater than the melting temperature,
Ty The bottom boundary also has a specified Dirichlet temperature of
Ty. The right boundaries of both the liquid and solid domains have
Neumann boundary conditions with zero conductive heat flux. The top
boundaries have Neumann boundary conditions with a heat removal
rate of g.(x) + ¢:(x). In this model, g. is a continuous distribution for
modeling the convective heat transfer by the cooling helium jet located
above the solid ribbon (see Fig. 1), and g; is the radiative heat transfer
that is discontinuous at xrjp due to different liquid and solid emissivities.
It should be noted that although the TJP is positioned at x = 0 in the
initial mesh, its location changes during the solution procedure, and
therefore, the Neumann boundary condition at the top surfaces is
updated in each iteration.

= 1 Q
= -05 1

Q

-4 3 2 1

Fig. 2. Sample of the initial mesh used for numerical simulation of the HRG process.
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The profile for g.(x) is modeled as a Gaussian distribution, such that

0e(x) = emas [ (1 =)o 4 ], as)

where g max is the peak convective heat flux, x. is the location of the
helium jet centerline, w determines the width of the heat removal pro-
file, and f.q.max is a constant fraction of the peak convective heat flux
included in the g.(x) profile to prevent the solid from melting down-
stream of the jet [22]. The radiative heat transfer profile is obtained as

¢:(x) = &0y (T (x) = TY), (16)

where ¢ is the solid or liquid emissivity coefficient, o}, is the Ste-
fan-Boltzmann constant, Ts(x) is the surface temperature at location x,
and T, is the cold far-field temperature.

The temperature distributions and the shape and position of the
solid-liquid interface are determined iteratively in the numerical pro-
cedure by solving the governing equations simultaneously, until a
converged steady-state solution is achieved for each set of the specified
conditions.

6. Solid-liquid solution

In this study, silicon is chosen as the material of interest, with ma-
terial properties listed in Table 1 [33]. All properties are assumed to be
constant in the range of the investigated temperatures. Note that the
density and the specific heat are assumed equal for solid and liquid
silicon.

6.1. Studied cases

Three cases with different heat removal profiles and boundary con-
ditions are studied both numerically and analytically over a range of
ribbon pull speeds. The characteristic parameters in the three cases are
listed in Table 2, which are chosen to be close to the experiments dis-
cussed in [28]. In all cases, the centerline of the cooling jet is positioned
at x, = 0 and the far-field temperature is T, = 300 [K]. The width of the
convective heat removal profile is equal to w = 0.5 [mm] and the cruci-
ble depth is equal to d = 13 [mm].

According to Eq. (15) for the convective heat removal rate, the values
of g, and g, to be used in the analytical formulations are a function of the
TJP position (xgyp), which varies as a function of the pull speed [28].
However, because the ¢, distribution is continuous at the TJP, as
opposed to g;, the heat removal difference in Eq. (7), gs —q, can be
obtained directly from Eq. (16) for the radiative heat transfer by
obtaining the TJP temperature from Eq. (12). As such, the analytical
temperature distribution along the solid-liquid interface, relative to the
TJP temperature, can be obtained without the knowledge of xrjp. For
obtaining the absolute temperature distributions with the analytical
formulations, the value of xrjp can be extracted from numerical simu-
lations at each pull speed.

Table 1

Silicon properties used in numerical and analytical formulations [33].
Description Variable Value [Units]
Solid/liquid density P 2530 [kg/m3]
Solid/liquid spec. heat c 1000 [I/kg K]
Solid conductivity ks 22 [W/mK]
Liquid conductivity ki 64 [W/mK]
Solid emissivity & 0.6
Liquid emissivity & 0.2
Equi. melting temp. T 1685 K]
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Table 2
Characteristics parameters for the three studied cases.
Case I Case IT Case III

Description Variable Value Value Value [Units]
Peak conv. heat flux Ge.max 283 336 389 [W/cm?]
Heat flux fraction fe 0.13 0.12 0.11 -
Bottom point temp. Ty 1731 1736 1746 K]
Top point temp. T, 1702 1700 1704 K]

6.2. Numerical simulations

Samples of numerically-obtained temperature fields in the vicinity of
the TJP are shown in Fig. 3 for Case II at three particular pull speeds of
up = 0.5 [mm/s],1.5 [mm/s], and 2.4 [mm/s]. The adapted and refined
meshes in these cases contain N, 34k, 26k, and ~28k total elements,
respectively, in the liquid and solid domains combined. The minimum
non-dimensional element size on the facet is about Axy,/d = 3.9 x
10-> for the three cases. In Fig. 3, the solidification front is shown as a
solid line, over which the formed facet and its transition to roughened
growth can be detected. The arrows denote the direction of a tangent to
a (111) plane with a 6y = 55° angle with the free surface, which are
aligned with the formed facets.

As discussed in Section 4.2, the misalignment angle at the transition
point is equal to s = sin~! (Ksn/Krougn) = 1.15°. During the numerical
procedure, the transition point location, and subsequently the transition
or facet length (x;,,,), are obtained by tracking the location on the facet
at which the misalignment angle equates to this value. In the specific

-0.12  -008 -0.04 0 0.04 0.08
x/d

T[K]
1640 1660 1680 1700

Fig. 3. Numerically-obtained temperature distributions in the vicinity of the
TJP and the shape of the formed facets for Case II at a) u,,y = 0.5 [mm/s], b)
Upuy = 1.5 [mm/s], ¢) upy = 2.4 [mm/s]. The dashed lines denote the contour
lines, the arrows denote a tangent to the (111) plane, and the empty circles
denote the transition point on the facet.
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cases shown in Fig. 3, the detected transition points are marked by
empty circles. It can be seen in Fig. 3 that the overall solid ribbon
thickness becomes smaller as the pull speed is increased, leading to a
smaller facet length and the transition point pushed toward the TJP. The
ribbon thickness at the exit (right) boundary of the domain, t., is re-
ported in Table 3 for the three pull speeds shown in Fig. 3.

The temperature contours are displayed as dashed lines in Fig. 3. It
can be clearly observed that the minimum solid temperature, T yin,
occurs away from the TJP and close to the edge of the cooling jet at
about w/2 = 0.25 [mm] (see Table 3). T min is increased as the pull speed
is increased, because the rate of material extraction surpasses the cool-
ing rate. Increasing the pull speed also moves the TJP position and the
solidification front toward the downstream of the cooling jet center (see
Fig. 1). This results in the formation of a supercooled region in the
liquid, as the liquid surface becomes closer to the cooling jet. The tem-
perature contours in Fig. 3 show the position of the local minimum
liquid temperatures and the size of the supercooled regions. These
values are also reported in Table 3. A more detailed discussion on the
conditions leading to liquid supercooling is provided in Section 6.4.

As mentioned earlier, there is a limit for stable operation of the HRG
process, called the turning point, after which the ribbon pull speed can
be no longer increased [28]. The three cases of interest were investi-
gated numerically as a function of the pull speed and the obtained results
for the position of the TJP are shown in Fig. 4. The shift in the TJP
position toward the downstream of the cooling jet continues until this
point passes the downstream edge of the jet at x~0.25[mm)], after which a
stable solidification is no longer possible. Increasing the peak heat flux
from Case I to Case III pushes the TJP position to the jet upstream at each
pull speed, leading to a delay in reaching the turning point that occurs at
U ~ 1.7,2.4, and 2.9 [mm/s] for the three cases, respectively.

6.3. Validation of analytical estimations

A comparison of the results by the analytical formulations and the
numerical simulations for the three investigated cases is shown in Fig. 5,
displaying the temperature at the TJP (Fig. 5)) and the transition length
of the facet (Fig. 5(b)). Note that there are no numerical data points for
upui > 1.5 and u,,; > 2.0 in Case I and Case II, respectively, because of
their maximum pull speed at the turning point shown in Fig. 4. The TJP
temperature in Fig. 5(a) is about 4-5 [K] less than the equilibrium
melting temperature and becomes slightly smaller in all cases as the pull
speed is increased. Because both the analytical and numerical proced-
ures use Eq. (12) for the estimation of the Trjp with 2D nucleation, their
results are identical at each pull speed. However, the two procedures
produce different results for the transition length in Fig. 5(b).

The transition length in the analytical formulation is obtained as
described in the discussion following Eq. (14). This equation predicts a
smaller x;,, . with increasing the pull speed. This trend is also observed

Table 3
Results of the numerical simulation at three pull speeds in Case II.
Wpun = 0. Upun = 1. Upun = 2.
5 [mm/s] 5 [mm/s] 4 [mm/s|
Description Variable Value Value Value [Units]
Maximum texit 2.6 11 0.70 [mm]
ribbon
thick.
Min. solid T min 1607.7 1654.2 1670.7 K]
temp.
Min. liquid Ti.min 1680.6 1677.1 1668.0 K]
temp.
Min. solid Xs.min 0.13 0.23 0.39 [mm]
temp. pos.
Min. liquid Xl.min -0.78 —0.42 —0.24 [mm]
temp. pos.
TJP pos. X1ip -0.77 -0.22 0.19 [mm]
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Fig. 4. Results of the numerical simulation for the triple junction position as a
function of the pull speed in the three investigated cases. The dashed circles
denote the specific cases shown in Fig. 3.

in the numerical results, displayed as symbols in Fig. 5(b). The numer-
ical results show that the transition length is increased at each pull speed
as the peak convective heat flux, g max, is increased from Case I to Case
III (see Table 2). According to the analytical formulation of Eq. (14),
X,,.ns 1S DOt a function of the heat flux, and therefore, the analytical result
is shown as a single solid line in Fig. 5(b).

It can be observed the analytical predictions of x;, . are smaller than
the obtained numerical results for all pull speeds. The main reason behind
this difference is the fact that the analytical assumptions are only valid
close to the TJP in the limit of r < . For the constant heat flux assumption
for both the liquid and solid at the TJP, the radius of analysis must be
considerably smaller than the cooling jet width, such that r/w~#(0.1).
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A Num. Case II
O  Num. Case III
1680.75 —— Ana. (All Cases)
2
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&E
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g
é 0.501"
M R:E
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m]
m
0.00-+ f f t : ]

0.5 1 1.5 2 2.5 3
Up [mm/s]

Fig. 5. Comparison of analytical and numerical results for the three investi-
gated cases, showing a) the obtained temperature at the TJP and b) the ob-
tained transition length.
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For all the investigated cases in this study, this means a radius of
r < 0.05 [mm]. At this radius, the maximum Pe number with uyu =
3.0 mm/s is Peyx = 0.006, which confirms that ignoring the convective
term in Eq. 2 at this scale is accurate. However, all the numerically-
obtained transition lengths in Fig. 5(b) are larger than r/w~0.1. It can
be concluded that the analytical assumptions are not valid over the entire
length of the facet. The analytical results are expected to be applicable to a
larger portion of the facet length at larger pull speeds, as the ribbon
thickness and the facet length become smaller. In spite of this, the
analytical predictions do qualitatively predict the behavior of the facet
length as a function of the pull speed.

The numerically-obtained temperature distributions along the facet
are shown in Fig. 6(a) for Case II at three different pull speeds. It can be
observed that all temperature distributions approach the TJP with a
positive and finite slope, which is in agreement with the analytical
prediction shown in Eq. 7. However, the numerical facet temperatures
deviate from a linear variation as the distance from the TJP is increased,
mainly because r/w is no longer small. At large pull speeds
(upun > 1.0 [mm/s)), the temperature monotonically increases along the
facet. However at small pull speeds, the temperature remains nearly
constant for a portion of the facet length (see the blue squares in Fig. 6
(a)), before increasing to the equilibrium melting temperature of Ty, =
1685 [K] toward the end of the facet.

For a more quantitative comparison, the temperature gradient in the
facet direction at the TJP, (dT/dx")y, = a’, is obtained both numeri-
cally and analytically as a function of the pull speed and is shown in
Fig. 6(b) for all investigated cases. Note that the analytical gradient is
only a function of the jump in heat flux at the TJP (g, —¢q;) and not the
peak heat flux. The heat flux jump is only a function of Trp, which is

()
1685.01
. o~
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168401 &
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— 16830+ A [-o- Numuy,=05
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Fig. 6. Temperature profiles along the facet, with a) numerical temperature
distributions for Case II as a function of the pull speed and b) numerical and
analytical temperature gradients at the TJP for all investigated cases. The
symbols in panel (a) are down-sampled. The solid red triangle in panel (b)
denotes the result of the grid refinement and extrapolation performed on the
solution of Case II at uy,; = 1.5 [mm/s] shown in Table 4.
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nearly constant for all cases. As such, the analytical result is shown as a
single solid line in Fig. 6(b). It can be observed that a” increases in both
numerical and analytical results as the pull speed is increased, as pre-
dicted by the analytical formulation of Eq. (7). The numerical gradients
(the empty symbols) are nearly equal for the three cases at each pull
speed, but smaller than the analytical prediction.

The difference in temperature gradient between the analytical pre-
diction and the numerical simulations is due to the mesh resolution at
the TJP in the investigated numerical model. To prove this, a grid study
is performed on a sample data point in Case II with uy,,; = 1.5 [mm/s].
This base case has a grid size of N.728k elements. The base mesh is
uniformly refined twice and the three parameters of TJP position, xryp,
transition length, x|, and temperature gradient, a”, are obtained and
reported in Table 4. Moreover, a Richardson extrapolation procedure is
performed on the reported parameters, based on the method outlined in
reference [34], and the resulting extrapolated values are reported. For
reference, the analytically predicted values are also shown in Table 4.
Note that the analytical formulation does not predict the TJP position.

It is observed that xpjp and x;,,, values are already converged in the
base mesh size. The temperature gradient on the other hand, slowly
converges to an extrapolated value of @, . = 88.91 [K/mm], shown as a
solid triangle in Fig. 6(b), with a convergence rate of 0.15. Comparing to
the analytically-predicted temperature gradient of a,,, = 88.03 [K/mm),
the relative difference of the two analyses is less than 1%. Therefore, it is
clear that the reason for the difference between the analytical and nu-
merical solutions in Fig. 6(b) is numerical error.

It can be concluded that the analytical formulations can well predict
the behavior of the TJP. This suggests that a simplified analytical
formulation can replace numerical procedures for a preliminary evalu-
ation of the HRG processes and an analysis of their thermal stability.

6.4. Supercooling in the liquid domain

An important outcome of the analytical formulation for the HRG
processes is the prediction of existence of a supercooled region in the
liquid upstream of the TJP. This prediction is important because it can
be an indication of thermal instability in the problem [13]. The liquid
adjacent to the TJP will be always supercooled if its temperature
gradient in the x direction is positive, dT/dx > 0. Note that it is also
possible to have a supercooled region close to the TJP without a positive
temperature gradient, since Typ is itself less than the equilibrium
melting temperature, as displayed in Fig. 5(a).

Referring to Eq. (9), the pull speed required for a positive tempera-
ture gradient in the liquid can be stated as

qi (kl - kS)
pLtk

s — 41

Upny > 4 [cot(ﬂf) + tan(&)} + tan(6;). a7

It was previously discussed that the jump in heat flux, g; —q;, can be
directly obtained by computing the TJP temperature from Eq. (12) and
computing the radiative heat flux difference from the liquid and the
solid at the TJP from Eq. (16). Because the TJP temperature is nearly
constant over the investigated range of pull speeds in Fig. 5(a), gs —q
can be assumed constant as well. Consequently, the minimum pull speed
for a supercooled liquid in Eq. (17) can be stated as a linear function of
the total heat flux from the liquid at the TJP, such that uyymin =@ + fqi.
The minimum pull speed is plotted as a function of g, in Fig. 7, displayed
as a solid black line. It can be observed that upumin increases slightly as
qi is increase, meaning that for higher heat fluxes liquid supercooling
occurs at larger pull speeds.

It was previously observed in the temperature plots of Fig. 3 that
increasing the pull speed results in a larger and colder supercooled re-
gion in the liquid. The values of g, in the numerical simulations of the
three investigated cases are obtained as a function of the pull speed and
shown as symbols in Fig. 7. Note that q; is a function of the TJP position,
which is in turn a function of the pull speed (see Eq. (15) and Fig. 4).
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Table 4
Grid study performed on the numerical simulation of Case II with up, = 1.5 [mm/s]. Note that only 4 significant digits are shown.
Base case 1st Refine. 2nd Refine. Extrap. Analytical

Description Variable Value Value Value Value Value [Units]
Grid size N. 28k 111k 446k - - elements
Min. element size AXpmin 51x 104 25x 104 1.2x 1074 - - [mm]
TJP position Xyp —0.3037 —0.3037 —0.3037 —0.3037 - [mm]
Transition length X 0.1285 0.1287 0.1287 0.1287 0.0492 [mm]
Temp. gradient a 66.09 68.40 70.47 88.91 88.03 [K/mm]

Consequently, g increases to a maximum as the TJP crosses the cooling
jet center and decreases afterwards. For example, the liquid heat flux for
the three pull speeds in Fig. 3 is equal to q; = 155 [W/cm?],292 [W /cm?],
and 305 [W/cm?], respectively.

In Fig. 7, all the data points from the numerical simulations are above
the Uy min line, meaning that there must be a supercooled region in the
liquid in all the numerically-investigated cases. This was confirmed in
Fig. 3 for Case II, even at the smallest pull speed. At small pull speeds,
the numerical data points are extremely close to the U min line, leading
to a small supercooled region (see Fig. 3(a)). As the pull speed is
increased in each numerical case, it gets farther from the analytically-
predicted minimum pull speed, leading to a larger amount of super-
cooling. In the specific case shown in Fig. 3(b) with upyy = 1.5 [mm/s],
the minimum pull speed corresponding to the same value of q; is equal to
Upuimin = 0.68 [mm/s]. It can be concluded that the liquid heat flux at the
TJP must be relatively large for a specific pull speed to ensure that no
supercooling occurs in the liquid.

7. Conclusions

The solidification mechanism during the horizontal ribbon growth
process was studied analytically and numerically in this study with an
emphasis on the triple junction point (TJP), where the solid ribbon, the
liquid, and the surrounding gas meet. The HRG process was analytically
formulated in the vicinity of the TJP, incorporating the solidification
kinetics, and the temperature distributions in the solid, the liquid, and
along their interface were obtained. It was shown that the solidification
is initiated with 2D nucleation at the TJP and proceeds with propagation
of steps along the solidification front, which forms a facet with a nearly
constant angle. The behavior of the solidification facet was examined in
the vicinity of the TJP as a function of the material properties, the ribbon
pull speed, and the cooling heat flux from the free surfaces. Using the
analytical formulation, the temperature distribution along the facet, the
facet length, and the existence of a supercooled region in the liquid can
be predicted.
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Fig. 7. Minimum pull speed resulting in a supercooled region in the liquid
domain as a function of the total heat flux from the liquid at the TJP. The
symbols denote the liquid heat flux at each pull speed in the three numerically-
investigated cases.

The solid-liquid problem was also simulated numerically using an
accurate hp-finite element formulation that incorporates the solidifica-
tion kinetics. It was observed that increasing the ribbon pull speed shifts
the TJP toward the downstream of the cooling jet, increases the mini-
mum temperature in the solid, and results in a larger and colder
supercooled region in the liquid. Comparison of the numerical and
analytical results showed that the assumptions of the analytical formu-
lation are not valid over the entire facet length, especially at small pull
speeds. However, the analytical formulation proved to successfully
predict the behavior of the HRG process in the vicinity of the TJP, where
the solidification process is initiated and the thermal stability of the
problem is dictated. These findings suggest that the proposed analytical
model can be used in lieu of numerical simulations to investigate the
HRG process as a function of the underlying parameters that are
involved.
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