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A B S T R A C T   

Horizontal ribbon growth (HRG), in which a thin sheet of solidified material is pulled horizontally from the 
surface of a molten pool, is proposed as an efficient technique for growth of single-crystal silicon sheets. Despite 
recent results, some details of the process are still not understood, in particular the solidification mechanism at 
the triple junction point (TJP) where the solid, the liquid, and the surrounding gas meet. The solidification 
mechanism in the HRG process is investigated in this paper both analytically and numerically, incorporating the 
solidification kinetics that lead to faceted growth. The conventional solid–liquid problem in the HRG process is 
formulated analytically in the vicinity of the triple junction point (TJP). The temperature distribution is obtained 
for the liquid and solid regions as a function of the underlying parameters of the HRG process, such as the 
material properties, the ribbon pull speed, and the cooling heat fluxes. Using the analytical results, the TJP 
temperature, the facet length, interfacial temperature gradients, and liquid supercooling can be predicted. The 
analytical formulation is validated against accurate numerical simulations of the same problem, showing a good 
agreement in predicting the temperature gradients and the facet growth. The findings of this study suggest that 
using the analytical model, the behavior of the solid ribbon and the existence of a supercooled region in the 
liquid in the HRG process can be predicted without the need for numerical simulations. The model also gives 
criteria for optimal performance of the HRG process.   

1. Introduction 

Crystal growth techniques are used for the production of silicon 
wafers for application in photovoltaic devices such as solar cells [1,2]. 
There are various techniques for growing crystals such as Czochralski 
[3,4], edge-defined film-fed (EFG) [5,6], and horizontal ribbon growth 
(HRG) [7–9]. The Czochralski process, in which large diameter ingots 
are made by vertical crystal growth, is the most commercially used. 
However, relatively slow growth speeds and large kerf losses during 
wafer cutting reduce the efficiency of this process [10]. In contrast, HRG 
methods, in which wide thin sheets of materials are pulled horizontally 
from the cooled and solidified surface of a molten pool, are reported to 
achieve much larger growth speeds and do not suffer from cutting losses 
[11,12]. However, the gaps of knowledge of the physics involved in the 
HRG process have resulted in a considerable difference between theo-
retical expectations and experimental observations, hindering attempts 
at commercializing this technique [13]. 

The solidification front in any solidification process terminates at a 
point (or line) in contact with a solid wall [14–17], or a gas domain 

[18–20]. The termination point (line) is usually called a triple junction 
[21]. In HRG processes, in particular, the shape and temperature dis-
tribution of the solidification front at the triple junction can have a 
significant influence on the stability and maximum performance of the 
process [22,23]. 

Despite several attempts at theoretical analysis of the HRG process 
and its stability in various configurations [8,11,23–26], very few studies 
have analyzed the physics of the triple junction in detail. Anderson and 
Davis [27] solved the Stefan problem and obtained the flow and tem-
perature fields in the vicinity of the triple junction. They concluded that 
the solidification front is perpendicular to the free surface at the junction 
when the free surface is adiabatic. The same conclusion can be made for 
droplet solidification problems where the heat transfer is mainly 
through the solid–liquid interface [14]. Helenbrook [22] included the 
heat transfer through the gas domain in the Stefan problem. He found 
that a non-zero wedge angle, i.e., the angle between the solidification 
front and the free surface, is only possible if there is a jump in heat 
transfer at the triple junction or when there is a non-zero growth angle (i. 
e., the angle between the growth direction of the triple junction point 
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and the incoming free surface tangent). A jump in heat transfer is highly 
probable due to different radiative emissivity between the liquid and the 
solid phases of materials such as silicon. The formed wedge angle at the 
triple junction was found to be a function of the ribbon pull speed, the 
latent heat release rate, the heat removal jump, and the growth angle 
[22]. 

In contrast to the theoretical predictions, experimental observations 
of the HRG process have shown that the solidification front close to the 
triple junction is more like a facet that is usually aligned with {111}
planes, and not a wedge [28,29]. For example, Helenbrook et al. [28] 
took a side-view picture of a sample ribbon after shutting off the cooling 
jet and showed that the ribbon leading edge is planar, making a 55◦

angle with the ribbon top surface (refer to Fig. 3 of the reference). 
Moreover, the experiments have all shown a finite limit for the pull 
speed [11,12], unlike predictions from wedge-based theories. One 
important distinction between the aforementioned analytical studies 
and the experiments is that the temperature at the solidification front is 
assumed to be constant and equal to the equilibrium melting tempera-
ture in the analyses. However, this assumption is only valid if the so-
lidification kinetics are fast [28]. 

Solidification kinetics play an important role in the formation of the 
solidification front in the HRG processes. Kinetic undercooling models 
have been used in different numerical simulations for the evaluation of 
interfacial temperatures and supercooled regions [30,31]. For example, 
Helenbrook et al. [28] showed that there is a supercooled region right in 
front of the facet formed in the vicinity of the triple junction where 2D 
nucleation and step propagation mechanisms are dominant. They also 
showed that increasing the pull speed retracts the triple junction (the 
leading edge of the ribbon) away from the cooling region. This trend 
continues until a turning point is reached in the variation of the 
converged triple juction position versus the pull speed, after which 
dendritic growth occurs and there is no stable steady solution. As such, 
any theoretical modeling of the HRG process requires the inclusion of 
solidification kinetics. 

In this study, the HRG process is investigated analytically and 
numerically. A model is formulated that incorporates the solidification 
kinetics and focuses on the vicinity of the triple junction, where the 
solidification process and the formation of the solid ribbon are initiated. 
The findings of this work can be extended to other similar solidification 
processes as long as a triple junction exists in the domain. The manu-
script is organized as follows: The HRG configuration is described in 
Section 2. An analytical formulation for the solid–liquid temperature 
field in the vicinity of the triple junction is obtained in Section 3 by 
inclusion of the solidification kinetics, which is explained in Section 4. A 
procedure for numerical simulation of the same problem is discussed in 
Section 5. The results of the analytical model are compared and vali-
dated against the numerical solutions in Section 6 and a discussion of the 
model and the criteria for liquid supercooling is provided. 

2. Problem description 

In the HRG configuration, all the interfaces (solid–liquid, solid–gas, 
and liquid–gas) are joined at the triple junction located at the solid 
leading edge. Fig. 1(a) shows a schematic of the liquid domain, Ωl, and 
the floating solid sheet, Ωs. It is assumed in this configuration that the 
width of the sheet, W, is much larger than the crucible depth, d, such that 
the problem can be considered as two-dimensional and the triple junc-
tion can be assumed to be a point (TJP). A closeup view of the solidifi-
cation front in the vicinity of the TJP is shown in Fig. 1(b), where three 
coordinate systems are defined with their origin positioned at the TJP. 
Coordinate x is aligned with the solid–gas interface. The x*-y* and the 
polar r-θ coordinates are aligned with the solid–liquid interface (the 
solidification front), such that y* is normal to the interface and facing the 
solid domain, r is the distance from the TJP, and θ is the angle relative to 
the interface with a counter-clockwise (CCW) positive sign. 

The solid ribbon is pulled in the x-direction in Fig. 1, which is aligned 
with a [100] crystal direction, with a pulling speed of upull. In the steady- 
state condition, the liquid solidification balances the pulled solid mass, 
such that the TJP is stationary. The problem is analyzed in the limit of 
r < ∊, where ∊≪d, and therefore, all interfaces can be approximated as 
straight lines. In the r < ∊ limit, the solidification front forms a facet 
with a constant facet angle of θf . In all of the studied cases in this work, it 
is assumed that the crystal is seeding with the [100] direction oriented in 
the ribbon pulling direction and a (111) facet plane 55deg from the x- 
direction. The liquid surface also forms a growth angle of θg with the −x 
direction. In the polar coordinates, the solid–gas interface is positioned 
at θ = θf and the liquid–gas interface (the free surface) is positioned at 
θ = θf + π −θg. 

Heat is removed through the gas domain by convection and radiation 
from the solid and the liquid top surfaces. A cold helium jet provides the 
convection heat removal, which is assumed continuous across the TJP. 
Heat is also radiated to an assumed cold far-field. Because the emissiv-
ities of liquid and solid materials are usually different (e.g., emissivity of 
solid silicon is larger than its liquid), there is a jump in the radiated heat 
at the TJP location, as shown in Fig. 1(b). Since the problem is investi-
gated in the r < ∊ limit, the heat flux from the liquid surface is assumed 
constant and equal to ql, and equivalently, constant and equal to qs from 
the solid surface. Due to the jump in radiation, ql and qs are not equal. 

3. Analytical formulations 

3.1. Governing equations 

The governing equation for heat balance in this problem in both the 
liquid (Ωl) and solid (Ωs) domains can be stated as 

∂(ρiciTi)
∂t +∇⋅(ρiuiciTi)+∇⋅( − ki∇Ti) = 0, (1)  

where subscript i = l, s refers to either of the domains, T and u are the 
temperature field and the velocity vector, respectively, and ρ,c, and k are 
the density, specific heat, and thermal conductivity of each domain, 
respectively. 

In order to simplify Eq. (1), a few assumptions are made. The prob-
lem is assumed to reach a steady-state condition, and therefore, the first 
term from the left vanishes. The material density is assumed constant 
and equal for both the liquid and the solid close to the TJP in the r < ∊ 
limit. This means the velocity field is continuous across the solidification 
interface according to the continuity equation. As such, the liquid ve-
locity close to the TJP is equal to the solid velocity, which is equal to 

Fig. 1. Schematic of the HRG crystallization with a) configuration of the do-
mains, b) close view of the solidification front in the vicinity of TJP and the 
prescribed coordinate systems. 
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upull̂ i, where ̂i is the unit vector in the x-direction (see Fig. 1). 
After simplifying and substituting the non-dimensional variables of 

x′ = x/∊, y′ = y/∊, and T′ = (T−Tm)/Tm, where ∊ is the radius of the 
small region of interest near the TJP and Tm is the equilibrium melting 
temperature, Eq. (1) can be re-written as 

Pei
dT ′

i
dx′ −∇2T ′

i = 0, (2)  

where Pei = ρciupull∊/ki is the Peclet number, which is negligible in the 
∊→0 limit. As such, the convective term can be ignored for the solution 
of the temperature distribution in the vicinity of the TJP and the gov-
erning equation is reduced to ∇2Ti = 0. 

In order to solve the Laplacian equation for temperature, the 
boundary conditions must be specified. At the liquid–gas and solid–gas 
interfaces, the boundary conditions are −ki∇Ti⋅n̂i = qi, where qi is the 
heat flux through the solid or the liquid surfaces and n̂i in the unit vector 
of the outward normal to these boundaries. At the solidification inter-
face, the net heat flux normal to the boundary must balance the rate of 
heat release due to the solidification process, such that 

[[ − ki∇Ti⋅n̂i]] = ṁLf , (3)  

where the double-brackets indicate the jump in heat flux at the interface, 
Lf is the latent heat of fusion, and ṁ = ρ(us −uI)⋅n̂s is the rate of mass 
added to the solid normal to the liquid–solid interface, where us and uI 
are the solid and interface velocity vectors, respectively, and n̂s is the 
outward unit normal to the solid at the interface. In the steady-state 
condition in the configuration of interest, uI = 0 and us = upull̂ i. 

3.2. Linear approximation 

At leading order, it is assumed that the temperature very close to the 
TJP (r < ∊) is a linear function of the x* and y* coordinates. Defining a 
new variable of Θ = T−TTJP, where TTJP is the temperature at the TJP, 
the distribution of temperature difference from the TJP in both domains 
can be expressed as 

Θi = a*
i x* + b*

i y*, (4)  

where a*
i and b*

i are constants for each domain. For the temperature 
distribution to be continuous across the solidification front, where y* =
0, we should have a*

s = a*
l = a*. 

For simplicity, the liquid–gas interface is assumed horizontal, which 
means that the growth angle (θg) is equal to zero. Consequently, the 
boundary conditions at the solid–gas and liquid–gas interfaces with n̂s =

n̂l =−sin(θf )̂i
*
+cos(θf )̂j

* 
can be written as 

ks
[
a*sin(θf) − b*

s cos(θf)
]
= qs,

kl
[
a*sin(θf) − b*

l cos(θf)
]
= ql.

(5)  

Similarly, the boundary condition at the solidification front (Eq. (3)) 

with n̂s = −1̂j*, n̂l = 1̂j*, and ̂i = cos(θf )̂i
*
+sin(θf )̂j

* 
states that 

b*
s ks − b*

l kl = − ρLfupullsin(θf). (6)  

3.3. Analytical model of the solid–liquid problem 

As shown in Fig. 1, the heat removal rate through the gas domain is 
uniform on either side of the TJP but is discontinuous at the TJP, usually 
due to different liquid and solid emissivities. By subtracting the two 
parts of Eq. (5) and combining with Eq. (6), an expression for a* can be 
obtained as 

a* = ρLfupullcos(θf)
kl − ks

− qs − ql
(kl − ks)sin(θf)

. (7)  

This is the linear temperature gradient along the interface (x*-direction) 
required to maintain growth at a constant facet angle. It can be seen that 
the tangential temperature gradient is a function of the pull speed, the 
jump in heat flux (not the heat flux magnitudes), the difference in solid 
and liquid thermal conductivities, and the latent heat. 

After substituting the obtained expression for a* into Eq. (5), the 
temperature gradient normal to the interface (y*-direction) in both do-
mains is given by 

b*
i = ρLfupullsin(θf)

kl − ks
− qs − ql
(kl − ks)cos(θf)

− qi
kicos(θf)

. (8)  

Ultimately, the temperature field close to the TJP can be obtained in the 
original x-y coordinate system using a coordinate transformation, such 
that 

Ti = TTJP −
qi
ki

y+
(ρLfupull

kl − ks
− qs − ql

kl − ks

[
cot(θf) + tan(θf)

]
− qi

ki
tan(θf)

)
x.

(9)  

Note that this simplified temperature solution is derived by assuming 
negligible liquid flow, constant heat fluxes, equal solid and liquid den-
sities, and zero liquid growth angle in the vicinity of the TJP. However, it 
was observed during additional numerical simulations (not shown here 
for brevity) that relaxing these assumptions has negligible effects on the 
solution in the small radius of interest. This is mainly because the 
convective terms in Eq. (2) can be ignored because of the small Pe in the 
close proximity of the TJP. 

When the temperature gradient in the x direction in Eq. (9) is posi-
tive in the liquid domain at the TJP (dT/dx > 0), it means a supercooled 
region exists with the minimum temperature located in the liquid 
domain. The criteria for liquid supercooling is discussed in detail in 
Section 6.4. In Eq. (9), the TJP temperature is still unknown, which is 
obtained by incorporating the solidification kinetics, as explained in the 
following section. 

4. Solidification kinetics 

4.1. Solidification mechanisms 

It was previously mentioned that the temperature at the solid–liquid 
interface is not usually equal to the equilibrium melting temperature 
and depends on the solidification mechanism. There are three solidifi-
cation mechanisms that can occur at the solid–liquid interface: the two- 
dimensional (2D) nucleation of crystals on a facet, propagation of steps 
down the facet face, and roughened growth without any identifiable 
facet [28]. 

In this work, a slightly modified version of the kinetics model pro-
posed by Weinstein and Brandon [30] is used for quantifying the three 
mechanisms. The specific model and its constants are identical to that 
used by Helenbrook et al. [28]. This model states that the deviation of 
interface temperature,TI, from the melting temperature, Tm, is obtained 
by 

ΔTI = TI −Tm = K(θma,ΔTI)(us − uI)⋅n̂s, (10)  

where K is a solidification kinetic coefficient and θma, referred to as the 
misalignment angle, is the CCW angular deviation of the actual interface 
from the θ = 0 line. As stated before, uI = 0 in the steady-state condition 
and us⋅n̂s is less than or equal to zero in the current configuration. 

The kinetic coefficient is composed of the three solidification 
mechanisms and its value is a function of the local interface condition. 
Roughened growth occurs in directions away from the facet direction 
and has a constant kinetic coefficient of Krough = 1/0.0126 [K/(m/s)]. 
Step propagation occurs along the facet and models the growth of a 
molecular layer on the facet with a kinetic coefficient that is a function 
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of θma and is given by Kstep = Ksn/|sinθma|, where Ksn = 1/0.63 [K/(m/s)]
is a constant. Lastly, 2D nucleation describes when a new facet layer is 
initiated. The kinetic coefficient for 2D nucleation is a function of the 
temperature deviation and is given by K2D = K2Dnexp(A2Dn/|ΔTI|), 
where K2Dn = 1/1.5e10 [K/(m/s)] and A2Dn = 140 [K] are constants. The 
2D nucleation typically occurs at the coldest location in the liquid, 
where liquid supercooling is appreciable, and can be as fast as the 
roughened growth when |ΔTI| > 5 [K] [29]. 

Close to the TJP and along the facet, the solidification mechanism 
with the least kinetic coefficient (K2D or Kstep) will occur, as a smaller K is 
more physically probable [30]. Far from the facet at large misalignment 
angles, the Kstep expression is no longer valid and roughened growth will 
occur. As such, the kinetic coefficient should not be less than Krough along 
the interface. In the analytical and numerical models in this study, it is 
assumed that the coldest temperature, and consequently 2D nucleation, 
only occurs at the TJP and therefore KTJP = K2D. To effectively model 
the solidification mechanism along the rest of the solidification front, 
the following expression is used in this study. 

K(θma,ΔTI) = max
(
Kstep,Krough

)
. (11)  

4.2. Faceted solidification 

The region of interest in this study is close to the TJP and along the 
facet, as discussed in Section 3. In this region, the misalignment angle is 
small (θma≪1) and Kstep≫Krough, and therefore, roughened growth does 
not occur and can be ignored. The solidification is nucleated at the TJP, 
as it is the only feasible location in this configuration. Therefore, the 
temperature at the TJP can be obtained from Eq. (10) using the kinetic 
coefficient for 2D nucleation, such that 

ΔTTJP = −K2Dnexp(−A2Dn
/

ΔTTJP)upullsin(θf). (12)  

Note that if the actual solidification front deviates from a line with the 
constant facet angle by θma degrees, then the component of pull speed 
normal to the solidification front is equal to (us − uI)⋅n̂s =
−upullsin(θf −θma). However since θma is small, it can be ignored in the 

equation. It can be seen from Eq. (12) that the temperature at the TJP is 
then only a function of the pull speed. 

The nucleated step at the TJP is propagated along the facet by the 
step propagation mechanism. Combining Eq. (4) with Eq. (10) using the 
kinetic coefficient for step propagation, the temperature distribution 
along the facet in the r→∊ limit is governed by 

TI(x*) = Tm − Ksn
|sinθma|

upullsin(θf − θma) = TTJP + a*x*. (13)  

considering that θma≪θf , the misalignment angle in the vicinity of the 
TJP can be estimated as 

θma(x*) ≃ Ksnupullsin(θf)
Tm − TTJP − a*x* . (14) 

It can be concluded from Eq. (14) that the misalignment angle be-
comes large as the interface temperature approaches the equilibrium 
melting temperature. When θma becomes sufficiently large, roughened 
solidification starts to develop. The misalignment angle at which this 

transitions occurs can be found by equating Krough and Kstep, such that 
sin(θtrans) = Ksn/Krough. Plugging this value into Eq. (14), the location of 
transition on the solidification front (x*

trans) can be obtained. In this study, 
x*

trans is defined as the facet length. 

5. Numerical procedure 

The analytical formulations described in Section 3.3 and Section 4.2 
provide an estimation for the temperature distribution and the shape of 
the solid–liquid interface in the vicinity of the TJP in the HRG config-
uration. To validate these estimates, a high-order accurate numerical 
procedure is used that solves the temperature and flow fields in both the 
liquid and solid domains and determines the interface position while 
accounting for the solidification kinetics [32]. 

The employed method is a hp-finite element formulation with 4th 
order approximation polynomials and a triangular arbitrary Lagran-
gian–Eulerian (ALE) moving mesh. The interface is tracked by the 
moving mesh and sharp gradients in the domains are resolved using a 
mesh adaptation algorithm. For the solution of the numerical formula-
tions, an A-stable diagonally implicit Runge–Kutta temporal scheme is 
used. The temporal and spatial orders of accuracy for this method are 
reported to be 3 and 5, respectively [32]. For a more detailed description 
of the numerical procedure refer to references [28,32]. 

A sample of the initial mesh used in the numerical method for the 
configuration shown in Fig. 1(a) is displayed in Fig. 2. It can be seen that 
the solid (Ωs) and the liquid (Ωl) domains are non-dimensionalized by 
the crucible depth, d. The domains are extended by 4d from the TJP in 
both directions to ensure uniform inlet conditions and a stabilized 
maximum thickness of the ribbon resulting from the fact that the top 
heat removal and bottom heat addition fluxes balance at either end of 
the domain. In order to simplify the flow solution, the liquid surface 
tension is assumed constant, and therefore, the Marangoni effects are 
ignored. The top boundary of the liquid (the free surface) is set as a slip 
boundary. The left boundary is set as an inflow and the bottom boundary 
is set as a moving wall, both with a uniform velocity of upull. The right 
boundary of the liquid is defined as an outflow with zero stress condi-
tion. With these specified boundary conditions, the entire flow field is 
uniform and equal to upull, which is also the specified convective rate for 
the solid domain. 

For the solution of the energy equation, the inflow boundary of the 
liquid has a Dirichlet thermal boundary condition, which varies linearly 
from a top point temperature, Tt, to a bottom point temperature, Tb. 
Both specified temperatures are greater than the melting temperature, 
Tm. The bottom boundary also has a specified Dirichlet temperature of 
Tb. The right boundaries of both the liquid and solid domains have 
Neumann boundary conditions with zero conductive heat flux. The top 
boundaries have Neumann boundary conditions with a heat removal 
rate of qc(x) + qr(x). In this model, qc is a continuous distribution for 
modeling the convective heat transfer by the cooling helium jet located 
above the solid ribbon (see Fig. 1), and qr is the radiative heat transfer 
that is discontinuous at xTJP due to different liquid and solid emissivities. 
It should be noted that although the TJP is positioned at x = 0 in the 
initial mesh, its location changes during the solution procedure, and 
therefore, the Neumann boundary condition at the top surfaces is 
updated in each iteration. 

Fig. 2. Sample of the initial mesh used for numerical simulation of the HRG process.  
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The profile for qc(x) is modeled as a Gaussian distribution, such that 

qc(x) = qc,max
[(

1 − fc)e−[(x−xc)/w]2ln2 + fc
]
, (15)  

where qc,max is the peak convective heat flux, xc is the location of the 
helium jet centerline, w determines the width of the heat removal pro-
file, and fcqc,max is a constant fraction of the peak convective heat flux 
included in the qc(x) profile to prevent the solid from melting down-
stream of the jet [22]. The radiative heat transfer profile is obtained as 

qr(x) = εiσb
(
T4

s (x) − T4
c
)
, (16)  

where εi is the solid or liquid emissivity coefficient, σb is the Ste-
fan–Boltzmann constant, Ts(x) is the surface temperature at location x, 
and Tc is the cold far-field temperature. 

The temperature distributions and the shape and position of the 
solid–liquid interface are determined iteratively in the numerical pro-
cedure by solving the governing equations simultaneously, until a 
converged steady-state solution is achieved for each set of the specified 
conditions. 

6. Solid–liquid solution 

In this study, silicon is chosen as the material of interest, with ma-
terial properties listed in Table 1 [33]. All properties are assumed to be 
constant in the range of the investigated temperatures. Note that the 
density and the specific heat are assumed equal for solid and liquid 
silicon. 

6.1. Studied cases 

Three cases with different heat removal profiles and boundary con-
ditions are studied both numerically and analytically over a range of 
ribbon pull speeds. The characteristic parameters in the three cases are 
listed in Table 2, which are chosen to be close to the experiments dis-
cussed in [28]. In all cases, the centerline of the cooling jet is positioned 
at xc = 0 and the far-field temperature is Tc = 300 [K]. The width of the 
convective heat removal profile is equal to w = 0.5 [mm] and the cruci-
ble depth is equal to d = 13 [mm]. 

According to Eq. (15) for the convective heat removal rate, the values 
of qs and ql to be used in the analytical formulations are a function of the 
TJP position (xTJP), which varies as a function of the pull speed [28]. 
However, because the qc distribution is continuous at the TJP, as 
opposed to qr, the heat removal difference in Eq. (7), qs −ql, can be 
obtained directly from Eq. (16) for the radiative heat transfer by 
obtaining the TJP temperature from Eq. (12). As such, the analytical 
temperature distribution along the solid–liquid interface, relative to the 
TJP temperature, can be obtained without the knowledge of xTJP. For 
obtaining the absolute temperature distributions with the analytical 
formulations, the value of xTJP can be extracted from numerical simu-
lations at each pull speed. 

6.2. Numerical simulations 

Samples of numerically-obtained temperature fields in the vicinity of 
the TJP are shown in Fig. 3 for Case II at three particular pull speeds of 
upull = 0.5 [mm/s],1.5 [mm/s], and 2.4 [mm/s]. The adapted and refined 
meshes in these cases contain Nẽ34k, ̃26k, and ̃28k total elements, 
respectively, in the liquid and solid domains combined. The minimum 
non-dimensional element size on the facet is about Δxmin/d = 3.9 ×
10−5 for the three cases. In Fig. 3, the solidification front is shown as a 
solid line, over which the formed facet and its transition to roughened 
growth can be detected. The arrows denote the direction of a tangent to 
a (111) plane with a θf = 55◦ angle with the free surface, which are 
aligned with the formed facets. 

As discussed in Section 4.2, the misalignment angle at the transition 
point is equal to θtrans = sin−1(Ksn/Krough) = 1.15◦. During the numerical 
procedure, the transition point location, and subsequently the transition 
or facet length (x*

trans), are obtained by tracking the location on the facet 
at which the misalignment angle equates to this value. In the specific 

Table 1 
Silicon properties used in numerical and analytical formulations [33].  

Description Variable Value [Units] 

Solid/liquid density ρ  2530 [kg/m3]
Solid/liquid spec. heat c 1000 [J/kg K]
Solid conductivity ks  22 [W/m K]
Liquid conductivity kl  64 [W/m K]
Solid emissivity εs  0.6  - 
Liquid emissivity εl  0.2  - 
Equi. melting temp. Tm  1685 [K]

Table 2 
Characteristics parameters for the three studied cases.    

Case I Case II Case III  
Description Variable Value Value Value [Units] 

Peak conv. heat flux qc,max  283 336 389 [W/cm2]
Heat flux fraction fc  0.13  0.12  0.11  - 
Bottom point temp. Tb  1731 1736 1746 [K]
Top point temp. Tt  1702 1700 1704 [K]

Fig. 3. Numerically-obtained temperature distributions in the vicinity of the 
TJP and the shape of the formed facets for Case II at a) upull = 0.5 [mm/s], b) 
upull = 1.5 [mm/s], c) upull = 2.4 [mm/s]. The dashed lines denote the contour 
lines, the arrows denote a tangent to the (111) plane, and the empty circles 
denote the transition point on the facet. 
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cases shown in Fig. 3, the detected transition points are marked by 
empty circles. It can be seen in Fig. 3 that the overall solid ribbon 
thickness becomes smaller as the pull speed is increased, leading to a 
smaller facet length and the transition point pushed toward the TJP. The 
ribbon thickness at the exit (right) boundary of the domain, texit, is re-
ported in Table 3 for the three pull speeds shown in Fig. 3. 

The temperature contours are displayed as dashed lines in Fig. 3. It 
can be clearly observed that the minimum solid temperature, Ts,min, 
occurs away from the TJP and close to the edge of the cooling jet at 
about w/2 = 0.25 [mm] (see Table 3). Ts,min is increased as the pull speed 
is increased, because the rate of material extraction surpasses the cool-
ing rate. Increasing the pull speed also moves the TJP position and the 
solidification front toward the downstream of the cooling jet center (see 
Fig. 1). This results in the formation of a supercooled region in the 
liquid, as the liquid surface becomes closer to the cooling jet. The tem-
perature contours in Fig. 3 show the position of the local minimum 
liquid temperatures and the size of the supercooled regions. These 
values are also reported in Table 3. A more detailed discussion on the 
conditions leading to liquid supercooling is provided in Section 6.4. 

As mentioned earlier, there is a limit for stable operation of the HRG 
process, called the turning point, after which the ribbon pull speed can 
be no longer increased [28]. The three cases of interest were investi-
gated numerically as a function of the pull speed and the obtained results 
for the position of the TJP are shown in Fig. 4. The shift in the TJP 
position toward the downstream of the cooling jet continues until this 
point passes the downstream edge of the jet at x̃0.25[mm], after which a 
stable solidification is no longer possible. Increasing the peak heat flux 
from Case I to Case III pushes the TJP position to the jet upstream at each 
pull speed, leading to a delay in reaching the turning point that occurs at 
upull ≃ 1.7,2.4, and 2.9 [mm/s] for the three cases, respectively. 

6.3. Validation of analytical estimations 

A comparison of the results by the analytical formulations and the 
numerical simulations for the three investigated cases is shown in Fig. 5, 
displaying the temperature at the TJP (Fig. 5)) and the transition length 
of the facet (Fig. 5(b)). Note that there are no numerical data points for 
upull > 1.5 and upull > 2.0 in Case I and Case II, respectively, because of 
their maximum pull speed at the turning point shown in Fig. 4. The TJP 
temperature in Fig. 5(a) is about 4-5 [K] less than the equilibrium 
melting temperature and becomes slightly smaller in all cases as the pull 
speed is increased. Because both the analytical and numerical proced-
ures use Eq. (12) for the estimation of the TTJP with 2D nucleation, their 
results are identical at each pull speed. However, the two procedures 
produce different results for the transition length in Fig. 5(b). 

The transition length in the analytical formulation is obtained as 
described in the discussion following Eq. (14). This equation predicts a 
smaller x*

trans with increasing the pull speed. This trend is also observed 

in the numerical results, displayed as symbols in Fig. 5(b). The numer-
ical results show that the transition length is increased at each pull speed 
as the peak convective heat flux, qc,max, is increased from Case I to Case 
III (see Table 2). According to the analytical formulation of Eq. (14), 
x*

trans is not a function of the heat flux, and therefore, the analytical result 
is shown as a single solid line in Fig. 5(b). 

It can be observed the analytical predictions of x*
trans are smaller than 

the obtained numerical results for all pull speeds. The main reason behind 
this difference is the fact that the analytical assumptions are only valid 
close to the TJP in the limit of r < ∊. For the constant heat flux assumption 
for both the liquid and solid at the TJP, the radius of analysis must be 
considerably smaller than the cooling jet width, such that r/w̃O (0.1). 

Table 3 
Results of the numerical simulation at three pull speeds in Case II.    

upull = 0.
5 [mm/s]

upull = 1.
5 [mm/s]

upull = 2.
4 [mm/s]

Description Variable Value Value Value [Units] 

Maximum 
ribbon 
thick. 

texit  2.6  1.1  0.70  [mm]

Min. solid 
temp. 

Ts,min  1607.7  1654.2  1670.7  [K]

Min. liquid 
temp. 

Tl,min  1680.6  1677.1  1668.0  [K]

Min. solid 
temp. pos. 

xs,min  0.13  0.23  0.39  [mm]

Min. liquid 
temp. pos. 

xl,min  −0.78  −0.42  −0.24  [mm]

TJP pos. xTJP  −0.77  −0.22  0.19  [mm]

Fig. 4. Results of the numerical simulation for the triple junction position as a 
function of the pull speed in the three investigated cases. The dashed circles 
denote the specific cases shown in Fig. 3. 

Fig. 5. Comparison of analytical and numerical results for the three investi-
gated cases, showing a) the obtained temperature at the TJP and b) the ob-
tained transition length. 
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For all the investigated cases in this study, this means a radius of 
r < 0.05 [mm]. At this radius, the maximum Pe number with upull =
3.0 mm/s is Pemax = 0.006, which confirms that ignoring the convective 
term in Eq. 2 at this scale is accurate. However, all the numerically- 
obtained transition lengths in Fig. 5(b) are larger than r/w̃0.1. It can 
be concluded that the analytical assumptions are not valid over the entire 
length of the facet. The analytical results are expected to be applicable to a 
larger portion of the facet length at larger pull speeds, as the ribbon 
thickness and the facet length become smaller. In spite of this, the 
analytical predictions do qualitatively predict the behavior of the facet 
length as a function of the pull speed. 

The numerically-obtained temperature distributions along the facet 
are shown in Fig. 6(a) for Case II at three different pull speeds. It can be 
observed that all temperature distributions approach the TJP with a 
positive and finite slope, which is in agreement with the analytical 
prediction shown in Eq. 7. However, the numerical facet temperatures 
deviate from a linear variation as the distance from the TJP is increased, 
mainly because r/w is no longer small. At large pull speeds 
(upull > 1.0 [mm/s]), the temperature monotonically increases along the 
facet. However at small pull speeds, the temperature remains nearly 
constant for a portion of the facet length (see the blue squares in Fig. 6 
(a)), before increasing to the equilibrium melting temperature of Tm =
1685 [K] toward the end of the facet. 

For a more quantitative comparison, the temperature gradient in the 
facet direction at the TJP, (dT/dx*)TJP = a*, is obtained both numeri-
cally and analytically as a function of the pull speed and is shown in 
Fig. 6(b) for all investigated cases. Note that the analytical gradient is 
only a function of the jump in heat flux at the TJP (qs −ql) and not the 
peak heat flux. The heat flux jump is only a function of TTJP, which is 

nearly constant for all cases. As such, the analytical result is shown as a 
single solid line in Fig. 6(b). It can be observed that a* increases in both 
numerical and analytical results as the pull speed is increased, as pre-
dicted by the analytical formulation of Eq. (7). The numerical gradients 
(the empty symbols) are nearly equal for the three cases at each pull 
speed, but smaller than the analytical prediction. 

The difference in temperature gradient between the analytical pre-
diction and the numerical simulations is due to the mesh resolution at 
the TJP in the investigated numerical model. To prove this, a grid study 
is performed on a sample data point in Case II with upull = 1.5 [mm/s]. 
This base case has a grid size of Nẽ28k elements. The base mesh is 
uniformly refined twice and the three parameters of TJP position, xTJP, 
transition length, x*

trans, and temperature gradient, a*, are obtained and 
reported in Table 4. Moreover, a Richardson extrapolation procedure is 
performed on the reported parameters, based on the method outlined in 
reference [34], and the resulting extrapolated values are reported. For 
reference, the analytically predicted values are also shown in Table 4. 
Note that the analytical formulation does not predict the TJP position. 

It is observed that xTJP and x*
trans values are already converged in the 

base mesh size. The temperature gradient on the other hand, slowly 
converges to an extrapolated value of a*

num = 88.91 [K/mm], shown as a 
solid triangle in Fig. 6(b), with a convergence rate of 0.15. Comparing to 
the analytically-predicted temperature gradient of a*

ana = 88.03 [K/mm], 
the relative difference of the two analyses is less than 1%. Therefore, it is 
clear that the reason for the difference between the analytical and nu-
merical solutions in Fig. 6(b) is numerical error. 

It can be concluded that the analytical formulations can well predict 
the behavior of the TJP. This suggests that a simplified analytical 
formulation can replace numerical procedures for a preliminary evalu-
ation of the HRG processes and an analysis of their thermal stability. 

6.4. Supercooling in the liquid domain 

An important outcome of the analytical formulation for the HRG 
processes is the prediction of existence of a supercooled region in the 
liquid upstream of the TJP. This prediction is important because it can 
be an indication of thermal instability in the problem [13]. The liquid 
adjacent to the TJP will be always supercooled if its temperature 
gradient in the x direction is positive, dT/dx > 0. Note that it is also 
possible to have a supercooled region close to the TJP without a positive 
temperature gradient, since TTJP is itself less than the equilibrium 
melting temperature, as displayed in Fig. 5(a). 

Referring to Eq. (9), the pull speed required for a positive tempera-
ture gradient in the liquid can be stated as 

upull >
qs − ql

ρLf

[
cot(θf) + tan(θf)

]
+ ql(kl − ks)

ρLfkl
tan(θf). (17)  

It was previously discussed that the jump in heat flux, qs −ql, can be 
directly obtained by computing the TJP temperature from Eq. (12) and 
computing the radiative heat flux difference from the liquid and the 
solid at the TJP from Eq. (16). Because the TJP temperature is nearly 
constant over the investigated range of pull speeds in Fig. 5(a), qs −ql 
can be assumed constant as well. Consequently, the minimum pull speed 
for a supercooled liquid in Eq. (17) can be stated as a linear function of 
the total heat flux from the liquid at the TJP, such that upull,min = α + βql. 
The minimum pull speed is plotted as a function of ql in Fig. 7, displayed 
as a solid black line. It can be observed that upull,min increases slightly as 
ql is increase, meaning that for higher heat fluxes liquid supercooling 
occurs at larger pull speeds. 

It was previously observed in the temperature plots of Fig. 3 that 
increasing the pull speed results in a larger and colder supercooled re-
gion in the liquid. The values of ql in the numerical simulations of the 
three investigated cases are obtained as a function of the pull speed and 
shown as symbols in Fig. 7. Note that ql is a function of the TJP position, 
which is in turn a function of the pull speed (see Eq. (15) and Fig. 4). 

Fig. 6. Temperature profiles along the facet, with a) numerical temperature 
distributions for Case II as a function of the pull speed and b) numerical and 
analytical temperature gradients at the TJP for all investigated cases. The 
symbols in panel (a) are down-sampled. The solid red triangle in panel (b) 
denotes the result of the grid refinement and extrapolation performed on the 
solution of Case II at upull = 1.5 [mm/s] shown in Table 4. 
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Consequently, ql increases to a maximum as the TJP crosses the cooling 
jet center and decreases afterwards. For example, the liquid heat flux for 
the three pull speeds in Fig. 3 is equal to ql = 155 [W/cm2],292 [W/cm2], 
and 305 [W/cm2], respectively. 

In Fig. 7, all the data points from the numerical simulations are above 
the upull,min line, meaning that there must be a supercooled region in the 
liquid in all the numerically-investigated cases. This was confirmed in 
Fig. 3 for Case II, even at the smallest pull speed. At small pull speeds, 
the numerical data points are extremely close to the upull,min line, leading 
to a small supercooled region (see Fig. 3(a)). As the pull speed is 
increased in each numerical case, it gets farther from the analytically- 
predicted minimum pull speed, leading to a larger amount of super-
cooling. In the specific case shown in Fig. 3(b) with upull = 1.5 [mm/s], 
the minimum pull speed corresponding to the same value of ql is equal to 
upull,min = 0.68 [mm/s]. It can be concluded that the liquid heat flux at the 
TJP must be relatively large for a specific pull speed to ensure that no 
supercooling occurs in the liquid. 

7. Conclusions 

The solidification mechanism during the horizontal ribbon growth 
process was studied analytically and numerically in this study with an 
emphasis on the triple junction point (TJP), where the solid ribbon, the 
liquid, and the surrounding gas meet. The HRG process was analytically 
formulated in the vicinity of the TJP, incorporating the solidification 
kinetics, and the temperature distributions in the solid, the liquid, and 
along their interface were obtained. It was shown that the solidification 
is initiated with 2D nucleation at the TJP and proceeds with propagation 
of steps along the solidification front, which forms a facet with a nearly 
constant angle. The behavior of the solidification facet was examined in 
the vicinity of the TJP as a function of the material properties, the ribbon 
pull speed, and the cooling heat flux from the free surfaces. Using the 
analytical formulation, the temperature distribution along the facet, the 
facet length, and the existence of a supercooled region in the liquid can 
be predicted. 

The solid–liquid problem was also simulated numerically using an 
accurate hp-finite element formulation that incorporates the solidifica-
tion kinetics. It was observed that increasing the ribbon pull speed shifts 
the TJP toward the downstream of the cooling jet, increases the mini-
mum temperature in the solid, and results in a larger and colder 
supercooled region in the liquid. Comparison of the numerical and 
analytical results showed that the assumptions of the analytical formu-
lation are not valid over the entire facet length, especially at small pull 
speeds. However, the analytical formulation proved to successfully 
predict the behavior of the HRG process in the vicinity of the TJP, where 
the solidification process is initiated and the thermal stability of the 
problem is dictated. These findings suggest that the proposed analytical 
model can be used in lieu of numerical simulations to investigate the 
HRG process as a function of the underlying parameters that are 
involved. 
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