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Tree pruning is a labor and cost-intensive task. Still, it is a necessary activity that ensures a high yield
of good quality products in horticulture and increases the overall health of trees in general. Extensive
research has been done attempting to automate this labor-intensive procedure, lower the cost, and
demand a skilled workforce. We introduce a new algorithm based on discrete differential evolution
that simulates the pruning of virtual trees. Although pruning driven by differential evolution alone
optimizes the overall tree light intake, it cannot maintain the distance between individual trees, nor
can it shape trees into any of the growing forms. In the article, we show that adding additional steps
into the pruning process, which is an initial trimming of the tree into a desired shape, can be improved
significantly. We demonstrate our method by simulating the pruning of virtual trees and show that it
provides results comparable to the results obtained by a human expert. By simulating the tree pruning
over a few consecutive years, We show that our method is also capable of autonomous tree training
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toward the desired growing form.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

The tree canopy pruning is the process of removing branches
that has many objectives. Among them, improving the overall
light intake is one of the most important ones. Living branches
are removed and dead ones to balance the reproductive and
vegetative growth in the wood and fruit production. Pruning must
be done carefully not to damage the tree and to prevent fungus
infections on the cuts. This makes pruning one of the most expen-
sive and labor-intensive tasks responsible for approximately 20%
of the annual pre-harvest cost for crops like apples, cherries, and
pears [1]. A large number of trained seasonal workers is needed
to accomplish this task, following a set of predefined rules [1] or
experience and intuition.

Extensive research has been done on how to automate the
tree pruning process to reduce costs and demands for a skilled
workforce [1] resulting in the development of early mechani-
cal systems for mass pruning. The fully automated results were
not satisfactory, as evidenced by the reduced quality and yield
of fruit [1]. Another previous work used a mobile platform for
automated pruning of grape vines [2]. Both approaches create
a 3D model of the plant by using computer vision-based re-
construction, and a decision system determines which parts of
the plant should be removed. Actual pruning is carried out by

* Corresponding author.
E-mail address: simon.kolmanic@um.si (S. Kolmanic).

https://doi.org/10.1016/j.as0c.2020.106931

a six-degrees-of-freedom robotic arm. Both the apple tree and
grapevine pruning are carried out while the plants are in a dor-
mant state, and in both cases, a set of predefined pruning rules
controls the pruning.

In those approaches, the pruning is carried out in two phases.
First, the 3D model of a tree is generated upon which the pruning
rules are applied. Plant reconstruction is a hard problem by itself,
and many approaches have been introduced [1,3]. By applying
the tree pruning rules on the generated tree 3D model the sur-
plus branches are identified that have to be removed [1,4]. The
pruning rules aim to increase the canopy’s irradiance intake to
improve the tree health and, in effect, fruit quality [5].

Strnad and Kohek [6] used discrete differential evolution (DDE)
to determine which branches should be removed. The method
does not allow the tree to form into a specific growing form and
has significant variations in the pruning results. We solved these
problems by trimming the trees into a predefined template to
maintain a desired tree height and distance to its neighbors. In
the second step, we employ DDE to determine which branches
should be removed to optimize the light intake.

We have implemented our method in the software apple tree
plant simulator EQuAPPLE [7]. We ran several experiments using
two different pruning templates in the first step of pruning: a
cylinder and a cone. We compared the light distribution inside
the tree canopy after pruning trees using the newly-developed
method with those pruned by the expert. Our results show com-
parable levels of irradiance within the canopy. Additionally, by
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using the proposed pruning method for several consecutive years,
the space between trees was kept free of competing branches,
along with preserving their height.

2. Materials and methods

The problem of tree pruning equals the reduction of the in-
ternodes in the tree in order to achieve a balance between vegeta-
tive and reproductive growth. Thus the pruning can be expressed
as a function of a tree structure and tree crown light distribution.
This function is currently described only by more or less strict
pruning rules that are individually followed by human pruners
regarding their working experience. The pruning rules are defined
better by the pruning automation approach, but the set of rules,
in this case, is reduced to a few rules only, adjusted to a particular
tree growing form [1,8].

To overcome these limitations, we defined the pruning prob-
lem as the optimization of the tree crown light distribution by a
limited removal of the branches and, thus, as little interference in
the tree structure as possible, to avoid adverse effects the pruning
might have on the tree. We evaluated the pruning intensity by
a ratio between the number of internodes before and after the
pruning. The changes in the light distribution are calculated using
the concept of self-organizing trees of [9]. The tree crown light
distribution is represented by the histogram with the ten bins of
equal size. We incorporated both the pruning intensity and the
tree crown light distribution into the objective function, which is
optimized by using the discrete differential evolution method [7].
By shaping a tree into a conical or cylindrical form, we prevented
the competition among trees for space.

2.1. Tree growth model

The tree is modeled as a hierarchy of modules (Fig. 1a) which
is a common approach used in many plant simulators such as the
developmental models of de Reffye et al. [10], recently introduce
IMapple [11], self-organized tree models that compete for space
and light [9], plastic trees that automatically learn and adapt to
the environment [12], or developmental models of [13,14].

One or more leaves are attached to the stem at called a node,
and the part of the stem between two nodes is an internode.
The growth is controlled by apical meristem that is a region of
dividing cells that responds by growth against gravity (gravit-
ropism) [15] and toward the incoming light (phototropism) [16].
Depending on the plant species and environmental factors (light,
temperature, nutrients, etc.), the plant produces lateral buds that
are either dormant or active and produces leaves with specific
orientation (phyllotaxis). An internode with attached leaves and
a lateral bud is called a metamer, and a sequence of metamers
grown at a single spurt forms a shoot. The shoot axis is produced
by the terminal bud, located at the end of the shoot (apex).

Our approach uses the previously developed framework Ed-
UuAPPLE [7], where a tree growth is driven by buds’ illumina-
tions [16-18] and a competitive process for growth resources [9,
19-21], which leads to the self-organizing structure of the tree [9].
The tree attempts to maximize its branch mass by growth and
light intake. Buds with higher irradiance produce new shoots that
compete for space. Buds with lower light intake produce quickly
growing shoots that attempt to get from shade (light seeking
stage). Poorly illuminated buds do not create new shoots, become
dormant, and form new shoots later, when the conditions are
more favorable. The key factor of this simulation is the calculation
of the illumination of leaves that feed buds. Although inner
reflection can be considered [22], the algorithms are usually time-
consuming, and the indirect light does not contribute significantly
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to growth, because the direct lighting gives major light intake. A
faster way is to use only the direct illumination [12,16-18].

The tree casts a shadow on itself and thus forming a shadow
space of the tree, as shown in Fig. 1b. The shadow density is
highest at the trunk; therefore, leaves/shoots rarely grow from
the dormant buds positioned there. Trees produce shoots on their
trunks rarely (for example, when they are sick), because of the
low lighting, thick bark, etc. This is in tune with observations in
nature [23].

2.2. Illumination

The goal of pruning is to improve the illumination of the
inner parts of the tree. When the lighting conditions around the
stem improve after removing some branches, dormant buds can
reactivate and start to produce new shoots. We calculated the
inner shading by using the algorithm from [9] that was later
extended in [6,12,14].

The light distribution inside the tree crown is calculated from
the illuminated buds that are sources of a conical shadow volume.
We calculate the bud illumination. Assume a bud inside one of the
shadow volumes of one of the neighbors. Let d, be the bud’s verti-
cal distance from the volume apex and dy , its horizontal distance
from the volume axis, then the received shadow, originating from
a given shadow volume §s is calculated [6]. Total irradiance Q of
a given bud is then:

Q = max{1 —s, 0}, (1)

where s is the cumulative contribution of all shadow volumes
captured by the given bud.

2.3. Differential evolution and pruning

The Differential Evolution (DE), developed by Storn and Price
[24], aims to optimize certain properties of a system pertinently
choosing the system parameters, usually represented as a vec-
tor. It is widely used to solve various problems from differ-
ent fields (e.g., optimization [25,26], path planning [27,28], and
agriculture [29-31]).

The objective function models the goals, while incorporating
constraints. For the objective function:

f:X CR" —R, (2)

where X # (), the minimization problem is to find solution vector
s € X, such that f(s) < f(p), Vp € X. In case of the tree pruning s
is a prune specification and fitness function f(s) is the light intake
after completion of prune s. DE employs evolutionary operators
(mutation, crossover, and selection) to minimize the objective
function [32]. The three operators are sequentially (in a fixed
order) carried out in a loop, until an adequate fitness or number
of iterations is reached.

The DE produces a population of individuals and evaluates
their fitness function (light intake in our case). The mutation
operator produces a trial vector for each individual of the current
population by mutating a target vector with a weighted differen-
tial. For each parent X; € X three distinct individuals x;,, x;,, and
X;, are selected randomly from the population, i # i # iy # i3
and used to calculate the trial vector u; as follows:

u; =X, + B x (X, — Xi;) (3)

where 8 € (0, 00) is called differential weight. Vector x;, is a
target vector, while the difference x;, — x;, refers to a differential
vector. The best found solution so far is used as a target vector.
Together with the population 8 can greatly impact the optimiza-
tion performance. Both parameters, the differential weight and
population size are selected by the user.
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Fig. 1. (a) Plant modules of a self-organizing tree growth model and (b) the shadow space of a tree in used tree growth model from [7].

The DE crossover operator implements a discrete recombina-
tion of trial w; and the parent x; vectors, to produce offspring x;.
The crossover operator is defined by [6,33]:

s Ujj, ifr<cC Ol‘j :jrand

Xij = {x,-j, otherwise (4)
where X refers to the jth element of the vector x;, r ~ U(0, 1) is
a random number generated with uniform distribution. The pa-
rameter C € (0, 1) determines the probability of inheritance from
the mutant. The base vectors in our case are randomly chosen. In
order to form a mutant population, only one vector difference is
used and uniform crossover was employed during the formation
of the trial population. The values of 8 and C had to be tuned
in regard of the tree age and even selected pre-pruning shape to
generate acceptable pruning results parameters. As shown in [6],
this tuning is a time demanding process, therefore it is beneficial
to calculate these parameters in advance.

The selection operator is then applied to construct the pop-
ulation for the next generation. The offspring replaces the parent
if the offspring’s fitness surpasses that of the parent; otherwise,
the parent survives to the next generation. This ensures that the
average fitness of the population does not deteriorate.

2.3.1. Discrete differential evolution

Discrete DE (DDE) variants have been presented concerning
specific combinatorial optimization problems, e.g., [34-36]. The
search space of possible pruning options grows exponentially,
which makes a brute force search unfeasible. Various heuristics
could be used, and in this paper, we adapt the DDE algorithm [6]
that attempts to optimize the light conditions within the canopy
by pruning branches by using genetic algorithms. Through opti-
mization of pruning locations, a combination of cuts is obtained
that maximizes the amount of light received by the remaining
buds of the tree crown. For that purpose, for all buds in the
tree crown, the irradiance is calculated by the use of Eq. (1). A
bud’s irradiance, Q corresponds to the percentage of available
light intercepted by the bud. For the sake of faster detection of
ancestor/successor relationship between internodes, each intern-
ode is associated with a unique variable-length binary string as
shown in Fig. 2.

Tree crown light distribution is calculated next, where the
irradiance of each bud in the crown is assigned to one of ten
quantization classes of equal width of 0.1 on the interval [0, 1].

The objective function f(x) is:

VSuee .
fx = P; > ih, (5)
i=1

where Siee is the number of remaining internodes after pruning,
H is the total number of buds, and h; is the number of buds in
the i-th class of light distribution.

The solution vector is denoted by x = {xy, ..., s} and it
contains the encoded sequence of cut positions labeled by the
corresponding internodes. The root is denoted by a bit-string “0”.
A ‘0’ or ‘1’ is appended to the parent’s string for each main or
lateral child internode, respectively (Fig. 2). Each cut position x;
identifies the internode, at which the branch is removed. Vari-
able s in this case is a population size and is a value between
Smin and Smax, Which are custom set parameters, representing
the minimum and the maximum number of allowed cuts. The
objective function f(x) favors solutions that provide a maximal
improvement of light distribution with a minimal amount of
removed biomass. Many possible cuts are redundant e.g., sub-
branches of already removed branches. To avoid such operation,
four methods have been proposed in [6]: BinDE, IndexDE, PathDE,
and SetDE. These methods perform similarly in optimizing the
light conditions within the canopy, and they also perform sim-
ilarly to the state of the art methods. Although PathDE provided
slightly better results than the other algorithms, we use BinDE,
because it is more straightforward and thus easier to understand
(see Fig. 2). If, for example, a cut should be made at internode
“00”, the cuts “001”, “000”, or “0010”, would be redundant and
thus unnecessary. Used labeling allows for quick detection of the
redundant cuts. In a given example, the later three internodes
share the same prefix “00”, which is the label of their predecessor,
and with removing it, all of its successors are removed as well.

The encoding scheme uses the real-valued vectors to represent
solution genotypes as shown in Fig. 2. For the mapping of geno-
types to phenotypes (i.e., pruning instances), the intermediate
cut list is used. It is produced by traveling the tree model in
a depth-first manner and recording the labels of all internodes
encountered in the process into a list. The length of the cut list
defines the dimensions of solution vectors. Each component x;; €
[0, 1] of the solution vector Xx; determines whether j-th internode
from the cut list will be selected as the cutting point or not. For
that purpose the binary vector z; is constructed by thresholding:

o 0, if Xij < 0.5
Zij = {1, otherwise. (6)
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Fig. 2. Mapping of the solution vertex into the tree cutting sequence — genotype
to phenotype mapping. Solution vector components that exceed the threshold
are converted into the cuts with the help of the cut list.

If the number of cuts proposed by the vector z; violates the
solution size constraints, the threshold is adjusted up or down so
that the number of cuts fall into valid range. The value x;; is the
stability of cut inclusion in the pruning, because cuts with higher
value of x; are less likely to be disturbed by small perturbations
of the solution vector.

2.4. Tree height and neighboring distance control

Although the DDE method improves the light conditions in-
side the tree crown, it offers no control over the tree size or
the distance to neighbor trees. Since the anti-hail nets mostly
protect the modern orchards, it is crucial to keep apple trees
below a certain height. Similarly, the neighboring distance must
be preserved during the entire lifetime of a farm so that the tree
branches do not overlap and do not compete for the same space.

A straightforward method to get control over the tree height
and neighboring distance would be the extension of the objective
function f (x) with additional constraints regarding the tree size.
It turned out, however, that while the integration of the tree
height into the tree model and objective function is possible, the
determination of the extent of the tree crown after the pruning
was not efficient, since the buds’ locations inside the tree have to
be included into the growth model for that purpose. This would
lead to higher memory requirements and increased processing
time.

Our inspiration for the solution to this problem comes from
observing a human during manual pruning. Instead of just fol-
lowing the pruning rules, the human pruner strives to shape
the tree into one of the distinct growing forms. The experts
developed those growing forms over the years and gave the
best fruiting results under certain growing conditions. In high-
density orchards, the most common tree forms are the Slender
Spindle [37], and more recent, the Tall Spindle [38]. While the
Slender Spindle is conically shaped (Fig. 3a), the Tall Spindle
resembles a cylinder (Fig. 3b). Tall spindle is popular because it
is suitable for mechanical pruning and formation of the Fruiting
Wall [38].

Instead of changing the objective function, we propose adding
a preprocessing level to the DDE method. We call this step shap-
ing, and by adding this to the desired form, the tree height and
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Table 1
The percentage of buds receiving more than 70% of light in an unpruned tree
and after manual pruning by using HeP and HeF methods and our automatic
pruning by using DDECn and DDECy. The improvement in all cases is in average
of 168%.

Method % of buds receiving A to unpruned [%]
more than 70% of light

Unpruned 14.89 0

Manual Expert (HeP) 26.80 180

Manual Expert (HeF) 22.95 154

Automatic (DDECn) 25.93 174

Automatic (DDECy) 24.18 162

neighboring distance can be controlled easily. We prune the trees
to either a conical or cylindrical shape with adjustable height
and the base radius. After the branches outside the chosen shape
are trimmed off, the DDE method is used to optimize the light
condition inside the tree crown. The entire tree pruning process
is depicted in Fig. 4.

The results of the final pruning depend on the maximum
allowed number of cuts sp.x, which has to be adjusted to the tree
age and thus complexity of the tree crown. In our implementa-
tion, we set Spax = 20 which provided good results for young
trees.

While we used circular proxies in our work, other shapes
could be used: for example, orchards with Fruiting Wall planting
system could use rectangular blocks.

3. Results

We pruned a four years old virtual untrained tree (Fig. 5) by

using the proposed method. A horticulture expert also pruned
the same tree, and the results were compared. The tree training
teaching environment EAuAPPLE [7] was used for this purpose.
The expert shaped the tree into two primary forms, a pyramidal
growing form (denoted as HeP — Human expert - Pyramidal),
which is similar to a Slender Spindle, and a Flatt growing form
(denoted as HeF — Human expert - Flatt), suitable for the Fruiting
Wall planting system. For the automated pruning, we used a cone
with the height of 3m and the opening angle of 45° (denoted as
DDECn — DDE method, Conical initial shape), and a cylinder with
a height of 3 m and radius of 0.75 m (denoted as DDECy — DDE
method, Cylindrical initial shape). In both cases, we set spax = 50.
The resulting tree geometry is the basis for the evaluation of
the correctness of a growing form. By showing the trees pruned
by the DDE method to those pruned by humans side-by-side in
Fig. 5, it can be observed that the shapes are comparable, but
an automatic metrics should be developed to provide an exact
comparison.
Light Distribution: In all four cases, the light distribution inside
the tree crown has improved (see Table 1) as compared to the un-
pruned tree (Fig. 6) with the average increase of 168% of buds. In
particular, only 14.89% of buds receive more than 70% of available
light in the unpruned trees, while in the human-pruned tree, the
amount of such buds increases to 26.80% (HeP) and the 22.95%
(HeF). The light distributions of the automated tree pruning are
comparable with that of the human expert (25,93% for DDECn and
24.18% for DDECy). When comparing HeP to DDECn the result in
the cases of human pruning is slightly better but in the case of
HeF and DDECy the automated pruning achieved better result,
although the difference in both cases is less than 1.3%.

Pruned Internodes: The difference between the DDE and hu-
man pruning is also visible in the category of the internodes left
in the tree after the pruning as shown in Table 2. The unpruned
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Fig. 3. High density apple systems (a) Slender Spindle is a growing form used in older orchards, (b) Tall Spindle is a recent growing form with higher yields.

Step 1
Shaping
Step 2
Tree crown light optimization
using DDE method
=l
.l
Initial unpruned tree Tree trimmed in the Tree after pruning

preselected shape

Fig. 4. Two-step virtual pruning process enables the control over tree height and neighboring distance. First, the tree is shaped into a cone or cylinder shape with
adjustable size. In the second step the DDE method selectively removes branches to improve the light conditions inside the tree crown.

Unpruned

Fig. 5. Comparison of pruning with the initial unpruned tree, tree pruned by a human expert in a pyramidal shape (HeP), automated pruning with initial cone shape
(DDECn), pruning by human expert pruning in a plat plane (HeF), automated pruning with the use of cylindrical initial shape (DDECy).

tree has 18,618 internodes. After manual pruning by using HeP and the DDECy to 4867 nodes. The average number for manual
the number decreased to 7810 and manual pruning by using pruning was 6776 and for automatic 5291.

HeF decreased the number to 5715. Automatic pruning provided By combining both results from Tables 1 and 2, it can be
smaller numbers. The DDECn algorithm pruned the tree to 5714 concluded that the human expert achieved similar bud light
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Light distribution inside the tree crown pruning
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Fig. 6. Evaluation of tree pruning results, (a) Comparison of light distribution after the pruning by a human expert (HeP and HeF) and automated pruning (DDECn
and DDECy), (b) Number of internodes left after the pruning. A higher number of internodes, combined with higher light exposure of buds signify better results.

DDECn shaping st.
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Fig. 7. Tree crown light distribution after the shaping and after the pruning step, (a) DDECn method, (b) DDECy method.

Table 2

The number of internodes on the tree in an unpruned tree and the comparison to
the number of internodes after manual pruning by using HeP and HeF methods
and our automatic pruning by using DDECn and DDECy. The average number of
internodes is 6033 that corresponds to 32% of nodes of the unpruned tree.

Method Number of internodes on A to unpruned [%]
the tree

Unpruned 18,618 0

Manual Expert (HeP) 7,810 42

Manual Expert (HeF) 5715 31

Automatic (DDECn) 5,741 31

Automatic (DDECy) 4,867 26

exposure with less biomass removed, which is desirable since the
higher number of internodes with well-illuminated buds repre-
sent the higher potential for the yield of both increased quality
and quantity.

The DDECn and DDECy methods represent selective pruning,
where the results of the first step represent the result of pruning
by the currently used automatic pruning systems. The difference
between the first and second steps of DDECn and DDECy can be
seen in Fig. 7. Visually, the trees after the second step are less
dense as the number of branches is drastically diminished, while
the overall height of the tree remains the same.

Pruning stability: the quality of the pruning solution depends on
the number of the iteration in the main DDE loop. To exclude the
possibility that this can impact the pruning results, we conducted
two experiments in which the pruning of a test tree was repeated
100 times. In the first experiment, the main loop was repeated for
1000 times, and in the next experiment, 10,000 iterations was
run. The average bud’s illumination by the DDECn was 0.649 (SD
= 0.024) in the first experiment and 0.664 (SD = 0.022) in the
second, where 1.0 is unobstructed illumination. By the DDECy,
the average bud illumination was 0.650 (SD = 0.023) in the first
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Comparison of the tree pruning results using BinDE, Simulated Annealing (SA), PathDE, and SetDE methods while
using Cone and Cylinder as the initial shaping form. Parameters E and SD represent the average values and standard
deviations for 10 runs, respectively. In the methods BinDE, PathDE, and SetDE for the parameters B and C the values
0.3, 0.5, and 0.9 were used. The number of fitness evaluation was set to 1000, and the tree initially consisted from

13,055 internodes.

Method FE value Remaining internodes Duration [s]
after pruning
E SD E SD E SD
SA 80.74 5.68 11,092.50 2,273.71 33.87 467
BinDE - 0.3 87.70 155 9,282.50 12,25.98 88.08 527
BinDE - 0.5 87.07 1.83 9,211.10 16,86.49 79.55 0.97
BinDE - 0.9 84.48 2.08 8,690.20 34,25.67 83.20 410
Cone PathDE - 0.3 99.81 1.46 6,307.90 675.00 61.87 7.63
PathDE - 0.5 99.77 1.83 5,917.90 577.81 50.58 3.80
PathDE - 0.9 96.53 2.17 6,449.60 1,064.83 51.24 3.14
SetDE - 0.3 93.41 425 6,684.10 2,175.61 50.76 2.02
SetDE - 0.5 93.27 452 5,618.10 2,300.41 50.13 3.62
SetDE - 0.9 94.87 497 4,961.50 1,822.18 52.82 1.85
SA 7651 5.19 11,156.09 1,366.55 24.02 0.75
BinDE - 0.3 83.10 1.83 9,156.70 378.93 82.07 1.49
BinDE - 0.5 82.88 1.43 9,244.40 399.65 81.46 0.59
BinDE - 0.9 79.01 129 9,558.40 1,593.50 77.33 3.41
Cylinder PathDE - 0.3 96.33 1.52 6,255.90 630.67 46.57 2.42
y PathDE - 0.5 94.67 1.90 6,069.30 661.25 44,09 3.01
PathDE - 0.9 92.39 2.00 6,686.40 492.33 4054 2.31
SetDE - 0.3 88.78 432 7,982.90 1,222.62 4481 3.73
SetDE - 0.5 91.33 3.70 7,427.10 1,101.61 46.41 220
SetDE - 0.9 92.11 2.06 6,765.50 731.43 4754 2.10
0.8 1 values § =C =0.3,8=C=0.5,and 8 = C = 0.9, respectively.
Because the methods with 10,000 FE were too slow, in Table 3
X only the results of the first test series are shown.
07 | The methods were compared by using four criteria. First, we
compared the obtained fitness values, see Fig. 9. Rather to com-
I::I pare the fitness values directly, we compared the heights of their
l \—‘—l Box plots. The methods with longer charts lack the stability and
0.6 - tend to damage the tree. For example, lower values of the Box plot
by the pruning intensity reaching under value 3000 indicates that
the central leader with the majority of the branches was removed
and the tree was damaged. Such is the case by the SetDE-0.5 and
05 : ) . .
DDECh - 1K DDECh - 10K DDECy - 1K DDECy - 10K SetDE-0.9 methods, with the first cone as a basic shape. Since
iterations iterations iterations iterations this is not the case by the cylinder basic shape, we conclude
that SetDE method by 1000 FE is sensitive to the selected basic
*Min Outlier ~ xMax Outlier < Average

Fig. 8. Comparison of the average bud’s illumination in DDECn and DDECy
methods after repeating the main DDE loop for 1000 and 10,000 times,
respectively. Maximum illumination value is 1.0.

experiment and 0.658 (SD = 0.028) in the second one. The test
showed that the results were similar, as depicted in Fig. 8.

Although the bud illumination in the second experiment was
slightly higher, the difference is not high enough to significantly
influence the pruning results. The analysis also showed that al-
though the solutions differ, the small standard deviation indicates
that the solutions are very close together, and the differences are
only minor.

We also compared BinDE with other Differential Evolution
methods. The closest methods to BinDE were Simulated Anneal-
ing algorithm (SA) and methods PathDE and SetDE [6]. During the
tests, the population size by BinDE, PathDE, and SetDE were set
to 20, while the stopping condition was the number of fitness
evaluations (FE). In the first series of tests, FE was set to 1000
and later increased to 10,000 in the second series. In this series
the most noticeable change was the increase of the performance
of the SA method. However, due to the constant execution time of
FE, the total computational time increased. For all three methods
BinDE, PathDE, and SetDE, the parameters 8 and C were set to

shape. PathDE (8 = C = 0.5) was the most efficient method,
followed by BinDE with the same values of parameters, 8, and
C. In the pruning intensity category, we compared the number
of internodes left after the pruning, where the pruning should
improve the lighting conditions in the tree crown, but at the same
time, it should not be too strong. Fig. 9 shows, that the weakest
pruning is performed by the SA method, while the most intense
pruning is obtained by the SetDE method (8 = C = 0.9). None
of these pruning can be used in orchards, as either the lighting
conditions after pruning do not improve much or pruning is too
intense. As the best methods again proved BinDE and PathDE,
both with parameters 8 and C set to 0.5. The third criterion for
comparison was the average light distribution intercepted by the
tree crown. The most efficient method was the SetDE (8 = C =
0.9), closely followed by PathDE method (8 = C = 0.5). The last
criterion for comparison was the computational time (see Fig. 10).
The fastest algorithm was the implementation of the SA algorithm
with an average running time of 24.02 [sec] by the cylinder as an
initial pruning form and 33.9 [sec] by the cone. The slowest was
BinDE by all the parameter settings and by both initial pruning
forms. The average computational time ranged between 77.3 [sec|
to 88 [sec].

Figs. 9 and 10 show that observed relations between the meth-
ods hold in all categories without regard to the initial pruning
form we used. If we change the FE to 10,000, the pruning results
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Fig. 9. Comparison of tree pruning using algorithms SA, BinDE, PathDE, and SetDE with FE set to 1000, population size to 20, parameters 8 and C set to 0.3, 0.5,

and 0.9, respectively in 10 runs for (a) cone and (b) cylinder basic shapes.
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Fig. 10. Comparison of calculation time for tree pruning by algorithms SA, BinDE, PathDE, and SetDE for (a) cone and (b) cylinder basic shapes.

of AS and SetDE improve significantly at the expense of increasing
the computation time by factor 10. Concerning these tests, the
findings by all four methods are comparable, but the advantage
of methods BinDE and PathDE are the better pruning results by
lower FE values.

Long-term Pruning: In another experiment, we evaluated a long-
term exposure to pruning. We were curious if the proposed auto-
mated tree pruning method is capable of tree training (i.e., getting
the tree into a desired growing form) without human interven-
tion. We have simulated a row of five trees for six consecutive
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Fig. 11. Tree training of five apple trees into a Slender Spindle growing form for six consecutive years with the DDECn method. The purple color denotes the

branches removed at the pruning.

years. At the beginning of each year, the trees were pruned by the
DDECn method to shape them into the Slender Spindle growing
form. The starting cone height was 1 m and was linearly increased
to 2.5 m, which was the trees’ target height in the following three
years. The opening angle was constant at 45° for the experiment
duration. The initial value of the parameter spn.x = 20 and was
linearly increased to spax = 70 in the sixth year. The result of the
experiment can be seen in Fig. 11.

As the tree structure becomes more complex in time, the value
of smax should be increased. In our experiments we observed that
Smax < 150 even for older trees provides reasonable results.

4. Conclusions and future work

We have introduced an automated method for simulation of
pruning of trees and tree colonies. The objective was to propose
pruning that maximizes light exposure of buds within the crown,
and we used a two-step method, where the first step prunes the
tree to a desired shape, and the second step maximizes the bud
irradiance. Our results show that our algorithm achieves results
comparable to the human pruning regarding the light distribution
inside the tree crown. The pruning simulation of a group of trees
for several consecutive years showed that the method could also
be used for the tree training toward desirable growing form.

The possible limitation of the proposed method is its strong
dependency on the tree growth model topological structure. This
is important because the challenging step in the automated tree

pruning is constructing the appropriate tree model from tree
images. Successful algorithms of this kind are presented e.g, in [8-
10,18]. However, they are not directly compatible with the Edu-
APPLE tree growth model. It would be essential to bring these
algorithms to a common ground, for example, by generating
the same tree representation. The construction of such an im-
age would be even more desirable since the proposed pruning
method shows pruning results comparable to human experts.
Some work in this direction has already been done [39], but it
is too early to assess its efficacy.

The main contribution of our work is to show that good
pruning results can be obtained automatically and without a fixed
set of pruning rules. This is not surprising since the pruning rules
were developed by the long-term experiments whose goal was
to improve yield quality and quantity. Once the main parameters
that influence the yield were determined, the pruning techniques
have been developed to maximize the influence of those param-
eters. That is what the DDE objective function is trying to mimic.
Since light exposure is a critical factor, the proposed method
searched for the combination of cuts that maximize light expo-
sure. This resulted in the higher light distribution inside the tree
crown. This distribution was also used to evaluate tree pruning
since the obtained tree forms cannot be compared directly. While
the shapes of the trees in Fig. 5 differ, their light distributions are
comparable. An additional pruning benchmark is the number of
internodes that corresponds to the tree volume. The amount of
removed internodes represents the pruning intensity, and Fig. 6b
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shows that the human expert preferred slightly less aggressive
pruning than the proposed method. The pruning intensity by
the proposed automated pruning is controlled by the relation
between tree volume and the value of the sp.x parameter. To
preserve the tree pruning intensity, as the tree is growing, the
value of sy should increase with the increasing number of
internodes in the tree. In our experiments, sp.x = 20 turned out
to be a good initial value.

There are many possible avenues for future work. As men-
tioned above, coupling our method with other plant growth al-
gorithms would be an essential task to do. Another future work
would be to use different optimization methods than the DDE.
The long-term effect of growth should also be evaluated. It may
be possible that bud illumination’s immediate value is not the
most indicative factor, and long-term plant health and devel-
opment should be tested. Last but not least, our algorithm is a
first step in an exciting direction of automated pruning. It would
be interesting to automatically prune thousands of tree models
and calculate statistics of the values we reported in Tables 1 and
2. Although, we paid attention to report representative models,
there may be a substantial variation and statistics would provide
a better representative value. Another extension of our work con-
siders other properties of trees during the pruning process, such
as overall tree stability, physical load of branches, proximity to
other trees, etc. To speed up the convergence of the DDE method,
it may be beneficial to introduce some implicit constraints to the
objective function, for example, favoring the cuts on the branches’
first internode. Our future research will also aim in this direction.
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