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Multiple infection of target cells by human immunodeficiency virus (HIV) may lead to viral escape from
host immune responses and drug resistance to antiretroviral therapy, bringing more challenges to the
control of infection. The mechanisms underlying HIV multiple infection and their relative contributions
are not fully understood. In this paper, we develop and analyze a mathematical model that includes
sequential cell-free virus infection (i.e. one virus is transmitted each time in a sequential infection of tar-
get cells by virus) and cell-to-cell transmission (i.e. multiple viral genomes are transmitted simultane-
ously from infected to uninfected cells). By comparing model prediction with the distribution data of
proviral genomes in HIV-infected spleen cells, we find that multiple infection can be well explained when
the two modes of viral transmission are both included. Numerical simulation using the parameter esti-
mates from data fitting shows that the majority of T cell infections are attributed to cell-to-cell transmis-
sion and this transmission mode also accounts for more than half of cell’s multiple infections. These
results suggest that cell-to-cell transmission plays a critical role in forming HIV multiple infection and
thus has important implications for HIV evolution and pathogenesis.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

HIV infection is still a major global public health issue. Mathe-
matical modeling has proven to be a powerful tool to study viral
pathogenesis and provided valuable insights into the viral infection
dynamics (Zitzmann and Kaderali, 2018; Kumberger et al., 2018).
Over the past decades, there has been a great effort in the mathe-
matical modeling of HIV infection (see Perelson and Ribeiro, 2013;
Hill et al., 2018; Perelson and Nelson, 1999; Rong and Perelson,
2009; Stafford et al., 2000; Kumberger et al., 2016; Lai and Zou,
2014 and references therein). These models describe HIV replica-
tion dynamics and the effects of antiretroviral therapy. Most mod-
els only considered cell-free HIV infection, i.e., target cell is
infected by cell-free virus upon contact. However, multiple infec-
tions of target cells have been observed in experiments. For exam-
ple, Jung et al. (2002) found that HIV-infected CD4+ T cells from the
spleens of two patients carry up to 8 proviruses, with a mean of
3 to 4 proviruses per cell. A growing body of studies indicated
that HIV multiple infection occurs far more frequently than single
infection (Levy et al., 2004; Dang et al., 2004; Chen et al., 2005).
A question thus arises as to what mechanism is responsible for
the high-frequency of HIV multiple infection.
A possible explanation for HIV multiple infection is cell-to-cell
transmission (see Fig. 1(a)). Multiple viral genomes are simultane-
ously transmitted in individual infectious events when infected
cells encounter uninfected cells and form viral synapses (Jolly
and Sattentau, 2004; Agosto et al., 2015; Portillo et al., 2011;
Mothes et al., 2010; Sigal et al., 2011). Chen et al. (2005) showed
that multiple virions can be transmitted from dendritic cells to T
cells during cell-mediated HIV transmission. More studies further
supported cell-to-cell transmission and showed that an infected
cell can transfer a various number of virions directly to the target
cells (Chen et al., 2007; Hübner et al., 2009; Komarova and
Wodar, 2013; Graw and Perelson, 2016).

Dixit and Perelson (2005) studied another multiple infection-
involved mechanism in which target cells are sequentially
infected by cell-free virions and each infectious contact results
in the transmission of one viral genome, i.e. sequential cell-free
virus infection (see Fig. 1(b)). In their study, the number of virions
was assumed to be several orders of magnitude higher than the
number of target cells, which was the feature of many in vitro
experiments (Dixit and Perelson, 2005). Thus, cell-to-cell trans-
mission may be neglected and cell-free virus infection might be
the major contributor to multiple infections (Dimitrov et al.,
1993). Such multiple infections have been observed in some other
in vitro experiments (Levy et al., 2004; Dang et al., 2004; Ito et al.,
2017, 2018).
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Fig. 1. Schematic illustration of two possible mechanisms for HIV multiple
infections. (a) Cell-to-cell transmission: multiple viral genomes are simultaneously
transmitted from an infected cell to an uninfected target cell through the formation
of virological synapse. (b) Sequential cell-free virus infection: target cells have
sequential contact with cell-free virions and one viral genome is transmitted in
each contact.
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It is important to obtain quantitative insights into multiple
infections using mathematical models. Some studies have provided
critical first steps in this regard. For example, Ito et al. (2017)
reproduced the datasets in cell-free HIV single and double infec-
tion experiments using a mathematical model, in which the varia-
tion in susceptibility of target cells was assumed to be a continuous
distribution. In a subsequent paper (Ito et al., 2018), they showed
that dividing the cell populations into two susceptible subpopula-
tions could explain their HIV coinfection experimental data, while
increasing the number of subpopulations did not improve the fit-
ting. Dixit and Perelson (2005) proposed an HIV dynamical model
of multiple infections and reproduced the experimentally observed
scaling law under certain conditions. These models assumed that
multiple infections are the result of cell-free virus infection. In
Dixit and Perelson (2004), they constructed two models and
showed that cell-to-cell transmission and sequential cell-free virus
infection can respectively explain the experimental data from Jung
et al. (2002). Komarova and Wodar (2013) formulated a class of
models that include both cell-to-cell transmission and sequential
cell-free virus infection. The models were used to study how the
number of viruses passed per synapse affects the basic reproduc-
tion number and evolutionary dynamics of two viral strains.

In this paper, we develop a general mathematical model that
includes two virus transmission modes and distinguishes the num-
ber of proviral genomes in multiple infections. We analyze the
model by deriving the basic reproductive number and studying
the stability of the steady states. Using the infected steady states,
we calculate the distribution of infected cells with different num-
bers of proviruses. To explain how multiple infections are orches-
trated, we fit models with different assumptions of the
mechanisms for multiple infections to the distribution data of pro-
viruses from spleen cells of two patients Jung et al., 2002. Using the
model with best-fitted parameter values, we evaluate the relative
contributions to CD4+ T cell infection from the two routes of virus
spread, as well as two classes of infected cells (i.e. infected cells
with single and multiple proviruses). On this basis, the relative
contributions of two virus infection modes to two classes of
infected cells can also be quantitatively investigated.
2. Model formulation and analysis

2.1. A model with sequential virus infection and cell-to-cell
transmission

In this section, we formulate a general ordinary differential
equation model with HIV multiple infections from sequential
2

cell-free virus infection and cell-to-cell transmission. Assume
that a target cell can be infected by up to n viruses. Let T and
V be the concentration of uninfected CD4+ T cells and virus,
respectively, and Ii be the concentration of CD4+ T cells infected
by i virions, 1 6 i 6 n, where the number i is the cell’s multiplic-
ity of infection (MOI). Based on standard viral dynamical models
(Perelson and Nelson, 1999; Nowak and May, 2000), we develop
a model with HIV multiple infections, described by the following
system
dT
dt ¼ K� lTðtÞ � b1TðtÞVðtÞ � jTðtÞ

Xn
j¼1

IjðtÞ;

dI1
dt ¼ b1TðtÞVðtÞ � b2I1ðtÞVðtÞ þ f 1jTðtÞ

Xn
j¼1

IjðtÞ � dI1ðtÞ;

dIi
dt ¼ biIi�1ðtÞVðtÞ � biþ1IiðtÞVðtÞ þ f ijTðtÞ

Xn
j¼1

IjðtÞ � dIiðtÞ;

i ¼ 2;3; . . . ;n� 1;

dIn
dt ¼ bnIn�1ðtÞVðtÞ þ f njTðtÞ

Xn
j¼1

IjðtÞ � dInðtÞ;

dV
dt ¼ p

Xn
i¼1

IiðtÞ � cVðtÞ:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

In the model, uninfected cells are assumed to be produced at a
rate K, die with the first order rate constant l. Parameter b1 is the
infection rate of uninfected cells by free virus and bi (i ¼ 2;3; . . . ;n)
represents the reinfection rate of infected cells with i� 1 MOI by
free virus. Constant j is the rate of cell-to-cell viral transmission.
The parameter f i (i ¼ 1;2; . . . ;n) denotes the probability of trans-
mitting i viral genomes during cell-to-cell transmission. Thus, we
have

Pn
i¼1f i ¼ 1. Infected cells is assumed to die at the same rate

d although we can make it different for infected cells with different
numbers of proviral genomes. We have d P l because of the cyto-
pathic effect of viral proteins and cytotoxic T cell killing. Free viri-
ons are assumed to be produced by infected cells at a rate p and are
cleared at a rate c. All the parameters are assumed to be positive
constants.

2.2. Model analysis

In this section, we derive the basic reproduction number and
investigate the existence and stability of equilibria. Any equilib-
rium of (1) must satisfy the following equalities:

K� lT � b1TV � jT
Xn
j¼1

Ij ¼ 0;

b1TV � b2I1V þ f 1jT
Xn
j¼1

Ij � dI1 ¼ 0;

biIi�1V � biþ1IiV þ f ijT
Xn
j¼1

Ij � dIi ¼ 0; i ¼ 2;3; . . . ;n� 1

bnIn�1V þ f njT
Xn
j¼1

Ij � dIn ¼ 0;

p
Xn
i¼1

Ii � cV ¼ 0:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

Obviously, the system (1) always has an infection-free equilib-
rium E0 ¼ ðK=l;0;0; . . . ;0;0Þ.The stability of E0 can be determined
by the next generation operator method. Following the notations
in den Driessche and Watmough (2002), the matrices F and V,
i.e. the new infection and transfer matrices, are respectively given
by
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F ¼

jf 1 K
l jf 1 K

l � � � jf 1 K
l b1

K
l

jf 2 K
l jf 2 K

l � � � jf 2 K
l 0

..

. ..
. . .

. ..
. ..

.

jf n K
l jf n K

l � � � jf n K
l 0

0 0 � � � 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; V ¼

d 0 � � � 0 0
0 d � � � 0 0
..
. ..

. . .
. ..

. ..
.

0 0 � � � d 0
�p �p � � � �p c

0
BBBBBB@

1
CCCCCCA
:

Thus, the next generation matrix for HIV infection, denoted by
M, can be calculated by

M ¼ FV�1 ¼ M11 M12

0 0

� �
; ð3Þ

where

M11 ¼

f 1
j
d

K
l þ p

d
b1
c

K
l f 1

j
d

K
l þ p

d
b1
c

K
l � � � f 1

j
d

K
l þ p

d
b1
c

K
l

f 2
j
d

K
l f 2

j
d

K
l � � � f 2

j
d

K
l

..

. ..
. . .

. ..
.

f n
j
d

K
l f n

j
d

K
l � � � f n

j
d

K
l

0
BBBBBB@

1
CCCCCCA

n�n

;

and

M12 ¼ b1
c

K
l 0 � � � 0

� �
1�n

� �T
:

Note that rankðMÞ ¼ rankðM11Þ ¼ 1. It follows from the prop-
erties of eigenvalues that the matrix M has only one nonzero
eigenvalue trðMÞ, where trðMÞ is the trace of M. Thus, the basic
reproduction number can be calculated by

R0 ¼ qðMÞ ¼ trðMÞ ¼ j
d
K
l
þ p

d
b1

c
K
l
;

where qðMÞ represents the spectral radius of matrix M. It repre-
sents the average number of new cell infections induced by intro-
duction of a single infected cell into a wholly susceptible target
cell population. The first term is the contribution from cell-to-cell
transmission and the second term is the contribution from cell-
free virus infection.

Next, we study the global dynamics of the system (1). We first
show the existence of the positive equilibrium of system (1). From
the last equation in Eq. (2), we have

Xn
i¼1

Ii ¼ c
p
V : ð4Þ

Adding the first nþ 1 equations of (2), and the equations from
the second to the ðnþ 1Þth of (2), we can obtain

T ¼ K
l
� d
l

c
p
V ; ð5Þ

and

b1TV þ jT
Xn
j¼1

Ij ¼ d
Xn
j¼1

Ij: ð6Þ

Substituting (4) and (5) into (6) yields that
b1
K
l
� dc
lp

V
� �

V þ j
K
l
� dc
lp

V
� �

c
p
V ¼ d

c
p
V : ð7Þ

Eq. (7) is a quadratic equation of V. Clearly, V ¼ 0 solves (7).
Substituting V ¼ 0 into (2), we obtain that all state variables,
except for T, are zero and T equals K=l. This again shows that
the infection-free equilibrium E0 ¼ ðK=l;0;0; . . . ;0; 0Þ always
exists. When V – 0, we cancel V from both sides of (7) and obtain
3

b1
K
l
� dc
lp

V
� �

þ j
K
l
� dc
lp

V
� �

c
p
¼ d

c
p
: ð8Þ

Solving (8), we have

V ¼
lp j

d
K
l þ p

d
b1
c

K
l � 1

h i
b1pþ jc

¼ lp½R0 � 1�
b1pþ jc

:¼ V�;

which is the unique positive root of (8) if and only if R0 > 1. Substi-
tuting V ¼ V� into (5), we have

T ¼ K
l
� d
l

c
p
V� ¼ dc

b1pþ jc
:¼ T� > 0:

Substituting V ¼ V� and T ¼ T� into the equations from the sec-
ond to the ðnþ 1Þth of (2) and solving the equations for I1; I2; . . . ; In,
we obtain

I1 ¼ b1pþ f 1jc
dpþ b2pV

� T
�V� :¼ I�1;

Ii ¼ bipI
�
i�1V

� þ f ijcT
�V�

dpþ biþ1pV
� :¼ I�i ; i ¼ 2;3; . . . ;n� 1;

In ¼ bnpI
�
n�1V

� þ f njcT
�V�

dp
:¼ I�n:

ð9Þ

From the above expressions, we have I�i > 0 (i ¼ 1;2; . . . ;n) if
and only if V� > 0. Thus, the system (1) has a unique positive equi-
librium if and only if R0 > 1.

The results on the existence of the positive equilibrium can be
summarized in the following theorem.

Theorem 2.1. The system (1) has no positive equilibrium if R0 6 1,
and has a unique positive equilibrium E� if R0 > 1.

Furthermore, the global dynamics of system (1) can be stated as
follows. The proof is given in the Appendix.
Theorem 2.2. If R0 6 1, then the infection-free equilibrium E0 of sys-
tem (1) is globally asymptotically stable; if R0 > 1, then the positive
equilibrium E� is globally asymptotically stable.
3. Data analysis and numerical results

Jung et al. (2002) found that the splenocytes in HIV-infected
patients harbor multiple copies of proviruses. Multiple viral gen-
omes may be obtained by cell-to-cell transmission, sequential
cell-free virus infection or a combination of the two routes. In this
section, we consider these three cases to test which mechanism
can best explain the distribution of proviruses in the patients
(Jung et al., 2002).

We define wi ði ¼ 1;2; . . . ;nÞ as the proportion of infected cells
with i proviruses in the total infected cells at steady state E�, that is,

wi ¼ I�i =
Xn
i¼1

I�i

 !
:

By the least square method, we fit wi to the experimental data
from Jung et al. (2002) under different assumptions. To compare
the best fits, the sum of squared residuals (SSR) and the Akaike
information criterion (AIC) are calculated. Using model (1) with
the best-fitted parameter values, we evaluate the relative contribu-
tions to CD4+ T cell infection from two types of infection modes
(i.e. cell-to-cell transmission and sequential cell-free virus
infection) and two classes of infected cells (i.e. infected cells with
single and multiple proviruses). The relative contributions to two
classes of infected cells from two types of infection modes will also
be determined.
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3.1. Comparison with patient data

Using the fluorescence in situ hybridization, Jung et al. mea-
sured the proviral copy number from infected splenocytes in two
patients (Jung et al., 2002). Although two patients have different
clinical profiles and viral loads, the frequency distributions of
proviral copy number are remarkably similar (see Fig. 1b of Jung
et al., 2002). The number of proviruses ranged from one to eight
per cell, with an average of about 3.2. Thus, we simulate the model
with a maximum of 8 proviruses per cell (i.e. n ¼ 8). Dividing the
number of cells containing a given number of proviruses by the
total number of cells from each patient (113 cells for patient R,
103 cells for patient B), we compare with model prediction of the
frequency distribution.

We fix some parameter values based on modeling literature and
experimental data (Mohri et al., 1998; Bofill et al., 1992; Rong and
Perelson, 2009; Guo and Qiu, 2019; Wang and Rong, 2019; Wang
et al., 2017). The death rate of uninfected cells l is assumed to

be 0.01 day�1 (Mohri et al., 1998; Wang and Rong, 2019). Because
an uninfected individual has a CD4+ T cell count of approximately
106 per ml blood (Bofill et al., 1992), we obtain that the generation

rate of uninfected cells K is 106 � 0:01 ¼ 104 ml�1day�1 from the
steady state of target cells before infection. The death rate of

infected cells d and the clearance rate of virus c are 1 day�1 and

23 day�1 (Rong and Perelson, 2009; Guo and Qiu, 2019; Wang
and Rong, 2019; Wang et al., 2017), respectively. We fit the model
to experimental data and estimate the remaining parameters,
including the infection rate of infected cells with MOI ¼ i� 1 by
cell-free virus, i.e. bi (i ¼ 1;2; . . . ;n), the rate of cell-to-cell viral
transmission j, the probability of transmitting i viral genomes dur-
ing cell-to-cell transmission f i (i ¼ 1;2; . . . ;n), and the viral pro-
duction rate p. Based on the mechanisms that may generate
multiple infections of cells, we consider the following three cases.

Case A: Only sequential cell-free virus infection
If there is only sequential cell-free virus infection, the rate of

cell-to-cell viral transmission j is 0. In this case, we fit wi

(i ¼ 1;2; . . . ;8) to the data (Jung et al., 2002). Because of the limited
experimental data, we further make assumption on the infection
rate bi, (i ¼ 1;2; . . . ;8). Komarova et al. (2013) assumed that bi is
independent of i, i.e., bi is equal to a constant b. On the other hand,
due to the virus-induced CD4 down-modulation (Levy et al., 2004),
infected cells with a higher MOI are less likely to be further
infected by free virus during sequential cell-free virus infection.
Thus, bi can be a decreasing function with respect to the cell’s
MOI (i.e. parameter i). To evaluate the effect of these different
assumptions on data fitting, we consider the following two cases.

If the infection rate by cell-free virus does not depend on the
MOI (i.e. bi ¼ b), then the best fits are shown in Fig. 2(a,b) for
two patients (black solid line with asterisk). On the basis of the
best fits, we estimated b ¼ 2:97� 10�8 ml=day and p ¼ 1928:7

cell�1day�1. Two model predictions are similar in the distribution
of infected cells. There are only singly infected cells and no multi-
ply infected cells (Fig. 2(a,b)). This does not agree with the obser-
vation that each infected cell has an average of three or four
proviruses (Jung et al., 2002). Thus, the model with only sequential
cell-free virus infection and constant infection rate (i.e. bi is the
same constant for all i) yields a very poor fit to patient data.

Next, we consider a decreasing infection rate as the number of
proviruses increases. For simplicity, we use the decreasing function
bi ¼ b1 � rði�1Þ (i ¼ 2;3; . . . ;8) as the reinfection rate of infected
CD4+ T cells with i� 1 MOI, where 0 < r < 1 is constant that char-
acterizes how fast the infection rate declines as the MOI increases.
Another model assumed that the infection rate is exponentially
declining but introduced additional parameters (Dixit and
4

Perelson, 2005). A simplification of this model, allowing up to
two infections per cell, showed that b2 ¼ 0:7� b1 can quantita-
tively capture the observations of the frequencies of coinfec-
tion in vitro (Suryavanshi and Dixit, 2007). Thus, we assume
the decay constant to be r ¼ 0:7 such that b2 ¼ 0:7� b1. The
best fits are shown in Fig. 2(c,d). Consistent with the results
obtained with bi ¼ b, the model predictions are unable to cap-
ture the observed patient data (Jung et al., 2002). We also
examine whether the variation of the decay constant r can
improve the fitting. Using other values of r during fitting, we
find that the model predictions are not sensitive to the varia-
tions in r (figures not shown). Therefore, the model with a
decreasing infection rate bi again provides a poor fit to the data
in two patients (Jung et al., 2002).

In summary, the model (1) that includes only cell-free virus
infection without cell-to-cell transmission fails to reproduce the
patient data (Jung et al., 2002), no matter if the infection rate of
free virus is independent or decreasing of MOI. In a previous study
(Dixit and Perelson, 2004), Dixit and Perelson showed cell-to-cell
transmission may explain the observation in Jung et al. (2002).
Although their model is different from the one in our paper, their
result inspires us to consider cell-to-cell virus transmission below.

Case B: Only cell-to-cell transmission
If only cell-to-cell viral transmission results in more than one

provirus per spleen cell, then the infection rate of free virus bi is
0 for i ¼ 1;2; . . .. Dixit and Perelson (2004) supposed that the num-
ber of genomes transmitted per infectious cell-associated contact

obeys the modified Poisson distribution, i.e. f i ¼ e�c
1�e�c

ci
i! , where c

represents the average number of genomes transmitted per infec-
tious cell-to-cell transmission. We also use this distribution as an
example to describe cell-to-cell transmission. We fit the proportion
wi ði ¼ 1;2; . . . ;8Þ to the distribution data of infected cells harbor-
ing different proviral copy numbers in each patient. The best fits,
shown in Fig. 3(a,b), indicate that model (1) with cell-to-cell trans-
mission alone provides a reasonable fit to the infection cell distri-
bution data.

Although the model with modified Poisson distribution of f i
agrees with the data in the two patients (Jung et al., 2002), the sen-
sitivity of this result to the change in the distribution of f i remains
unclear. We examine whether other distributions of f i alter the fit-
ting result. We choose binomial distribution as an example. During
cell-to-cell transmission, there are two possible outcomes: success
or failure. Thus, the transfer of a viral genome can be considered as
a Bernoulli trial. The result of one trial is independent of the others.
We can assume that each viral genome has a probability h to estab-
lish a successful transfer, or fail with the probability 1� h. Thus,

the binomial distribution f i ¼ n
i

� �
hið1� hÞn�i can be used to

describe the probability of i successes during the transmission of
n viral genomes, where n ¼ 8 is the maximum number of viral gen-
omes observed in the patient data from Jung et al. (2002). The
binomial distribution has also been used in Refs. Komarova and
Wodar (2013) and Komarova et al. (2013), although they intro-
duced the cell-to-cell transmission in a different way from this
study. Using the same fitting approach as described above, we
obtain the best fits in Fig. 3(c,d), which also generate good repro-
duction of the patient data. Taken together, these results indicate
that the model with cell-to-cell transmission alone can provide
good fits to the patient data when f i follows the modified Poisson
distribution or binomial distribution (see Fig. 3). However, it
remains unclear which distribution generates a better model pre-
diction. To compare the best fits with these two distributions, we
calculate the values of SSR and AIC. These values evaluate the
goodness of different model fits. More specifically, lower SSR indi-
cates better fitting and lower AIC value indicates a better model.
The SSR and AIC are given by



Fig. 2. Data from two patients (blue circles) compared with model predictions (black solid lines with asterisks). The fitting assumes that only sequential cell-free virus
infection exists, i.e. j ¼ 0. Upper panel: The infection rate by free virus is assumed to not depend on MOI (i.e. bi ¼ b). Low panel: The infection rate by free virus bi is assumed
to be a decreasing function of cell’s MOI. All model predictions present the same results: no multiply infected cells. The patient data are the ratios of the number of cells
containing i proviruses (i ¼ 1;2; . . . ;8) to the total number of infected cells. The other parameter values used in the simulations are: l ¼ 0:01 day�1

;K ¼ 104 ml�1day�1
; d ¼ 1

day�1 and c ¼ 23 day�1.
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SSR ¼
Xn
i¼1

ðxi � ~xiÞ2; AIC ¼ n lnðSSR=nÞ þ 2p; i ¼ 1;2; . . .n;

ð10Þ
where xi is the predicted value of wi calculated from model (1) with
bi ¼ 0 and different distributions of f i; ~xi is the proportion of
infected cells harboring i proviral copies, n ¼ 8 is the number of
data points, and p is the number of parameters. For each patient,
the values of SSR and AIC based on the best fits are listed in Table 1.
The model (1) with only cell-to-cell transmission and the modified
Poisson distribution of f i, denoted by modelcm in Table 1, has lower
values of SSR and AIC than modelcb, the model (1) with only cell-to-
cell transmission and binomial distribution of f i. Thus, when f i fol-
lows a modified Poisson distribution, the model (1) with cell-to-cell
transmission yields a slightly better fit but the improvement is not
significant.

In addition to the modified Poisson distribution and binomial
distribution, other distributions such as the negative binomial distri-
bution can also be used in the fitting. However, the model with cell-
to-cell transmission alone does not capture the bimodal distribution
in the patient data (Jung et al., 2002) with these distributions. The
5

distribution of the proviral copy number in infected splenocytes
has two peaks at i ¼ 1 and i ¼ 3, whereas the fits of model (1)
with only cell-to-cell transmission only displays a single peak
at i ¼ 3 (see Fig. 3). Recall that the fits of model (1) with only
sequential cell-free virus infection have a single peak at i ¼ 1
(see Fig. 2). We speculate that including two modes of viral
spread may explain the bimodal distribution of patient data. To
test this hypothesis, we conduct the fitting using a model with
both transmission routes.

Case C: Both cell-free virus infection and cell-to-cell
transmission

Results in Table 1 suggest that the model (1) with cell-to-cell
transmission alone and the modified Poisson distribution of f i
has provided a better fit. However, this does not mean that model
(1) with two transmission routes and the modified Poisson distri-
bution of f i provides the best fit. This is because cells infected via
the cell-free mode can transfer viral genomes to uninfected cells
via cell-to-cell transmission, which certainly affects the frequency
of infected cells with various proviral copies and the result of data
fitting. Thus, we will discuss the following four cases on the basis
of the assumptions on bi and f i.



Table 1
Comparison of the best fits using different models.⁄

SSR AIC

Patient Modelcm Modelcb Modelbcm or Modelbdm Modelbcb or Modelbdb Modelcm Modelcb Modelbcm or Modelbdm Modelbcb or Modelbdb

R 0.021 0.028 0.012 0.007 �41.657 �39.155 �44.01 �48.3
B 0.008 0.014 0.006 0.003 �48.872 �45.076 �49.56 �55.1

Modelcm is model (1) with only cell-to-cell transmission and modified Poisson distribution for f i;
Modelcb is model (1) with only cell-to-cell transmission and binomial distribution for f i;
Modelbcm is model (1) with two transmission routes, constant bi , and modified Poisson distribution for f i;
Modelbcb is model (1) with two transmission routes, constant bi , and binomial distribution for f i;
Modelbdm is model (1) with two transmission routes, decreasing bi , and modified Poisson distribution for f i;
Modelbdb is model (1) with two transmission routes, decreasing bi , and binomial distribution for f i .
⁄ The values of SSR and AIC were calculated by Eq. (10).

Fig. 3. The best fits of the predicted proportion wi (black solid lines with asterisks) to the distribution data (blue circles) from two patients. The fitting assumes that only cell-
to-cell transmission exists, i.e. bi ¼ 0 (i ¼ 1;2; . . . ;8). Upper panel: The number of genomes transmitted per infectious cell-to-cell contact is assumed to obey the modified
Poisson distribution. Low panel: We assume that f i obeys binomial distribution. Model fitting with cell-to-cell transmission alone provides good fit to the data from two
patients, and shows a peak of the proportion at i ¼ 3. The other parameter values are the same as in Fig. 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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When bi ði ¼ 1;2; . . . ;8Þ is the same constant and f i follows the
modified Poisson distribution, we fit the proportion wi to the
patient data from Jung et al. (2002). As shown in Fig. 4(a,b), the
best fits predict a bimodal distribution, with two peaks at i ¼ 1
and i ¼ 3. For the case that f i obeys binomial distribution (assum-
ing bi is still independent of i), we obtain the same results, as
shown in Fig. 4(c,d). To determine which one of two distributions
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is better for data fitting, we calculate the values of SSR and AIC
in different cases for two patients. These values are listed in Table 1.
We find that the model (1) with the binomial distribution of f i
(i.e. Modelbcb of Table 1) has smaller values of SSR and AIC than
model (1) with the modified Poisson distribution of f i
(i.e. Modelbcm of Table 1), suggesting that the former gives a better
fit to the patient data.



Fig. 4. Data fitting using the model with both sequential cell-free virus infection and cell-to-cell transmission. The infection rate bi is assumed to be independent of the MOI.
Upper panel: The number of genomes transmitted per infectious cell-to-cell contact obeys the modified Poisson distribution. Low panel: We assume that f i obeys binomial
distribution. The fitting captures the bimodal distribution of data with peaks at i ¼ 1 and i ¼ 3. The other parameter values are the same as in Fig. 2.
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Assuming bi is a decreasing function of i (we choose

bi ¼ b1 � 0:7i�1 as an example in the fitting), the fitting results with
different distributions of f i are presented in Fig. 5. Consistent with
our above findings, the model (1) with decreasing bi captures the
bimodal distribution of the patient data, providing a good fit. The
values of SSR and AIC for the different distributions of f i are shown
in Table 1. Interestingly, given a specific distribution of f i, the same
values of SSR and AIC are obtained for different assumptions on bi.
This result suggests that the two forms of bi used here do not affect
the goodness of fits when the two viral infection modes are both
considered. The reason is that in this case, cell-to-cell transmission
predominates the virus infection (see relative contributions in next
section). Thus, the infection rate by cell-free virus plays a very
minor role in the fitting.

In conclusion, including the two virus infection modes (i.e. se-
quential cell-free virus infection and cell-to-cell transmission) is
shown to be able to generate bimodal distribution of the proviral
copy number observed in experiment (Jung et al., 2002). It follows

from Table 1 that model (1) with f i ¼ 8
i

� �
hið1� hÞ8�i generates

smaller values of SSR and AIC for each patient than the model with

f i ¼ e�c
1�e�c

ci
i! . Therefore, the model with binomial distribution of f i
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provides a better fit to the data than the model with the modified
Poisson distribution of f i. Parameter values corresponding to the
best-fit curves are given in Table 2.
3.2. Contributions to infection from different routes

Some previous studies have suggested that cell-to-cell trans-
mission of HIV is more efficient than cell-free virus infection
(Johnson and Huber, 2002; Mazurov et al., 2010; Dimitrov et al.,
1993; Chen et al., 2007; Iwami et al., 2015; Graw and Perelson,
2016). Using data from tissue culture experiments, Dimitrov
et al. (1993) found that the infectivity of cell-to-cell transmission
is 100 to 1000 times greater than that of cell-free virus infection.
A significant difference in the infectivity was also observed in an
ultrasensitive, fluorescent virus transfer assay (Chen et al., 2007).
In another study, it was shown that cell-associated virus transmis-
sion is 18,000-fold more efficient than cell-free virus infection.
Using coupled experimental and mathematical investigation,
Iwami et al. (2015) concluded that cell-to-cell infection accounts
for approximately 60% of total infection. In our model, the multi-
plicity of infection per cell is caused by cell-to-cell transmission
and sequential cell-free virus infection. Whether the multiple



Table 2
Best-fit parameter estimates.⁄

Patient b j h p
(ml=day) (ml=day) (no unit) (cell�1day�1)

R 1:69� 10�8 5:6� 10�6 0.42 1414

B 1:3� 10�8 5:31� 10�6 0.4 1186

Mean 1:495� 10�8 5:455� 10�6 0:41 1300

SD 2:758� 10�9 2:051� 10�7 0.014 161.22

⁄ Best-fit estimates of the infection rate by cell-free virus (b), rate of cell-to-cell transmission (j), probability that a viral genome is successfully transmitted via cell-to-cell
transmission (h), and viral production rate (p) obtained by fitting the model prediction to the proviral distribution data from two patients (Jung et al., 2002).

Fig. 5. Fitting using the model with both sequential virus infection and cell-to-cell transmission. The infection rate is assumed to be a decreasing function of the MOI,
i.e. bi ¼ b1 � 0:7i�1. Other descriptions are the same as in Fig. 4.

T. Guo, Z. Qiu, K. Kitagawa et al. Journal of Theoretical Biology 509 (2021) 110502
infection affects the evaluation of relative contributions from the
two virus spread modes remains unclear.

We evaluate the relative contributions from these two modes of
viral spread, which are given by the following two ratios

b1TðtÞVðtÞ
b1TðtÞVðtÞ þ jTðtÞIðtÞ and

jTðtÞIðtÞ
b1TðtÞVðtÞ þ jTðtÞIðtÞ ;

where IðtÞ ¼Pn
i¼1IiðtÞ represents the total number of infected cells

at time t. Using model (1) with the means of best-fit parameter esti-
mates listed in Table 2, we plot the relative contributions to CD4+ T
cell infection in Fig. 6. At the initial stage of infection, there is only
8

cell-free virus infection and no cell-to-cell transmission. This is
because the host is initially infected only with free viruses. During
the first 10 days of infection, the relative contribution from cell-
free virus infection decreases, whereas the contribution from cell-
to-cell transmission increases (see Fig. 6). As the infection pro-
gresses, model (1) eventually converges to the infected steady state
E� (because the basic reproduction number R0 is greater than one
with the best-fit parameter values), in which the concentrations
of virus and cells remain unchanged. Thus, two curves representing
the relative contributions to T cell infection also converge to con-
stant values. The cell-to-cell transmission contributes about 87%



Fig. 6. The relative contributions to CD4+ T cell infection from cell-free virus
infection and cell-to-cell transmission. Infection mainly comes from cell-free virus
infection in the early stage of infection (before day 5). As the infection continues,
the contribution from cell-associated transmission increases and converges to 87%.
The values of parameters b; j; h and p are the means of best-fit estimates listed in
Table 2. Other parameter values are the same as in Fig. 2.
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to the total infection. In other words, the contribution to CD4+ T cell
infection from cell-to-cell transmission is approximately 6.5-fold
higher than that from cell-free virus infection. This is consistent
with previous estimate by Dixit and Perelson (2004) (i.e. approxi-
mately 90% of infection is caused by cell-to-cell transmission).
3.3. Relative contributions from infected cells with single and multiple
proviruses

To provide further information on the dynamics of HIV multiple
infections, we divide infected cells into two classes (i.e. infected
cells with single provirus I1ðtÞ and with multiple proviruses
IðtÞ � I1ðtÞ). We study the relative contributions from these two
classes of infected cells to CD4+ T cell infection. The two ratios
are given by I1ðtÞ=IðtÞ and 1� I1ðtÞ=IðtÞ. As described in Fig. 7(a),
only infected cells with single provirus exist at time 0. Thereafter,
the contribution from infected cells with single provirus rapidly
declines to 19% and the contribution from infected cells with mul-
tiple proviruses increases to 81%. Between days 1 and 5, the pro-
portions of the two classes of infected cells in total infected cells
stabilize at constant values, which means that the two classes of
cells change with the same rate or remain unchanged. The same
prediction also occurs after 20 days of infection. The contributions
from infected cells with single and multiple proviruses stay at 21%
and 79%, respectively. These values are in good agreement with
in vivo experimental results (Jung et al., 2002).

We find in Fig. 7(a) that the relative contributions exhibit two
dominant phases between day 5 and day 20. For the contribution
from the infected cells with multiple proviruses, there is an initial
increase, followed by a decline. An opposite change is observed in
the contribution from the infected cells with single provirus
(Fig. 7a). To further understand these phases, we plot the dynamics
of the infected cells with single and multiple proviruses from day 5
to day 20 in Fig. 7(b, c). The simulations show that two types of
infected cells both increase initially, followed by a decrease. It still
cannot explain the two-phase change of the relative contributions
shown in Fig. 7(a). To address this problem, we plot the ratio of
infected cells with single provirus to infected cells with multiple
proviruses (i.e. I1ðtÞ

IðtÞ�I1ðtÞ), shown in Fig. 7(d). This ratio declines

slowly in the first phase and reaches the nadir at day 8.4, followed
by an increase. Combining the results obtained in Fig. 7(b)–(d), we
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can describe the detailed dynamics of two types of infected cells
between day 5 and day 20. When t 2 ½5;5:8�, both infected cells
with single and multiple proviruses increase, but the former has
a slower increase rate. Compared with the infected cells with mul-
tiple proviruses, infected cells with single provirus decline at a fas-
ter rate from day 5.8 to day 8.4, and decline at a slower rate from
day 8.4 to day 20. This explains the two-phase change in the rela-
tive contributions of two classes of infected cells, as shown in Fig. 7
(a).

In the zoom-in figure of Fig. 7(a), infected cells with multiple
proviruses increase exponentially from time 0 to about 22% of total
infected cells two hours after infection. Such a rapid increase may
not appear in humans or animals after viral exposure. In our model,
we did not include factors such as the eclipse phase and viral relo-
cation from tissues to blood, which affect virus dynamics in blood
in the early stage of infection in vivo. However, neglecting these
factors allows us to compare the result with that obtained by Ito
et al. Ito et al., 2018. Target cells were exposed to the virus inocu-
lum for 2 h in an in vitro experiment Ito et al., 2018. By numerical
simulation with best-fitted parameter values, they found that the
multiply infected cells rapidly occurred and accumulated in up to
10% of all target cells within the time. Our prediction is more than
twice the value in Ito et al., 2018. The difference may be due to the
inclusion of cell-to-cell transmission in our model. It contributes
6.5 times higher to T cell infection than cell-free virus infection
(Fig. 6).

To determine the role of cell-to-cell transmission in HIV multi-
ple infections, we study the relative contributions from the two
infection modes to two types of infected cells (i.e. infected cells
with single and multiple proviruses) in Fig. 7(e). These relative
contributions can be obtained by multiplying the contributions
from two types of infected cells by their contributions from two
infection routes. For example, the proportion of cells with single
provirus infected by free virus in the total infected cells (blue dot-
ted line in Fig. 7(e)) can be calculated by I1ðtÞ

IðtÞ � b1TðtÞVðtÞ
b1TðtÞVðtÞþjTðtÞIðtÞ. Fig. 7

(e) shows that the cells with single provirus infected by free virus
are the most abundant population at the initial stage of infection.
After that, the contributions from cell-to-cell transmission and
multiple infections to the total infected cells increase rapidly. All
curves oscillate and finally converge to the respective steady
states. Infected cells with multiple proviruses caused by cell-to-
cell transmission become the largest contributor to the total infec-
tion, accounting for about 70% of total infected cells. The infected
cells with single provirus from cell-to-cell transmission account
for 18% of T cell infection. The remaining of T cell infection comes
from cell-free virus infection (the infected cells with single and
multiple proviruses are 2% and 10%, respectively). These results
suggest that cell-to-cell transmission has a larger impact on multi-
ple infection of cells than cell-free virus infection.
4. Discussion

HIV multiple infection of cells has been observed both in vitro
and in vivo (Dang et al., 2004; Portillo et al., 2011; Dixit and
Perelson, 2005; Ito et al., 2017; Remion et al., 2016; Graw and
Perelson, 2016), which greatly facilitates viral recombination
(Bretscher et al., 2004; Kouyos et al., 2009; Law et al., 2016;
Cromer et al., 2016). The biological processes underlying multiple
infections are still not fully understood. Dixit and Perelson (2004)
suggested that multiple infections could be explained by cell-to-
cell transmission, in which multiple viral genomes are transmitted
simultaneously in an infectious contact of an infected cell with a
target cell. They also proposed another mechanism, that is, sequen-
tial cell-free virus infection to explain multiple infection (Dixit and
Perelson, 2005). In this paper, we developed a mathematical model



Fig. 7. Dynamics of infected cells with single and multiple proviruses during cell-to-cell transmission and cell-free virus infection. (a) The relative contributions to total
infected cells from cells with single and multiple proviruses; (b) The dynamics of infected cells with single provirus; (c) The dynamics of infected cells with multiple
proviruses; (d) The ratio of singly infected cells to multiply infected cells; (e) The relative contributions to total infection cells from two classes of infected cells (i.e. infected
cells with single and multiple proviruses) and two modes of viral infection. The parameter values are the same as those in Fig. 6.
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that includes both cell-to-cell transmission and sequential virus
infection to study HIV multiple infection. We found that cell-to-
cell transmission or sequential cell-free virus infection alone does
not capture the bimodal distribution of the proviral copy number
in experiment (Jung et al., 2002), as shown in Figs. 2 and 3. By fit-
ting the full model to the experimental data, we show that both
10
cell-to-cell transmission and sequential virus infection are needed
to explain the distribution data of multiple infections (Figs. 4 and
5). These results further confirm the rationality of the model (1).

In the previous studies (Ito et al., 2018; Dixit and Perelson,
2005), the researchers showed that the frequencies of the infected
cells with single provirus are higher than that of infected cells with
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multiple proviruses. However, only cell-free virus infection was
considered in these studies. In our model, we showed that both
cell-free virus infection and cell-to-cell transmission are needed
to explain the bimodal distribution of proviral data. The result
agrees with the experimental result in vivo that more than 75%
of HIV-infected cells in spleen harbor two or more proviruses
(Jung et al., 2002). We also found that infected cells with multiple
proviruses via cell-to-cell transmission account for approximately
70% of T cell infection (Fig. 7e). This further suggests that cell-to-
cell transmission is an indispensable factor of studying multiple
infections of cells.

Cell-to-cell transmission might be more effective in establishing
the infection of cells compared with cell-free virus infection. As
shown in Case C of Section 3.1, the values of SSR and AIC are not
affected by the different assumptions on the sequential cell-free
virus infection rate bi (either constant or decreasing) when the
two viral transmission modes are both considered. We also simu-
lated an extreme case in which infected CD4+ T cells are com-
pletely down-regulated and cannot be sequentially infected by
cell-free virus (i.e. b1 > 0 and bi ¼ 0 for i ¼ 2;3; . . . ;8). We
obtained very similar results. If there is only cell-free virus infec-
tion, then there are only infected cells with MOI = 1 (similar to
the fitting in Fig. 2), which cannot explain the bimodal distribution
data. When both transmission routes are included, then the fitting,
the SSR and AIC values are very similar to Fig. 5. This is not surpris-
ing because in this case cell-to-cell transmission predominates the
virus infection (see Fig. 6) and the fitting is not sensitive to the cell-
free virus infection rate.

Although we cannot characterize the cell-free virus infection
rates bi ði ¼ 1;2; . . . ;8Þ from available data, sequential cell-free
virus infection may still be important in explaining viral recombi-
nation. A large number of recombinants were found in the spleno-
cytes of the two patients in Jung et al. (2002). A prerequisite for
recombination is the formation of heterozygotes, i.e. two copack-
aged RNA molecules with different genes (Dang et al., 2004). The
occurrence of heterozygous virions requires the infection of a sin-
gle cell by at least two different viral strains. Sequential cell-free
virus infection may play a more important role than cell-to-cell
transmission in generating genetic diversity. During sequential
cell-free virus infection, viruses that have different genotypic and
phenotypic properties are more likely to be brought into the same
target cell. In contrast, multiple genomes acquired from a single
cell-associated contact are expected to be of the same genotype.
The relationship between the genetic variability in single target
cell and two viral transmission modes has been quantitatively
studied by Dixit and Perelson (2004). They estimated that the
probabilities of target cell acquiring different genomes are �0.7
for sequential infection and �0.01 for cell-to-cell transmission.
After sequential cell-free virus infection builds up a set of different
genotypes in the same target cell, both sequential cell-free virus
infection and cell-to-cell transmission would be consistent in
establishing the diversity of proviruses.

In the model, the viral production rate p, the death rate of
infected cells d, and the infection rate via cell-to-cell transmis-
sion j were assumed to be independent of the host cell’s MOI,
as used in some existing studies (Komarova et al., 2013; Dixit
and Perelson, 2005; Althaus and Boer, 2012). They may depend
on the cell’s MOI. For example, different viral production rates
were used for infected cells with different MOIs (Asatryan
et al., 2015). We assumed a constant viral production rate for
all infected cells due to the following considerations. First, virus
cannot replicate without the machinery and metabolism of the
host cell. Thus, viral production is more likely to be limited by
cellular rather than viral factors. It is less likely that the large
number of new viruses produced by an infected cell depends
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on the cell’s MOI. Second, there are only limited data on the fre-
quencies of cells with different MOI. Assuming different viral
production rates will make the calculation of the frequencies
at the steady state and the fitting to data challenging. Lastly,
Dixit and Perelson (2005) found that the basic model without
considering multiple infections, such as the models in Perelson
(2002) and Nowak and May (2000), is able to successfully
describe viral load dynamics in HIV infected individuals
(Perelson et al., 1996, 1997; Wei et al., 1995). This is because
virus production is assumed to depend on the number of
infected cells rather than the number of integrated proviruses.
When the viral production rate is independent of MOI, the cells
(uninfected and total infected cells) and virus dynamics are
decoupled from the dynamics of multiple infections. Thus, the
evolutions of cells and virus are identical to that predicted by
the basic model. Replacing multiply infected cells with singly
infected cells do not alter viral dynamics. It is unclear whether
assuming the death rate d and cell-to-cell transmission rate j
depend on the MOI generates richer dynamics, such as the bista-
bility shown in Komarova and Wodar (2013).

In summary, our model incorporates the key forces that govern
HIV multiple infections and quantitatively captures the experi-
mental observations of proviral genomes in HIV-infected spleno-
cytes. By numerical simulations with best-fitted parameter
values, we estimate the relative contributions of two viral trans-
mission modes to T cell single and multiple infections, which
would otherwise be difficult to be determined by experiments.
Both cell-to-cell transmission and cell-free virus infection are driv-
ing forces of multiple viral infection. If these virions are genetically
distinct, then the emergence of viral recombination is inevitable.
Some recombinants bring different advantageous alleles into a sin-
gle genome, and thus may escape from host immunity and mul-
tidrug antiviral therapy. As a consequence, recombination speeds
up the rate of HIV evolution. This study provides a modeling frame-
work for revisiting some critical issues such as the recombination,
emergence of drug resistance and viral evolution during HIV infec-
tion and treatment.
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Appendix A

Proof of Theorem 2.2. We first prove the global stability of the
infection-free equilibrium E0 when R0 6 1. Define a Lyapunov
function

L ¼ T �K
l
�K
l

ln
T
K
l

 !
þR0

Xn
j¼1

Ij þ b1

c
K
l
V :

Differentiating L along the solutions of system (1) yields

dL
dt

¼ 1� K
lT

� �
K� lT � b1TV � jT

Xn
j¼1

Ij

 !

þR0 b1TV þ jT
Xn
j¼1

Ij � d
Xn
j¼1

Ij

 !
þ b1

c
K
l

p
Xn
j¼1

Ij � cV

 !
: ð11Þ

After collecting and rearranging terms, we obtain that

dL
dt

¼ �l
T

K
l � T
� �2

þ R0 � 1ð Þ b1TV þ jT
Xn
j¼1

Ij

 !
: ð12Þ

Since R0 6 1, we obtain that dL
dt 6 0. Therefore, all limit points

are contained in the largest invariant subset of

G ¼ ðT; I1; . . . ; In;VÞ : dLdt ¼ 0
� 	

:

It is clear that dL
dt ¼ 0 if and only if T ¼ K

l ; Ii ¼ 0 (i ¼ 1;2; . . . ;n),

and V ¼ 0. Thus, the only compact invariant subset of G is the sin-
gleton set fE0g. By LaSalle’s Invariance Principle, we know that E0 is
globally asymptotically stable when R0 6 1.

Next, we show the global stability of the positive equilibrium E�.
The system (1) can be reduced into

dT
dt ¼ K� lTðtÞ � b1TðtÞVðtÞ � jTðtÞIðtÞ;
dI
dt ¼ b1TðtÞVðtÞ þ jTðtÞIðtÞ � dIðtÞ;
dV
dt ¼ pIðtÞ � cVðtÞ:

8><
>: ð13Þ

Clearly, the system (13) has a unique positive equilibrium
E�ðT�; I�;V�Þ when R0 > 1, where I� ¼Pn

i¼1I
�
i . Define the following

Lyapunov function

L� ¼ ðT � T� � T� ln
T
T�Þ þ ðI � I� � ln

I
I�
Þ þ b1T

�

c
ðV � V� � V� ln

V
V�Þ:
ð14Þ

The derivative of L� along the solutions of (13) is

dL�

dt
¼ 1� T�

T

� �
K� lT � b1TV � jTIð Þ

þ 1� I�

I

� �
b1TV þ jTI � dIð Þ þ 1� V�

V

� �
pI � cVð Þ

¼ �l ðT � T�Þ2
T

þ b1T
�V� 3� T�

T
� TI�V
T�V�I

� IV�

VI�

� �

þ jT�I� 2� T�

T
� T
T�

� �
; ð15Þ

where we used the steady state equalities

K ¼ lT� þ b1T
�V� þ jT�I�; dI� ¼ b1T

�V� þ jT�I�; pI� ¼ cV�:

We obtain that dL�
dt � 0. Furthermore, dL�

dt ¼ 0 if and only if
T ¼ T�; I ¼ I� and V ¼ V�. This implies that TðtÞ ! T�; IðtÞ ! I�

and VðtÞ ! V� as t ! þ1. Thus, the limit system of (1) is
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dI1ðtÞ
dt ¼ b1T

�V� � b2V
�I1ðtÞ þ f 1jT

�I� � dI1ðtÞ;
dIiðtÞ
dt ¼ biV

�Ii�1ðtÞ � biþ1V
�IiðtÞ þ f ijT

�I� � dIiðtÞ;
i ¼ 2;3 . . . ;n� 1;
dInðtÞ
dt ¼ bnV

�In�1ðtÞ þ f njT
�I� � dInðtÞ:

8>>>><
>>>>:

ð16Þ

WhenR0 > 1, the linear system (16) has only one positive equi-
librium ~E� ¼ ðI�1; I�2; . . . ; I�nÞ, where I�1; I

�
2; . . . ; I

�
n are given in (9). Calcu-

lating the Jacobian matrix of (16) at ~E�, we have

Hð~E�Þ ¼

�b2V
� � d 0 0 � � � 0 0

b2V
� �b3 � d 0 � � � 0 0

0 b3V
� �b4 � d � � � 0 0

..

. ..
. ..

. � � � ..
. ..

.

0 0 0 � � � bnV
� �d

0
BBBBBBB@

1
CCCCCCCA

n�n

:

ð17Þ
Since (17) is a lower triangular matrix and its diagonal entries

are negative, all eigenvalues of matrix (17) have negative real
parts. Thus, ~E� is locally asymptotically stable. Using Theorem 1.2.2
of Zhao (2017), it follows that the positive equilibrium E� is glob-
ally asymptotically stable when R0 > 1. This completes the proof
of Theorem 2.2.
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