

Collapse Versus Blow-Up and Global Existence in the Generalized Constantin–Lax–Majda Equation

Pavel M. Lushnikov¹ · Denis A. Silantyev² · Michael Siegel³

Received: 29 September 2020 / Accepted: 28 July 2021

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The question of finite-time singularity formation versus global existence for solutions to the generalized Constantin–Lax–Majda equation is studied, with particular emphasis on the influence of a parameter a which controls the strength of advection. For solutions on the infinite domain, we find a new critical value $a_c = 0.6890665337007457\dots$ below which there is finite-time singularity formation that has a form of self-similar collapse, with the spatial extent of blow-up shrinking to zero. We prove the existence of a leading-order power-law complex singularity for general values of a in the analytical continuation of the solution from the real spatial coordinate into the complex plane and identify the power-law exponent. This singularity controls the leading-order behavior of the collapsing solution. We prove that this singularity can persist over time, without other singularity types present, provided $a = 0$ or $1/2$. This enables the construction of exact analytical solutions for these values of a . For other values of a , this leading-order singularity must coexist with other singularity types over any nonzero interval of time. For $a_c < a \leq 1$, we find a blow-up solution in which the spatial extent of the blow-up region expands infinitely fast at the singularity time. For $a \gtrsim 1.3$, we find that the solution exists globally with exponential-like growth of the solution amplitude in time. We also consider the case

Communicated by Pierre Degond.

✉ Pavel M. Lushnikov
plushnik@math.unm.edu

¹ Department of Mathematics and Statistics, University of New Mexico, MSC01 1115, Albuquerque, NM 87131, USA

² Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1110, USA

³ Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102, USA

18 of periodic boundary conditions. We identify collapsing solutions for $a < a_c$ which
 19 are similar to the real line case. For $a_c < a \leq 0.95$, we find new blow-up solutions
 20 which are neither expanding nor collapsing. For $a \geq 1$, we identify a global existence
 21 of solutions.

22 **Keywords** Constantin–Lax–Majda equation · Collapse · Blow-up · Self-similar
 23 solution

24 1 Introduction

25 In this paper, we investigate finite-time singularity formation in the generalized
 26 Constantin–Lax–Majda (CLM) equation (Constantin et al. 1985; De Gregorio 1990;
 27 Okamoto et al. 2008)

$$28 \quad \begin{aligned} \omega_t &= -au\omega_x + \omega u_x, \quad \omega, x \in \mathbb{R}, t > 0, \\ u_x &= \mathcal{H}\omega, \end{aligned} \quad (1)$$

29 which is a 1D model for the advection and stretching of vorticity in a 3D incompressible
 30 Euler fluid. Here, ω and u are a scalar vorticity and velocity, respectively, $a \in \mathbb{R}$ is a
 31 parameter, and \mathcal{H} is the Hilbert transform,

$$32 \quad \mathcal{H}\omega(x) := \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{+\infty} \frac{\omega(x')}{x - x'} dx'. \quad (2)$$

33 This equation, with $a = 0$, was first introduced by Constantin et al. (1985) as a
 34 simplified model to study the possible formation of finite-time singularities in the 3D
 35 incompressible Euler equations. It was later generalized by De Gregorio (1990) to
 36 include an advection term $u\omega_x$ and by Okamoto et al. (2008), who introduced the real
 37 parameter a to give different relative weights to advection and vortex stretching, $u_x\omega$.
 38 In addition to its relationship to the 3D Euler equation, (1) has a direct connection to
 39 the surface quasi-geostrophic (SQG) equation (Elgindi and Jeong 2020).

40 The 3D incompressible Euler equations can be written as

$$41 \quad \partial_t \omega + \mathbf{u} \cdot \nabla \omega = \omega \cdot \nabla \mathbf{u}, \quad \mathbf{x} \in \mathbb{R}^3, \quad t > 0, \quad (3)$$

$$42 \quad \mathbf{u} = \nabla \times (-\Delta)^{-1} \omega. \quad (4)$$

44 The second equation above is the Biot–Savart law, which in free-space has an equiv-
 45 alent representation as a convolution integral

$$46 \quad \mathbf{u}(\mathbf{x}, t) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{(\mathbf{x} - \mathbf{y}) \times \omega(\mathbf{y}, t)}{|\mathbf{x} - \mathbf{y}|^3} d\mathbf{y}. \quad (5)$$

47 The term $\omega \cdot \nabla \mathbf{u}$ on the right-hand side (r.h.s.) of (3), where $\nabla \mathbf{u} = S(\omega)$ is a matrix
 48 of singular integrals, is known as the vortex stretching term. Standard estimates from
 49 the theory of singular integral operators (Stein 1970) show that $\|\omega\|_{L^p} \leq \|\nabla \mathbf{u}\|_{L^p} \leq$

50 $c_p \|\omega\|_{L^p}$ for $1 < p < \infty$, which formally implies that the vortex stretching term scales
51 quadratically in the vorticity, i.e., $S(\omega)\omega \approx \omega^2$. This term is therefore destabilizing
52 and has the potential to generate singular behavior. However, analysis of the regularity
53 of Eqs. (3), (4) is greatly complicated by the nonlocal and matrix structure of S and
54 remains an outstanding open question (see Elgindi 2019; Elgindi and Jeong 2019 for
55 recent developments).

56 In contrast to the vortex stretching term, the advection term $\mathbf{u} \cdot \nabla \omega$ does not cause
57 any growth of vorticity. As a result, it has historically been thought to play an unimportant
58 role in the regularity of the incompressible Euler and Navier–Stokes equations.
59 Recent studies, however, show that advection-type terms can have an unexpected
60 smoothing effect. For example, Lei and Hou (2009) present numerical evidence that a
61 finite-time singularity forms from smooth data in solutions to a reformulated version
62 of the Navier–Stokes equations for axisymmetric flow with swirl, when the so-called
63 convection terms $u_r \partial_r(\omega_\theta/r) + u_z \partial_z(\omega_\theta/r)$ and $u_r \partial_r(u_\theta/r) + u_z \partial_z(u_\theta/r)$ are omitted.
64 Here, (u_r, u_θ, u_z) and ω_θ are velocity and vorticity components in cylindrical
65 coordinates (r, θ, z) . Adding the convection back is found to suppress a finite-time
66 singularity formation. Related work on the smoothing effect of advection/convection
67 in the Euler and Navier–Stokes equations is given in Hou et al. (2012, 2014, 2018),
68 Hou and Li (2006, 2008), and Okamoto and Ohkitani (2005).

69 The generalized CLM equation (1) (also called the Okamoto–Sakajo–Wunsch
70 model in Elgindi and Jeong 2020) is obtained from the 3D Euler equations by replacing
71 the advection term $\mathbf{u} \cdot \nabla \omega$ with $u\omega_x$ and the vortex stretching term $S(\omega)\omega$ by its
72 1D analogue $\mathcal{H}(\omega)\omega$. The Hilbert transform \mathcal{H} is the unique singular integral operator
73 in 1D that preserves certain important properties of $S(\omega)$; namely, it commutes with
74 translations and dilations (Constantin et al. 1985). In addition, the 1D vortex stretching
75 term $\mathcal{H}(\omega)\omega$ preserves the quadratic scaling of the vortex stretching term $S(\omega)\omega$
76 in the 3D problem. The resulting Eq. (1) provides a simplified setting to understand
77 the competition between the stabilizing effect of advection and destabilizing effect
78 of vortex stretching. In this work, we focus on smooth (analytic or C^∞) initial data
79 which we consider as the most physically relevant. There are also a number of results
80 on singularity formation for (1) in the case of Holder continuous initial data, see Chen
81 et al. (2019) and Elgindi and Jeong (2020) for recent reviews.

82 We summarize some of the known results, concentrating on those which apply
83 to smooth (analytic or C^∞) initial data. In the case $a = 0$, Constantin et al. (1985)
84 obtained a closed-form exact solution to the initial value problem for (1) which develops
85 a self-similar finite-time singularity for a class of analytic initial data. When $a \neq 0$,
86 the simplifications that enable a closed-form solution no longer hold, and various analytical
87 and numerical methods have been applied to investigate singularity formation.
88 Castro and Córdoba (2010) proved finite-time blow-up for $a < 0$ using a Lyapunov-
89 type argument. In this case, advection and vortex stretching act together to produce a
90 singularity. In contrast, for $a > 0$ the stabilizing effect of advection competes with the
91 destabilizing effect of vortex stretching. For ϵ -small values of $a > 0$, vortex stretching
92 dominates and Elgindi and Jeong (2020) proved the existence of self-similar finite-time

93 singularities in the form

94

$$\omega = \frac{1}{\tau} f(\xi), \quad \xi = \frac{x}{\tau^\alpha}, \quad \tau = t_c - t, \quad (6)$$

95 where $t_c > 0$ is the singularity time and α depends on a , approaching $\alpha = 1$ in the
 96 limit $a \rightarrow 0$. Also, $f(\xi)$ is an odd function, i.e., $f(-\xi) = -f(\xi)$, $\xi \in \mathbb{R}$. The
 97 proof of Elgindi and Jeong (2020) is based on a continuation argument in a small
 98 neighborhood of the exact solution at $a = 0$. Chen et al. (2019) proved a similar result
 99 using a different method.

100 The special case of $a = 1$ of Eq. (1) was first considered by De Gregorio (1990) and
 101 has been the subject of extensive numerical computations in the periodic geometry by
 102 Okamoto et al. (2008). These suggest that singularities do not occur in finite time from
 103 smooth initial data on a periodic domain. Okamoto et al. (2008) use a least squares fit
 104 to the decay of Fourier modes to track the distance $\delta(t)$ from the real line to the nearest
 105 singularity in the complex x -plane. They find that $\delta(t)$ decays exponentially in time,
 106 which is consistent with global existence. Global existence for $a = 1$ in the specific
 107 case of nonnegative (or nonpositive) initial vorticity is proven by Lei et al. (2019).

108 The above analytical and numerical results might suggest the existence of a thresh-
 109 old value $a = a_{\text{threshold}}$ below which finite-time singularities occur for smooth initial
 110 data and at/above which the solution exists globally in time. Okamoto et al. conjecture
 111 that $a_{\text{threshold}} = 1$. However, for this value $a = 1$, Chen et al. (2019) recently proved
 112 the existence of an “expanding” self-similar solution (6) for the problem on $x \in \mathbb{R}$.
 113 In this solution, $f(\xi)$ is an odd function with finite support and $\alpha = -1$. It implies
 114 that $\omega(x, t) \rightarrow f'(0)x$ as $t \rightarrow t_c$ for any finite value of $x \in \mathbb{R}$, while the boundary
 115 of compact support expands infinitely fast in the spatial coordinate x as $t \rightarrow t_c$. We
 116 compute this solution numerically and demonstrate that analytic initial data converge
 117 to the expanding self-similar solution. The form of this solution is apparently incom-
 118 patible with the periodic geometry and thus does not rule out the possibility of global
 119 existence of the solution in that geometry when $a = 1$.

120 We are not aware of any theory or simulation which consider solutions to (1) over
 121 a wide range of the parameter a as well as any simulation on $x \in \mathbb{R}$ addressing even
 122 the particular case $a = 1$. The main goal of this paper is to fill this gap by presenting
 123 theory and highly accurate computations to assess singularity formation for a wide
 124 range of a for both the periodic geometry and $x \in \mathbb{R}$.

125 We obtain two main analytical results (Theorems 1 and 3). The first one (Theorem 1)
 126 establishes the specific form of the leading-order complex singularity of $f(\xi)$ in (6)
 127 and determines its dependence on a , when that singularity is of power-law type. We
 128 show that this singularity can persist over time, without other singularity types present,
 129 provided $a = 0$ or $1/2$. This enables the construction of exact analytical solutions for
 130 these values of a . The second main analytical result (Theorem 3) proves that the exact
 131 solutions, consisting only of leading-order power-law singularities, are impossible
 132 beyond the particular cases $a = 0$ and $1/2$. It implies that for any value of a , beyond
 133 $a = 0$ and $1/2$, the leading-order power-law singularity must coexist with other
 134 singularities for any nonzero duration of time. If the initial condition contains only

135 these leading-order singularities, then other singularities must appear in arbitrarily
136 small time to be consistent with Eq. (1).

137 Our spectrally accurate numerical simulations address all real values of a . We use a
138 variable numerical precision, beyond the standard double precision, to mitigate loss of
139 accuracy when computing poles and branch points in the complex plane, and employ
140 fully resolved spatial Fourier spectra on an adaptive grid with eighth-order adaptive
141 time stepping. Computations are performed both for periodic boundary conditions
142 (BC) and on the real line $x \in \mathbb{R}$ with the decaying BC

143
$$\omega(x, t) \rightarrow 0 \text{ for } x \rightarrow \pm\infty. \quad (7)$$

144 For the problem on \mathbb{R} , we reformulate Eq. (1) in a new spatial variable q using a
145 conformal mapping from Lushnikov et al. (2017) between the real line $x \in \mathbb{R}$ and $q \in$
146 $(-\pi, \pi)$. Then, our spectral simulations with a uniform spatial grid for $q \in (-\pi, \pi)$
147 ensure spectral precision on the corresponding highly nonuniform grid for $x \in \mathbb{R}$.

148 Our results make use of two distinct types of numerical simulation. The first type
149 is time-dependent simulation which allows us to establish the convergence of generic
150 initial conditions to the self-similar solution (6). As a by-product of such simulations,
151 we obtain values of α and the functional form of $f(\xi)$. The second type of simulation
152 directly solves the nonlinear eigenvalue problem for α to obtain the similarity solution
153 (6) of Eq. (1) for each value of a . We solve that nonlinear eigenvalue problem by
154 iteration on the real line $x \in \mathbb{R}$ using a version of the generalized Petviashvili method
155 (GPM) (Petviashvili 1976; Lushnikov 2001; Lakoba and Yang 2007; Pelinovsky and
156 Stepanyants 2004; Dyachenko et al. 2013a). In Theorem 4, we show that there exists
157 a nonstable eigenvalue for the linearization of the original Petviashvili method (Petviashvili
158 1976) which prevents its convergence. However, the version of GPM employed
159 here avoids that instability.

160 The results of the first and the second type of simulation are in excellent agreement
161 with Theorems 1–3 and the exact similarity solutions. The first major result of these
162 simulations is the discovery of a critical value

163
$$a = a_c = 0.6890665337007457 \dots \quad (8)$$

164 below which (i.e., for $a < a_c$) there is finite-time singularity formation, but at which
165 point (i.e., for $a = a_c$) the singularity transitions or changes character. For $a < a_c$, the
166 value of α is positive with $f(\xi)$ an analytic function in a strip in the complex plane of ξ
167 containing the real line. The positive values of α ensure, in accordance with Eq. (6), that
168 the solution shrinks in x as $t \rightarrow t_c$, while the solution amplitude diverges in that limit.
169 This type of shrinking self-similar solution is compatible with both kinds of boundary
170 conditions (i.e., periodic and decaying on \mathbb{R}), and our simulations reveal the same
171 type of singularity formation at $t \rightarrow t_c$. The shrinking and divergence of amplitude
172 are qualitatively reminiscent of the collapse in both the nonlinear Schrödinger equation
173 and the Patlak–Keller–Segel equation, see, e.g., Zakharov (1972), Childress and Percus
174 (1981), Sulem and Sulem (1999), Brenner et al. (1999), Kuznetsov and Zakharov
175 (2007), and Lushnikov et al. (2013). The terminology “collapse” or “wave collapse”
176 was first introduced in Zakharov (1972) in analogy with gravitational collapse and has

177 been widely used ever since. The singularity formation found for $a < a_c$ is therefore
178 of collapse type. We also find that $\alpha = 0$ at the critical value $a = a_c$.

179 The second major result of our simulations is the uncovering of a qualitatively
180 different type of self-similar singularity formation for $a_c < a \leq 1$, in which the
181 spatial scale of the solution does not shrink. We refer to this type of singularity as
182 “blow-up.” An additional finding in the aforementioned range of the parameter a
183 is that the blow-up solution on the real line $x \in \mathbb{R}$ and the blow-up solution for
184 periodic BC are qualitatively different. In the case $x \in \mathbb{R}$, we find that $-1 \leq \alpha < 0$
185 with $\alpha = -1$ only for $a = 1$. Thus, Eq. (6) corresponds to an expanding self-
186 similar solution. In particular, at $a = 1$, we find that $\alpha = -1$ in agreement with the
187 results of Chen et al. (2019). A Taylor-series expansion of Eq. (6) at $x = 0$ results in
188 $\omega(x, t) = \tau^{-1-\alpha} x f'(0) + O(\tau^{-1-2\alpha} x^2)$. It shows that the linear slope $\propto x$ increases
189 to infinity as $t \rightarrow t_c$ for $a_c \leq a < 1$, while it remains constant for $a = 1$. Time-
190 dependent simulations for $x \in \mathbb{R}$ with analytic initial conditions and $a_c \leq a \leq 1$
191 demonstrate convergence of the solution at $t \rightarrow t_c$ to Eq. (6) with $f(\xi)$ being of finite
192 support. This extends the results of Chen et al. (2019) from $a = 1$ to $a_c \leq a \leq 1$.

193 The third major result of our simulations concerns periodic BC. While the collapse
194 case $a < a_c$ is similar for both $x \in \mathbb{R}$ and periodic BC, as mentioned the case $a_c <$
195 $a \leq 1$ is qualitatively different. Indeed, the spatial expansion or blow-up observed for
196 $a_c \leq a \leq 1$ and $x \in \mathbb{R}$ would contradict the periodic BC as t approaches t_c . Instead,
197 we find a new self-similar blow-up solution

$$198 \quad \omega(x, t) = \frac{1}{t_c - t} f(x), \quad (9)$$

199 which is valid for $a_c < a \leq 0.95$. Formally, we can interpret Eq. (9) as Eq. (6) with
200 $\alpha = 0$. However, periodic BC are qualitatively different from the finite support solution
201 of Eq. (6) because of the nonlocality of the Hilbert transform in Eq. (1). We find that
202 $f(x)$ in Eq. (9) has a discontinuity in a high-order (or n th-order) derivative at the
203 periodic boundary, i.e., at $x = \pm\pi$ when the domain is centered about the point $x = 0$
204 where the singularity occurs. In addition, $n \rightarrow \infty$ in the limit $a \rightarrow a_c^+$, i.e., $f(x)$
205 approaches a C^∞ function in that limit. A complex singularity is also present in $f(x)$
206 on the imaginary axis away from the real line, the form of which obeys Theorem 1.

207 In the range $0.95 < a < 1$, our simulations are inconclusive regarding whether
208 blow-up occurs. The value $a = 1$ is a special case for the periodic BC, with no blow-
209 up observed in our simulations for generic initial conditions. Instead, the solution
210 exists globally with the first spatial derivative remaining bounded, while the second
211 derivative grows exponentially in time. This agrees with the result on global existence
212 for the particular case $a = 1$ investigated in Okamoto et al. (2008).

213 For $a \geq 1$, we find that the solution exists globally for all initial conditions con-
214 sidered in the case of periodic BC, while for the solution on the real line the situation
215 is not conclusive. In the latter case, the maximum of $|\omega|$ initially grows with time but
216 this growth saturates at larger times at least for $a \gtrsim 1.3$, so we expect the global ex-
217 istence of solutions in this parameter range. In the intermediate range $1 < a \lesssim 1.3$, our
218 simulations catastrophically lose precision at sufficiently large times, and a conclusive
219 determination between blow-up and global existence of solutions is not possible.

220 We also find from the simulations that the kinetic energy on the infinite line $x \in \mathbb{R}$,

221
$$E_K := \int_{-\infty}^{\infty} u^2(x, t) dx, \quad (10)$$

222 with an initially finite value approaches a constant as $t \rightarrow t_c$ when $a < 0.265 \pm 0.001$,
223 while it tends to infinity for $0.265 \pm 0.001 < a \leq 1$. In the case $a \gtrsim 1.3$ corresponding
224 to global existence, the kinetic energy tends to infinity as $t \rightarrow \infty$. On the periodic
225 domain $x \in [-\pi, \pi]$, we find the same behavior of the kinetic energy up to $a = 0.95$.
226 For $a \geq 1$ (when there is global existence), E_K approaches a nonzero constant as
227 $t \rightarrow \infty$ ($a = 1$) or tends to zero ($a > 1$).

228 Solutions with finite energy are of interest by analogy with the fundamental question
229 on global regularity of the 3D Euler and Navier–Stokes equations with smooth initial
230 data, see Fefferman (2006) and Gibbon (2008).

231 To reveal the structure of singularities of $\omega(x, t)$ and $f(\xi)$ in the complex plane of
232 x and ξ , we use both a fitting of the Fourier spectrum similar to Okamoto et al. (2008)
233 (see also Carrier et al. 1966; Dyachenko et al. 2013b, 2016; Sulem et al. 1983 for more
234 detail), and more general methods of analytical continuation by rational interpolants
235 (see Alpert et al. 2000; Dyachenko et al. 2016, 2019; Nakatsukasa et al. 2018). As time
236 evolves, these singularities approach the real line in agreement with Eq. (6). We have
237 formulated a system of ordinary differential equations (ODEs) describing the motion of
238 such singularities. Fourier fitting allows us to track only singularities which are nearest
239 to the real axis, while rational interpolants go beyond this, by giving information on
240 singularities other than the closest one. In particular, it reveals that for $a \neq 0, 1/2$ with
241 $a < a_c$, there are generically branch points beyond the leading-order singularities,
242 consistent with Theorem 3. The exceptional cases are $a = 0, 1/2$, and $2/3$ where
243 the nearest singularities are poles of the first, second, and third order, respectively.
244 However, already for $a = 2/3$, the third-order pole coexists with additional branch
245 points. For other values of a , the nearest singularities are branch points. We find that
246 for $a_c < a \leq 1$, the singularities approach the real line as $t \rightarrow t_c$ in the spatial regions
247 near the boundary of the support of $f(\xi)$.

248 The rest of this paper is organized as follows. Section 2 establishes Theorem 1,
249 which describes the leading-order complex singularity and determines its dependence
250 on a . Section 3 reinterprets the results of Constantin et al. (1985) for $a = 0$ in terms
251 of moving complex poles and the self-similar solution (6). In Sect. 4, we derive an
252 exact blow-up solution for $a = 1/2$ (Theorem 2) and transform that exact solution
253 to the self-similar form (6). Section 5 considers solutions for general values of a and
254 establishes in Theorem 3 that, except for $a = 0, 1/2$, the leading-order singularity
255 cannot fully characterize the exact solution. Two preliminary steps for computations
256 on $x \in \mathbb{R}$ are developed in Sects. 6 and 7. In particular, Sect. 6 reformulates Eq.(1) as a
257 nonlinear eigenvalue problem for the self-similar solution (6), and Sect. 7 rewrites Eq.
258 (1) in an auxiliary variable q mapping the real line into the finite interval. Section 8 then
259 describes the results of time-dependent numerical simulations for $x \in \mathbb{R}$, and Sect. 9
260 presents self-similar solutions of the type (6) via numerical solution of the nonlinear
261 eigenvalue problem using a generalized Petviashvili method. Section 10 addresses

262 the analytical continuation into the complex plane of x by rational approximation
 263 and uses it to study the structure of singularities. Section 11 describes the results of
 264 both time-dependent numerical simulations and the generalized Petviashvili method
 265 for periodic BC. Section 12 provides a summary of the results and discusses future
 266 directions. “Appendix A” gives a derivation for the form of the Hilbert transform over
 267 x in variable q .

268 2 Leading-Order Spatial Singularity

269 We assume that $\omega(x, t)$ is an analytic function in the open strip containing $x \in \mathbb{R}$ in
 270 the complex plane $x \in \mathbb{C}$ decaying at $x \rightarrow \pm\infty$. Then, we can represent ω as

$$271 \quad \omega = \omega^+ + \omega^-, \quad (11)$$

272 where $\omega^+(x, t)$ is analytic in the upper complex half-plane $x \in \mathbb{C}^+$ and $\omega^-(x, t)$ is
 273 analytic in the lower complex half-plane $x \in \mathbb{C}^-$.

274 The Hilbert transform (2) implies that

$$275 \quad \mathcal{H}\omega = -i(\omega^+ - \omega^-). \quad (12)$$

276 Assume that the solution exhibits a leading-order singularity of power $\gamma > 0$ in the
 277 complex plane x for ω at $x = \pm iv_c$, $v_c > 0$, so that

$$278 \quad \omega(x, t) = \frac{\omega_{-\gamma}(t)}{[x - iv_c(t)]^\gamma} + \frac{\bar{\omega}_{-\gamma}(t)}{[x + iv_c(t)]^\gamma} + l.s.t., \quad (13)$$

279 where *l.s.t* designates less singular terms at $x = \pm iv_c$, i.e.,

$$280 \quad \lim_{x \rightarrow \pm iv_c} [x \mp iv_c(t)]^\gamma l.s.t. = 0. \quad (14)$$

281 If we additionally assume that $\omega(-x) = -\omega(x)$, for $x \in \mathbb{R}$, then Eq. (13) implies
 282 that

$$283 \quad \frac{\omega_{-\gamma}(t)}{[x - iv_c(t)]^\gamma} + \frac{\bar{\omega}_{-\gamma}(t)}{[x + iv_c(t)]^\gamma} = -\frac{\omega_{-\gamma}(t)}{[-x - iv_c(t)]^\gamma} - \frac{\bar{\omega}_{-\gamma}(t)}{[-x + iv_c(t)]^\gamma}, \quad (15)$$

284 i.e., $\bar{\omega}_{-\gamma}(t)(-1)^{\gamma+1} = \omega_{-\gamma}(t)$. Then, we can define

$$285 \quad \omega_{-\gamma}(t) := -ie^{-i\pi\gamma/2}\bar{\omega}_{-\gamma}(t), \quad \bar{\omega}_{-\gamma}(t) \in \mathbb{R} \quad (16)$$

286 so that Eq. (13) takes the following form

$$287 \quad \omega(x, t) = -i\bar{\omega}_{-\gamma}(t) \left(\frac{e^{-i\pi\gamma/2}}{[x - iv_c(t)]^\gamma} - \frac{e^{i\pi\gamma/2}}{[x + iv_c(t)]^\gamma} \right) + l.s.t.. \quad (17)$$

288 Using Eqs. (1), (12), and (17), we obtain that

289

$$u_x = \mathcal{H}\omega = \tilde{\omega}_{-\gamma}(t) \left(\frac{e^{-i\pi\gamma/2}}{[x - iv_c(t)]^\gamma} + \frac{e^{i\pi\gamma/2}}{[x + iv_c(t)]^\gamma} \right) + l.s.t., \quad (18)$$

290 and

291

$$u := u^+ + u^- = -\frac{\tilde{\omega}_{-\gamma}(t)}{(\gamma - 1)} \left(\frac{e^{-i\pi\gamma/2}}{[x - iv_c(t)]^{\gamma-1}} + \frac{e^{i\pi\gamma/2}}{[x + iv_c(t)]^{\gamma-1}} \right) + l.s.t., \quad (19)$$

292 where we have additionally assumed that $\gamma \neq 1$.

293 Plugging Eqs. (17)–(19) into Eq. (1) and collecting the most singular terms \propto
294 $[x - iv_c(t)]^{-2\gamma}$ at $x = iv_c(t)$ on the right-hand side of Eq. (1) give

295

$$\frac{ie^{-i\pi\gamma}\tilde{\omega}_{-\gamma}^2(t)}{[x - iv_c(t)]^{2\gamma}} \left(\frac{a\gamma}{\gamma - 1} - 1 \right) = 0. \quad (20)$$

296 By assumption, $\omega_{-\gamma}(t) \neq 0$. Then, Eq. (20) implies that

297

$$\gamma = \frac{1}{1 - a}. \quad (21)$$

298 Thus, we have proved the following:

299 **Theorem 1** If a solution $\omega(x, t)$ of Eq. (1) is (i) analytic in an open strip of \mathbb{C} containing
300 \mathbb{R} , (ii) tends to zero as $x \rightarrow \pm\infty$, and (iii) has a complex conjugate pair of power-law
301 singularities located at $x = \pm iv_c$ for $v_c > 0$ given by Eqs. (14), (17) with $\gamma > 0$,
302 then γ is determined by Eq. (21).

303 **Remark 1** The condition $\gamma > 0$ is essential in Theorem 1. If we assume $\gamma < 0$, then
304 the leading-order term in Eq. (1) at $x = \pm iv_c$ is $\propto [x - iv_c(t)]^0$.

305 **Remark 2** Equation (21) is in excellent agreement with the simulations of Sect. 8. The
306 singularities with $\gamma < 0$ in our simulations are always located further away from the
307 real axis than the leading-order singularities given by Eq. (21). These more remote
308 singularities provide a smaller contribution to the solution near the origin.

309 Equation (21) with $a = 0$ results in $\gamma = 1$. Also $\gamma \rightarrow \infty$ for $a \rightarrow 1-$. For the
310 particular values

311

$$a = \frac{n-1}{n}, \quad n = 1, 2, 3, \dots, \quad (22)$$

312 we obtain the integer values $\gamma = n$ resulting in complex pole singularities of order n in
313 Eq. (17), while the other values of $a \in (0, 1)$ result in the branch points at $x = \pm iv_c(t)$.

3 Exact Blow-Up Solution for $a = 0$

The particular value of the parameter $a = 0$ implies from Eq. (21) that $\gamma = 1$. This case recovers the results of Constantin et al. (1985). The general solution of Eq. (1) is immediately obtained by noticing that Eqs. (1), (12) result in

$$\omega_t = \omega_t^+ + \omega_t^- = -i(\omega^+)^2 + i(\omega^-)^2, \quad (23)$$

which decouples into two independent ODEs

$$\omega_t^+ = -i(\omega^+)^2, \quad \omega_t^- = i(\omega^-)^2. \quad (24)$$

The solutions of these ODEs with the generic initial conditions $\omega^+(x, t)|_{t=0} = \omega_0^+(x)$ and $\omega^-(x, t)|_{t=0} = \omega_0^-(x)$ are given by

$$\omega^+(x, t) = \frac{\omega_0^+(x)}{1 + it\omega_0^+(x)} \quad \text{and} \quad \omega^-(x, t) = \frac{\omega_0^-(x)}{1 - it\omega_0^-(x)}. \quad (25)$$

Equations (11), (12), and (25) lead to the solution of Constantin–Lax–Majda equation found in Constantin et al. (1985)

$$\omega(x, t) = \frac{4\omega_0(x)}{[2 - t\mathcal{H}\omega_0(x)]^2 + t^2\omega_0^2(x)} \quad (26)$$

for the generic initial condition $\omega(x, t)|_{t=0} = \omega_0(x) = \omega_0^+(x) + \omega_0^-(x)$. Also Eqs. (12) and (25) imply that (as in Constantin et al. 1985)

$$\mathcal{H}\omega(x, t) = \frac{2\mathcal{H}\omega_0(x)[2 - t\mathcal{H}\omega_0(x)] - 2t\omega_0^2(x)}{[2 - t\mathcal{H}\omega_0(x)]^2 + t^2\omega_0^2(x)}. \quad (27)$$

Assume that there exists an $x_0 \in \mathbb{R}$ such that $\omega_0(x_0) = 0$ and $\mathcal{H}\omega_0(x_0) > 0$. Then, Eq. (26) implies a singularity in the solution at the time $t_c := 2/\mathcal{H}\omega_0(x_0) > 0$. If there are multiple points $x \in \mathbb{R}$ such that $\omega_0(x) = 0$ and $\mathcal{H}\omega_0(x) > 0$, then $t_c := 2/\sup\{\mathcal{H}\omega_0(x)|\omega_0(x) = 0\} > 0$ (Constantin et al. 1985). Below, we assume that x_0 corresponds to the singularity at the earliest time $t = t_c$. A particular example is any odd function $\omega_0(x)$ with respect to $x = x_0$ (implying that $\omega_0(x_0) = 0$) which is strictly positive for $x > x_0$ and decays at $x \rightarrow \infty$.

A series expansion of Eq. (26) at $x \rightarrow x_0$ and $t \rightarrow t_c^-$ implies that

$$\omega(x, t) = \frac{1}{t_c - t} \frac{4\xi\omega_0'(x_0)[\mathcal{H}\omega_0(x_0)]^2}{\left([\mathcal{H}\omega_0(x_0)]^2 - 2\xi\mathcal{H}\omega_0'(x_0)\right)^2 + 4\xi^2[\omega_0'(x_0)]^2} + O((t_c - t)^0), \quad (28)$$

340 where

341

$$\xi := \frac{x - x_0}{t_c - t} \quad (29)$$

342 is the self-similar variable. Equations (28) and (29) provide a universal profile of the
 343 solution at $t \rightarrow t_c^-$ in a spatial neighborhood of $x \rightarrow x_0$ after we neglect the correction
 344 term $O((t_c - t)^0)$. That profile has the form of a sum of two complex poles at complex
 345 conjugate points $\xi = \xi_{\pm}$ as follows:

346

$$\omega(x, t) = \frac{i}{t_c - t} \left(\frac{\xi_+}{\xi - \xi_+} - \frac{\xi_-}{\xi - \xi_-} \right), \quad (30)$$

347 where

348

$$\xi_{\pm} = \frac{[\mathcal{H}\omega_0(x_0)]^2}{2[\mathcal{H}\omega'_0(x_0) \pm i\omega'_0(x_0)]} \quad (31)$$

349 are positions of poles in the complex plane of ξ .

350 Equations (30) and (31) provide the exact solution of Eq. (1) for $\omega'_0(x_0) < 0$ as
 351 can be immediately verified by direct substitution into Eq. (1). Here, the condition
 352 $\omega'_0(x_0) < 0$ ensures that $\xi_+ \in \mathbb{C}^+$. This solution is asymptotically stable with respect
 353 to perturbations of the initial condition as follows from Eq. (28). The only trivial
 354 change due to the perturbation of the initial condition is a shift of both x_0 and t_c .

355 One can also recover from solution (30) representation (17) with $\gamma = 1$ which
 356 gives the exact solution

357

$$\begin{aligned} \omega(x, t) &= -\tilde{v}_c \left(\frac{1}{x - x_0 - i\tilde{v}_c(t_c - t)} + \frac{1}{x - x_0 + i\tilde{v}_c(t_c - t)} \right) \\ 358 &= -\frac{\tilde{v}_c}{t_c - t} \left(\frac{1}{\xi - i\tilde{v}_c} + \frac{1}{\xi + i\tilde{v}_c} \right) \end{aligned} \quad (32)$$

360 of Eq. (1) for any values of the real constants t_c , $\tilde{v}_c > 0$ and x_0 . Here, without loss of
 361 generality we have shifted the origin in the real direction compared with the solution
 362 (30).

363 4 Exact Blow-Up Solution for $a = 1/2$

364 The particular value of the parameter $a = 1/2$ implies from Eq. (21) that $\gamma = 2$. In
 365 this section, we look for the solution to Eq. (1) in form (17) assuming that the l.s.t.
 366 are identically zero, i.e.,

367

$$\omega(x, t) = i\tilde{\omega}_{-2}(t) \left(\frac{1}{[x - x_0 - iv_c(t)]^2} - \frac{1}{[x - x_0 + iv_c(t)]^2} \right), \quad (33)$$

368 where for generality we have also allowed a shift of the origin by introducing the
 369 arbitrary real constant x_0 . Equation (19) then becomes

$$370 \quad u = \tilde{\omega}_{-2}(t) \left(\frac{1}{x - x_0 - i v_c(t)} + \frac{1}{x - x_0 + i v_c(t)} \right) = \frac{2 \tilde{\omega}_{-2}(t) (x - x_0)}{(x - x_0)^2 + v_c(t)^2}. \quad (34)$$

371 Plugging Eqs. (33) and (34) into Eq. (1), we find the latter equation is identically
 372 satisfied provided

$$373 \quad \frac{dv_c(t)}{dt} = -\frac{\tilde{\omega}_{-2}(t)}{4 v_c(t)}, \quad (35)$$

374 and

$$375 \quad \frac{d\tilde{\omega}_{-2}(t)}{dt} = \frac{\tilde{\omega}_{-2}^2(t)}{4 v_c^2(t)}. \quad (36)$$

376 Solving the system of ordinary differential equations (ODEs) (35) and (36) results in

$$377 \quad v_c(t) = (t_c - t)^{1/3} \tilde{v}_c, \quad \tilde{\omega}_{-2}(t) = \frac{4 \tilde{v}_c^2}{3(t_c - t)^{1/3}}, \quad (37)$$

378 where $\tilde{v}_c > 0$ and t_c are two arbitrary real constants. Assuming the initial condition
 379 is given at $t = 0$ and that $t_c > 0$, we obtain that $t = t_c$ is the time of singularity
 380 formation.

381 Section 8 shows the convergence during the evolution in time t of the solution of Eq.
 382 (1) to the exact solution given by Eqs. (33) and (37). The spatial extent of the solution
 383 shrinks, while the maximum amplitude increases until the singularity is reached at
 384 $t = t_c$.

385 One can rewrite solutions (33), (37) in the self-similar form as follows:

$$386 \quad \omega(x, t) = \frac{1}{t_c - t} \frac{4i\tilde{v}_c^2}{3} \left(\frac{1}{[\xi - i\tilde{v}_c]^2} - \frac{1}{[\xi + i\tilde{v}_c]^2} \right) = \frac{1}{t_c - t} \frac{16\tilde{v}_c^3 \xi}{3(\xi^2 + \tilde{v}_c^2)^2}, \quad (38)$$

387 where

$$388 \quad \xi := \frac{x - x_0}{(t_c - t)^{1/3}} \quad (39)$$

389 is the self-similar variable.

390 Note After our arXiv preprint submission (Lushnikov et al. 2020), we learned that
 391 the self-similar solution (38) was recently discovered by Chen (2020). The result
 392 presented here was found independently via the complex singularity approach and has
 393 a somewhat more general form by including the additional real parameter \tilde{v}_c .

394 To summarize, this section proves the following theorem:

395 **Theorem 2** Equations (38) and (39) provide an exact solution of Eq. (1) for $a = 1/2$
396 for any value of the real constants t_c , $\tilde{v}_c > 0$ and x_0 .

397 **Remark 3** The decay of $u(x, t)$ in Eq. (34) as $x \rightarrow \pm\infty$ ensures that the kinetic energy
398 (10) has a finite value for $t < t_c$. In contrast, E_K for solution (32) at $a = 0$ is infinite.

399 **5 The Solution for General Values of a**

400 The explicit self-similar solutions (29)–(31) and (38), (39) (corresponding to the values
401 $a = 0, 1/2$) represent the particular situation where the leading-order singularity in
402 Eqs. (17) and (21) provides the exact solution with identically zero l.s.t.. All other
403 values of a are addressed in the following theorem:

404 **Theorem 3** A solution (17) and (21) of Eq. (1) which satisfies assumptions (i) and (ii)
405 of Theorem 1 requires l.s.t. which are not identically zero for any $a \in \mathbb{R}$ except $a = 0$
406 and $a = 1/2$.

407 **Proof** The case $a \geq 1$ is trivial because $a = 1$ corresponds to the singular value of γ as
408 follows from Eq. (21), while $a > 1$ implies that $\gamma < 0$, contradicting the assumption
409 of Theorem 3 that ω at $x \rightarrow \pm\infty$. Thus, below we assume that $a < 1$ which implies
410 that $\gamma > 0$.

411 We assume by contradiction that l.s.t. in Eq. (17) are identically zero. Then, we
412 plug Eq. (17) into Eq. (1) and collect terms with different powers of $x - iv_c(t)$. The
413 most singular term $\propto [x - iv_c(t)]^{-2\gamma}$ is identically zero by Eq. (21) as follows from
414 the proof of Theorem 1. Collecting the next most singular terms $\propto [x - iv_c(t)]^{-1-\gamma}$,
415 we obtain that

$$\frac{dv_c(t)}{dt} = -\frac{2^{1-\gamma}\tilde{\omega}_{-\gamma}(t)}{v_c^{\gamma-1}(t)\gamma}, \quad (40)$$

417 which generalizes Eq. (35) to arbitrary values of γ . We note that there is no overlap
418 between terms of different orders in this proof except in the case $\gamma = 1$, for which
419 $-2\gamma = -\gamma - 1$. However, this case is fully considered in Sect. 3 and excluded by
420 assumption in the statement of Theorem 3 because it corresponds to $a = 0$.

421 Collecting the terms $\propto [x - iv_c(t)]^{-\gamma}$, we obtain that

$$\frac{d\tilde{\omega}_{-\gamma}(t)}{dt} = \frac{2^{-\gamma}(\gamma-1)\tilde{\omega}_{-\gamma}^2(t)}{v_c^\gamma(t)} \quad (41)$$

423 which generalizes Eq. (36) to arbitrary values of γ .

424 However, at the next order, collecting terms $\propto [x - iv_c(t)]^{-\gamma+1}$ leads to

$$\frac{2^{-\gamma-2}(\gamma-2)(\gamma+1)ie^{-i\pi\gamma/2}\tilde{\omega}_{-\gamma}^2(t)}{v_c^{\gamma+1}(t)} = 0, \quad (42)$$

426 which cannot be satisfied by any nontrivial solution $\tilde{\omega}_{-\gamma}(t) \not\equiv 0$ except if $\gamma = 2$, i.e.,
427 $a = 1/2$. This contradiction completes the proof of Theorem 3. \square

428 **Remark 4** The ODE system (40) and (41) can be immediately solved for any γ result-
429 ing in

$$430 \quad \begin{aligned} v_c(t) &= \tilde{v}_c (t_c - t)^{\frac{2}{\gamma(\gamma+1)}}, \\ \tilde{\omega}_{-\gamma}(t) &= \frac{2\gamma \tilde{v}_c^\gamma}{\gamma + 1} (t_c - t)^{\frac{1-\gamma}{\gamma+1}}, \end{aligned} \quad (43)$$

431 where \tilde{v}_c and t_c are arbitrary real constants. Then neglecting *l.s.t.*, we obtain from
432 Eqs. (17) and (43) the following self-similar “solution”

$$433 \quad \omega(x, t) = -\frac{i}{t_c - t} \frac{2\gamma \tilde{v}_c^\gamma}{\gamma + 1} \left(\frac{e^{-i\pi\gamma/2}}{[\xi - i\tilde{v}_c]^\gamma} - \frac{e^{i\pi\gamma/2}}{[\xi + i\tilde{v}_c]^\gamma} \right), \quad (44)$$

434 where

$$435 \quad \xi := \frac{x - x_0}{(t_c - t)^{\alpha_0}}, \quad \alpha_0 = \frac{2}{\gamma(\gamma + 1)} \quad (45)$$

436 is the self-similar variable. For $\gamma = 1$ ($a = 0$) and $\gamma = 2$ ($a = 1/2$), Eqs. (44) and (45)
437 recover Eqs. (29), (32) and (38), (39), respectively. However, Theorem 3 ensures that
438 Eqs. (44) and (45) are not the exact solution for $\gamma \neq 1, 2$. One may hope that even if
439 $\gamma \neq 1, 2$, the self-similar solution is well approximated by Eqs. (44) and (45) because
440 (17) is the leading-order singularity of the solution. However, we find in Sect. 8 (see
441 also Fig. 1) that the numerically computed self-similar solution has a different power
442 scaling for $\xi = \frac{x - x_0}{(t_c - t)^\alpha}$ than in Eq. (45), i.e., $\alpha_0 \neq \alpha$ for $\gamma \neq 1, 2$. This implies that
443 the *l.s.t.*, neglected in (45), lead to a nontrivial modification of α compared with α_0 .

444 6 Self-similar Solution and Nonlinear Eigenvalue Problem

445 The results of Sects. 3–5 suggest looking for a solution of Eq. (1) in the general
446 self-similar form (6). Substitution of the ansatz (6) into Eq. (1) reduces it to

$$447 \quad \mathcal{M}f := f + \alpha \xi f_\xi = -a(\partial_\xi^{-1} \mathcal{H}f) f_\xi + f \mathcal{H}f, \quad (46)$$

448 where \mathcal{M} is a linear operator. One can also rewrite Eq. (46) as the system

$$449 \quad f + \alpha \xi f_\xi = -a g f_\xi + f g_\xi, \quad g = \partial_\xi^{-1} \mathcal{H}f, \quad (47)$$

450 where

$$451 \quad u = \tau^{\alpha-1} g(\xi). \quad (48)$$

452 We can iterate Eq. (46) for different values of α to find the optimal α which realizes
453 the dominant collapse regime. To do this, we have to invert the operator \mathcal{M} in Eq. (46)

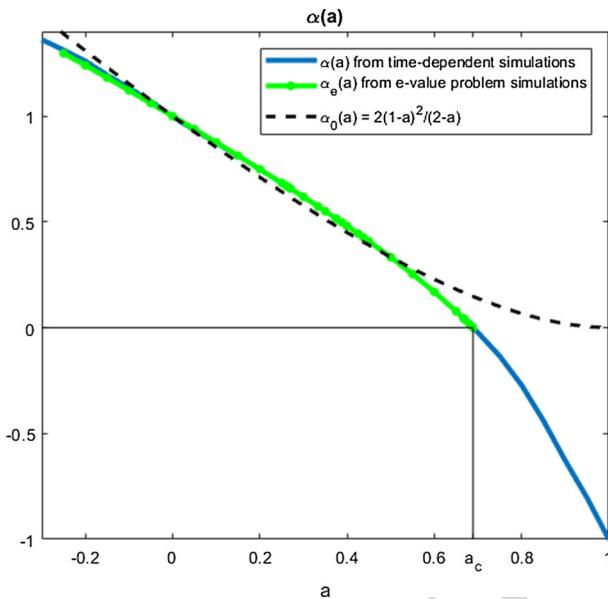


Fig. 1 Dependence of $\alpha(a)$ on a , obtained via time-dependent simulations of Sect. 8 and via nonlinear eigenvalue problem of Sect. 9. The green curve terminates at $a = a_c$ since the iteration used to solve the nonlinear eigenvalue problem for $x \in \mathbb{R}$ does not converge for $a > a_c$. Also included for comparison is an approximation to $\alpha(a)$ from Eq. (45), $\alpha_0(a) = \frac{2}{\gamma(a)(\gamma(a)+1)} = \frac{2(1-a)^2}{(2-a)}$

454 at each iteration. The equation $\mathcal{M}f = 0$ has a general solution

455

$$f \propto |\xi|^{-\frac{1}{\alpha}} \quad (49)$$

456 for $\alpha \neq 0$ and $f \equiv 0$ for $\alpha = 0$. Depending on the sign on α , this solution is singular
457 either at $x \rightarrow 0$ or $x \rightarrow \pm\infty$. Thus, the operator \mathcal{M} is invertible for the class of
458 smooth solutions decaying at $x \rightarrow \pm\infty$ which we use in Sect. 9.

459 The condition that the solution of Eq. (46) decays at both $x \rightarrow \pm\infty$ requires a
460 specific choice of α for each a . It forms a version of nonlinear eigenvalue problem for
461 $\alpha(a)$. Section 9 finds $\alpha(a)$ by iterating Eq. (46) numerically.

462 *Asymptotics for $\xi \rightarrow \pm\infty$.* If we assume smooth (e.g., power law) decay in f and
463 its derivative as $\xi \rightarrow \pm\infty$, then in this limit the quadratically nonlinear r.h.s. of (47)
464 will be subdominant to the linear terms on the left-hand side. This implies that Eq. (49)
465 describes the decay of f for $\xi \rightarrow \pm\infty$ provided $\alpha > 0$, in agreement with the exact
466 results of Sects. 3 [Eq. (30)] and 4 [Eq. (38)] for $\alpha = 1$ and $\alpha = 1/3$, respectively. For
467 $\alpha < 0$, the assumed smooth decay of f as $\xi \rightarrow \pm\infty$ is inconsistent with (49). This
468 suggests that

469

$$f(\xi) \equiv 0 \text{ at } \xi \rightarrow \pm\infty \text{ for } \alpha < 0, \quad (50)$$

470 so that $f(\xi)$ has the finite support for $\alpha < 0$. This is consistent with Chen et al. (2019)
 471 which considers the particular case $\alpha = -1$.

472 Equation (46) is invariant under a stretching of the self-similar coordinate ξ ,

473
$$\xi \rightarrow A\xi, A = \text{const} \in \mathbb{R}, \quad (51)$$

474 i.e., if $f(\xi)$ is a solution for Eq. (46), then $f(A\xi)$ is also a solution of the same
 475 equation. Therefore, if one finds a solution of Eq. (46), then it immediately implies
 476 an infinite family of solutions from the stretching (51). Despite this nonuniqueness,
 477 we find that the version of GPM employed here converges to a solution of Eqs. (47),
 478 (50). Further details are given in Sect. 9.

479 7 Transformed Version of the Equation

480 The analysis of previous sections assumes the solution exists on the real line $x \in$
 481 $(-\infty, \infty)$ with the decaying BC (7). To address this infinite domain in simulations,
 482 we use the auxiliary (computational) variable q defined by

483
$$x = \tan\left(\frac{q}{2}\right). \quad (52)$$

484 Equation (52) maps the segment of the real line $(-\pi, \pi)$ of q onto the real line
 485 $(-\infty, \infty)$ of x . Extending both x and q into the complex plane, we find that Eq. (52)
 486 maps the infinite strip $-\pi < \text{Re}(q) < \pi$ onto the complex plane $x \in \mathbb{C}$, except for the
 487 half-lines $(-\infty, -i)$ and $(i, +\infty)$, with the upper half-strip being mapped onto the
 488 upper half-plane \mathbb{C}^+ and the lower half-strip being mapped onto the lower half-plane
 489 \mathbb{C}^- . Also the boundaries of the strip, $\text{Re}(q) = \pm\pi$ are mapped onto $(-\infty, -i)$ and
 490 $(i, +\infty)$, see, e.g., Dyachenko et al. (2016) and Lushnikov et al. (2017) for details
 491 of this mapping. Here and below, we abuse notation and use the same symbols for
 492 functions of either x or q . For example, we assume that $\tilde{f}(q) := f(x(q))$ and remove
 493 the $\tilde{}$ sign.

494 Using the Jacobian of the mapping (52),

495
$$\frac{dx}{dq} = \frac{1}{2 \cos^2\left(\frac{q}{2}\right)} = \frac{1}{1 + \cos q}, \quad (53)$$

496 and the results of “Appendix A”, we rewrite Eqs. (1) and (2) for independent variables
 497 q and t as

498
$$\begin{aligned} \omega_t &= -a(1 + \cos q)u\omega_q + \omega[\mathcal{H}^{2\pi}\omega + C_\omega^{2\pi}], \quad q \in (-\pi, \pi), \\ (1 + \cos q)u_q &= [\mathcal{H}^{2\pi}\omega + C_\omega^{2\pi}], \end{aligned} \quad (54)$$

499 where the Hilbert transform $\mathcal{H}^{2\pi}$ on the interval $(-\pi, \pi)$ is defined by (see also
500 “Appendix A”)

501

$$\mathcal{H}^{2\pi} f(q) := \frac{1}{2\pi} \text{p.v.} \int_{-\pi}^{\pi} \frac{f(q')}{\tan(\frac{q-q'}{2})} dq', \quad (55)$$

502 and the constant $C_{\omega}^{2\pi}$ is determined by

503

$$C_{\omega}^{2\pi} = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \omega(q') \tan\left(\frac{q'}{2}\right) dq'. \quad (56)$$

504 We call Eq. (54) the transformed CLM equation. Note that Eq. (55) is the reduction
505 of Eq. (2) to the class of 2π -periodic functions, see “Appendix A.” The decaying BC
506 (7) allow a 2π -periodic extension of $\omega(q, t)$ with $\omega(q, t)|_{q=\pi+2\pi n} = 0, n \in \mathbb{N}$. It
507 enables us to work with $\omega(q, t)$ in terms of a Fourier series over q .

508 8 Results of Time-Dependent Simulations on the Real Line

509 Based on the results of Sect. 7, we numerically solve Eq. (54) on the real line $x \in \mathbb{R}$ with
510 a pseudo-spectral Fourier method by representing the 2π -periodic solution $\omega(q, t)$ as
511 a sum of $2N$ Fourier modes $\hat{\omega}_k(t)$ as

512

$$\omega(q, t) = \sum_{k=-N}^{k=N-1} \hat{\omega}_k(t) e^{ikq}. \quad (57)$$

513 We use $2N$ uniformly spaced grid points in q from $-\pi$ to $\pi - \Delta q$, where $\Delta q = \pi/N$.
514 The fast Fourier transform (FFT) allows us to efficiently find numerical values of $\hat{\omega}_k(t)$
515 from values of $\omega(q, t)$ on that grid. The resolution N is chosen depending on the initial
516 condition (IC) and adaptively adjusted throughout the computation so that the spectrum
517 $\hat{\omega}_k$ is fully resolved with the desired precision. This means that $|\hat{\omega}_k|$ decays by 16–
518 17 orders of magnitude at $|k| \sim N$ compared to $\max_{-N \leq k \leq N-1} |\hat{\omega}_k|$, down to the
519 round-off floor of the error for double precision. For the multi-precision simulations
520 which were performed, this decay is further enhanced (or equivalently, the round-off
521 is reduced) by any desired number of orders. Below, we focus on the description of
522 double precision simulations while noting that higher precision simulations were also
523 extensively performed.

524 The decay of the Fourier spectrum $\hat{\omega}_k$ is checked at the end of every time step. If
525 $|\hat{\omega}_k|$ is larger than the numerical round-off at $|k| \sim N$ at the given time step, then the
526 simulation is “rewound” for one time step backward with N increased by factor of 2,
527 and the time stepping is continued. Amplitudes of the new extra Fourier modes are
528 set to 0, which is equivalent to performing a spectral interpolation of the solution at
529 the newly inserted grid points in q space. Rewinding is done to avoid accumulation of
530 error due to the tails of the spectrum not being fully resolved at the time step before
531 the grid refinement. For time marching, we use 11-stage explicit Runge–Kutta method

of 8th order (Cooper and Verner 1972) with the adaptive time step Δt determined by the condition $\Delta t = \text{CFL} \cdot \min\{\Delta q / (a \max_q |(1 + \cos q)u|), 1 / \max_q |(1 + \cos q)u_q|\}$, where the numerical constant CFL is typically chosen as $\text{CFL} = 1/4, 1/8$, or $1/16$ to achieve numerical stability in the time stepping and ensure that the error of the method is near round-off level. Also, the scaling of Δt with $\max_q |(1 + \cos q)u|$ and $\max_q |(1 + \cos q)u_q|$ ensures numerical stability of the method during possible singularity formation events. We additionally enforced the real valuedness of $\omega(q)$ at each time step to avoid numerical instability, since the FFT and inverse FFT lead to accumulation of a small imaginary part at the level of round-off, which can be amplified during time evolution.

Typically, we used the following two types of initial conditions (ICs):

$$543 \quad \text{IC1: } \omega_0(q) = -(\sin(q) + 0.1 \sin(2q)), \quad (58)$$

$$544 \quad \text{IC2: } \omega_0(q) = i \frac{4V_c^2}{3T_c} \left(\frac{1}{(\tan(\frac{q}{2}) - iV_c)^2} - \frac{1}{(\tan(\frac{q}{2}) + iV_c)^2} \right), \quad (59)$$

545 where the real-line IC1 is similar in form to the periodic IC in Okamoto et al. (2008)
 546 except for an opposite sign. In IC2, V_c and T_c are real numbers and in most of our
 547 simulations we used $V_c = 1$, $T_c = 1$, for which IC2 reduces to

$$548 \quad \omega_0(q) = -\frac{4}{3}(\sin(q) + 0.5 \sin(2q)). \quad (60)$$

549 Note the first two derivatives of (60) are zero at $q = \pm\pi$, i.e., $\omega_0^{(n)}(q = \pm\pi) =$
 550 0 for $n = 0, 1, 2$. Both ICs (58) and (59) are real-valued odd functions with a negative
 551 slope at $q = 0$ and lead to the formation of a singularity at $q = 0$ at some moment
 552 in time for $a < a_c$ [see Eq. (8) for the definition of a_c], while $\omega(q, t)$ stays real-
 553 valued and odd. The function $\omega_0(q)$ in IC1 is an entire function, and that in IC2 has
 554 two double poles at $x = \tan(\frac{q}{2}) = \pm iV_c$ in x -space or at $q = \pm iq_c$ in q -space,
 555 where $q_c = 2 \operatorname{arctanh}(V_c)$. Note that IC2 corresponds to the exact solution for the
 556 case $a = 1/2$ with a collapse at $t = T_c$ [see Eq. (38)], while for other values of the
 557 parameter a , it is not an exact solution but qualitatively resembles one on the real
 558 interval $[-\pi, \pi]$ and serves as a good IC to obtain collapsing solutions.

559 Computation of the 2π -periodic Hilbert transform $\mathcal{H}^{2\pi}$ (see “Appendix A” for the
 560 definition of $\mathcal{H}^{2\pi}$) is easily done in Fourier space as

$$561 \quad \hat{\mathcal{H}}_k^{2\pi} = -i \operatorname{sign}(k), \quad (61)$$

562 where $\operatorname{sign}(k) = 1$ for $k > 0$, $\operatorname{sign}(k) = 0$ for $k = 0$, and $\operatorname{sign}(k) = -1$ for
 563 $k < 0$. Also the constant $C_\omega^{2\pi}$ (56) in Eq. (54) is computed from the condition that
 564 $\mathcal{H}^{2\pi} \omega(q = -\pi) + C_\omega^{2\pi} = 0$, i.e., $-i \sum_{k=-N}^{k=N-1} \hat{\omega}_k (-1)^{-k} \operatorname{sign}(k) + C_\omega^{2\pi} = 0$.

565 While computing the values of u_q from the second equation in (54), one has to
 566 take special care at the point $q = -\pi$. Expanding both the left-hand side (l.h.s.)
 567 and r.h.s. of that equation in a Taylor series at the point $q = -\pi$, we obtain that
 568 $u_q(q = -\pi) = \mathcal{H}_{qq}^{2\pi} \omega(q = -\pi)$, which can also be computed using $\hat{\omega}_k$. The term with

569 $\mathcal{H}_q^{2\pi}$ in the Taylor series of the r.h.s. vanishes since $\mathcal{H}_q^{2\pi}\omega(q = -\pi) = \sum_k |k| \hat{\omega}_k = 0$
 570 for the real-valued odd function $\omega(q)$ with $\hat{\omega}_{-k} = -\hat{\omega}_k$.

571 For each simulation, we made a least squares fit of the Fourier spectrum $|\hat{\omega}_k|$ at
 572 time t to the asymptotic decay model

$$573 \quad |\hat{\omega}_k(t)| \approx C(t) \frac{e^{-\delta(t)|k|}}{|k|^{p(t)}} \quad (62)$$

574 for $|k| \gg 1$ (Carrier et al. 1966), where $C(t)$, $\delta(t)$ and $p(t)$ are the fitting parameters
 575 for each value of t . This allows us to obtain both $\delta(t) > 0$ and $p(t)$ as functions of t .
 576 The value of $\delta(t)$ indicates the distance of the closest singularity of $\omega(q)$ from the real
 577 line in the complex q -plane, and the value of $p(t)$ is related to the type or power of
 578 that complex singularity, see Okamoto et al. (2008), Dyachenko et al. (2013b, 2016),
 579 and Sulem et al. (1983) for more details. In particular, if the singularity in the solution
 580 is of a power-law type $\omega(q) \sim (q - iq_c)^{-\gamma}$, then using complex contour integration
 581 one obtains (see, e.g., Carrier et al. 1966) that $|\hat{\omega}_k| \approx Ce^{-q_c|k|}/|k|^{1-\gamma}$, meaning that
 582 $\delta = q_c$ and

$$583 \quad p = 1 - \gamma \quad (63)$$

584 which follows from Eq. (62). According to Eq. (52), the distance δ_x from the closest
 585 singularity to the real line in the complex x -plane is $\delta_x = \tanh\left(\frac{\delta}{2}\right)$. It implies that
 586 $\delta_x = \frac{\delta}{2} + O(\delta^3)$ for $\delta \ll 1$.

587 Results of a simulation with the parameter value $a = 2/3$ and IC2 with $V_c = 1$,
 588 $T_c = 1$ [i.e., Eq. (60)] are provided in Figs. 2 and 3. The maximal value $\max_q |\omega(q, t)|$
 589 of the numerical solution increases from an initial value ~ 1 up to $\sim 10^{30}$ at the final
 590 simulation time. Figure 3 shows the spectrum $|\hat{\omega}_k|$ and its fit to model (62). This fit
 591 provides numerically extracted values of both $\delta(t)$ and $p(t)$. Then, $\delta_x(t) = \tanh\left(\frac{\delta(t)}{2}\right)$
 592 is computed from $\delta(t)$ and fitted to $\delta_x(t) \propto (t_c - t)^\alpha$, per Eq. (6), to determine α . We
 593 first obtain an estimate for t_c from a fit to $\max_x |\omega(x, t)| \propto \frac{1}{(t_c - t)}$ by extrapolating
 594 the numerical solution up to $t = t_c$. From these fits, we obtain that $\alpha \approx 0.04517095$,
 595 giving the temporal rate of singularity approach to the real line in complex x -space.
 596 The algebraic decay rate $p(t)$ appears to stabilize at the value -2 as t approaches the
 597 singularity time t_c . An initial transient is not included in the data used for the $\delta_x(t)$ fit,
 598 since $\delta(t)$ and $p(t)$ cannot be determined accurately at these times due to the spectrum
 599 $|\hat{\omega}_k|$ being oscillatory. These oscillations quickly die out as the self-similar regime is
 600 approached.

601 We find that we get the best accuracy for δ and p from the fit of $|\hat{\omega}_k|$ to model (62)
 602 if we confine the least square fit to a window of data between $1/4$ and $1/3$ of the total
 603 effective width of the spectrum (shown on the left part of Fig. 3 with a green color).
 604 This is due to an increase in the relative error of the spectrum data at the tails, as the
 605 round-off floor is approached. Moreover, model (62) is accurate only asymptotically
 606 as $|k| \rightarrow \infty$, so we cannot use too small values of $|k|$.

607 For $0 \leq a < a_c$ [with a_c given by Eq. (8)] and for both IC1 (58) and IC2 (59), we
 608 find that $\delta_x(t)$ evolves in time toward 0, while $p(t)$ approaches a constant value after

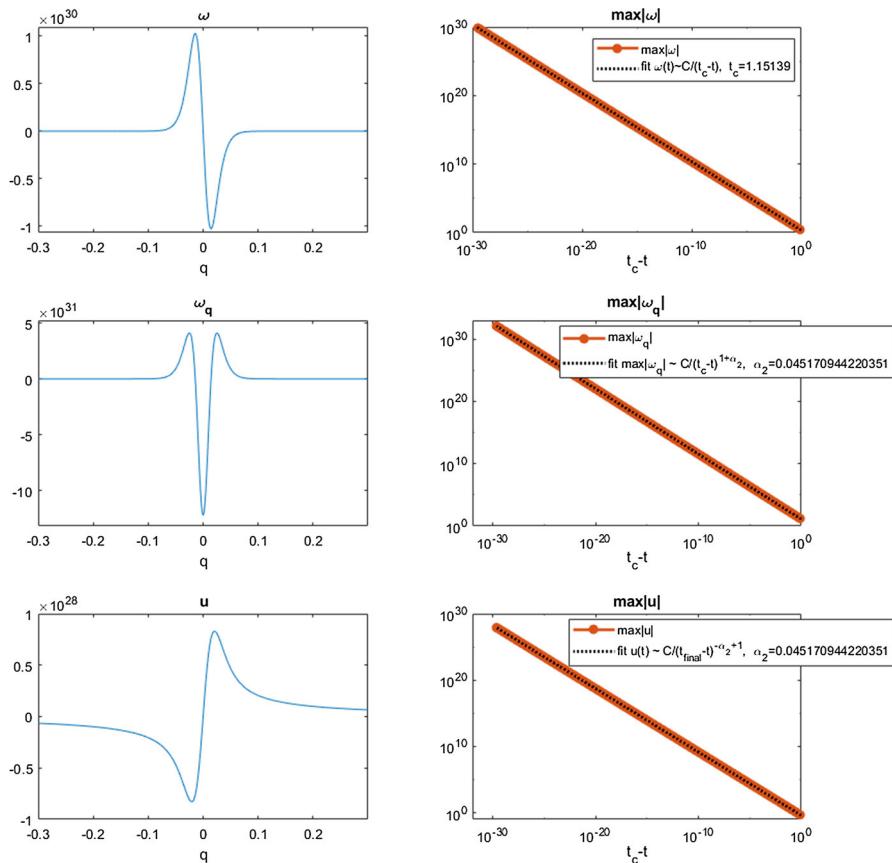


Fig. 2 Results of the simulation of Eqs. (54)–(55) with $a = 2/3$ and initial condition IC2 (60). Left panels: the solution $\omega(q, t)$, its derivative $\omega_q(q, t)$ and $u(q, t)$ for $t = 1.15139$. Right panels: the time dependence of maximum values of these functions. Dashed lines show the prediction of Eq. (6) with α_2 extracted from the simulations as explained in the text. The collapse time t_c is extracted from the fit (by extrapolation) to $\max |\omega(x, t)| \propto \frac{1}{(t_c - t)}$

609 a quick transient phase, see Fig. 3 (right panel). We observe spontaneous formation of
 610 a universal self-similar solution profile of form (6) during time evolution (see Fig. 4).
 611 These self-similar profiles as well as the value of α in $\delta_x(t)$ and the terminal value of
 612 $p(t)$ as $t \rightarrow t_c$ are the same for a wide class of ICs (e.g., one can change a power of
 613 singularity in IC2 from -2 to any negative number below -2 and/or change numerical
 614 values of both $V_c > 0$ and $T_c > 0$). Thus, these self-similar profiles are only functions
 615 of the parameter a . Table 1 provides the universal values of α and p versus a . Figure 1
 616 shows the dependence of $\alpha(a)$ on a . However, one can also find particular IC in which
 617 finite-time singularities do not form. Two such choices are – IC1 and – IC2, i.e.,
 618 IC1 (58) and IC2 (59), taken with the opposite sign. In these two cases, we did not
 619 observe collapse or singularity formation in finite time, but rather an algebraic-in-
 620 time approach of a singularity to the real line, $\delta_x(t) \sim 1/t^\mu$, $\mu > 0$. Other smooth

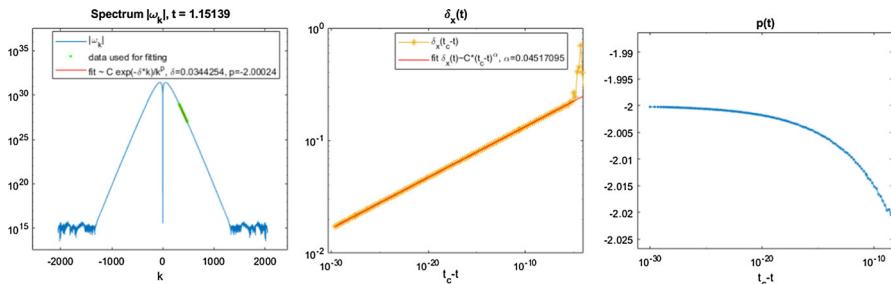


Fig. 3 Left panel: The Fourier spectrum $|\hat{\omega}_k|$ at a particular time $t = 1.15139$ from the same simulation as in Fig. 2 with $a = 2/3$. The red line represents a fit to model (62) with green line showing the portion of the $|\hat{\omega}_k|$ used for the least-squares fit. Center and right panels: time dependence of $\delta_x(t) = \tanh\left(\frac{\delta_x(t)}{2}\right)$ and $p(t)$ recovered from the fit of the spectrum to Eq. (62) at different times. The red solid line at the center panel represents a fit to the model $\delta_x(t) \sim (t_c - t)^\alpha$

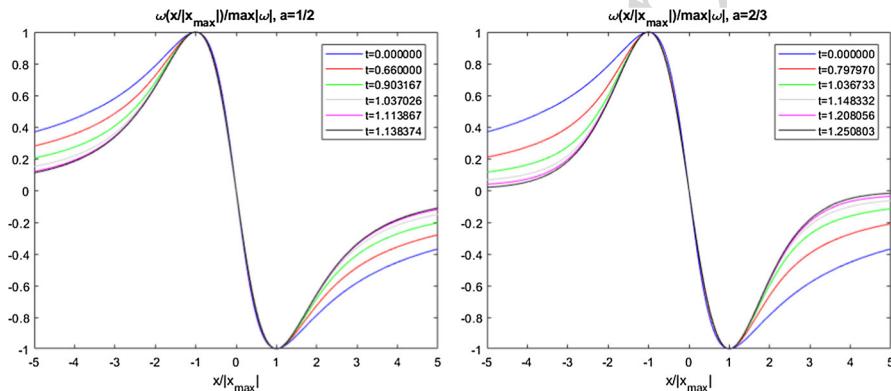


Fig. 4 Convergence of time-dependent numerical solution of Eqs. (54)–(55) with $a = 1/2$ (left panel) and $a = 2/3$ (right panel) to the self-similar solution (6). In both cases, we used IC1 (58). Solutions shrink horizontally and increase in amplitude vertically until collapse occurs at $t = t_c$, $t_c \approx 1.180602237542$ (left panel) and $t_c \approx 1.272876000077$ (right panel). Solutions are plotted in x -space, where $x = \tan(\frac{q}{2})$. Horizontal and vertical scales are dynamically changed in both panels to exactly match the positions and amplitudes of the local maximum at $x = x_{\max}$ and minimum at $x = -x_{\max}$

generic initial conditions that were tried were found to produce blow-up after an initial transient, as exemplified in Fig. 5. These transients made the simulation considerably slower (due to the need for more modes in the spectrum of to resolve the solution down to double precision round-off). However, in a space-time neighborhood of the singularity these solutions recover the same self-similar profile as shown in Fig. 4, see also Fig. 5. We note that the velocity $u(x, t)$ evolves toward the self-similar profile (48) with $\max_x |u| \rightarrow \infty$ for $0 < a < a_c$. Below, we focus on IC1 and IC2, but the reader should but keep in mind that they appear generic.

Using the terminal values of p extracted by fits to Eq. (62) with various a , and employing Eq. (63) to recover γ from p , we confirmed the formula $\gamma(a) = \frac{1}{1-a}$ [see Theorem 1 and Eq. (21) in Sect. 2] and the corresponding formula $p(a) = \frac{-a}{1-a}$ within 0.5% for $0 \leq a < a_c$. Figure 6 shows the numerical approximation, $\gamma_{\text{num}}(a) =$

Table 1 Values of α , p and α_2 extracted via fits to $\delta_x(t)$, $|\hat{\omega}_k|$ and $\max|\omega_x(x, t)|$ in time-dependent simulations of Eqs. (54)–(55) for various values of a . Also shown are values of α_e and β obtained from eigenvalue problem simulations of Eqs. (67) and (55) described in Sect. 9

a	α_e	β	p	α	α_2
-5	–	–	0.855	7.495	7.517
-2	–	–	0.680	3.444	3.422
-1	–	–	0.505	2.208	2.206
-0.5	–	–	0.335120	1.603747	1.600222
-0.25	1.296593455	–	0.200942	1.303708	1.302424
-0.2	1.239824952	–	0.167139	1.243558	1.242436
-0.15	1.181358555	0.133308	0.130811	1.183300	1.182701
-0.1	1.121312899	0.100401	0.091110	1.122630	1.122093
-0.05	1.061051829	0.060633	0.047696	1.061617	1.061334
0	0	0	0.004	1.000243	1.000019
0.05	0.938365701	-0.070205	-0.052759	0.938381	0.938288
0.1	0.876129662	-0.136336	-0.111326	0.876329	0.876309
0.15	0.813179991	-0.240380	-0.176727	0.813219	0.813215
0.2	0.749369952	-0.338799	-0.250265	0.749519	0.749549
0.25	0.684513621	-0.460507	-0.3335582	0.684650	0.684671

Table 1 continued

a	α_e	β	p	α	α_2
0.265	0.664818990	-0.500444	-0.360765	0.664827	0.664830
0.3	0.618374677	-0.610349	-0.428762	0.618375	0.618377
0.35	0.550648498	-0.787978	-0.538583	0.550661	0.550655
0.4	0.489939257	-0.939823	-0.666732	0.4899431	0.4899429
0.425	0.445184823	-0.97452	-0.739156	0.4451863	0.4451860
0.4375	0.427049782	-0.993899	-0.777804	0.4270512	0.4270508
0.45	0.408728507	-1	-0.818193	0.40872820	0.40872838
0.5	0.333333333	-1	-1.000007	0.33333354	0.33333340
0.55	0.233852136994	-1	-1.222218	0.25385226	0.25385213
0.6	0.169098936470	-1	-1.4999991	0.16909915	0.1690989367
0.65	0.077532635626630	-1	-1.857141	0.07753263562662	0.07753263562662
2/3	0.045170944220367	-1	-1.999997	0.04517094422035	0.04517094422035
0.68	0.018526534283004	-1	-2.125013	0.01852675	0.01852653428270
0.685	0.0083351682345844	-1	-2.175083	0.0083351682345843	0.0083351682345843
0.689	0.000137203824593	-1	-2.219165	0.00013724	0.000137203824603
0.68905	3.409705703117e-05	-1	-2.221589	3.4145e-05	3.4097057039e-05
0.68906	1.347443362884e-05	-1	-2.220924	1.3418e-05	1.3474433654e-05

Table 1 continued

a	α_e	β	p	α	α_2
0.6890666	1.10065641e-06	-1	-2.221505	1.0808e-06	1.1006564176e-06
0.68906665	6.950143e-08	-1	-2.223142	-	6.9501438524e-08
0.689066653	7.632094e-09	-1	-2.222128	-	7.6321058379e-09
0.6890666533	1.445152e-09	-1	-2.220519	-	1.4451679770e-09
0.68906665335	4.13992e-10	-1	-2.205923	-	4.1401557848e-10
0.68906665337	1.537e-12	-1	-2.220897	-	1.5519e-12
0.68906665337007	9.43093e-14	-1	-2.227272	-	1.1097e-13
0.689066653370074	1.18169e-14	-1	-2.222533	-	2.7574e-14
0.6890666533700745	1.505397e-15	-1	-2.221208	-	1.4711e-14
0.68906665337007457	6.169886e-17	-1	-	-	-
0.7	-	-	-	-	-0.02281
0.75	-	-	-	-	-0.13435
0.8	-	-	-	-	-0.26008
0.85	-	-	-	-	-0.40384
0.9	-	-	-	-	-0.57118
0.95	-	-	-	-	-0.76643
1	-	-	-	-	-1.00000056

Accuracy of $\alpha(a)$ (for $-1 \leq a \leq 0.689$) and $\alpha_2(a)$ (for $-1 \leq a \leq 0.689066533$) is at least 3-4 digits of precision, whereas accuracy of $\alpha_e(a)$ is about 3-4 digits of precision for $a < 0.3$ and at least 5 digits of precision for $a \geq 0.3$, with more precision for $0.3 \leq a \leq 0.6890665$

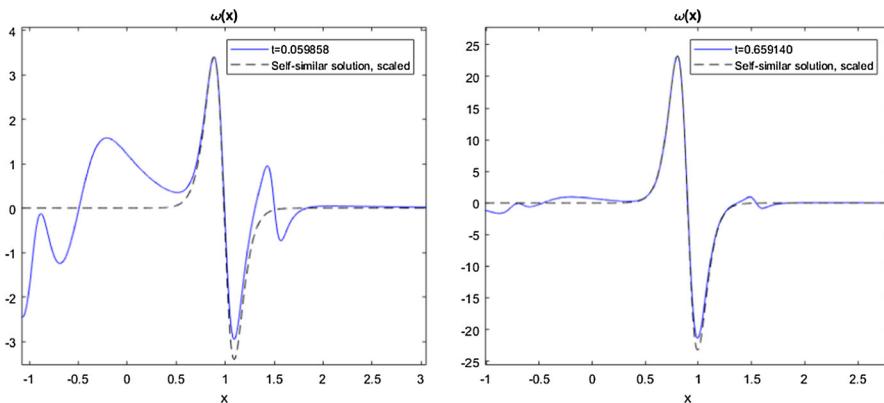


Fig. 5 Convergence of the time-dependent numerical solution of Eqs. (54)–(55) to the self-similar profile (6) as $t \rightarrow t_c$. Here, $a = 2/3$ and we use the generic initial condition $\omega_0(x) = -\frac{1}{64} \left(\frac{1}{(x-x_1^+)^3} + \frac{1}{(x-x_1^-)^3} \right) - \frac{i}{3} \left(\frac{1}{(x-x_2^+)^2} - \frac{1}{(x-x_2^-)^2} \right) + \frac{1}{32} \left(\frac{1}{(x-x_3^+)^3} + \frac{1}{(x-x_3^-)^3} \right) + \frac{i}{96} \left(\frac{1}{(x-x_4^+)^2} - \frac{1}{(x-x_4^-)^2} \right)$, where $x_1^\pm = -1 \pm \frac{i}{4}$, $x_2^\pm = -\frac{1}{2} \pm \frac{i}{2}$, $x_3^\pm = 1 \pm \frac{i}{4}$, $x_4^\pm = \frac{3}{2} \pm \frac{i}{8}$. The solution is shown at two different moments in time, where for each time we overlaid the self-similar profile as in Fig. 4, matching their corresponding maximum and minimum positions horizontally and vertically

633 1 – $p(a)$ using values of $p(a)$ from Table 1 as well as the theoretical value $\gamma = \frac{1}{1-a}$
 634 for comparison. We note that the plot of $1/\gamma_{num}(a)$ in Fig. 6 stops at $a = a_c$, since it is
 635 difficult to obtain accurate values of $p(a)$ (and hence $\gamma_{num}(a)$) from time-dependent
 636 simulations when $a > a_c$. This is due to a transition that occurs at $a = a_c$, in which
 637 the fitted singularity for $a < a_c$ corresponding to collapse is no longer closest to the
 638 real x line when $a > a_c$.

639 In addition to Fourier fitting, we also extract values of α in an alternative way (these
 640 values are called α_2 below), using the spatial derivative of the self-similar solution (6)
 641 given by

$$642 \omega_x(x, t) = \frac{1}{(t_c - t)^{1+\alpha}} f' \left(\frac{x}{(t_c - t)^\alpha} \right). \quad (64)$$

643 Using Eq. (64), we fit $\max_x |\omega_x(x, t)|$ to the model $\max_x |\omega_x(x, t)| \propto \frac{1}{(t_c - t)^{1+\alpha_2}}$ to
 644 find α_2 . Values of α_2 for various a are also gathered in Table 1 for comparison with
 645 values of α . We confirmed that α and α_2 obtained using the above two methods for
 646 $0 < a \lesssim 0.689$ agree within a relative error of $< 0.02\%$.

647 For $a < 0$, we observe a similar finite-time blow-up starting from both IC1 and IC2
 648 with $\max_x |\omega| \rightarrow \infty$ as $t \rightarrow t_c$ according to the self-similar profile in Eq. (6). The
 649 extracted values of α , p , and α_2 for $a < 0$ are also given in Table 1, see also Figs. 7
 650 and 8 for results of simulations with $a = -2$ and IC2. The velocity $u(x, t)$ during
 651 the temporal evolution approaches the self-similar profile (48) near the singularity
 652 location at $x = q = 0$. A qualitative difference for $a < 0$ (in comparison with
 653 $0 < a < a_c$) is that the self-similar profile (48) approaches zero because $\alpha > 1$ in

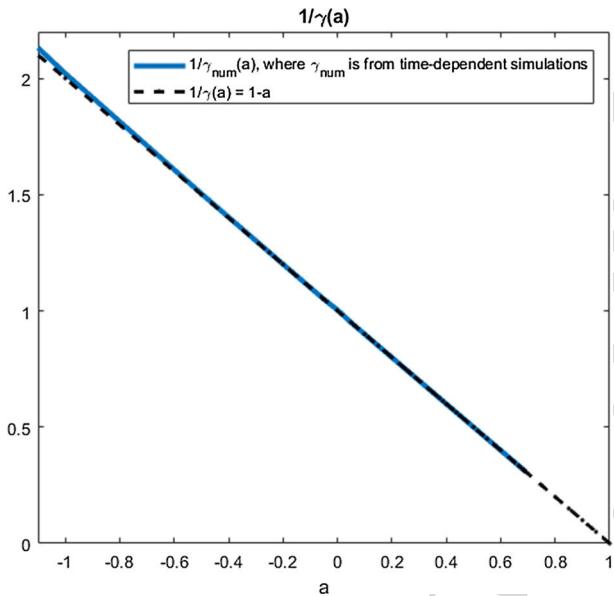


Fig. 6 Dependence of $\gamma_{num}(a) = 1 - p(a)$ using $p(a)$ obtained via time-dependent simulations by the fit to Eq. (62). These data are also provided in Table 1. Also shown is $\gamma(a) = \frac{1}{1-a}$ from Eq. (21) for comparison. Here, we plot $1/\gamma(a)$ instead of $\gamma(a)$ for the easier comparison

654 the former case, while away from the spatial singularity location the value of $u(x, t)$
 655 is generally nonzero, even at $t \rightarrow t_c$. This extends the result of Castro and Córdoba
 656 (2010), who proved that there is finite-time singularity formation for $a < 0$ in the case
 657 of odd compactly supported data $\omega(x, 0) \in C_c^\infty(\mathbb{R})$ with $\mathcal{H}\omega(0, 0) > 0$, to examples
 658 with analytic initial data.

659 We obtained much more accurate values of $\alpha(a)$ (up to 14 digits of precision) by
 660 numerically solving the nonlinear eigenvalue problem, as given in Eq. (47), for a self-
 661 similar solution of Eq. (1) (see Sect. 9). In contrast, for a_c we were able to obtain 14
 662 digits of accuracy using both time-dependent simulations and the nonlinear eigenvalue
 663 problem with double precision arithmetic. Another 3 digits of precision are obtained
 664 (for a total of 17 digits of precision) if quadruple precision arithmetic is used in the
 665 nonlinear eigenvalue problem.

666 We have also performed simulations specifically with $a = 1$ since this special case
 667 was addressed in Chen et al. (2019), who proved for this value of a the existence of
 668 an “expanding” self-similar solution of the type (6) for the problem on $x \in \mathbb{R}$. In this
 669 case, $f(\xi)$ is an odd function with a finite support and $\alpha = -1$. Their solution implies
 670 that $\omega(x, t) \rightarrow f'(0)x$ as $t \rightarrow t_c$ for any finite value of $x \in \mathbb{R}$, while the boundary
 671 of the compact support expands infinitely fast into large $|x|$ as $t \rightarrow t_c$. Our numerical
 672 findings show an approach to this kind of expanding solution with compact support
 673 starting from a generic analytic initial condition, see Figs. 9 and 10. This verifies that
 674 the similarity solution is attracting. The solution grows in amplitude and expands faster
 675 than exponentially in time, which is demonstrated by semi-log plots of $\max_x |\omega(x)|/t$
 676 and its location $x_{\max}(t)$ in the middle and right panels of Fig. 9. It obeys the self-similar

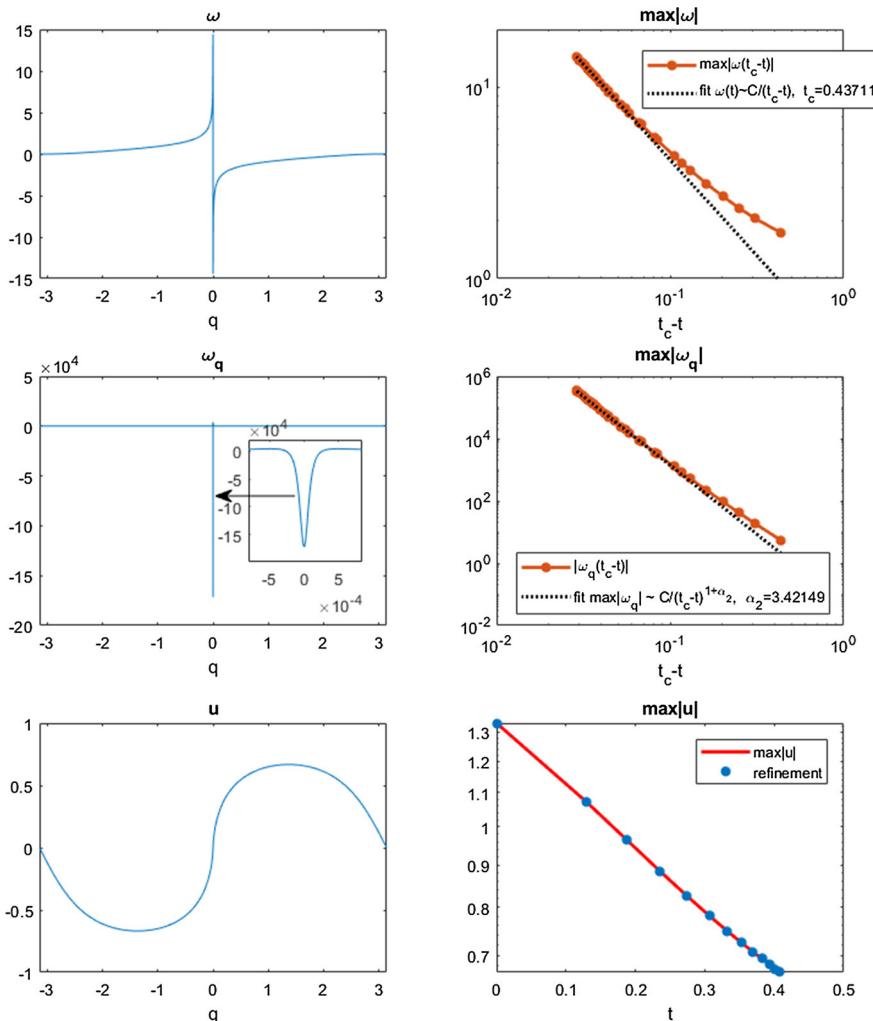


Fig. 7 Results from simulations of Eqs. (54)–(55) with $a = -2$ and initial condition IC2 (60). Left panels: the solution $\omega(q, t)$, its derivative $\omega_q(q, t)$, and $u(q, t)$ for $t = 0.407228$. Right panels: time dependence of the maximum values of these functions. Dashed lines show the prediction of Eq. (6) with α_2 extracted from simulations as explained in the text

profile (6) and forms a finite-time singularity at $t = t_c$. Figure 10 (right panels) confirms the scales $\max_x |\omega(x)| \propto 1/(t_c - t)$ and $|\omega_x(x = 0)| \propto 1/(t_c - t)^{1+\alpha} = \text{const}$ with $\alpha = -1$. One can also see (from the middle panel of Fig. 10) that $\max_x |\omega_{xx}(x)| \rightarrow \infty$ as $t \rightarrow t_c$. We are able to simulate the growth in amplitude of $\omega(x)$ only by about one order of magnitude with our spectral code, since the spectrum widens very quickly as $t \rightarrow t_c$ and decays slowly, i.e., $|\hat{\omega}_k(x)| \sim k^{-2}$, as shown in Fig. 11 (left panel). The approach to a self-similar solution with compact support is expressed in the complex x -plane by the approach of complex singularities (identified as branch points from

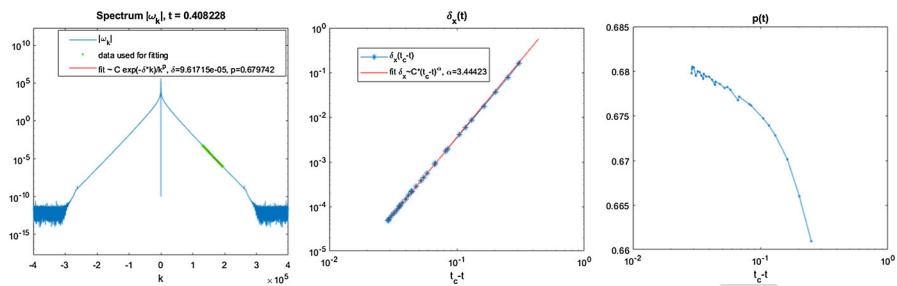


Fig. 8 Left panel: The Fourier spectrum $|\hat{\omega}_k|$ at time $t = 0.407228$ from the same simulation as in Fig. 7. The red line represents a fit to model (62) with green line showing portion of the $|\hat{\omega}_k|$ used for the fit. Center and right panels: Time dependence of $\delta_x(t) = \tanh\left(\frac{\delta_x(t)}{2}\right)$ and $p(t)$ recovered from fit of the spectrum to Eq. (62) at different times. The red solid line at the center panel represents a fit to the model $\delta_x(t) \propto (t_c - t)^\alpha$.

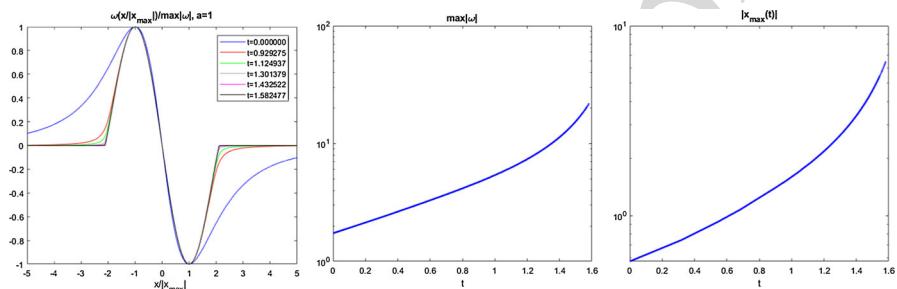


Fig. 9 Left panel: Convergence of the time-dependent numerical solution to Eqs. (54)–(55) with $a = 1$ and IC2 (60) to a self-similar profile with compact support. The solution expands horizontally and stretches vertically until blowing up at $t = t_c \approx 1.77864$. The solution is plotted in x -space, where $x = \tan\left(\frac{q}{2}\right)$, and is scaled both horizontally and vertically to exactly match the positions of the local maximum and minimum. Center and right panels: The time dependencies of $\max_x |\omega(x, t)|$ and the absolute value its location $x_{\max}(t)$ on t

our simulations) located at $x = x_{\text{sing}}$ to the real line near the boundaries of compact support. The small distances $|\text{Im}(x_{\text{sing}})|$ of these singularities to the real line for t near t_c mean that the solution is “almost of compact support” with “almost a jump” in the first derivative at the boundary of “compact support” in x -space. The singularity locations scale like

$$x_{\text{sing}} \simeq \pm(t_c - t)^\alpha x_b \pm i(t_c - t)^{\alpha_3} y_b \quad (65)$$

(i.e., there are four symmetrically located singularities), where $\alpha = -1$ and $\alpha_3 \approx 3.68$. Here, the real constants t_c , x_b , and y_b depend on the IC. Note that α_3 is different from α because it characterizes the approach of the solution to the compactly supported profile (6). In contrast, the value $\alpha = -1$ is fully determined by Eq. (6) and characterizes the self-similar behavior of the central part of the solution. The nonzero value of α_3 suggests that the “almost compactly supported” solution turns into a truly compactly supported solution at $t = t_c$, with a jump in the first derivative. Due to oscillations in the spectrum, it is difficult to accurately extract the value of α_3 from the fit to

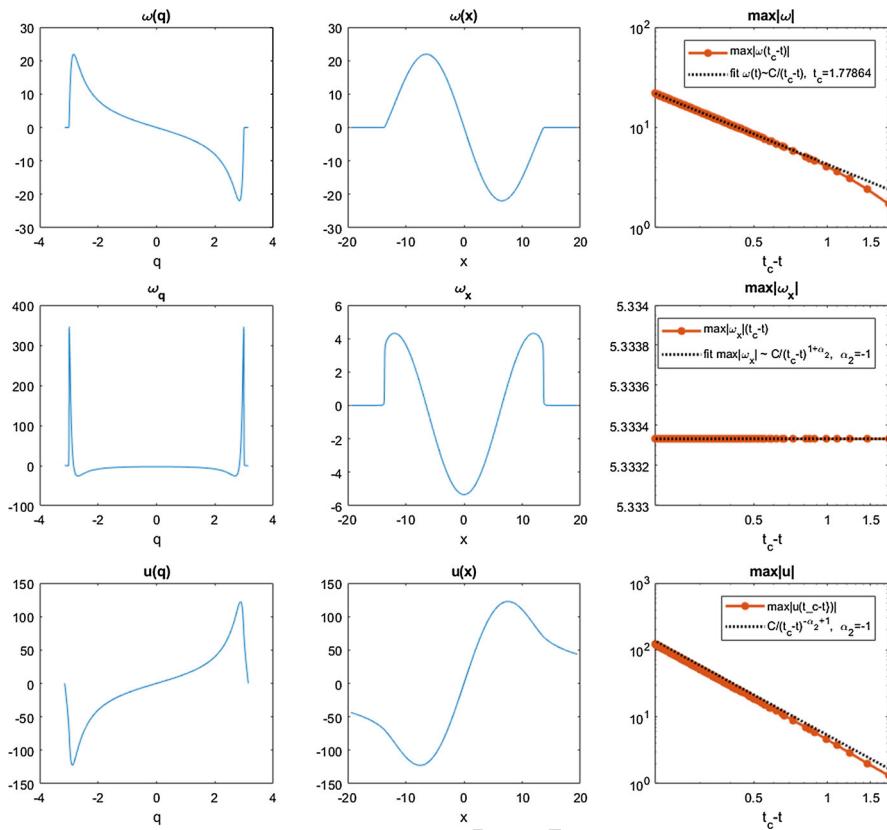


Fig. 10 Results of the same simulation as in Fig. 9 with $a = 1$ showing solution $\omega(q, t)$, $\omega_q(q, t)$ and $u(q, t)$ in q -space (left panels) as well as the same solution in x -space (center panels) at time $t = 1.582477$. Right panels show the time dependence of their maximum values as functions of $(t_c - t)$, where t_c is the blow-up time extracted from the fit to $\max|\omega(x, t)| \propto \frac{1}{(t_c - t)}$

699 $\delta_x(t) \sim (t_c - t)^{\alpha_3}$. However, using rational approximation via the AAA algorithm
700 (see details about AAA in Sect. 10) we can observe two pairs of branch cuts with
701 branch points approach the real line near $x = \pm(t_c - t)^{\alpha} x_b$ as $t \rightarrow t_c$, similar to the
702 case $a = 0.8$. One can see from Fig. 12 (right panel) that the structure of the singularity
703 for $a = 0.8$ is similar to the $a = 1$ case.

704 For $a_c < a < 1$ and both IC1 or IC2, we similarly observe finite-time singularity
705 formation with an expanding self-similar solution approaching a compactly supported
706 profile [described again by Eq. (6)]. This is qualitatively similar to the $a = 1$ case,
707 but involves different values of α . Another difference compared to the $a = 1$ case is
708 that there is a discontinuity in a higher-order derivative at the boundary of “compact
709 support,” instead of a jump in the first derivative ω_x as occurs for $a = 1$. Figures 12,
710 13, and 14 show the results of simulations with the parameter $a = 0.8$ and IC2 (60).
711 Here, we find a jump in ω_{xx} forming at the boundary of “compact support.” Figure 13
712 (right) shows the growth of both $\max_x |\omega(x)|$ and $\max_x |\omega_x(x)| = |\omega_x(x = 0)|$ as

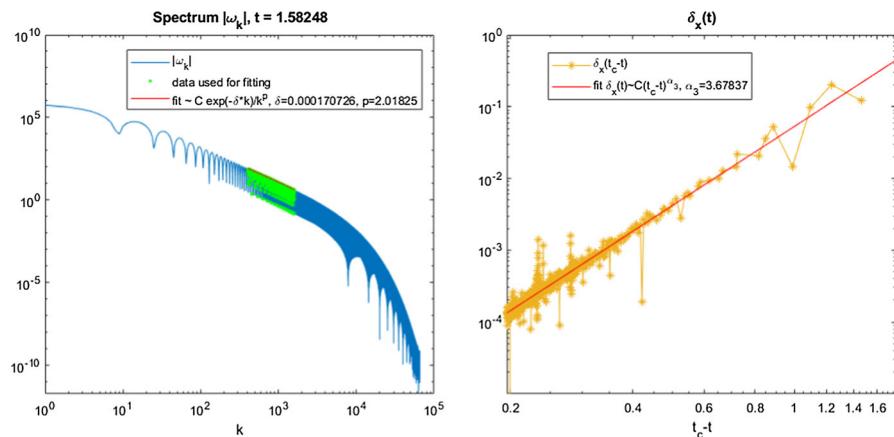


Fig. 11 Left panel: The Fourier spectrum $|\hat{\omega}_k|$ at time $t = 1.58248$ from the same simulation as in Fig. 10 with $a = 1$. The red line represents a fit to model (62) with green line showing a portion of the $|\hat{\omega}_k|$ used for the fit. Right panel: Time dependence of $\delta_x(t) = \tanh\left(\frac{\delta(t)}{2}\right)$ recovered from the fit of the spectrum to Eq. (62). The red solid line in the right panel represents a fit to the model $\delta_x(t) \propto (t_c - t)^{\alpha_3}$

functions of $t_c - t$ confirming the scales $\max_x |\omega(x)| \sim 1/(t_c - t)$ and $|\omega_x(x = 0)| \sim 1/(t_c - t)^{1+\alpha}$ with $\alpha = -0.26008$.

Qualitatively similar to the case $a = 1$, for $a_c < a < 1$ we again observe two pairs of branch cuts approach the real line as $t \rightarrow t_c$ according to Eq. (65). For example, when $a = 0.8$, we find that $\alpha = -0.26008$ and $\alpha_3 \approx 0.908$, see Fig. 12 (right panel). It was challenging to accurately extract values of $\delta(t)$ and $p(t)$ from a fit to Eq. (62) due to the spectrum being oscillatory, see the left panel of Fig. 14. The right panel of Fig. 14 provides the best fit which we were able to obtain for $\delta(t)$. The fitting parameter $p(t)$ was more sensitive to the oscillations and did not appear to stabilize at any particular value, so we do not provide a plot for it here.

This type of oscillation in the spectrum occurs when there are two symmetric singularities that are equally close to the real line. In this case, a more elaborate fitting procedure with additional parameters to account for the oscillation can yield improved results, see, e.g., Baker et al. (1993). However, such fits are also more delicate to implement and are beyond the scope of the current work.

Simulations with ICs either of type –IC1 or –IC2 and $a_c < a \leq 1$ resulted in monotonically decaying $\max_x |\omega(x, t)|$ and $\max_x |u(x, t)|$. The maximum slope $\max_x |\omega_x(t)| = |\omega_x(x = 0, t)|$ is found to approach a constant value for $a = 1$, while it decays for $a < 1$. Also, $\max_x |\omega_{xx}(x, t)|$ grows algebraically as a function of t , while $\delta_x(t)$ decays algebraically, $\delta_x(t) \sim 1/t^\mu$, $\mu > 0$. Since these ICs do not result in a finite-time singularity formation, we do not discuss these cases in further detail.

For $a \gtrsim 1.3$ and for both IC1 and IC2, we observe global existence of the solution. The vorticity ω has the form an expanding self-similar function which approaches a compactly supported profile (in the scaled variable ξ) with infinite slope at the boundary of the compact region, so that $\max_x |\omega| \rightarrow 0$ and $\max_x |\omega_x|, \max_x |u| \rightarrow \infty$ as $t \rightarrow \infty$ (although $\omega_x(x = 0) \rightarrow 0$ as $t \rightarrow \infty$). The complex singularities approach

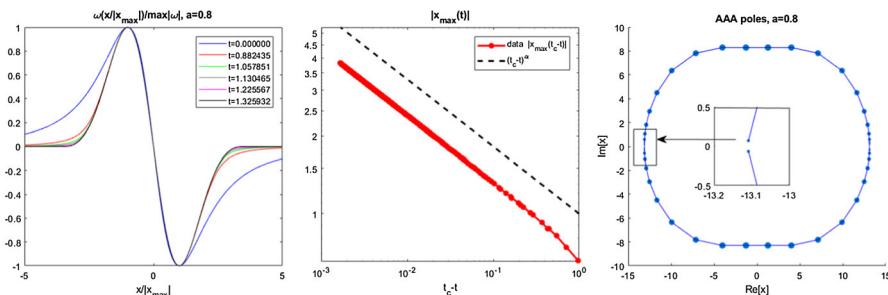


Fig. 12 Left panel: Convergence of time-dependent numerical solution to Eqs. (54)–(55) with $a = 0.8$ and IC2 (60) to a self-similar profile with compact support. The solution expands horizontally and stretches vertically until blowing up at $t = t_c \approx 1.32761$. The solution is plotted in x -space, where $x = \tan(\frac{\varphi}{2})$, and is scaled both horizontally and vertically to exactly match the positions of the local maximum and minimum. Center panel: The time dependence $x_{\max}(t)$ of the location of $\max_x \omega(x)$. The dashed lines show that it scales like $x_{\max}(t) \propto (t_c - t)^\alpha$ with $\alpha \approx -0.26008$ as $t \rightarrow t_c$. Right panel: The structure of complex singularities at $t = 1.32593$ obtained using AAA algorithm (described in Sect. 10) that approximates the solution by a set of simple poles, $\omega(x) \approx \omega_{\text{AAA}}(x) = \sum_{i=1}^{m-1} \frac{a_i}{x - b_i}$. The simple poles are shown as dots at locations b_i with a size of dot scaled with $\log_{10} |a_i|$. The branch cuts are shown as lines connecting the dots and form “U-shaped” curves in the upper and lower complex plane. The accumulation of poles approximates two pairs of branch points near the real line. The location of these branch points scale as $x_{\text{sing}} \sim \pm(t_c - t)^\alpha x_b \pm i y_0(t_c - t)^{\alpha_3} y_b$, where $x_0, y_0 > 0$, $\alpha = -0.26008$ and $\alpha_3 \approx 0.908$

739 the real line in infinite time with positions that scale like $x_{\text{sing}} = \pm x_0 \exp(\kappa_1 t^{\nu_1}) \pm$
 740 $i y_0 \exp(-\kappa_2 t^{\nu_2})$, where the constants $\kappa_1, \kappa_2, \nu_1, \nu_2 > 0$ depend on a . For both – IC1
 741 and – IC2, we again observe global existence of the solution with decay of ω and
 742 infinite growth of $\omega_x(x = 0)$, with an infinite slope forming at $x = 0$ and a singularity
 743 approaching the real line like $x_{\text{sing}} = 0 \pm i y_0 \exp(-\kappa_2 t^{\nu_2})$, where $y_0, \kappa_2, \nu_2 > 0$.

744 For $1 < a \lesssim 1.3$, we find from simulations that initially $\max_x |\omega|$ grows. This
 745 period of initial growth is long, with the spectrum widening so quickly that it was
 746 challenging to distinguish between a finite-time singularity and global existence when
 747 a is near 1, but we have numerical evidence of global existence for a at least as small
 748 as 1.3, as described in the previous paragraph.

749 Here, we summarize the behavior of solutions to Eqs. (54)–(55) on $x \in \mathbb{R}$, and its
 750 dependence on the parameter a , for quite generic smooth IC:

- 751 – $a < a_c$ with $\alpha(a) > 0$: Collapse in ω , i.e., $\max_x |\omega| \rightarrow \infty$ at the finite time t_c .
 752 As $t \rightarrow t_c$, solutions with generic IC approach the shrinking universal self-similar
 753 profile (6) near the spatial location of $\max_x |\omega|$. As $t \rightarrow t_c$, the profiles shrink
 754 to zero width. The self-similar solution has leading-order complex singularities
 755 in agreement with Theorem 1 and Eq. (21). The location of these singularities
 756 approaches the real line as $x_{\text{sing}} = x_0 \pm i \delta_x(t)$, where $\delta_x(t) \propto (t_c - t)^\alpha$, $\alpha =$
 757 $\alpha(a) > 0$. In particular, $x_0 = 0$ for both IC1 or IC2. Also $u(x, t)$ near x_0 follows
 758 the self-similar profile (48) with $\max_x |u| \rightarrow \infty$ for $0 < a < a_c$.
- 759 – $a_c < a \leq 1$ with $\alpha(a) < 0$: Blow-up in both ω and u at the finite time t_c . As
 760 $t \rightarrow t_c$, solutions with generic IC approach the expanding self-similar profile Eq.
 761 (6) which has compact support. As $t \rightarrow t_c$, the rate of expansion turns infinite.
 762 The complex singularities closest to the real line correspond to the boundaries of

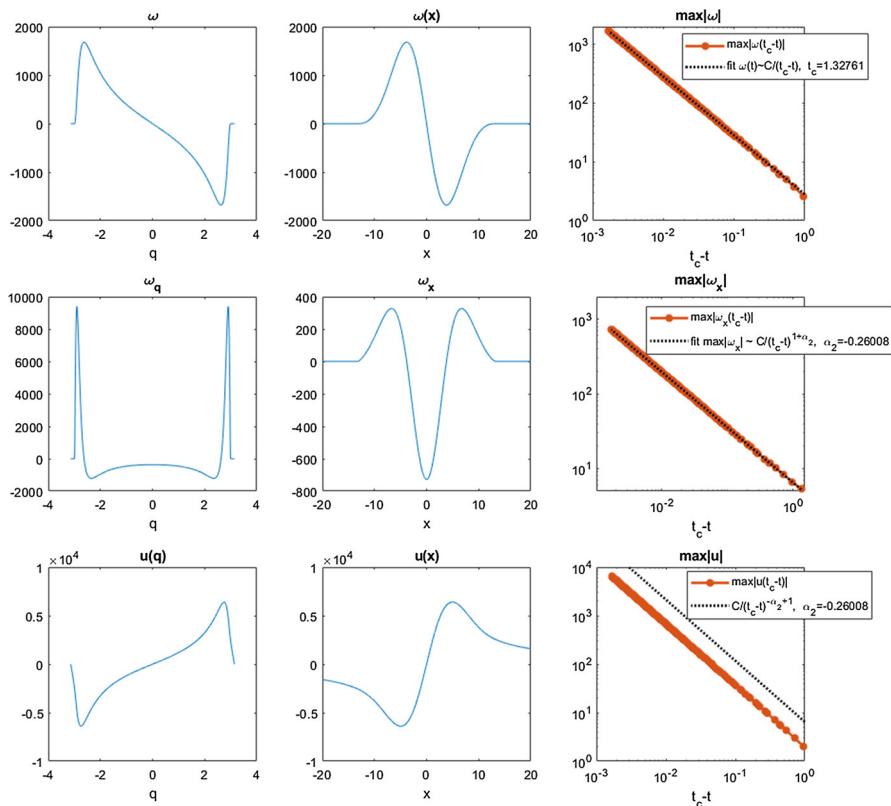


Fig. 13 Results of the same simulation as in Fig. 12 with $a = 0.8$ showing $\omega(q, t)$, $\omega_q(q, t)$, and $u(q, t)$ in q -space (left panels) as well as in x -space (center panels) at time $t = 1.32593$. Right panels show the time dependence of their maximum values as functions of $(t_c - t)$, where t_c is the blow-up time extracted from the fit to $\max |\omega(x, t)| \propto \frac{1}{(t_c - t)}$

compact support, and they approach the real line as $x_{\text{sing}} \sim \pm(t_c - t)^\alpha x_b \pm i(t_c - t)^{\alpha_3} y_b$, where $\alpha = \alpha(a) < 0$ and $\alpha_3(a) > 0$,

- $a \gtrsim 1.3$: Global existence of solutions with $\max_x |\omega| \rightarrow 0$, $\max_x |\omega_x|$, $\max_x |u| \rightarrow \infty$ and $\omega_x(x = 0) \rightarrow 0$ as $t \rightarrow \infty$. The complex singularities approach the real line exponentially in time as $x_{\text{sing}} = \pm x_0 \exp(\kappa_1 t^{v_1}) \pm i y_0 \exp(-\kappa_2 t^{v_2})$, where $\kappa_1, \kappa_2, v_1, v_2 > 0$.

9 Numerical Solution of Nonlinear Eigenvalue Problem on the Real Line

Similar to the transformation of Eqs. (1) to (54)–(55) in Sect. 7, we obtain a transformed equation for self-similar solutions of Eq. (47) by mapping the interval $(-\pi, \pi)$ of the

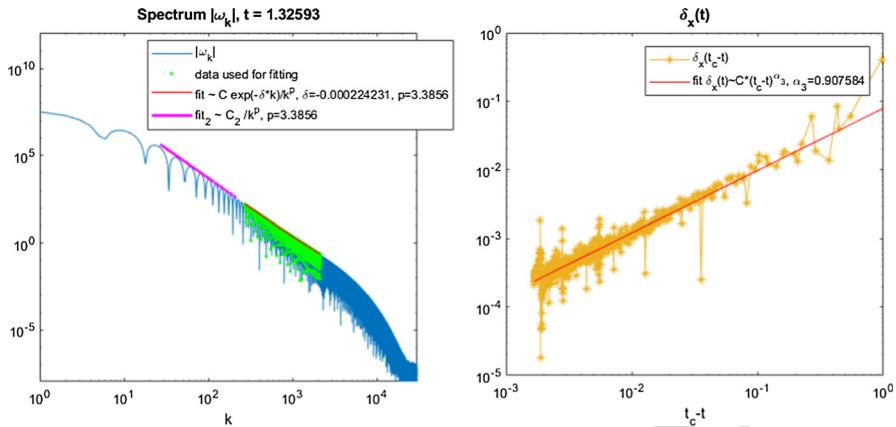


Fig. 14 Left panel: The Fourier spectrum $|\hat{\omega}_k|$ at a particular time $t = 1.32593$ from the same simulation as in Fig. 12 with $a = 0.8$. The red line represents a fit to model (62) with the green line showing the portion of the $|\hat{\omega}_k|$ used for the fit. The purple line shows a fit to the rougher model (62) with $\delta = 0$. Right panel: Time dependence of $\delta_x(t) = \tanh\left(\frac{\delta(t)}{2}\right)$ recovered from the fit of the spectrum to Eq. (62). The red solid line at the right panel represents a fit to the model $\delta_x(t) \propto (t_c - t)^{\alpha_3}$

auxiliary variable q onto the real line $(-\infty, \infty)$ as

$$\xi = \tan\left(\frac{q}{2}\right). \quad (66)$$

With this mapping, Eq. (47) turns into

$$\begin{aligned} \mathcal{M}f &:= f + \alpha \sin q f_q = -a(1 + \cos q) g f_q + f[\mathcal{H}^{2\pi} f + C_f^{2\pi}] \\ &:= \mathcal{N}[f]f, \quad q \in [-\pi, \pi], \\ &\quad (1 + \cos q) g_q = \mathcal{H}^{2\pi} f + C_f^{2\pi}, \end{aligned} \quad (67)$$

where the 2π -periodic Hilbert transform $\mathcal{H}^{2\pi}$ and the constant $C_f^{2\pi}$ are defined in Eqs. (55), (56), and the linear operator \mathcal{M} is now defined in q space by the l.h.s. of the first Eq. (67). We also define in Eq. (67) the quadratically nonlinear operator $\mathcal{N}[f]$ such that $\mathcal{N}[f]f$ represents the r.h.s. of the first Eq. (67) with g expressed through the second equation in (67) as

$$g = \partial_q^{-1} \left[\frac{\mathcal{H}^{2\pi} f + C_f^{2\pi}}{(1 + \cos q)} \right], \quad \partial_q^{-1} p := \int_{-\pi}^q p(q') dq'. \quad (68)$$

Then, Eq. (67) takes the following operator form

$$\mathcal{M}f = \mathcal{N}[f]f. \quad (69)$$

787 A linearization of Eq. (69) about f together with Eqs. (67) and (68) results in

$$\begin{aligned}
 788 \quad \mathcal{L}[f]\delta f &:= -\mathcal{M}\delta f - a(1 + \cos q)\partial_q^{-1} \left[\frac{\mathcal{H}^{2\pi}\delta f + C_{\delta f}^{2\pi}}{(1 + \cos q)} \right] f_q \\
 789 \quad &\quad - a(1 + \cos q)\partial_q^{-1} \left[\frac{\mathcal{H}^{2\pi}f + C_f^{2\pi}}{(1 + \cos q)} \right] \delta f_q \\
 790 \quad &\quad + \delta f[\mathcal{H}^{2\pi}f + C_f^{2\pi}] + f[\mathcal{H}^{2\pi}\delta f + C_{\delta f}^{2\pi}], \tag{70}
 \end{aligned}$$

792 where $\mathcal{L}[f]$ is the linearization operator and δf is the deviation from f .

793 Taking $\delta f = f$ in Eq. (70) and using Eqs. (67), (69) to express the nonlinear terms
794 in f through the linear terms prove the following theorem:

795 **Theorem 4** *The solution f of Eq. (67) satisfies the relation*

$$796 \quad \mathcal{L}[f]f = \mathcal{M}f. \tag{71}$$

797 **Corollary 1** *The invertibility of the operator \mathcal{M} (see Sect. 6) and Eq. (71) imply that
798 the operator $\mathcal{M}^{-1}\mathcal{L}[f]$ has the eigenvalue $\lambda = 1$ with eigenfunction f , which is the
799 same as the solution f of Eq. (67).*

800 Similar to Eq. (57), we approximate a solution of Eq. (67) as a truncated Fourier
801 series

$$802 \quad f(q) = \sum_{k=-N}^{k=N-1} \hat{f}_k e^{ikq}. \tag{72}$$

803 Then, the discrete Fourier transform allows us to rewrite Eq. (67) in matrix form as

$$804 \quad \mathbf{M}\hat{\mathbf{f}} = \widehat{\mathcal{N}[f]}f, \quad \mathbf{M} := \begin{pmatrix} 1 & -\frac{\alpha k_2}{2} & & & \\ \frac{\alpha k_1}{2} & 1 & -\frac{\alpha k_3}{2} & & \\ & \frac{\alpha k_2}{2} & 1 & \dots & \\ & & \dots & \dots & -\frac{\alpha k_{2N}}{2} \\ & & & \frac{\alpha k_{2N-1}}{2} & 1 \end{pmatrix}, \tag{73}$$

805 where $\hat{\mathbf{f}} = (\hat{f}_1, \hat{f}_2, \dots, \hat{f}_{2N})^T$ is a column vector, the tridiagonal matrix $\mathbf{M} \in$
806 $\mathbb{R}^{2N \times 2N}$ represents the Fourier transform of the operator \mathcal{M} and $\widehat{\mathcal{N}[f]}f$ is the column
807 vector of Fourier coefficients of $\mathcal{N}[f]f$. Also $k_1 := -N$, $k_2 := -N+1, \dots, k_{2N} :=$
808 $N-1$. Note that the tridiagonal form of \mathbf{M} is a consequence of the term $\sin(q) =$
809 $\frac{e^{iq} - e^{-iq}}{2i}$ in the definition of \mathcal{M} in Eq. (67).

810 We solve Eq. (71) in the truncated Fourier representation (73) by iteration using
811 the generalized Petviashvili method (GPM) (Lakoba and Yang 2007) which relates
812 the $n+1$ th iteration $\hat{\mathbf{f}}^{n+1}$ to the n th iteration $\hat{\mathbf{f}}^n$ of $\hat{\mathbf{f}}$ as follows:

813
$$\hat{\mathbf{f}}^{n+1} - \hat{\mathbf{f}}^n = \left([-\hat{\mathbf{f}}^n + \mathbf{M}^{-1} \widehat{\mathcal{N}[f]} f^n] - \left(1 + \frac{1}{\Delta\tau} \right) \frac{\langle \hat{\mathbf{f}}^n, -\mathbf{M}\hat{\mathbf{f}}^n + \widehat{\mathcal{N}[f]} f^n \rangle}{\langle \hat{\mathbf{f}}^n, \mathbf{M}\hat{\mathbf{f}}^n \rangle} \hat{\mathbf{f}}^n \right) \Delta\tau, \quad (74)$$

814

815 where superscripts give the iteration number, $\langle \mathbf{a}, \mathbf{b} \rangle := \sum_{k=-N}^{k=N-1} \bar{a}_k b_k$ is the complex
816 dot product and $\Delta\tau$ is a parameter that controls the convergence rate of the iterations. At
817 each iteration we need to solve Eq. (73) for $\hat{\mathbf{f}}$ (assuming $\widehat{\mathcal{N}[f]} f$ is given) to effectively
818 compute $\mathbf{M}^{-1} \widehat{\mathcal{N}[f]} f^n$. Since \mathbf{M} is a tridiagonal matrix, this is easily done in $O(N)$
819 numerical operations in Fourier space. We note that if one tries to avoid the FFT and
820 iterate Eq. (67) directly in q space, then the corresponding matrix M on the l.h.s. of
821 Eq. (67) would be a full matrix and each iteration would require $O(N^2)$ numerical
822 operations.

823 A fixed point of the iteration (74) corresponds to the solution of Eq. (71). The
824 straightforward iteration of (71) [instead of (74)] would diverge because of the positive
825 eigenvalue $\lambda = 1$ of Corollary 1 for the linearized operator $M^{-1} \mathcal{L}[f]$. In contrast,
826 Eq. (71) ensures an approximate projection into the subspace orthogonal to the cor-
827 responding unstable eigenvector f . The original Petviashvili method (Petviashvili
828 1976) is the nonlinear version of Eq. (74) for the particular value $\Delta\tau = 1$ and is often
829 successful with both partial differential equations (PDEs) (see, e.g., Lakoba and Yang
830 2007; Yang 2010) and nonlocal PDEs (see, e.g., Lushnikov 2001). However, the linear
831 operator $M^{-1} \mathcal{L}[f]$ generally has extra eigenvalues preventing the convergence of the
832 original Petviashvili method. GPM, however, uses the freedom in choice of the param-
833 eter $\Delta\tau$ to achieve convergence even with such extra eigenvalues, see Dyachenko et al.
834 (2013b), Lakoba and Yang (2007), and Yang (2010) for more discussion.

835 An additional complication that arises in our Eq. (67), compared with the straight-
836 forward use of GPM in general PDEs, is that we do not know α in advance. Instead,
837 for each value of a there is a nonlinear eigenvalue $\alpha(a)$ to Eq. (67) that we need to
838 determine. If we use a general value of α , then iteration (74) would not converge
839 because the solution of Eq. (67) does not exist for such general values of α .

840 To address this additional complication, we make an initial guess of $\alpha = \alpha_{\text{guess}}$
841 for fixed a and iterate Eq. (67) for α_{guess} . If $\alpha_{\text{guess}} < \alpha(a)$, then the generalized
842 Petviashvili iteration (after an initial transient) shrinks toward $q = 0$. If $\alpha_{\text{guess}} >$
843 $\alpha(a)$, then the solution expands away from $q = 0$. We used the bisection method
844 to determine $\alpha(a)$ for a given a . We start from a large enough interval $[\alpha_L, \alpha_R]$, so
845 that $\alpha(a) \in [\alpha_L, \alpha_R]$. Then, we try $\alpha_{\text{guess}} = (\alpha_L + \alpha_R)/2$ and based on the shrinking
846 versus expanding of iterations for α_{guess} , we obtain the updated values $[\alpha_L, \alpha_R]$. These
847 updated values ensure a factor 2 decrease of the length of the updated interval $[\alpha_L, \alpha_R]$,
848 completing the first step of the bisection method. We continue such bisection steps
849 until convergence to $\alpha(a)$ [i.e., until the residual of Eq. (67) decreases down to near
850 round-off values and does not decrease anymore]. For each updated α_{guess} , we use the
851 solution from the previous bisection step to speed-up the convergence. We judged the
852 expansion/shrinking of the solution by tracking the movement of its maximum point
853 which was determined as a critical point of the function $f'(q) = \sum_{k=-N}^{k=N-1} ik \hat{f}_k e^{ikq}$
854 using spectral interpolation and a root-finding algorithm. Also, in order to pass over
855 the initial transient dynamics (that depends on the initial guess of the solution) we skip

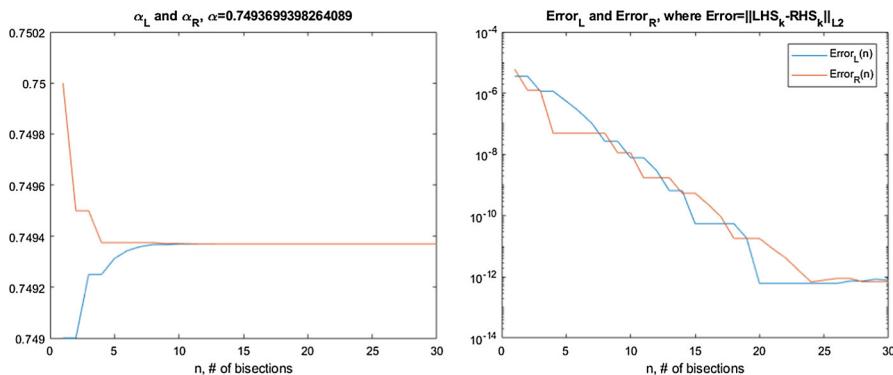


Fig. 15 Convergence of the interval $[\alpha_L, \alpha_R]$ to $\alpha(a)$ (left panel) and convergence of the residual of Eq. (73) (right panel) for the iteration (74) with $a = 0.2$. Here, we used IC2 (59) with $V_c = 2^{-12} \approx 2.44 \cdot 10^{-4}$ and $N = 2^{18}$ as the zeroth iteration

10/ $\Delta\tau$ – 20/ $\Delta\tau$ initial GPM iterations before judging the expansion/shrinking of the solution to classify the current α_{guess} . The larger $\Delta\tau$ we used, the less iterations were needed, but too large a $\Delta\tau$ leads to instability of the algorithm, so we need to keep it under a certain level. For the initial guess of the solution, we typically used IC2 from Eq. (59) with $V_c = 1/2$ for $0.6 < a < a_c$, and $N = 64$; $\Delta\tau$ was reduced from 0.1 at $a = 0.6$ to 10^{-4} near a_c . For $a < 0.6$, we used $\Delta\tau = 0.1 - 1$ and progressively smaller V_c (down to 2^{-14}) and larger N (up to 2^{22}) because of the slowly decaying tails of the function $f(q)$ for small a (see the next paragraph). Figure 15 illustrates the convergence of the $[\alpha_L, \alpha_R]$ interval to $\alpha(a)$ and convergence of the residual of Eq. (67) with bisection iterations for $a = 0.2$, starting with an initial condition IC2 in (59) with $V_c = 1/2^{12} \approx 2.44 \times 10^{-4}$ (singularity is at $\xi = iV_c$) and $N = 2^{18}$. The converged solution is shown in Fig. 16 (left panel) with a closest singularity at a distance $\xi_c = 7.43 \cdot 10^{-5}$ from the real line in ξ -space and at a distance $q_c = 1.49 \cdot 10^{-4}$ in q -space.

We note that symmetry (51) implies that ξ_c can be stretched by an arbitrary positive constant. Iteration (74) generally converges to different values of ξ_c depending on IC (i.e., the zeroth iteration). After that, one can rescale any such solution in ξ by any fixed value of ξ_c . This rescaling freedom can also be seen through the existence of the free parameter \tilde{v}_c in the exact solutions (32) and (38), (39).

We computed self-similar profiles $f(\xi)$ and $g(\xi)$ for various values of $a < a_c$ to obtain $\alpha(a)$ shown in Table 1 as $\alpha_e(a)$. Additionally, we make sure that the $f(\xi)$ profile tails scale as in Eq. (49) at $\xi \rightarrow \pm\infty$ and we also fit the $g(\xi)$ profile tails to the power law

$$g(\xi) \propto \xi^\beta. \quad (75)$$

Figure 17 show examples of such scaling and fit for $a = 0.2$. Several other curves with different powers of ξ are present on the graphs for comparison. The fitted values of $\beta(a)$ are given in Table 1 and Fig. 16 (right panel). Ignoring for the moment the Hilbert transform, the integration operator ∂_ξ^{-1} involved in determining $g(\xi)$ from $f(\xi)$ in Eq.

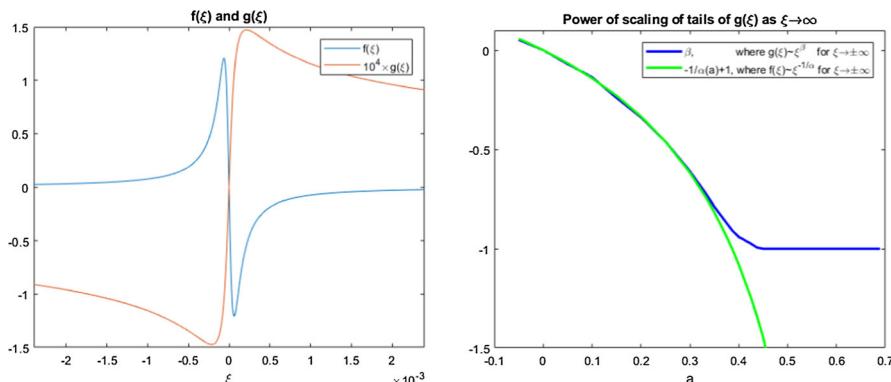


Fig. 16 Left panel: $a = 0.2$. Functions $f(\xi)$ and scaled $g(\xi)$ obtained by the iteration (74). Right panel: Power law of scaling of the tails of $g(\xi)$ versus a

884 (47) suggests that

$$885 \quad g(\xi) \propto \xi^{-\frac{1}{\alpha}+1} \text{ at } \xi \rightarrow \pm\infty, \quad (76)$$

886 which implies that

$$887 \quad \beta = -\frac{1}{\alpha} + 1. \quad (77)$$

888 However, the Hilbert transform in Eq. (47) can affect this scaling. We find that (77)
 889 is valid for $0 < a \lesssim 0.4$, while a transition to the constant scaling $\beta = -1$ occurs
 890 around $a \approx 0.45$ as shown in Table 1 and Fig. 16 (right panel). In particular, the exact
 891 analytical solution (34) for $a = 1/2$ and $\alpha = 1/3$ implies that $\beta = -1$ which is
 892 consistent with Table 1 and Fig. 16 (right panel). One can see from comparison of
 893 Eqs. (33) and (34) that the Hilbert transform indeed prevents the naive scaling (76) in
 894 this particular case. In contrast, the scaling (49) follows from the linear operator \mathcal{M} as
 895 discussed in Sect. 6. That scaling was confirmed with high precision in our simulations
 896 so we do not show it in Table 1. For $a < 0$, we find that $g(\xi)$ has two regions with
 897 two different scalings, see Fig. 18 for $a = -0.1$. While the tail of $g(\xi)$ still decays as
 898 $\xi \rightarrow \pm\infty$, there is an intermediate scaling regime which approximately obeys (77)
 899 as seen in Fig. 18 (left panel). We are able to observe this intermediate scaling for
 900 $-0.2 \leq a < 0$. Going below $a = -0.2$ is difficult for the GPM method as the tails of
 901 $f(\xi)$ and $g(\xi)$ decay very slowly and it requires more than 10^6 grid points to achieve
 902 good accuracy. For $a < 0$, the values of β in Table 1 and in Fig. 16 (right panel) are
 903 from this intermediate scaling.

904 We estimate that our iteration procedure provides at least 5–8 digits of precision of
 905 in $\alpha(a)$ and 2–3 digits of precision in $\beta(a)$ for $a \geq 0.3$, when the spectrum of $f(q)$ is
 906 fully resolved. The values of $\alpha(a)$ and $\beta(a)$ were challenging to obtain with more than
 907 3–4 and ~ 2 digits of accuracy, respectively, for $a \lesssim 0.2$ (corresponding to $\alpha \gtrsim 0.75$)
 908 and especially for $a < 0$ ($\alpha > 1$) since we could not resolve the Fourier spectrum $|\hat{f}_k|$

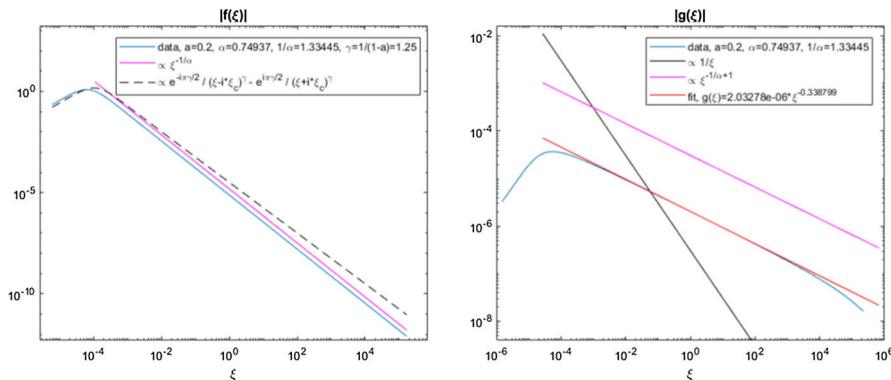


Fig. 17 $a = 0.2$. Left panel: Tail of $f(\xi)$ from Fig. 16 (left panel). The dashed line shows the decay of $f(\xi)$ when it is approximated by its leading-order singularities alone, as obtained from (17), neglecting the l.s.t. Right panel: Tail of $g(\xi)$ from Fig. 16 (left panel) compared with different power laws

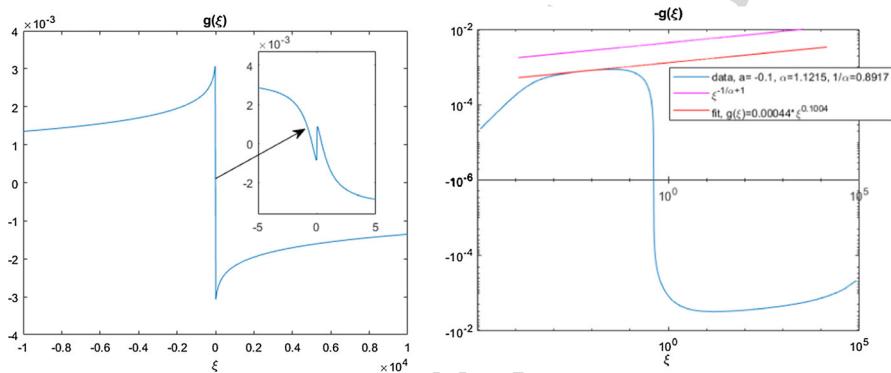


Fig. 18 Plots of $g(\xi)$ for $a = -0.1$. Left panel: Graph of $g(\xi)$ showing two extrema (one maximum and one minimum) in each half-space of ξ . The inset gives a magnified view showing extrema at small ξ . Right panel: Log-log plot of $g(\xi)$ for positive ξ . Here, $g(\xi_0) = 0$ at $\xi_0 \approx 0.41$. Solid lines show the scaling (76) and a fit to power law (75)

down to round-off level 10^{-16} , even with $N = 2^{22}$ modes. At its root, this is due to the slow decay of $f(\xi) \sim |\xi|^{-1/\alpha}$ for $|\xi| \rightarrow \infty$ and relatively large α .

The numerical values of β in the scaling (75) are important to distinguish between solutions with infinite and finite energy E_K (10), which as mentioned is of interest in analogy with the question of singularity formation in the 3D Euler and Navier–Stokes equations. Assuming that the solution is close to the self-similar profile (6), changing the variable from x to ξ in (10) and using the self-similar profile (48) of the velocity $u(x, t)$ we obtain that

$$E_K = E_K^{\text{selfsim}} + E_K^{\text{rest}}, \quad (78)$$

918 where

919

$$E_K^{\text{selfsim}} = \int_{-x_b}^{x_b} u^2(x) dx \sim \tau^{3\alpha-2} \int_{-\xi_b}^{\xi_b} g^2(\xi) d\xi, \quad \xi_b = \frac{x_b}{\tau^\alpha}, \quad (79)$$

920 is the kinetic energy of the approximately self-similar part of the solution located at
921 $x \in [-x_b, x_b]$ and E_K^{rest} is the kinetic energy of the numerical solution outside of this
922 interval. Here, we define the cutoff value $x = x_b$ as the spatial location where the
923 numerical solution deviates from the self-similar profile (6) by 5%, while inside of the
924 interval $[-x_b, x_b]$ the relative deviation is less than 5%. We determine the variable ξ
925 by the same type of procedure as in Fig. 4. Then, x_b is determined by 5% criterion
926 above. We find from simulations with $a < a_c$ that

927

$$x_b(t) \approx \text{const} \sim \tau^0. \quad (80)$$

928 Such behavior is typical for collapsing self-similar solutions, see, e.g., Sulem and
929 Sulem (1999), Kuznetsov and Zakharov (2007), Dyachenko et al. (2013), and Lush-
930 nikov et al. (2013). It implies that $\xi_b \rightarrow \infty$ as $t \rightarrow t_c$.

931 There is no qualitative difference between integrals $I_{g,\xi_b} := \int_{-\xi_b}^{\xi_b} g^2(\xi) d\xi$ and
932 $I_{g,\infty} = \int_{-\infty}^{\infty} g^2(\xi) d\xi$ provided $I_{g,\infty} < \infty$. The finiteness of $I_{g,\infty}$ requires that
933 $\beta < -\frac{1}{2}$ for the scaling of the tails of $g(\xi)$ in (75). Using Eq. (77), we obtain that
934 $\beta = -\frac{1}{2}$ implies $\alpha = \frac{2}{3}$, i.e., $\beta < -\frac{1}{2}$ for $\alpha < \frac{2}{3}$. From the interpolation of the
935 data of Table 1, we find that $\alpha = \frac{2}{3}$ corresponds to $a = 0.265 \pm 0.001$. Therefore,
936 for a self-similar profile, $I_{g,\infty} < \infty$ for $a > 0.265 \pm 0.001$ and $I_{g,\infty} = \infty$ for
937 $a < 0.265 \pm 0.001$.

938 However, we have to take into account that I_{g,ξ_b} is multiplied by $\tau^{3\alpha-2}$ in Eq. (79).
939 This means that in the limit $t \rightarrow t_c$ and for $\alpha < \frac{2}{3}$, there is a competition between the
940 decrease of $\tau^{3\alpha-2}$ and the growth of I_{g,ξ_b} as $\xi_b \rightarrow \infty$. The scaling (77) for Eq. (75)
941 is valid for $a \lesssim 0.4$ as shown in Fig. 16 (right panel). It implies that $I_{g,\xi_b} \propto \xi_b^{2\beta+1} =$
942 $\tau^{-\alpha(2\beta+1)} x_b^{2\beta+1}$ for $a < 0.265 \pm 0.001$ and $t \rightarrow t_c$. Then, using Eqs. (77), (79) and
943 (80) we obtain that $E_K^{\text{selfsim}} \sim \tau^0 \sim \text{const}$. Also since the main dynamics is happening
944 in $x \in [-x_b, x_b]$ with $x_b(t) \sim \text{const}$, we conclude that $E_K^{\text{rest}} \rightarrow \text{const}$ as $t \rightarrow t_c$, so
945 overall the growth of $E_K(t)$ as $t \rightarrow t_c$ is very slow (i.e., slower than any power of τ)
946 for such a where the scaling (77) is true. This result is in excellent agreement with
947 our direct calculation of $E_K(t)$ from time-dependent simulations which shows that for
948 $a < 0.265 \pm 0.001$ the kinetic energy grows more slowly than $\log(\tau)$ or any power of
949 τ as $t \rightarrow t_c$; see Fig. 19 (left panel) for $a = 0.2$.

950 For $0.265 \pm 0.001 < a \leq 1$, the kinetic energy $E_K \rightarrow \infty$ as $t \rightarrow t_c$ (while being
951 finite for any $t < t_c$), since $\alpha < 0$ and $E_K \sim \tau^{3\alpha-2} \rightarrow \infty$ as $t \rightarrow t_c$ with $I_{g,\infty} < \infty$;
952 see Fig. 19 (center panel) for a verification of this scaling when $a = 0.4$. For $a \gtrsim 1.3$,
953 which corresponds to an expanding solution with infinite-time singularity, $E_K \rightarrow \infty$
954 as $t \rightarrow \infty$, while being finite for any $t < \infty$; see Fig. 19 (right panel) for an example

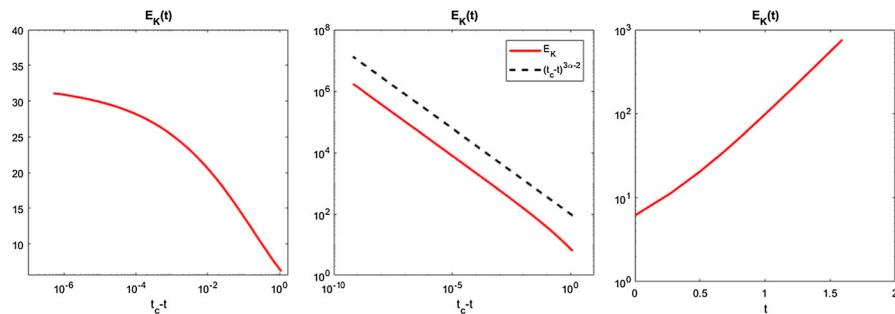


Fig. 19 Growth of the kinetic energy E_K over time. Left panel: $a = 0.2$, semi-log plot of E_K versus $\tau = t_c - t$ shows that E_K grows slower than $\log(\tau)$ or any power of τ as $t \rightarrow t_c$. Center panel: $a = 0.4$, verification of the scaling $E_K \sim \tau^{3\alpha-2}$ in (79) with $I_{g,\infty} < \infty$. Right panel: $a = 1.5$, $E_K \rightarrow \infty$ exponentially as $t \rightarrow \infty$

955 with $a = 1.5$. For $a > a_c$, the above splitting of E_K into two parts is no longer valid,
956 but we nevertheless verify the claims above via time-dependent numerical simulation.

957 For some values of a , we computed $\alpha(a)$ and nonlinear self-similar profiles with
958 much higher precision. For example, we used 68-digit arithmetic (using commercially
959 available Advanpix MATLAB Toolbox <https://www.advanpix.com>) for $a = 2/3$ to
960 find that $\alpha(a) = 0.0451709442203672185156916552716968964156893201125622$
961 $408995729\dots$ and to compute $f(q)$ up to ~ 60 digits of precision, see Fig. 20. High
962 precision computations help validate the results from double precision calculations,
963 and allow us to obtain a good quality analytic continuation of the solution $f(\xi) =$
964 $f(q(\xi))$ from the real line $\xi \in \mathbb{R}$ to the complex plane $\xi \in \mathbb{C}$ via the AAA algorithm
965 (Nakatsukasa et al. 2018), see Sect. 10.

966 10 Analytical Continuation into the Complex Plane by Rational 967 Approximation and Structure of Singularities

968 Fits of the Fourier spectrum using Eq. (62) allow us to find only the singularity closest
969 to the real line. A more powerful numerical technique of analytical continuation
970 based on rational interpolants (Alpert et al. 2000; Dyachenko et al. 2016, 2019; Nakat-
971 sukasa et al. 2018) allows us to go deeper (further away from the real line) into the
972 complex plane, well beyond the closest singularity. However, analytic continuation
973 further from the real line often requires an increase in numerical precision, even well
974 above the standard double precision (Dyachenko et al. 2016, 2019). In this paper,
975 we use a rational interpolation based on a modified version of the AAA algorithm
976 of Nakatsukasa et al. (2018). AAA finds an approximation $f_{\text{AAA}}(\xi)$ to a complex
977 function $f(\xi)$ in barycentric form by minimizing the L_2 error of the approximation
978 on the real line.

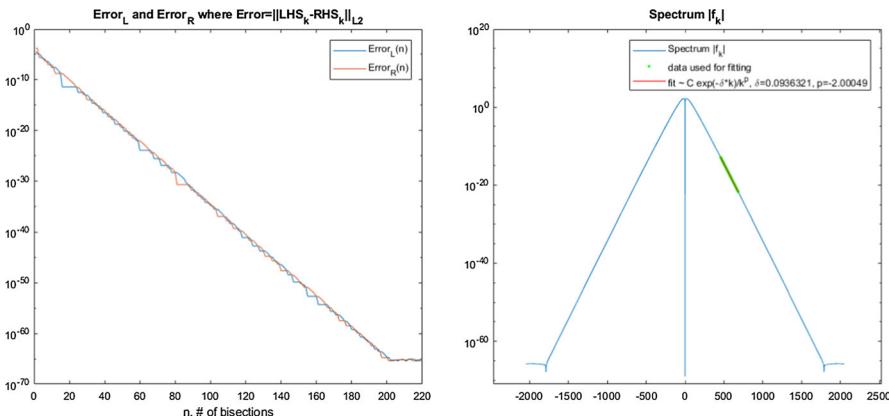


Fig. 20 Convergence of the residual (left panel) and spectrum of the solution (right panel) to Eq. (73), computed with $a = 2/3$ and 68-digit precision, and using IC2 (59) with $V_c = 1/16 = 0.0625$ and $N = 2048$ in the zeroth iteration

979 The barycentric form is given by

$$980 \quad f_{\text{AAA}}(\xi) := \frac{n(\xi)}{d(\xi)} = \frac{\sum_{i=1}^m \frac{w_i f_i}{\xi - \xi_i}}{\sum_{i=1}^m \frac{w_i}{\xi - \xi_i}}, \quad (81)$$

981 where $m \geq 1$ is an integer, ξ_i are a set of real distinct *support points*, f_i are a set of
982 real *data values*, and w_i are a set of real *weights* determined by L_2 error minimization.
983 The integer m is increased until the L_2 error between $f_{\text{AAA}}(\xi)$ and $f(\xi)$ on the real
984 line is on the level of 10^{-PR} , where PR is the current working precision. For analytic
985 functions, the error decreases exponentially in m .

986 The Barycentric form (81) is a quotient of two polynomials $n(\xi)$ and $d(\xi)$. A partial
987 fraction expansion of this quotient results in a sum of $m - 1$ first-order complex poles,
988 $f_{\text{AAA}}^{\text{poles}}(\xi) = \sum_{i=1}^{m-1} \frac{a_i}{\xi - b_i}$, with locations b_i and residues a_i determined by the values
989 of w_i and ξ_i . The pole locations b_i , which are zeros of $d(\xi)$, are determined by solving
990 a generalized eigenvalue problem described in Nakatsukasa et al. (2018). The values
991 of the residues a_i can be computed using L'Hospital's rule $a_i = \text{res}(f_{\text{AAA}}, b_i) =$
992 $n(b_i)/d'(b_i)$. If our data for an analytic function are given with precision PR on
993 the real line, AAA and subsequent computations of b_i approximate the location of
994 single poles with maximum precision $\sim PR$, double poles with precision $\sim PR/2$,
995 and triple poles with precision $\sim PR/3$, etc. The progressive loss of precision in
996 higher-order poles is due to cancellation errors. We find we can achieve the reduced
997 error $|f(\xi) - f_{\text{AAA}}^{\text{poles}}(\xi)| \approx 10^{-PR}$ on the real line in the case of higher order poles if
998 we increase the precision of intermediate computations in the generalized eigenvalue
999 problem by a factor of two for double poles and a factor of three for triple poles. We
1000 additionally modified the original AAA algorithm (Nakatsukasa et al. 2018) to deal
1001 with odd and even functions more efficiently and output more symmetrical sets of
1002 poles.

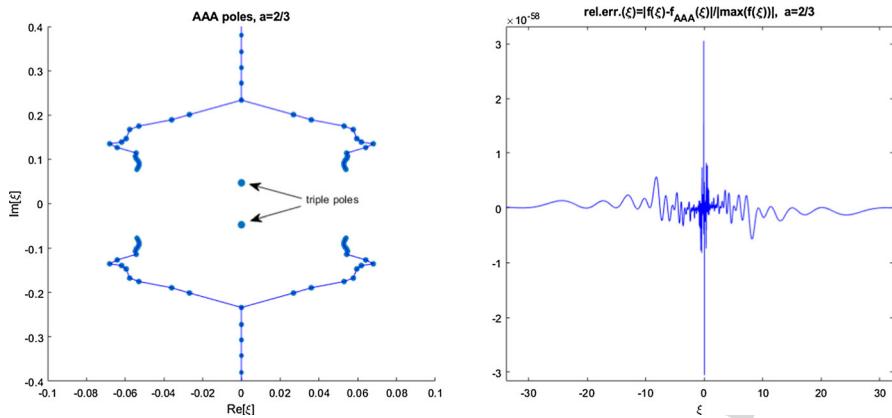


Fig. 21 The structure of the complex singularities of the solution from Fig. 20 approximated by a set of simple poles, $f(\xi) \approx f_{\text{poles}}(\xi) = \sum_{i=1}^{m-1} \frac{a_i}{\xi - b_i}$ using the AAA algorithm (left panel), and the relative error on the real line between the solution $f(\xi)$ and its approximation $f_{\text{AAA}}(\xi)$ (right panel). The simple poles are shown as dots at locations b_i with the size of dot scaled with $\log_{10} |a_i|$. The branch cuts are approximated as lines connecting the dots. The triple poles locations are $\xi \approx \pm i\chi_c \approx \pm 0.04678$, and branch points are located at $\xi = \xi_{\text{branch}} \approx \pm 0.05398 \pm i0.07674$

1003 In the particular case $a = 2/3$, we use 68-digit precision arithmetic for the numerical
 1004 solution of $f(\xi)$ described at the end of Sect. 9 and incorporate this into the AAA
 1005 algorithm. This method shows that the closest singularities to the real line are a pair
 1006 of the third order poles $\propto 1/(\xi \pm i\chi_c)^3$, in full agreement with Theorem 1 (Eq. (21)
 1007 of Sect. 2) and the Fourier spectrum analysis of Sect. 8. The location $\xi = \pm i\chi_c$ (here
 1008 $\text{Re}(\chi_c) > 0$ and $\text{Re}(\chi_c) \gg |\text{Im}(\chi_c)|$) and the third-order type of these poles are
 1009 automatically approximated by the AAA algorithm as three simple poles $\sum_{i=1}^3 \frac{a_i}{\xi - b_i}$
 1010 lying very close to each other ($|b_1 - b_2|, |b_2 - b_3| < 1.54 \cdot 10^{-12}$) with the sum of
 1011 their residues being essentially zero ($|\sum_{i=1}^3 a_i|/|a_1| \approx 4.64 \cdot 10^{-47}$). We define the
 1012 location of the triple pole by the average $i\chi_c = \sum_{i=1}^3 b_i/3$ and have verified that the
 1013 dipole moment defined by $D := \sum_{i=1}^3 (b_i - i\chi_c)a_i$ is negligible, $|D| \approx 1.2 \cdot 10^{-29}$.
 1014 In contrast, the quadrupole moment $Q := \sum_{i=1}^3 (b_i - i\chi_c)^2 a_i$ is distinct from zero,
 1015 $|Q| \approx 1.5 \cdot 10^{-4}$, so this multipole is well approximated by $\frac{Q}{(\xi - i\chi_c)^3}$. The complex
 1016 conjugate point $\xi = -i\chi_c$ was treated in a similar way, i.e., by another set of three
 1017 poles of AAA.

1018 We find that the rest of the singularities of $f(\xi)$ are branch points with branch cuts
 1019 extending from them. AAA approximates branch cuts by sets of poles, and Dyachenko
 1020 et al. (2016, 2019) demonstrate how to recover branch cuts from this set of poles by
 1021 increasing the numerical precision. The increase of numerical precision requires an
 1022 increase in the number of poles m in rational interpolants to match the precision.
 1023 These poles, which are located on a branch cut, become more dense with the increase
 1024 in precision and thus recover the location of the branch cut in the continuous (infinite
 1025 precision) limit. The main motivation for using 68-digit precision in this paper was to
 1026 ensure that we robustly recover branch cuts, see Fig. 21 (left panel). In the particular
 1027 case $a = 2/3$, double precision allows us to robustly see ~ 30 poles, whereas 68-digit

precision allows us to see ~ 150 poles. The number of poles we use for a fixed precision is determined by the minimal number of AAA poles to match the numerical precision of the solution on the real line. Increasing the number poles beyond this minimal number produces spurious poles with very small residues, which is the analog of the round-off floor in the Fourier spectrum. We note that the exact shape of the branch cuts is not fixed analytically—the AAA algorithm simply provides a set of poles that corresponds to the smallest L_2 error on the real axis for the given number of poles. Thus, the AAA approximation of the branch cut might move with a change of the precision. In contrast, the branch points computed by the algorithm are fixed. One can see four branch points in Fig. 21 (left panel), with two branch cuts going upward and coalescing on the imaginary axis and extending further to $+i\infty$. Another two branch cuts extend downward and merge on the imaginary axis before going off to $-i\infty$.

Our investigations of complex singularities via AAA approximations show that for any a , except for $a = \frac{n-1}{n}$, $n = 1, 2, 3, \dots$ [which corresponds to the integer values $\gamma = n$ in Eq. (21)], there is another pair of vertical branch cuts coming out of $\xi = \pm i\chi_c$ and coalescing with the rest of the branch cuts on the imaginary axis. For $a < a_c$, the side branch points are always above the main singularity at $\xi = \pm i\chi_c$ and their locations are $\xi_{\text{branch}} = \pm \epsilon_1(a)\chi_c \pm i(1 + \epsilon_2(a))\chi_c$, where roughly $\epsilon_1(a) \sim 1$, $\epsilon_2(a) \sim 1$. In particular, $\text{Re}[\xi_{\text{branch}}]/\chi_c < 0.74$, $\text{Im}[\xi_{\text{branch}}]/\chi_c > 2$ for $a < 0.6$; $\text{Re}[\xi_{\text{branch}}]/\chi_c \approx 1.15$, $\text{Im}[\xi_{\text{branch}}]/\chi_c \approx 1.64$ for $a = 2/3$ and $\text{Re}[\xi_{\text{branch}}]/\chi_c \approx 1.23$, $\text{Im}[\xi_{\text{branch}}]/\chi_c \approx 1.51$ near $a = a_c$.

11 Results of Time-Dependent Simulations and Petviashvili Iterations for Periodic BC

Motivated by simulations of the generalized CLM equation (1) in Okamoto et al. (2008) for 2π -periodic BC with $a = 1$, we performed simulations for a wide range of values of the parameter a . For this, we used the periodic version of the Hilbert transform $\mathcal{H}^{2\pi}$ (55) in Eq. (1) instead of \mathcal{H} .

Simulations for $a < a_c$ show collapsing solutions with $\alpha > 0$, and different types of IC give qualitatively similar results near the collapse time $t = t_c$ as in the real line $x \in \mathbb{R}$ case with the same $\alpha(a)$ (see Table 1). Hence, we do not describe them here. Expanding solutions for $a > a_c$ behave differently since the finite spatial interval $[-\pi, \pi]$ arrested the increasing width of the solution at large enough times. Thus, we focus our discussion on $a > a_c$ and present detailed results of our simulations, in particular the cases of $a = 0.8$ and $a = 1$.

We performed a simulation with $a = 0.8$ and initial condition

$$\omega_0(x) = -\frac{4}{3}[\sin(x) + 0.5 \sin(2x)], \quad (82)$$

which is qualitatively similar to the particular case (60) of IC2 (59), with q replaced by x and $V_c = 1$, $T_c = 1$. After an initial spatial expansion, the solution is arrested by the periodic boundary conditions. This arrest results in the qualitative change of the

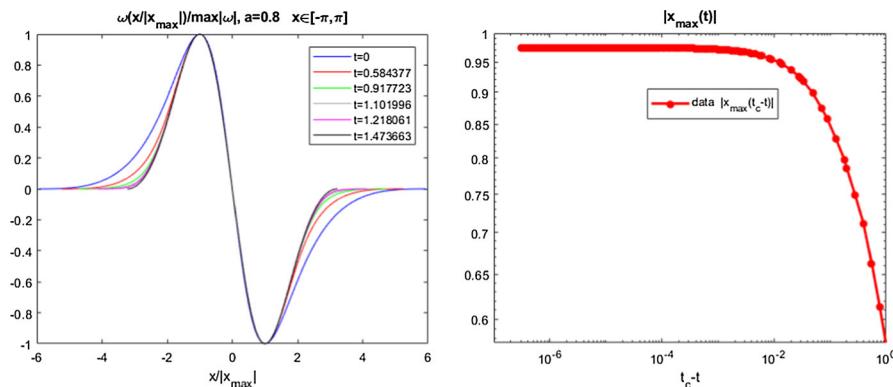


Fig. 22 Left panel: Convergence of time-dependent numerical solution of Eqs. (1) and (55) with $a = 0.8$ and IC (82) to a universal self-similar profile. The solution expands horizontally (until arrested by the boundary condition) and extends vertically, blowing up at $t = t_c = 1.4736630 \dots$. The plot is scaled vertically by $\max_x |\omega|$ and horizontally by the location $x_{\max}(t)$ of $\max_x |\omega|$. Right panel: Time dependence of $|x_{\max}(t)|$, which shows slowdown and eventual arrest of the horizontal expansion of the solution

1067 dynamics, see, for example, the right panel of Fig. 22 for the time dependence of the
 1068 location $x_{\max}(t)$ of $\max_x |\omega(x)|$.

1069 At later times, we still find a finite-time blow-up of the solution with $\max_x |\omega(x)|$
 1070 and $\max_x |u(x)| \rightarrow \infty$ as $t \rightarrow t_c$. However, instead of Eq. (6), the solution converges
 1071 to a new universal self-similar blow-up profile given by Eq. (9), as demonstrated in
 1072 the left panel of Fig. 22. A comparison of Eqs. (6) and (9) reveals that we can formally
 1073 obtain Eq. (9) by setting $\alpha = 0$ in Eq. (6) [although Eq. (9) has periodic boundary
 1074 conditions, versus decaying BC of Eq. (6)]. We note that taking the limit $a \rightarrow a_c^-$ in
 1075 Eq. (6), we also obtain $\alpha = 0$. However, it remains unknown if Eq. (9) can be obtained
 1076 from the continuation of Eq. (6) across $a = a_c$.

1077 The spectrum $\hat{\omega}_k$ is initially exponentially decaying but expands and becomes
 1078 mostly algebraically decaying (similar to Fig. 14). Finite precision arithmetic only
 1079 "sees" algebraic decay $|\hat{\omega}_k(x)| \sim k^{-3}$ when t is close enough to t_c , see Fig. 24. This
 1080 is because of a jump in ω_{xx} forming at $x = \pm\pi$, see Fig. 23 (left and middle panels).
 1081 Due to the spectrum being initially oscillatory, it was difficult to accurately extract
 1082 values of $\delta(t)$ and $p(t)$ from a fit to Eq. (62), but using a nonoscillatory spectrum
 1083 which emerges later in the simulation we were able to recover some data for $\delta(t)$ and
 1084 $p(t)$ as shown in Fig. 24. There, one can see that $\delta(t) \rightarrow 0$ and $p(t) \rightarrow 3$ as $t \rightarrow t_c$.

1085 For $a = 1$, we considered two different types of ICs. The first one is IC (82),
 1086 for which we observe global existence of the solution. Initially, the amplitude of the
 1087 solution $\omega(x)$ grows in time, similar to the infinite-domain case. But this growth slows
 1088 down at later times and eventually reaches a plateau with the same behavior in $u(x)$,
 1089 see Fig. 25. Also $\max_x |\omega_x| = |\omega_x(x=0)|$ remains nearly constant throughout the
 1090 simulation. We observe unbounded growth of $|\omega_{xx}|$ near $x = \pm\pi$ that appears to be
 1091 exponential in time. Due to the spectrum being oscillatory, it was difficult to accurately
 1092 extract values of $\delta(t)$ and $p(t)$ from a fit to Eq. (62). However, using AAA rational
 1093 approximation we were able to observe two pairs of branch cuts approach the real

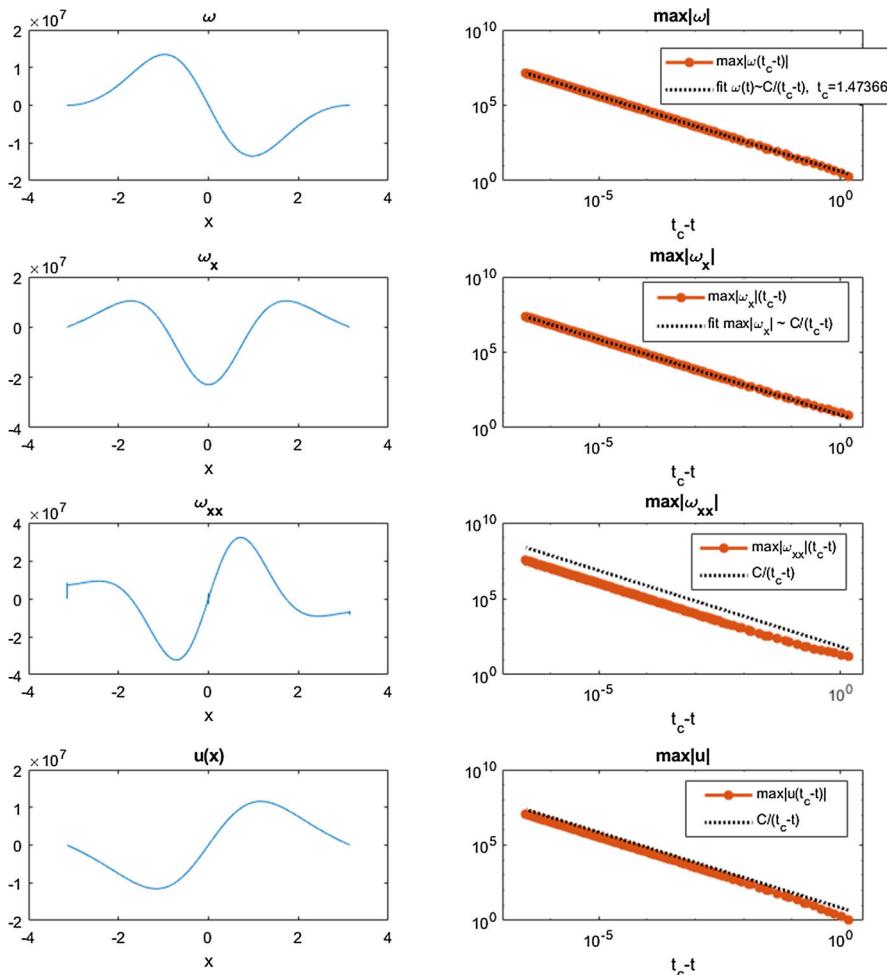


Fig. 23 Results of the simulation of Eqs. (1) and (55) with $a = 0.8$ and IC (82). Left panels: $\omega(x, t)$, its derivatives $\omega_x(x, t)$, $\omega_{xx}(x, t)$, and $u(x, t)$ at $t = 1.4736627$. Right panels: the growth of maximum values of the corresponding quantities over time

line near $x = \pm\pi$ as $t \rightarrow \infty$. Replacing IC (82) by the more general IC2 (59) (with q replaced by x and $V_c, T_c = 1$) is found to only alter the transient dynamics of the expanding solution without qualitatively changing the overall behavior.

The second type of IC we used for $a = 1$ is given by

$$1098 \quad \omega_0(x) = \sin(x) + 0.1 \sin(2x), \quad (83)$$

1099 which is the same as in Okamoto et al. (2008). It allows us to directly compare the
1100 results of our simulations with Okamoto et al. (2008). We obtain exactly the same plots
1101 as in Fig. 1 of Okamoto et al. (2008), see Fig. 26. The difference between simulations
1102 with IC (82) and IC (83) is seen by comparing Figs. 25 and 26. For example, the

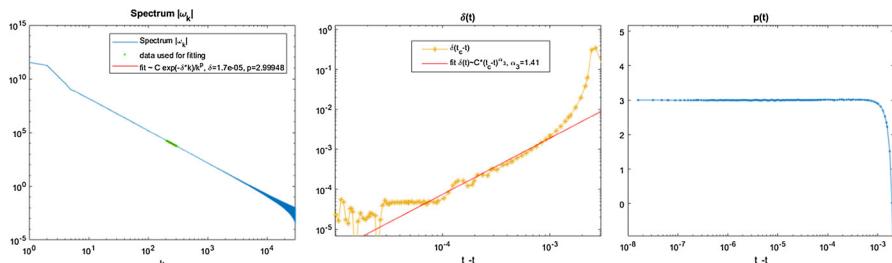


Fig. 24 Left panel: Log–log plot of the Fourier spectrum $|\hat{\omega}_k|$ from Fig. 23 at $t = 1,4736627$ and $a = 0.8$. The red line represents a fit to model (62) with green line showing a portion of the $|\hat{\omega}_k|$ used for the fit. Center and right panels: $\delta(t)$ and $p(t)$ obtained from the fit of $|\hat{\omega}_k|$ to Eq. (62) at different times. Red lines in the center panel also show a fit to the model $\delta(t) \propto (t_c - t)^{\alpha_3}$

1103 spatial derivatives of ω approach discontinuities at $x = 0$ in Fig. 25 versus $x = \pm\pi$ in
 1104 Fig. 26. The AAA rational approximation shows an approach of two vertical branch
 1105 cuts to $x = 0$ over time, so the spectrum is not oscillatory and we are able to easily
 1106 recover $\delta(t)$ and $p(t)$ from the fit to Eq. (62). The fits show a stretched exponential
 1107 in time approach of the singularity to the real line, i.e., $\delta(t) \sim e^{-\kappa t^\nu}$, see Fig. 27
 1108 (middle panel). Figure 27 (middle and right panels) showing $\delta(t)$ and $p(t)$ can be
 1109 compared with Fig. 3(a,b) of Okamoto et al. (2008). Our values of $\delta(t)$ match those
 1110 values from Fig. 3(a) of Okamoto et al. (2008) well, while values of $p(t)$ do not match
 1111 precisely with Fig. 3(b) of Okamoto et al. (2008) because they marginally depend on
 1112 the particular part of spectrum $|\hat{\omega}_k|$ that is used for the fitting.

1113 For $a > 1$ with IC (82), we observe global existence of the solution. Its ini-
 1114 tial expansion in x -space is arrested by the periodic boundary conditions with an
 1115 infinite slope forming at the boundary $x = \pm\pi$ so that $\max_x |\omega_x| \rightarrow \infty$ as
 1116 $t \rightarrow \infty$ (although $\max_x |\omega|, \max_x |u|, |\omega_x(x = 0)| \rightarrow 0$ as $t \rightarrow \infty$). The com-
 1117 plex singularities approach the real line in infinite time. Their positions scale like
 1118 $x_{\text{sing}} \sim \pm\pi \pm iy_0 \exp(-\kappa_2 t^{\nu_2})$, where $y_0, \kappa_2, \nu_2 > 0$. When $a \rightarrow 1^+$, we observe
 1119 that $\max_x |\omega|$ grows for a short time and then decays. Unlike the $x \in \mathbb{R}$ case, it is
 1120 relatively easy to compute accurately for $a \rightarrow 1^+$ and we have been able to obtain
 1121 numerical evidence of global existence for a as small as 1.000001. For IC (83), we
 1122 also observe global existence of the solution with decay of $\max_x |\omega|$ and unbounded
 1123 growth of $|\omega_x(x = 0)|$ as $t \rightarrow \infty$. The complex singularities approach the real line
 1124 like $x_{\text{sing}} \sim 0 \pm iy_0 \exp(-\kappa_2 t^{\nu_2})$, where $y_0, \kappa_2, \nu_2 > 0$.

1125 We find the same behavior of the kinetic energy for the periodic BC as in $x \in \mathbb{R}$
 1126 case described in Sect. 9 for $a \leq 0.95$, while for $a = 1$ we have that $E_K \rightarrow \text{const}$ as
 1127 $t \rightarrow \infty$ (because $\max_x |u| \rightarrow \text{const}$ as $t \rightarrow \infty$) and for $a > 1$ we have that $E_K \rightarrow 0$
 1128 as $t \rightarrow \infty$ (because $\max_x |u| \rightarrow 0$ as $t \rightarrow \infty$).

1129 *Self-similar profiles from GPM.* We also numerically computed the self-similar
 1130 profile $f(x)$ in Eq. (9) for $a_c < a \leq 0.85$ using GPM described in Sect. 9 with $\alpha = 0$.
 1131 In contrast to Sect. 9, we do not need to use the coordinate transformation (66) because
 1132 $f(x)$ is now 2π -periodic with $\xi \equiv x$. We used GPM to solve Eq. (46) by the iteration

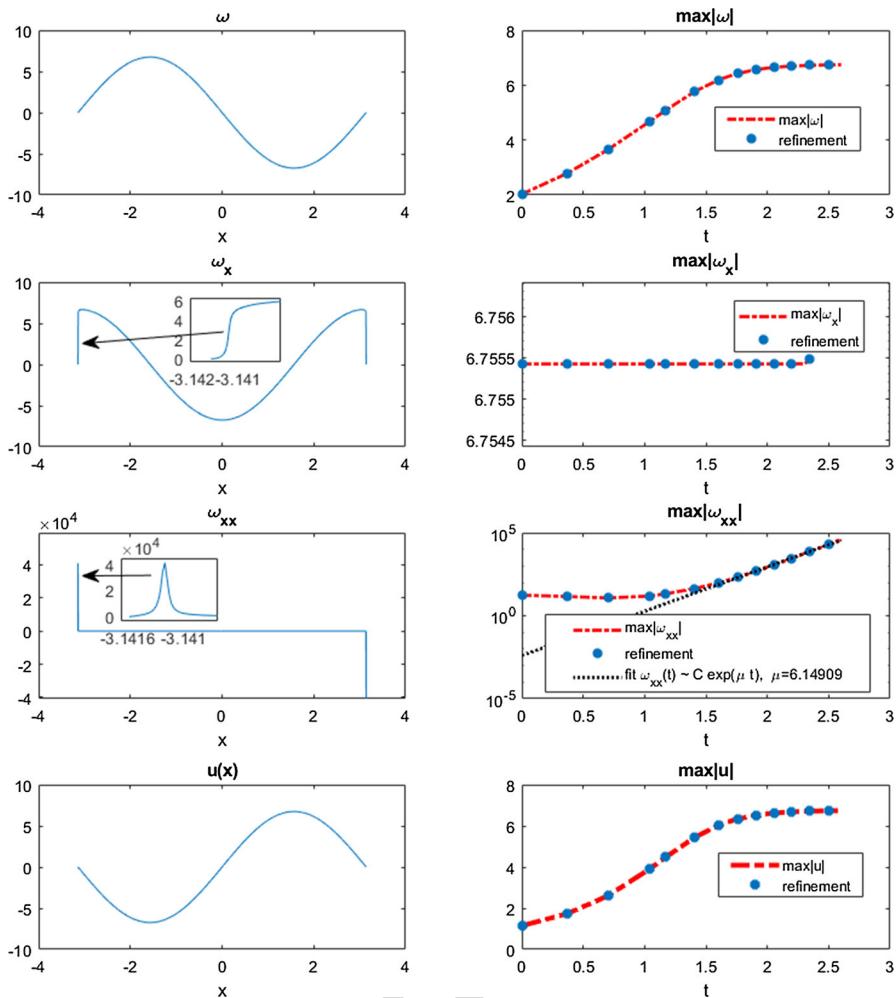


Fig. 25 Results of the simulation of Eqs. (1) and (55) with $a = 1$ and IC (82) showing $\omega(x, t)$, its derivatives $\omega_x(x, t)$, $\omega_{xx}(x, t)$, and $u(x, t)$ at $t = 2.60205$. Also shown is the growth of their maximum values as functions of time

1133 (74) with $\mathcal{M}f$ and $\mathcal{N}[f]f$ from Eq. (67) replaced by

$$\begin{aligned} 1134 \quad \mathcal{M}f &:= f = -agf_x + f\mathcal{H}^{2\pi}f := \mathcal{N}[f]f, \\ g_x &= \mathcal{H}^{2\pi}f. \end{aligned} \quad (84)$$

1135 The matrix \mathbf{M} used in Eq. (74) now turns into the identity matrix. We do not need to
1136 solve the nonlinear eigenvalue problem for α because now $\alpha \equiv 0$. While performing
1137 the iteration (74), we had to reduce $\Delta\tau$ even more than in Sect. 9 to make sure
1138 the iterations converged and also had to use more Fourier modes in the spectrum,
1139 since the spectrum decay is only algebraic for these solutions. Due to these technical

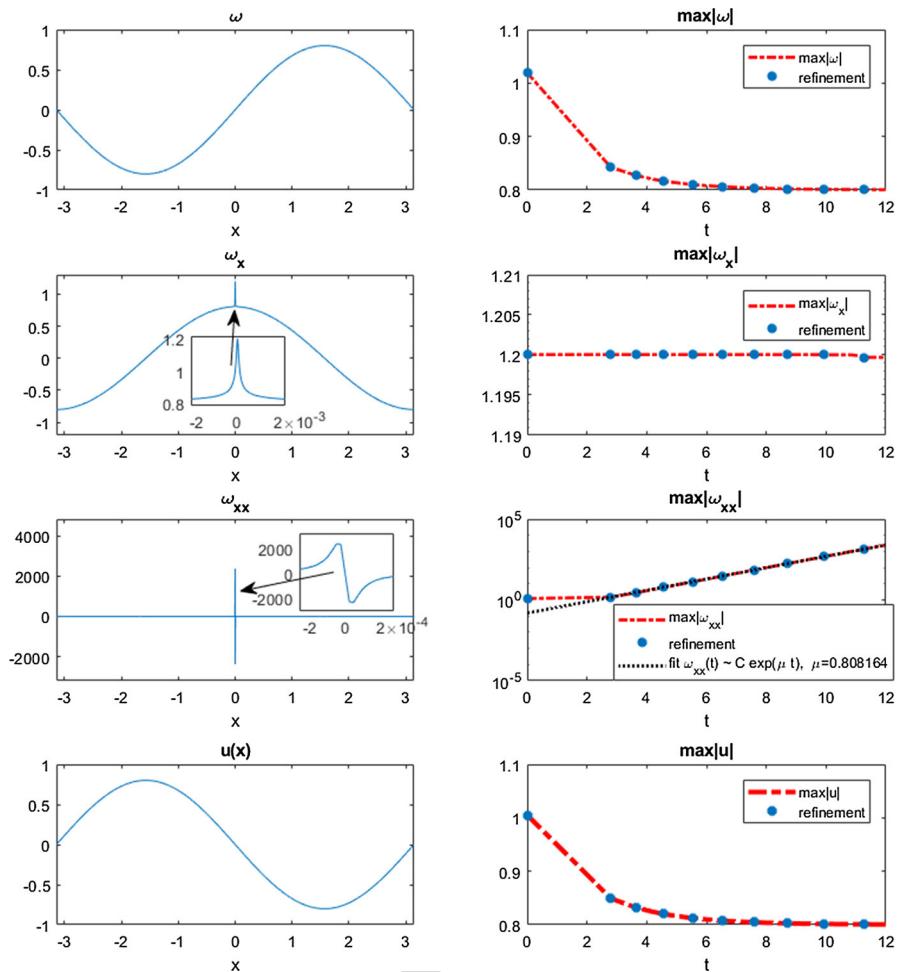


Fig. 26 Results of the simulation of Eqs. (1) and (55) with $a = 1$ and IC (83) as in Okamoto et al. (2008) showing $\omega(x)$, its derivatives $\omega_x(x)$, $\omega_{xx}(x)$, and $u(x)$ at $t \approx 12$ and the growth of their maximum values as functions of time

limitations, we were unable to explore the range $0.85 < a < 1$, but we fully expect that self-similar solutions exist there because time-dependent simulations converge to self-similar profiles, at least over the lower range $a_c < a \lesssim 0.95$ (see Fig. 22). It was not possible to obtain convergence in the upper range $0.95 \lesssim a < 1$ because the solution spectrum quickly widened, and we were unable to reach the self-similar regime before the computation became prohibitively slow. The behavior of solutions (blow-up vs. global existence) therefore remains unknown in this range. We conjecture that blow-up occurs for all $a_c < a < 1$ with global existence only for $a = 1$ (as demonstrated) and for larger values of a .

The Fourier spectrum of $|\hat{\omega}_k|$ corresponding to the self-similar profile (9) has two distinct domains for $|k| \gg 1$. The particular case $a = 0.71$ shown in Fig. 28 depicts

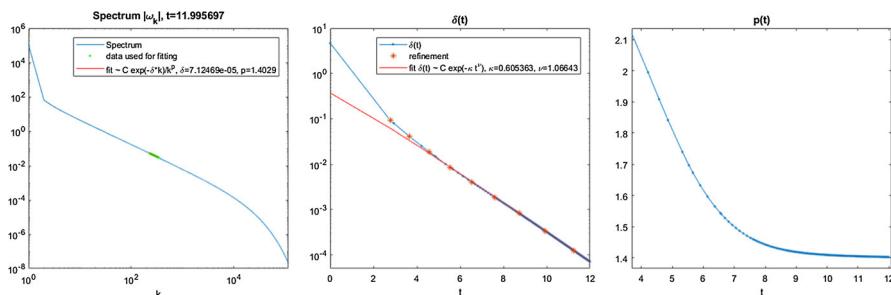


Fig. 27 Left panel: Log–log plot of the Fourier spectrum $|\hat{\omega}_k|$ for the solution in Fig. 26 and a fit to model (62). Center and right panels: Time dependence of $\delta(t)$ and $p(t)$ obtained from the fit to (62). Center panel also shows a fit of $\delta(t)$ to the stretched exponential model $\delta(t) \sim e^{-\kappa t^\nu}$

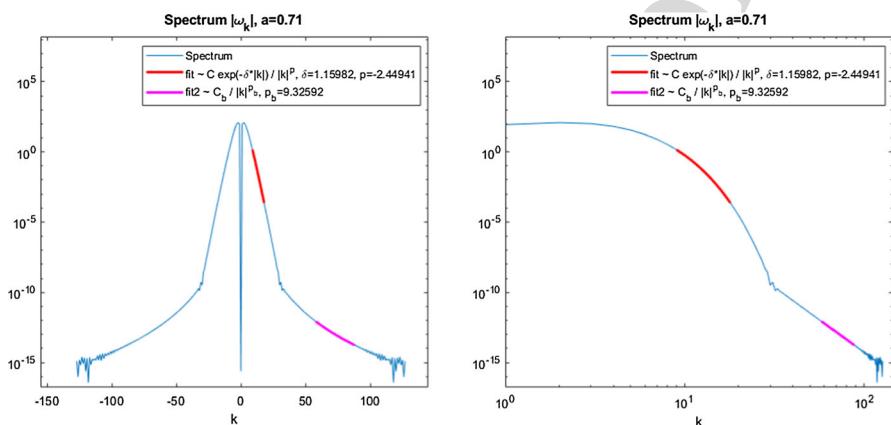


Fig. 28 The Fourier spectrum $|\hat{\omega}_k|$ of the self-similar profile (9) for $a = 0.71$ obtained by GPM iterations (74) of Eq. (84). Two fits are shown in different ranges of k with the first fit to Eq. (62) with $\delta \neq 0$ at intermediate k and the second a power-law fit $\propto |k|^{-p_b}$ for larger $|k|$. Left panel: Log–linear plot where the first fit turns into a nearly linear function. Right panel: Log–log plot where the second fit turns into a nearly linear function

such domains. The first domain corresponds to complex singularities of Theorem 1 (Eq. (21)) located at $x_{\text{sing}} = \pm i\delta$. This domain is well fitted by Eq. (62). From this fit, we find that $\delta = 1.15982$ and $p = -2.44941$, as shown in Fig. 28. Using Eqs. (21) and (63), we obtain the prediction of Theorem 1 that $p = \frac{-a}{1-a} = -2.44827\dots$ which agrees within an accuracy of $< 0.05\%$ with the numerical fit to Eq. (62). The second domain is due to complex singularities located at $x = \pm\pi$ and results in a discontinuity of high-order derivatives of $\omega(x)$ at the periodic boundary. This domain has the power-law spectrum $\propto |k|^{-p_b}$ (i.e., in Eq. (62) it corresponds to $\delta = 0$ and $p = p_b$) which is dominant for larger $|k|$. In the particular case of Fig. 28, we obtain $p_b = 9.32592\dots$. This implies that the ninth- and higher-order derivatives of $\omega(x)$ have a discontinuity at the periodic boundary. All these singularities can be seen using the AAA algorithm described in Sect. 10. We also find that as a approaches to a_c from the right, i.e., $a \rightarrow a_c^+$, increasingly higher-order derivatives experience

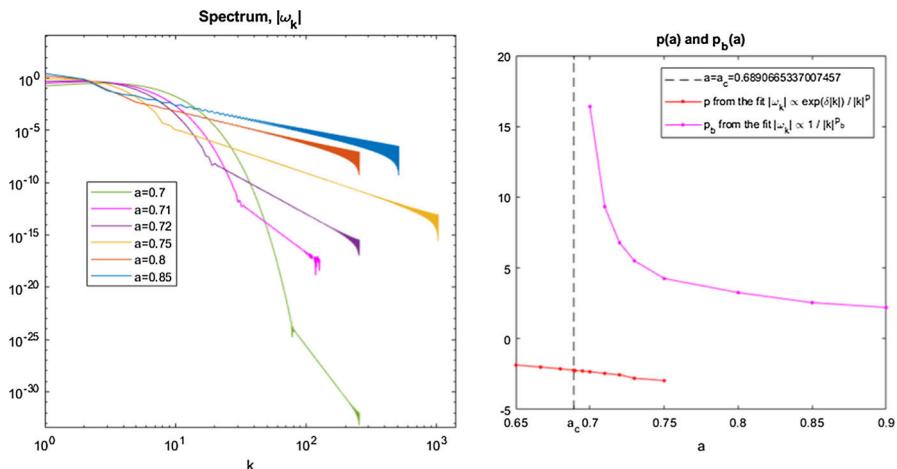


Fig. 29 Left panel: The Fourier spectra $|\hat{\omega}_k|$ of the self-similar profile (9) for various values of a as in Table 2 obtained by GPM iterations (74) of Eq. (84). Right panel: $p(a)$ and $p_b(a)$ from Table 2 extracted from the two fits as in Fig. 28

discontinuities at the periodic boundary, i.e., $p_b \rightarrow \infty$ as $a \rightarrow a_c^+$, see Fig. 29 (right panel). These solutions with finite smoothness at the periodic boundary can be considered the analog of the self-similar solutions with compact support found in Sects. 8 and 9, for solutions on the real line with $a_c < a \leq 1$.

Table 2 provides the values of δ , p and p_b for various values of parameter a obtained from the fits described above. We note that the symmetry (51) is not valid for periodic BC. Thus, the parameter δ is now fixed for each a , contrary to the case $x \in \mathbb{R}$ where it is a free parameter, cf. Sect. 9.

Here, we summarize the solution behavior of Eqs. (1) and (55) for $x \in [-\pi, \pi]$ and generic smooth IC depending on the parameter a :

- $a < a_c$: Behavior of solutions is the same at $t \rightarrow t_c$ as for the $x \in \mathbb{R}$ case, with collapse as in Eq. (6).
- $a_c < a \lesssim 0.95$: Blow-up in both ω and u in finite time t_c with solution approaching the universal self-similar profile (9) as $t \rightarrow t_c$. That profile $f(x)$ has discontinuities in the high-order derivatives with complex singularities touching the real line only at $x = \pm\pi$. The number of continuous derivatives becomes infinite in the limit $a \rightarrow a_c^+$. The singularities approach the real line as $x_{\text{sing}} \simeq \pm\pi \pm i(t_c - t)^{\alpha_3} y_b$, where $\alpha_3(a) > 0$.
- $a = 1$: Global existence of solution with a singularity approaching the real line exponentially in time. For both IC (82) and IC (83), we find $\max_x |\omega|, \max_x |u|, \max_x |u_x| \rightarrow \text{const}$, $\max_x |\omega_x| = |\omega_x(x=0)| = \text{const}$, and $\max_x |\omega_{xx}| \rightarrow \infty$ as $t \rightarrow \infty$.
- $a > 1$: Global existence of solution with a singularity approaching the real line exponentially in time. For IC (82) the singularity approaches the real line near $x = \pm\pi$ and $\max_x |\omega|, \max_x |u|, |\omega_x(x=0)| \rightarrow 0$ and $\max_x |\omega_x| \rightarrow \infty$ as $t \rightarrow \infty$.

Table 2 Values of δ , p and p_b extracted via a fit of spectra $|\hat{\omega}_k|$ to model (62), obtained from eigenvalue problem simulations of Eq. (84) for various values of a , $a_c < a < 1$

a	δ	p	p_b
0.69	0.2338	−2.2446	—
0.695	0.5954	−2.2787	—
0.7	0.8177	−2.3333	16.407
0.71	1.1598	−2.4494	9.3259
0.72	1.44	−2.55	6.81
0.73	1.73	−2.79	5.51
0.75	2.20	−2.96	4.26
0.8	—	—	3.26
0.85	—	—	2.55
0.9	—	—	2.21

δ and p are extracted from the fit $|\hat{\omega}_k| \propto \exp(-\delta|k|)/|k|^p$ to the central part ($k \sim 0$) of the spectrum and p_b is extracted from the fit $|\hat{\omega}_k| \propto 1/|k|^{p_b}$ in the tails ($k \gg 1$) of the spectrum. Simulations with $a \geq 0.71$ were performed in double precision arithmetic. To see the power-law tail of the spectrum and extract p_b in the case of $a = 0.7$, we had to use quadruple precision. For $a_c < a \leq 0.695$, the power-law tail was not observable even in quadruple precision. See Fig. 29 for the spectra and plots of $p(a)$ and $p_b(a)$. The accuracy of δ , p and p_b approximately corresponds to the number of digits provided in the table

1190 12 Conclusions and Discussion

1191 We have performed a systematic sweep of the parameter a in the generalized CLM
 1192 equation (1) to determine the possibility of singularity formation and, when it occurs,
 1193 its type, i.e., collapse versus blow-up. We identified a new critical value $a = a_c =$
 1194 $0.6890665337007457\dots$ such that for $a < a_c$ collapse occurs both on the real line
 1195 $x \in \mathbb{R}$ and for periodic BC. Here, collapse means that not only is there a finite-
 1196 time singularity in which the amplitude of the solution $\omega(x, t)$ tends to infinity, but
 1197 there is also a catastrophic shrinking of the spatial extent of the solution to zero as
 1198 $t \rightarrow t_c$, described by the self-similar form (6). In the intermediate range $a_c < a \leq 1$,
 1199 we found there is finite-time singularity formation for $x \in \mathbb{R}$, with the self-similar
 1200 solution (6) experiencing an infinite rate of expansion as $t \rightarrow t_c$. This type of self-
 1201 similar singularity formation, in which the spatial domain does not collapse, is termed
 1202 “blow-up.” The power α in Eq. (6) controls collapse (for $\alpha > 0$, $a < a_c$) versus
 1203 blow-up ($\alpha \leq 0$, $a \geq a_c$). We elucidated the dependence of $\alpha(a)$ on a via both direct
 1204 numerical simulation of Eq. (1) and the solution of a nonlinear eigenvalue problem (46)
 1205 using the generalized Petviashvili method (74). We have also performed multiprecision
 1206 simulations (up to 68 digits of accuracy) to demonstrate the possibility of recovering
 1207 $\alpha(a)$ and the structure of self-similar solutions with any desired precision.

1208 We show that collapsing solutions of (1) have finite energy E_K up to and including
 1209 the critical time t_c for $a < 0.265 \pm 0.001$. Such finite energy solutions are of interest
 1210 in analogy with the problem concerning global regularity of the 3D Euler and Navier-
 1211 Stokes equations with smooth initial data, see Fefferman (2006) and Gibbon (2008).

1212 We found for general values of a that the self-similar solution (6) is real analytic for
1213 $a < a_c$, while it has finite support for $a_c < a \leq 1$.

1214 We identified that the blow-up for periodic BC with $a_c < a \leq 0.95$ is qualitatively
1215 different from that for $x \in \mathbb{R}$, because the periodic BC arrests or blocks the unbounded
1216 spatial expansion of the solution on the real line. To our surprise, such arrest does
1217 not result in the global existence of the solution but instead leads to a new form of
1218 self-similar blow-up (9), in which weak singularities develop at the boundaries of the
1219 periodic domain. In the limit $a \rightarrow a_c^+$, this self-similar solution turns into an infinitely
1220 smooth (C^∞) solution. We believe that the qualitative difference in blow-up between
1221 $x \in \mathbb{R}$ and periodic BC might serve as an interesting lesson relevant to the search for
1222 singularities in the 3D Euler equation.

1223 Both self-similar solutions (6) and (9) are nonlinearly stable, as follows from our
1224 simulations. Quite generic classes of IC converge to these solutions during the temporal
1225 evolution. In the case of Eq. (6), such convergence/stability is understood in the sense
1226 of convergence to a family of self-similar solutions, up to a rescaling in x , because of
1227 the symmetry (51) of Eq. (46).

1228 The structure of the leading-order singularities in the complex plane x (which is
1229 the analytical continuation from $x \in \mathbb{R}$) is determined by Theorem 1. That result is
1230 valid for both $x \in \mathbb{R}$ and periodic BC and is in full agreement with simulations. For
1231 $a < a_c$, the leading-order singularities are the closest singularities to the real line
1232 in the complex x -plane. For $a > a_c$, these singularities still determine the structure
1233 of self-similar solutions near $x = 0$, while the solution near the boundaries of finite
1234 support in $x \in \mathbb{R}$ and the periodic boundaries for periodic BC are controlled by less
1235 singular terms. The self-similar solution profiles for these a have been found with
1236 high accuracy by solving a nonlinear eigenvalue problem. We have also proved in
1237 Theorem 3 that, except for the exact closed-form solutions for $a = 0$ and $a = 1/2$, the
1238 analytical structure of singularities in the complex x -plane goes beyond the leading-
1239 order singularities. In particular, we numerically identified using the AAA algorithm
1240 the existence of additional, nonleading-order branch points for $a \neq 0, 1/2$.

1241 We found from our simulations that quite generic IC results in the global existence
1242 of solutions for $a \gtrsim 1.3$ and $x \in \mathbb{R}$, while for periodic BC global existence is ensured
1243 for $a \geq 1$. In the remaining gaps $1 < a \lesssim 1.3$ for $x \in \mathbb{R}$ and $0.95 < a < 1$ for
1244 the periodic case, our simulations are inconclusive and unable to distinguish between
1245 singularity formation and global existence. We believe that more concrete results in
1246 this range of a will require additional analysis and/or substantial efforts in simulation.

1247 We suggest that among many other issues, the following questions would be inter-
1248 esting to address in future work:

- 1249 1. Analytical study of the complex singularities beyond the leading-order singulari-
1250 ties addressed in Theorem 1. In particular, the case $a = 2/3$ might be especially
1251 interesting because the leading-order singularity is very simple, namely a third-
1252 order pole.
- 1253 2. Either extend GPM to the compactly supported case $a > a_c$ for $x \in \mathbb{R}$, or use
1254 a version of the method in Chen et al. (2019) based on cubic splines. However,
1255 splines generally lose information about the analyticity of solutions in the complex
1256 plane. One way to improve the performance of GPM in this range of a might be

1257 to use a coordinate transform in the form of a conformal mapping which would
1258 simultaneously resolve the numerical grid near $x = \pm x_b$ while keeping the analyticity
1259 of the solution intact. This type of approach has been suggested in Lushnikov
1260 et al. (2017).
1261 3. Fill the gaps in our knowledge on blow-up versus global existence of solutions in
1262 the parameter regime $1 < a \lesssim 1.3$ for $x \in \mathbb{R}$ and $0.95 < a < 1$ for periodic BC.
1263 4. Look for possible analytical continuation/bifurcation at $a = a_c$ between self-
1264 similar solutions (6) for the case $x \in \mathbb{R}$ and Eq. (9) for periodic BC.
1265 5. Perform an analysis of the nonlinear stability of the blow-up solutions. This could
1266 be qualitatively similar to the stability of collapse in PDEs such as the nonlinear
1267 Schrödinger equation and the Patlak–Keller–Segel equation, see, e.g., Zakharov
1268 (1972), Childress and Percus (1981), Sulem and Sulem (1999), Brenner et al.
1269 (1999), Kuznetsov and Zakharov (2007), and Lushnikov et al. (2013).
1270 6. Analyze the formation of singularities at the initial time $t = 0^+$. This can give
1271 information on the type of singularities which first form in the complex plane,
1272 and subsequently move toward the real line. Such an analysis has been previously
1273 performed for the evolution of a vortex sheet in the Kelvin–Helmholtz problem
1274 (Cowley et al. 1999), which is also governed by a nonlocal PDE. However, a
1275 significant difference between the current problem and the vortex sheet problem is
1276 that here the singularities initially form at infinity in the complex plane, whereas in
1277 the vortex sheet problem they are generated at finite locations, due to a singularities
1278 in the kernel of the nonlocal term at these locations.

1279 **Acknowledgements** P.M.L. thanks the support of the Russian Ministry of Science and Higher Education.
1280 The work of P.M.L. was supported by the National Science Foundation, Grant DMS-1814619. M.S.
1281 was supported by National Science Foundation Grant DMS-1909407. Simulations were performed at the
1282 Texas Advanced Computing Center using the Extreme Science and Engineering Discovery Environment
1283 (XSEDE), supported by NSF Grant ACI-1053575.

1284 Declaration

1285

1286 **Conflict of interest** The authors declare that they have no conflict of interest.

1287 A Hilbert Transform for Transformed Variable

1288 In this Appendix, we derive the expression for the Hilbert transform in the auxiliary
1289 variable q (52) of Sect. 7.

1290 The change of variable (52) in Eq. (2) together with (53) results in

$$\begin{aligned} 1291 \mathcal{H}f(x) &= \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{f(x')}{x - x'} dx' = \frac{1}{\pi} \text{p.v.} \int_{-\pi}^{\pi} \frac{\tilde{f}(q')}{\tan \frac{q}{2} - \tan \frac{q'}{2}} \frac{dq'}{2 \cos^2 \frac{q}{2}} \\ 1292 &= \frac{1}{2\pi} \text{p.v.} \int_{-\pi}^{\pi} \frac{\tilde{f}(q') \left[1 + \tan \frac{q}{2} \tan \frac{q'}{2} - \tan \frac{q'}{2} \left(\tan \frac{q}{2} - \tan \frac{q'}{2} \right) \right]}{\tan \frac{q}{2} - \tan \frac{q'}{2}} dq' \end{aligned}$$

$$1293 = \frac{1}{2\pi} \text{p.v.} \int_{-\pi}^{\pi} \frac{\tilde{f}(q')}{\tan\left(\frac{q-q'}{2}\right)} dq' - \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{f}(q') \tan\frac{q'}{2} dq' = \mathcal{H}^{2\pi} f(q) + C_f^{2\pi},$$

1294 (85)

1295 where we used the identities

$$1296 \tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \quad \text{and} \quad \frac{1}{\cos^2 \frac{q}{2}} = \tan^2 \frac{q}{2} + 1$$

1297

1298 as well as definitions (55) and (56). Equation (85) ensures that $\lim_{q \rightarrow \pm\pi} [\mathcal{H}^{2\pi} f(q) +$
 1299 $C_f^{2\pi}] = 0$.

1300 Also $\mathcal{H}^{2\pi} f(x)$, Eq. (55), is the reduction of $\mathcal{H} f(x)$, Eq. (2), to the class of 2π -
 1301 periodic functions. Assuming that $f(x)$ is the periodic function with the period 2π ,
 1302 we obtain from Eq. (2) that

$$1303 \mathcal{H} f(x) = \frac{1}{\pi} \sum_{n=-\infty}^{\infty} \text{p.v.} \int_{-\pi}^{\pi} \frac{f(x')}{x - x' + 2\pi n} dx' = \frac{1}{2\pi} \text{p.v.} \int_{-\pi}^{\pi} \frac{f(x')}{\tan\left(\frac{x-x'}{2}\right)} dx' =: \mathcal{H}^{2\pi} f(x),$$

1304 (86)

1305 where we used definition (55) and the identity

$$1306 \sum_{n=-\infty}^{\infty} \frac{1}{x + 2\pi n} = \frac{1}{2 \tan \frac{x}{2}}.$$

1307 (87)

1308 References

1309 Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain
 1310 wave propagation. *SIAM J. Numer. Anal.* **37**, 1138–1164 (2000)

1311 Baker, G., Caflisch, R.E., Siegel, M.: Singularity formation during Rayleigh–Taylor instability. *J. Fluid
 1312 Mech.* **252**, 51–78 (1993)

1313 Brenner, M.P., Constantin, P., Kadanoff, L.P., Schenkel, A., Venkataramani, S.C.: Diffusion, attraction and
 1314 collapse. *Nonlinearity* **12**(4), 1071–1098 (1999)

1315 Carrier, G.F., Krook, M., Pearson, C.E.: Functions of a Complex Variable. McGraw-Hill, New York (1966)

1316 Castro, A., Córdoba, D.: Infinite energy solutions of the surface quasi-geostrophic equation. *Adv. Math.*
 1317 **225**(4), 1820–1829 (2010)

1318 Chen, J.: Singularity formation and global well-posedness for the generalized Constantin–Lax–Majda equation
 1319 with dissipation. *Nonlinearity* **33**(5), 2502 (2020)

1320 Chen, J., Hou, T.Y., Huang, D.: On the finite time blowup of the De Gregorio model for the 3D Euler
 1321 equation. [arXiv:1905.06387](https://arxiv.org/abs/1905.06387) (2019)

1322 Childress, S., Percus, J.K.: Nonlinear aspect of chemotaxis. *Math. Biosci.* **56**, 217–237 (1981)

1323 Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity
 1324 equation. *Commun. Pure Appl. Math.* **38**(6), 715–724 (1985)

1325 Cooper, G.J., Verner, J.H.: Some explicit Runge–Kutta methods of high order. *SIAM J. Numer. Anal.* **9**(3),
 1326 389–405 (1972). <https://doi.org/10.1137/0709037>

1327 Cowley, S.J., Baker, G.R., Tanveer, S.: On the formation of Moore curvature singularities in vortex sheets.
 1328 *J. Fluid Mech.* **378**, 233–267 (1999)

1329 De Gregorio, S.: On a one-dimensional model for the three-dimensional vorticity equation. *J. Stat. Phys.* **59**(5–6), 1251–1263 (1990)

1330 Dyachenko, A.I., Dyachenko, S.A., Lushnikov, P.M., Zakharov, V.E.: Dynamics of poles in 2D hydrodynamics with free surface: new constants of motion. *J. Fluid Mech.* **874**, 891–925 (2019)

1331 Dyachenko, S.A., Lushnikov, P.M., Korotkevich, A.O.: The complex singularity of a Stokes wave. *JETP Lett.* **98**(11), 767–771 (2013). <https://doi.org/10.7868/S0370274X13230070>

1332 Dyachenko, S.A., Lushnikov, P.M., Korotkevich, A.O.: The complex singularity of a Stokes wave. *JETP Lett.* **98**(11), 675–679 (2013). <https://doi.org/10.7868/S0370274X13230070>

1333 Dyachenko, S.A., Lushnikov, P.M., Korotkevich, A.O.: Branch cuts of Stokes wave on deep water. Part I: numerical solution and Padé approximation. *Stud. Appl. Math.* **137**, 419–472 (2016). <https://doi.org/10.1111/sapm.12128>

1334 Dyachenko, S.A., Lushnikov, P.M., Vladimirova, N.: Logarithmic scaling of the collapse in the critical Keller–Segel equation. *Nonlinearity* **26**, 3011–3041 (2013)

1335 Elgindi, T.M.: Finite-time singularity formation for $C^{1,\alpha}$ solutions to the incompressible Euler equations on \mathbb{R}^3 . [arXiv:1904.04795](https://arxiv.org/abs/1904.04795) (2019)

1336 Elgindi, T.M., Jeong, I.J.: Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler equations. *Ann. PDE* **5**(2), 1–51 (2019)

1337 Elgindi, T.M., Jeong, I.J.: On the effects of advection and vortex stretching. *Arch. Ration. Mech. Anal.* **235**, 1763–1817 (2020). <https://doi.org/10.1007/s00205-019-01455-9>

1338 Fefferman, C.L.: Existence and smoothness of the Navier–Stokes equation. In: The Millennium Prize Problems, pp. 57–67 (2006)

1339 Gibbon, J.D.: The three-dimensional Euler equations: Where do we stand? *Phys. D* **237**, 1894–1904 (2008)

1340 Hou, T.Y., Jin, T., Liu, P.: Potential singularity for a family of models of the axisymmetric incompressible flow. *J. Nonlinear Sci.* **28**(6), 2217–2247 (2018)

1341 Hou, T.Y., Lei, Z., Luo, G., Wang, S., Zou, C.: On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations. *Arch. Ration. Mech. Anal.* **212**(2), 683–706 (2014)

1342 Hou, T.Y., Li, C.: Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. *Commun. Pure Appl. Math.* **61**(5), 661–697 (2008)

1343 Hou, T.Y., Li, R.: Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. *J. Nonlinear Sci.* **16**(6), 639–664 (2006)

1344 Hou, T.Y., Shi, Z., Wang, S.: On singularity formation of a 3D model for incompressible Navier–Stokes equations. *Adv. Math.* **230**(2), 607–641 (2012)

1345 Kuznetsov, E.A., Zakharov, V.E.: Wave Collapse. World Scientific Publishing Company, New York (2007)

1346 Lakoba, T.I., Yang, J.: A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity. *J. Comput. Phys.* **226**, 1668–1692 (2007)

1347 Lei, Z., Hou, T.Y.: On the stabilizing effect of convection in three-dimensional incompressible flows. *Commun. Pure Appl. Math.* **62**(4), 501–564 (2009)

1348 Lei, Z., Liu, J., Ren, X.: On the Constantin–Lax–Majda model with convection. *Commun. Math. Phys.* 1–19 (2019)

1349 Lushnikov, P.M.: Dispersion-managed soliton in a strong dispersion map limit. *Opt. Lett.* **26**, 1535–1537 (2001)

1350 Lushnikov, P.M., Dyachenko, S.A., Silantyev, D.A.: New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. *Proc. R. Soc. A* **473**, 20170198 (2017)

1351 Lushnikov, P.M., Dyachenko, S.A., Vladimirova, N.: Beyond leading-order logarithmic scaling in the catastrophic self-focusing of a laser beam in Kerr media. *Phys. Rev. A* **88**, 013845 (2013)

1352 Lushnikov, P.M., Silantyev, D.A., Siegel, M.: Collapse vs. blow up and global existence in the generalized Constantin–Lax–Majda equation. [arXiv:2010.01201](https://arxiv.org/abs/2010.01201) (2020)

1353 Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. *SIAM J. Sci. Comput.* **40**(3), A1494–A1522 (2018)

1354 Okamoto, H., Ohkitani, K.: On the role of the convection term in the equations of motion of incompressible fluid. *J. Phys. Soc. Jpn.* **74**(10), 2737–2742 (2005)

1355 Okamoto, H., Sakajo, T., Wunsch, M.: On a generalization of the Constantin–Lax–Majda equation. *Nonlinearity* **21**(10), 2447 (2008)

1356 Pelinovsky, D., Stepanyants, Y.: Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations. *SIAM J. Numer. Anal.* **42**, 1110–1127 (2004)

1357 Petviashvili, V.I.: Equation for an extraordinary soliton. *Sov. J. Plasma Phys.* **2**, 257–258 (1976)

1385 Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 2. Princeton University
1386 Press, Princeton (1970)

1387 Sulem, C., Sulem, P.L.: Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse. World Sci-
1388 entific, New York (1999)

1389 Sulem, C., Sulem, P.L., Frisch, H.: Tracing complex singularities with spectral methods. *J. Comput. Phys.*
1390 **50**, 138–161 (1983)

1391 Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

1392 Zakharov, V.E.: Collapse of Langmuir waves. *Sov. Phys. JETP* **35**, 908 (1972)

1393 **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps
1394 and institutional affiliations.