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Abstract1

The question of finite-time singularity formation versus global existence for solu-2

tions to the generalized Constantin–Lax–Majda equation is studied, with particular 13

emphasis on the influence of a parameter a which controls the strength of advec-4

tion. For solutions on the infinite domain, we find a new critical value ac =5

0.6890665337007457 . . . below which there is finite-time singularity formation that6

has a form of self-similar collapse, with the spatial extent of blow-up shrinking to7

zero. We prove the existence of a leading-order power-law complex singularity for 28

general values of a in the analytical continuation of the solution from the real spatial9

coordinate into the complex plane and identify the power-law exponent. This singu-10

larity controls the leading-order behavior of the collapsing solution. We prove that11

this singularity can persist over time, without other singularity types present, provided12

a = 0 or 1/2. This enables the construction of exact analytical solutions for these13

values of a. For other values of a, this leading-order singularity must coexist with 314

other singularity types over any nonzero interval of time. For ac < a ≤ 1, we find a15

blow-up solution in which the spatial extent of the blow-up region expands infinitely16

fast at the singularity time. For a � 1.3 , we find that the solution exists globally with17

exponential-like growth of the solution amplitude in time. We also consider the case
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of periodic boundary conditions. We identify collapsing solutions for a < ac which18

are similar to the real line case. For ac < a ≤ 0.95, we find new blow-up solutions19

which are neither expanding nor collapsing. For a ≥ 1, we identify a global existence4 20

of solutions.21

Keywords Constantin–Lax–Majda equation · Collapse · Blow-up · Self-similar22

solution23

1 Introduction24

In this paper, we investigate finite-time singularity formation in the generalized25

Constantin–Lax–Majda (CLM) equation (Constantin et al. 1985; De Gregorio 1990;26

Okamoto et al. 2008)27

ωt = −auωx + ωux , ω, x ∈ R, t > 0,

ux = Hω,
(1)28

which is a 1D model for the advection and stretching of vorticity in a 3D incompressible29

Euler fluid. Here, ω and u are a scalar vorticity and velocity, respectively, a ∈ R is a30

parameter, and H is the Hilbert transform,31

Hω(x) :=
1

π
p.v.

∫ +∞

−∞

ω(x ′)

x − x ′
dx ′. (2)32

This equation, with a = 0, was first introduced by Constantin et al. (1985) as a33

simplified model to study the possible formation of finite-time singularities in the 3D34

incompressible Euler equations. It was later generalized by De Gregorio (1990) to35

include an advection term uωx and by Okamoto et al. (2008), who introduced the real36

parameter a to give different relative weights to advection and vortex stretching, uxω.37

In addition to its relationship to the 3D Euler equation, (1) has a direct connection to38

the surface quasi-geostrophic (SQG) equation (Elgindi and Jeong 2020).39

The 3D incompressible Euler equations can be written as40

∂tω + u · ∇ω = ω · ∇u, x ∈ R
3, t > 0, (3)41

u = ∇ × (−∆)−1ω. (4)42
43

The second equation above is the Biot–Savart law, which in free-space has an equiv-44

alent representation as a convolution integral45

u(x, t) =
1

4π

∫

R3

(x − y) × ω(y, t)

|x − y|3
dy. (5)46

The term ω · ∇u on the right-hand side (r.h.s.) of (3), where ∇u = S(ω) is a matrix47

of singular integrals, is known as the vortex stretching term. Standard estimates from48

the theory of singular integral operators (Stein 1970) show that ‖ω‖L p ≤ ‖∇u‖L p ≤49
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cp‖ω‖L p for 1 < p < ∞, which formally implies that the vortex stretching term scales50

quadratically in the vorticity, i.e., S(ω)ω ≈ ω2. This term is therefore destabilizing51

and has the potential to generate singular behavior. However, analysis of the regularity52

of Eqs. (3), (4) is greatly complicated by the nonlocal and matrix structure of S and53

remains an outstanding open question (see Elgindi 2019; Elgindi and Jeong 2019 for54

recent developments).55

In contrast to the vortex stretching term, the advection term u · ∇ω does not cause56

any growth of vorticity. As a result, it has historically been thought to play an unimpor-57

tant role in the regularity of the incompressible Euler and Navier–Stokes equations.58

Recent studies, however, show that advection-type terms can have an unexpected59

smoothing effect. For example, Lei and Hou (2009) present numerical evidence that a60

finite-time singularity forms from smooth data in solutions to a reformulated version61

of the Navier–Stokes equations for axisymmetric flow with swirl, when the so-called62

convection terms ur∂r (ωθ/r) + uz∂z(ωθ/r) and ur∂r (uθ/r) + uz∂z(uθ/r) are omit-63

ted. Here, (ur , uθ , uz) and ωθ are velocity and vorticity components in cylindrical64

coordinates (r , θ, z). Adding the convection back is found to suppress a finite-time65

singularity formation. Related work on the smoothing effect of advection/convection66

in the Euler and Navier–Stokes equations is given in Hou et al. (2012, 2014, 2018),67

Hou and Li (2006, 2008), and Okamoto and Ohkitani (2005).68

The generalized CLM equation (1) (also called the Okamoto–Sakajo–Wunsch69

model in Elgindi and Jeong 2020) is obtained from the 3D Euler equations by replac-70

ing the advection term u · ∇ω with uωx and the vortex stretching term S(ω)ω by its71

1D analogue H(ω)ω. The Hilbert transform H is the unique singular integral operator72

in 1D that preserves certain important properties of S(ω); namely, it commutes with73

translations and dilations (Constantin et al. 1985). In addition, the 1D vortex stretch-74

ing term H(ω)ω preserves the quadratic scaling of the vortex stretching term S(ω)ω75

in the 3D problem. The resulting Eq. (1) provides a simplified setting to understand76

the competition between the stabilizing effect of advection and destabilizing effect77

of vortex stretching. In this work, we focus on smooth (analytic or C∞) initial data78

which we consider as the most physically relevant. There are also a number of results79

on singularity formation for (1) in the case of Holder continuous initial data, see Chen80

et al. (2019) and Elgindi and Jeong (2020) for recent reviews.81

We summarize some of the known results, concentrating on those which apply82

to smooth (analytic or C∞) initial data. In the case a = 0, Constantin et al. (1985)83

obtained a closed-form exact solution to the initial value problem for (1) which devel-84

ops a self-similar finite-time singularity for a class of analytic initial data. When a 
= 0,85

the simplifications that enable a closed-form solution no longer hold, and various ana-86

lytical and numerical methods have been applied to investigate singularity formation.87

Castro and Córdoba (2010) proved finite-time blow-up for a < 0 using a Lyapunov-88

type argument. In this case, advection and vortex stretching act together to produce a89

singularity. In contrast, for a > 0 the stabilizing effect of advection competes with the90

destabilizing effect of vortex stretching. For ǫ-small values of a > 0, vortex stretching91

dominates and Elgindi and Jeong (2020) proved the existence of self-similar finite-time92
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singularities in the form93

ω =
1

τ
f (ξ) , ξ =

x

τα
, τ = tc − t, (6)94

where tc > 0 is the singularity time and α depends on a, approaching α = 1 in the95

limit a → 0. Also, f (ξ) is an odd function, i.e., f (−ξ) = − f (ξ), ξ ∈ R. The96

proof of Elgindi and Jeong (2020) is based on a continuation argument in a small97

neighborhood of the exact solution at a = 0. Chen et al. (2019) proved a similar result98

using a different method.99

The special case of a = 1 of Eq. (1) was first considered by De Gregorio (1990) and100

has been the subject of extensive numerical computations in the periodic geometry by101

Okamoto et al. (2008). These suggest that singularities do not occur in finite time from102

smooth initial data on a periodic domain. Okamoto et al. (2008) use a least squares fit103

to the decay of Fourier modes to track the distance δ(t) from the real line to the nearest104

singularity in the complex x-plane. They find that δ(t) decays exponentially in time,105

which is consistent with global existence. Global existence for a = 1 in the specific106

case of nonnegative (or nonpositive) initial vorticity is proven by Lei et al. (2019).107

The above analytical and numerical results might suggest the existence of a thresh-108

old value a = athreshold below which finite-time singularities occur for smooth initial109

data and at/above which the solution exists globally in time. Okamoto et al. conjecture110

that athreshold = 1. However, for this value a = 1, Chen et al. (2019) recently proved111

the existence of an “expanding” self-similar solution (6) for the problem on x ∈ R.112

In this solution, f (ξ) is an odd function with finite support and α = −1. It implies113

that ω(x, t) → f ′(0)x as t → tc for any finite value of x ∈ R, while the boundary114

of compact support expands infinitely fast in the spatial coordinate x as t → tc. We115

compute this solution numerically and demonstrate that analytic initial data converge116

to the expanding self-similar solution. The form of this solution is apparently incom-117

patible with the periodic geometry and thus does not rule out the possibility of global118

existence of the solution in that geometry when a = 1.119

We are not aware of any theory or simulation which consider solutions to (1) over120

a wide range of the parameter a as well as any simulation on x ∈ R addressing even121

the particular case a = 1. The main goal of this paper is to fill this gap by presenting122

theory and highly accurate computations to assess singularity formation for a wide123

range of a for both the periodic geometry and x ∈ R.124

We obtain two main analytical results (Theorems 1 and 3). The first one (Theorem 1)125

establishes the specific form of the leading-order complex singularity of f (ξ) in (6)126

and determines its dependence on a, when that singularity is of power-law type. We127

show that this singularity can persist over time, without other singularity types present,128

provided a = 0 or 1/2. This enables the construction of exact analytical solutions for129

these values of a. The second main analytical result (Theorem 3) proves that the exact130

solutions, consisting only of leading-order power-law singularities, are impossible131

beyond the particular cases a = 0 and 1/2. It implies that for any value of a, beyond132

a = 0 and 1/2, the leading-order power-law singularity must coexist with other133

singularities for any nonzero duration of time. If the initial condition contains only134
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these leading-order singularities, then other singularities must appear in arbitrarily135

small time to be consistent with Eq. (1).136

Our spectrally accurate numerical simulations address all real values of a. We use a137

variable numerical precision, beyond the standard double precision, to mitigate loss of138

accuracy when computing poles and branch points in the complex plane, and employ139

fully resolved spatial Fourier spectra on an adaptive grid with eighth-order adaptive140

time stepping. Computations are performed both for periodic boundary conditions141

(BC) and on the real line x ∈ R with the decaying BC142

ω(x, t) → 0 for x → ±∞. (7)143

For the problem on R, we reformulate Eq. (1) in a new spatial variable q using a144

conformal mapping from Lushnikov et al. (2017) between the real line x ∈ R and q ∈145

(−π, π). Then, our spectral simulations with a uniform spatial grid for q ∈ (−π, π)146

ensure spectral precision on the corresponding highly nonuniform grid for x ∈ R.147

Our results make use of two distinct types of numerical simulation. The first type148

is time-dependent simulation which allows us to establish the convergence of generic149

initial conditions to the self-similar solution (6). As a by-product of such simulations,150

we obtain values of α and the functional form of f (ξ). The second type of simulation151

directly solves the nonlinear eigenvalue problem for α to obtain the similarity solution152

(6) of Eq. (1) for each value of a. We solve that nonlinear eigenvalue problem by153

iteration on the real line x ∈ R using a version of the generalized Petviashvili method154

(GPM) (Petviashvili 1976; Lushnikov 2001; Lakoba and Yang 2007; Pelinovsky and155

Stepanyants 2004; Dyachenko et al. 2013a). In Theorem 4, we show that there exists156

a nonstable eigenvalue for the linearization of the original Petviashvili method (Petvi-157

ashvili 1976) which prevents its convergence. However, the version of GPM employed158

here avoids that instability.159

The results of the first and the second type of simulation are in excellent agreement160

with Theorems 1–3 and the exact similarity solutions. The first major result of these161

simulations is the discovery of a critical value162

a = ac = 0.6890665337007457 . . . (8)163

below which (i.e., for a < ac) there is finite-time singularity formation, but at which164

point (i.e., for a = ac) the singularity transitions or changes character. For a < ac, the165

value of α is positive with f (ξ) an analytic function in a strip in the complex plane of ξ166

containing the real line. The positive values of α ensure, in accordance with Eq. (6), that167

the solution shrinks in x as t → tc, while the solution amplitude diverges in that limit.168

This type of shrinking self-similar solution is compatible with both kinds of boundary169

conditions (i.e., periodic and decaying on R), and our simulations reveal the same170

type of singularity formation at t → tc. The shrinking and divergence of amplitude171

are qualitatively reminiscent of the collapse in both the nonlinear Schrödinger equation172

and the Patlak–Keller–Segel equation, see, e.g., Zakharov (1972), Childress and Percus173

(1981), Sulem and Sulem (1999), Brenner et al. (1999), Kuznetsov and Zakharov174

(2007), and Lushnikov et al. (2013). The terminology “collapse” or “wave collapse”175

was first introduced in Zakharov (1972) in analogy with gravitational collapse and has176
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been widely used ever since. The singularity formation found for a < ac is therefore177

of collapse type. We also find that α = 0 at the critical value a = ac.178

The second major result of our simulations is the uncovering of a qualitatively179

different type of self-similar singularity formation for ac < a ≤ 1, in which the180

spatial scale of the solution does not shrink. We refer to this type of singularity as181

“blow-up.” An additional finding in the aforementioned range of the parameter a182

is that the blow-up solution on the real line x ∈ R and the blow-up solution for183

periodic BC are qualitatively different. In the case x ∈ R, we find that −1 ≤ α < 0184

with α = −1 only for a = 1. Thus, Eq. (6) corresponds to an expanding self-185

similar solution. In particular, at a = 1, we find that α = −1 in agreement with the186

results of Chen et al. (2019). A Taylor-series expansion of Eq. (6) at x = 0 results in187

ω(x, t) = τ−1−αx f ′(0) + O(τ−1−2αx2). It shows that the linear slope ∝ x increases188

to infinity as t → tc for ac ≤ a < 1, while it remains constant for a = 1. Time-189

dependent simulations for x ∈ R with analytic initial conditions and ac ≤ a ≤ 1190

demonstrate convergence of the solution at t → tc to Eq. (6) with f (ξ) being of finite191

support. This extends the results of Chen et al. (2019) from a = 1 to ac ≤ a ≤ 1.192

The third major result of our simulations concerns periodic BC. While the collapse193

case a < ac is similar for both x ∈ R and periodic BC, as mentioned the case ac <194

a ≤ 1 is qualitatively different. Indeed, the spatial expansion or blow-up observed for195

ac ≤ a ≤ 1 and x ∈ R would contradict the periodic BC as t approaches tc. Instead,196

we find a new self-similar blow-up solution197

ω(x, t) =
1

tc − t
f (x), (9)198

which is valid for ac < a ≤ 0.95. Formally, we can interpret Eq. (9) as Eq. (6) with199

α = 0. However, periodic BC are qualitatively different from the finite support solution200

of Eq. (6) because of the nonlocality of the Hilbert transform in Eq. (1). We find that201

f (x) in Eq. (9) has a discontinuity in a high-order (or nth-order) derivative at the202

periodic boundary, i.e., at x = ±π when the domain is centered about the point x = 0203

where the singularity occurs. In addition, n → ∞ in the limit a → a+
c , i.e., f (x)204

approaches a C∞ function in that limit. A complex singularity is also present in f (x)205

on the imaginary axis away from the real line, the form of which obeys Theorem 1.206

In the range 0.95 < a < 1, our simulations are inconclusive regarding whether207

blow-up occurs. The value a = 1 is a special case for the periodic BC, with no blow-208

up observed in our simulations for generic initial conditions. Instead, the solution209

exists globally with the first spatial derivative remaining bounded, while the second210

derivative grows exponentially in time. This agrees with the result on global existence211

for the particular case a = 1 investigated in Okamoto et al. (2008).212

For a ≥ 1, we find that the solution exists globally for all initial conditions con-213

sidered in the case of periodic BC, while for the solution on the real line the situation214

is not conclusive. In the latter case, the maximum of |ω| initially grows with time but215

this growth saturates at larger times at least for a � 1.3, so we expect the global exis-216

tence of solutions in this parameter range. In the intermediate range 1 < a � 1.3, our217

simulations catastrophically lose precision at sufficiently large times, and a conclusive218

determination between blow-up and global existence of solutions is not possible.219
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We also find from the simulations that the kinetic energy on the infinite line x ∈ R,220

EK :=

∞
∫

−∞

u2(x, t)dx, (10)221

with an initially finite value approaches a constant as t → tc when a < 0.265±0.001,222

while it tends to infinity for 0.265±0.001 < a ≤ 1. In the case a � 1.3 corresponding223

to global existence, the kinetic energy tends to infinity as t → ∞. On the periodic224

domain x ∈ [−π, π ], we find the same behavior of the kinetic energy up to a = 0.95.225

For a ≥ 1 (when there is global existence), EK approaches a nonzero constant as226

t → ∞ (a = 1) or tends to zero (a > 1).227

Solutions with finite energy are of interest by analogy with the fundamental question228

on global regularity of the 3D Euler and Navier–Stokes equations with smooth initial229

data, see Fefferman (2006) and Gibbon (2008).230

To reveal the structure of singularities of ω(x, t) and f (ξ) in the complex plane of231

x and ξ, we use both a fitting of the Fourier spectrum similar to Okamoto et al. (2008)232

(see also Carrier et al. 1966; Dyachenko et al. 2013b, 2016; Sulem et al. 1983 for more233

detail), and more general methods of analytical continuation by rational interpolants234

(see Alpert et al. 2000; Dyachenko et al. 2016, 2019; Nakatsukasa et al. 2018). As time235

evolves, these singularities approach the real line in agreement with Eq. (6). We have236

formulated a system of ordinary differential equations (ODEs) describing the motion of237

such singularities. Fourier fitting allows us to track only singularities which are nearest238

to the real axis, while rational interpolants go beyond this, by giving information on239

singularities other than the closest one. In particular, it reveals that for a 
= 0, 1/2 with240

a < ac, there are generically branch points beyond the leading-order singularities,241

consistent with Theorem 3. The exceptional cases are a = 0, 1/2, and 2/3 where242

the nearest singularities are poles of the first, second, and third order, respectively.243

However, already for a = 2/3, the third-order pole coexists with additional branch244

points. For other values of a, the nearest singularities are branch points. We find that245

for ac < a ≤ 1, the singularities approach the real line as t → tc in the spatial regions246

near the boundary of the support of f (ξ).247

The rest of this paper is organized as follows. Section 2 establishes Theorem 1,248

which describes the leading-order complex singularity and determines its dependence249

on a. Section 3 reinterprets the results of Constantin et al. (1985) for a = 0 in terms250

of moving complex poles and the self-similar solution (6). In Sect. 4, we derive an251

exact blow-up solution for a = 1/2 (Theorem 2) and transform that exact solution252

to the self-similar form (6). Section 5 considers solutions for general values of a and253

establishes in Theorem 3 that, except for a = 0, 1/2, the leading-order singularity254

cannot fully characterize the exact solution. Two preliminary steps for computations255

on x ∈ R are developed in Sects. 6 and 7. In particular, Sect. 6 reformulates Eq.(1) as a256

nonlinear eigenvalue problem for the self-similar solution (6), and Sect. 7 rewrites Eq.257

(1) in an auxiliary variable q mapping the real line into the finite interval. Section 8 then258

describes the results of time-dependent numerical simulations for x ∈ R, and Sect. 9259

presents self-similar solutions of the type (6) via numerical solution of the nonlinear260

eigenvalue problem using a generalized Petviashvili method. Section 10 addresses261
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the analytical continuation into the complex plane of x by rational approximation262

and uses it to study the structure of singularities. Section 11 describes the results of263

both time-dependent numerical simulations and the generalized Petviashvili method264

for periodic BC. Section 12 provides a summary of the results and discusses future265

directions. “Appendix A” gives a derivation for the form of the Hilbert transform over266

x in variable q.267

2 Leading-Order Spatial Singularity268

We assume that ω(x, t) is an analytic function in the open strip containing x ∈ R in269

the complex plane x ∈ C decaying at x → ±∞. Then, we can represent ω as270

ω = ω+ + ω−, (11)271

where ω+(x .t) is analytic in the upper complex half-plane x ∈ C+ and ω−(x .t) is272

analytic in the lower complex half-plane x ∈ C−.273

The Hilbert transform (2) implies that274

Hω = −i(ω+ − ω−). (12)275

Assume that the solution exhibits a leading-order singularity of power γ > 0 in the276

complex plane x for ω at x = ±ivc, vc > 0, so that277

ω(x, t) =
ω−γ (t)

[x − ivc(t)]γ
+

ω̄−γ (t)

[x + ivc(t)]γ
+ l.s.t ., (13)278

where l.s.t designates less singular terms at x = ±ivc, i.e.,279

lim
x→±ivc

[x ∓ ivc(t)]
γ l.s.t . = 0. (14)280

If we additionally assume that ω(−x) = −ω(x), for x ∈ R, then Eq. (13) implies281

that282

ω−γ (t)

[x − ivc(t)]γ
+

ω̄−γ (t)

[x + ivc(t)]γ
= −

ω−γ (t)

[−x − ivc(t)]γ
−

ω̄−γ (t)

[−x + ivc(t)]γ
, (15)283

i.e., ω̄−γ (t)(−1)γ+1 = ω−γ (t). Then, we can define284

ω−γ (t) := −ie−iπγ/2ω̃−γ (t), ω̃−γ (t) ∈ R (16)285

so that Eq. (13) takes the following form286

ω(x, t) = −iω̃−γ (t)

(

e−iπγ/2

[x − ivc(t)]γ
−

eiπγ/2

[x + ivc(t)]γ

)

+ l.s.t .. (17)287
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Using Eqs. (1), (12), and (17), we obtain that288

ux = Hω = ω̃−γ (t)

(

e−iπγ/2

[x − ivc(t)]γ
+

eiπγ/2

[x + ivc(t)]γ

)

+ l.s.t ., (18)289

and290

u := u+ + u− = −
ω̃−γ (t)

(γ − 1)

(

e−iπγ/2

[x − ivc(t)]γ−1
+

eiπγ/2

[x + ivc(t)]γ−1

)

+ l.s.t ., (19)291

where we have additionally assumed that γ 
= 1.292

Plugging Eqs. (17)–(19) into Eq. (1) and collecting the most singular terms ∝293

[x − ivc(t)]
−2γ at x = ivc(t) on the right-hand side of Eq. (1) give294

ie−iπγ ω̃2
−γ (t)

[x − ivc(t)]2γ

(

aγ

γ − 1
− 1

)

= 0. (20)295

By assumption, ω−γ (t) 
= 0. Then, Eq. (20) implies that296

γ =
1

1 − a
. (21)297

Thus, we have proved the following:298

Theorem 1 If a solutionω(x, t)of Eq. (1) is (i)analytic in an open strip of C containing299

R, (ii) tends to zero as x → ±∞, and (iii) has a complex conjugate pair of power-law300

singularities located at x = ±ivc for vc > 0 given by Eqs. (14), (17) with γ > 0,301

then γ is determined by Eq. (21).302

Remark 1 The condition γ > 0 is essential in Theorem 1. If we assume γ < 0, then303

the leading-order term in Eq. (1) at x = ±ivc is ∝ [x − ivc(t)]
0.304

Remark 2 Equation (21) is in excellent agreement with the simulations of Sect. 8. The305

singularities with γ < 0 in our simulations are always located further away from the306

real axis than the leading-order singularities given by Eq. (21). These more remote307

singularities provide a smaller contribution to the solution near the origin.308

Equation (21) with a = 0 results in γ = 1. Also γ → ∞ for a → 1−. For the309

particular values310

a =
n − 1

n
, n = 1, 2, 3, . . . , (22)311

we obtain the integer values γ = n resulting in complex pole singularities of order n in312

Eq. (17), while the other values of a ∈ (0, 1) result in the branch points at x = ±ivc(t).313
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3 Exact Blow-Up Solution for a = 0314

The particular value of the parameter a = 0 implies from Eq. (21) that γ = 1. This315

case recovers the results of Constantin et al. (1985). The general solution of Eq. (1) is316

immediately obtained by noticing that Eqs. (1), (12) result in317

ωt = ω+
t + ω−

t = −i(ω+)2 + i(ω−)2, (23)318

which decouples into two independent ODEs319

ω+
t = −i(ω+)2, ω−

t = i(ω−)2. (24)320

The solutions of these ODEs with the generic initial conditions ω+(x, t)|t=0 = ω+
0 (x)321

and ω−(x, t)|t=0 = ω−
0 (x) are given by322

ω+(x, t) =
ω+

0 (x)

1 + itω+
0 (x)

and ω−(x, t) =
ω−

0 (x)

1 − itω−
0 (x)

. (25)323

Equations (11), (12), and (25) lead to the solution of Constantin–Lax–Majda equation324

found in Constantin et al. (1985)325

ω(x, t) =
4ω0(x)

[2 − tHω0(x)]2 + t2ω2
0(x)

(26)326

for the generic initial condition ω(x, t)|t=0 = ω0(x) = ω+
0 (x) + ω−

0 (x). Also Eqs.327

(12) and (25) imply that (as in Constantin et al. 1985)328

Hω(x, t) =
2Hω0(x)[2 − tHω0(x)] − 2tω2

0(x)

[2 − tHω0(x)]2 + t2ω2
0(x)

. (27)329

Assume that there exists an x0 ∈ R such that ω0(x0) = 0 and Hω0(x0) > 0.330

Then, Eq. (26) implies a singularity in the solution at the time tc := 2/Hω0(x0) > 0.331

If there are multiple points x ∈ R such that ω0(x) = 0 and Hω0(x) > 0, then332

tc := 2/sup{Hω0(x)|ω0(x) = 0} > 0 (Constantin et al. 1985). Below, we assume333

that x0 corresponds to the singularity at the earliest time t = tc. A particular example334

is any odd function ω0(x) with respect to x = x0 (implying that ω0(x0) = 0) which335

is strictly positive for x > x0 and decays at x → ∞.336

A series expansion of Eq. (26) at x → x0 and t → t−c implies that337

ω(x, t) =
1

tc − t

4ξω′
0(x0)[Hω0(x0)]

2

(

[Hω0(x0)]2 − 2ξHω′
0(x0)

)2
+ 4ξ2[ω′

0(x0)]2
+ O((tc − t)0),338

(28)339
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where340

ξ :=
x − x0

tc − t
(29)341

is the self-similar variable. Equations (28) and (29) provide a universal profile of the342

solution at t → t−c in a spatial neighborhood of x → x0 after we neglect the correction343

term O((tc − t)0). That profile has the form of a sum of two complex poles at complex344

conjugate points ξ = ξ± as follows:345

ω(x, t) =
i

tc − t

(

ξ+

ξ − ξ+
−

ξ−

ξ − ξ−

)

, (30)346

where347

ξ± =
[Hω0(x0)]

2

2[Hω′
0(x0) ± iω′

0(x0)]
(31)348

are positions of poles in the complex plane of ξ.349

Equations (30) and (31) provide the exact solution of Eq. (1) for ω′
0(x0) < 0 as350

can be immediately verified by direct substitution into Eq. (1). Here, the condition351

ω′
0(x0) < 0 ensures that ξ+ ∈ C+. This solution is asymptotically stable with respect352

to perturbations of the initial condition as follows from Eq. (28). The only trivial353

change due to the perturbation of the initial condition is a shift of both x0 and tc.354

One can also recover from solution (30) representation (17) with γ = 1 which355

gives the exact solution356

ω(x, t) = − ṽc

(

1

x − x0 − iṽc(tc − t)
+

1

x − x0 + iṽc(tc − t)

)

357

= −
ṽc

tc − t

(

1

ξ − iṽc

+
1

ξ + iṽc

)

(32)358

359

of Eq. (1) for any values of the real constants tc, ṽc > 0 and x0. Here, without loss of360

generality we have shifted the origin in the real direction compared with the solution361

(30).362

4 Exact Blow-Up Solution for a = 1/2363

The particular value of the parameter a = 1/2 implies from Eq. (21) that γ = 2. In364

this section, we look for the solution to Eq. (1) in form (17) assuming that the l.s.t .365

are identically zero, i.e.,366

ω(x, t) = iω̃−2(t)

(

1

[x − x0 − ivc(t)]2
−

1

[x − x0 + ivc(t)]2

)

, (33)367
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where for generality we have also allowed a shift of the origin by introducing the368

arbitrary real constant x0. Equation (19) then becomes369

u = ω̃−2(t)

(

1

x − x0 − ivc(t)
+

1

x − x0 + ivc(t)

)

=
2ω̃−2(t)(x − x0)

(x − x0)2 + vc(t)2
. (34)370

Plugging Eqs. (33) and (34) into Eq. (1), we find the latter equation is identically371

satisfied provided372

dvc(t)

dt
= −

ω̃−2(t)

4vc(t)
, (35)373

and374

dω̃−2(t)

dt
=

ω̃2
−2(t)

4v2
c (t)

. (36)375

Solving the system of ordinary differential equations (ODEs) (35) and (36) results in376

vc(t) = (tc − t)1/3ṽc, ω̃−2(t) =
4ṽ2

c

3(tc − t)1/3
, (37)377

where ṽc > 0 and tc are two arbitrary real constants. Assuming the initial condition378

is given at t = 0 and that tc > 0, we obtain that t = tc is the time of singularity379

formation.380

Section 8 shows the convergence during the evolution in time t of the solution of Eq.381

(1) to the exact solution given by Eqs. (33) and (37). The spatial extent of the solution382

shrinks, while the maximum amplitude increases until the singularity is reached at383

t = tc.384

One can rewrite solutions (33), (37) in the self-similar form as follows:385

ω(x, t) =
1

tc − t

4iṽ2
c

3

(

1

[ξ − iṽc]2
−

1

[ξ + iṽc]2

)

=
1

tc − t

16ṽ3
c ξ

3(ξ2 + ṽ2
c )2

, (38)386

where387

ξ :=
x − x0

(tc − t)1/3
(39)388

is the self-similar variable.389

Note After our arXiv preprint submission (Lushnikov et al. 2020), we learned that390

the self-similar solution (38) was recently discovered by Chen (2020). The result391

presented here was found independently via the complex singularity approach and has392

a somewhat more general form by including the additional real parameter ṽc.393

To summarize, this section proves the following theorem:394
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Theorem 2 Equations (38) and (39) provide an exact solution of Eq. (1) for a = 1/2395

for any value of the real constants tc, ṽc > 0 and x0.396

Remark 3 The decay of u(x, t) in Eq. (34) as x → ±∞ ensures that the kinetic energy397

(10) has a finite value for t < tc. In contrast, EK for solution (32) at a = 0 is infinite.398

5 The Solution for General Values of a399

The explicit self-similar solutions (29)–(31) and (38), (39) (corresponding to the values400

a = 0, 1/2) represent the particular situation where the leading-order singularity in401

Eqs. (17) and (21) provides the exact solution with identically zero l.s.t .. All other402

values of a are addressed in the following theorem:403

Theorem 3 A solution (17) and (21) of Eq. (1) which satisfies assumptions (i) and (ii)404

of Theorem 1 requires l.s.t . which are not identically zero for any a ∈ R except a = 0405

and a = 1/2.406

Proof The case a ≥ 1 is trivial because a = 1 corresponds to the singular value of γ as407

follows from Eq. (21), while a > 1 implies that γ < 0, contradicting the assumption408

of Theorem 3 that ω at x → ±∞. Thus, below we assume that a < 1 which implies409

that γ > 0.410

We assume by contradiction that l.s.t . in Eq. (17) are identically zero. Then, we411

plug Eq. (17) into Eq. (1) and collect terms with different powers of x − ivc(t). The412

most singular term ∝ [x − ivc(t)]
−2γ is identically zero by Eq. (21) as follows from413

the proof of Theorem 1. Collecting the next most singular terms ∝ [x − ivc(t)]
−1−γ ,414

we obtain that415

dvc(t)

dt
= −

21−γ ω̃−γ (t)

v
γ−1
c (t)γ

, (40)416

which generalizes Eq. (35) to arbitrary values of γ. We note that there is no overlap417

between terms of different orders in this proof except in the case γ = 1, for which418

−2γ = −γ − 1. However, this case is fully considered in Sect. 3 and excluded by419

assumption in the statement of Theorem 3 because it corresponds to a = 0.420

Collecting the terms ∝ [x − ivc(t)]
−γ , we obtain that421

dω̃−γ (t)

dt
=

2−γ (γ − 1)ω̃2
−γ (t)

v
γ
c (t)

(41)422

which generalizes Eq. (36) to arbitrary values of γ.423

However, at the next order, collecting terms ∝ [x − ivc(t)]
−γ+1 leads to424

2−γ−2(γ − 2)(γ + 1)ie−iπγ/2ω̃2
−γ (t)

v
γ+1
c (t)

= 0, (42)425

which cannot be satisfied by any nontrivial solution ω̃−γ (t) 
≡ 0 except if γ = 2, i.e.,426

a = 1/2. This contradiction completes the proof of Theorem 3. ⊓⊔427
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Remark 4 The ODE system (40) and (41) can be immediately solved for any γ result-428

ing in429

vc(t) = ṽc (tc − t)
2

γ (γ+1) ,

ω̃−γ (t) =
2γ ṽ

γ
c

γ + 1
(tc − t)

1−γ
γ+1 ,

(43)430

where ṽc and tc are arbitrary real constants. Then neglecting l.s.t ., we obtain from431

Eqs. (17) and (43) the following self-similar “solution”432

ω(x, t) = −
i

tc − t

2γ ṽ
γ
c

γ + 1

(

e−iπγ/2

[ξ − iṽc]γ
−

eiπγ/2

[ξ + iṽc]γ

)

, (44)433

where434

ξ :=
x − x0

(tc − t)α0
, α0 =

2

γ (γ + 1)
(45)435

is the self-similar variable. For γ = 1(a = 0) and γ = 2(a = 1/2), Eqs. (44) and (45)436

recover Eqs. (29), (32) and (38), (39), respectively. However, Theorem 3 ensures that437

Eqs. (44) and (45) are not the exact solution for γ 
= 1, 2. One may hope that even if438

γ 
= 1, 2, the self-similar solution is well approximated by Eqs. (44) and (45) because439

(17) is the leading-order singularity of the solution. However, we find in Sect. 8 (see440

also Fig. 1) that the numerically computed self-similar solution has a different power441

scaling for ξ = x−x0
(tc−t)α

than in Eq. (45), i.e., α0 
= α for γ 
= 1, 2. This implies that442

the l.s.t , neglected in (45), lead to a nontrivial modification of α compared with α0.443

6 Self-similar Solution and Nonlinear Eigenvalue Problem444

The results of Sects. 3–5 suggest looking for a solution of Eq. (1) in the general445

self-similar form (6). Substitution of the ansatz (6) into Eq. (1) reduces it to446

M f := f + αξ fξ = −a(∂−1
ξ H f ) fξ + f H f , (46)447

where M is a linear operator. One can also rewrite Eq. (46) as the system448

f + αξ fξ = −ag fξ + f gξ , g = ∂−1
ξ H f , (47)449

where450

u = τα−1g (ξ) . (48)451

We can iterate Eq. (46) for different values of α to find the optimal α which realizes452

the dominant collapse regime. To do this, we have to invert the operator M in Eq. (46)453
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Fig. 1 Dependence of α(a) on a, obtained via time-dependent simulations of Sect. 8 and via nonlinear

eigenvalue problem of Sect. 9. The green curve terminates at a = ac since the iteration used to solve the

nonlinear eigenvalue problem for x ∈ R does not converge for a > ac . Also included for comparison is an

approximation to α(a) from Eq. (45), α0(a) = 2
γ (a)(γ (a)+1)

= 2(1−a)2

(2−a)

at each iteration. The equation M f = 0 has a general solution454

f ∝ |ξ |−
1
α (49)455

for α 
= 0 and f ≡ 0 for α = 0. Depending on the sign on α, this solution is singular456

either at x → 0 or x → ±∞. Thus, the operator M is invertible for the class of457

smooth solutions decaying at x → ±∞ which we use in Sect. 9.458

The condition that the solution of Eq. (46) decays at both x → ±∞ requires a459

specific choice of α for each a. It forms a version of nonlinear eigenvalue problem for460

α(a). Section 9 finds α(a) by iterating Eq. (46) numerically.461

Asymptotics for ξ → ±∞. If we assume smooth (e.g., power law) decay in f and462

its derivative as ξ → ±∞, then in this limit the quadratically nonlinear r.h.s. of (47)463

will be subdominant to the linear terms on the left-hand side. This implies that Eq. (49)464

describes the decay of f for ξ → ±∞ provided α > 0, in agreement with the exact465

results of Sects. 3 [Eq. (30)] and 4 [Eq. (38)] for α = 1 and α = 1/3, respectively. For466

α < 0, the assumed smooth decay of f as ξ → ±∞ is inconsistent with (49). This467

suggests that468

f (ξ) ≡ 0 at ξ → ±∞ for α < 0, (50)469
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so that f (ξ) has the finite support for α < 0. This is consistent with Chen et al. (2019)470

which considers the particular case α = −1.471

Equation (46) is invariant under a stretching of the self-similar coordinate ξ ,472

ξ → Aξ, A = const ∈ R, (51)473

i.e., if f (ξ) is a solution for Eq. (46), then f (Aξ) is also a solution of the same474

equation. Therefore, if one finds a solution of Eq. (46), then it immediately implies475

an infinite family of solutions from the stretching (51). Despite this nonuniqueness,476

we find that the version of GPM employed here converges to a solution of Eqs. (47),477

(50). Further details are given in Sect. 9.478

7 Transformed Version of the Equation479

The analysis of previous sections assumes the solution exists on the real line x ∈480

(−∞,∞) with the decaying BC (7). To address this infinite domain in simulations,481

we use the auxiliary (computational) variable q defined by482

x = tan
(q

2

)

. (52)483

Equation (52) maps the segment of the real line (−π, π) of q onto the real line484

(−∞,∞) of x . Extending both x and q into the complex plane, we find that Eq. (52)485

maps the infinite strip −π < Re(q) < π onto the complex plane x ∈ C, except for the486

half-lines (−i∞,−i) and (i,+i∞), with the upper half-strip being mapped onto the487

upper half-plane C+ and the lower half-strip being mapped onto the lower half-plane488

C−. Also the boundaries of the strip, Re(q) = ±π are mapped onto (−i∞,−i) and489

(i,+i∞), see, e.g., Dyachenko et al. (2016) and Lushnikov et al. (2017) for details490

of this mapping. Here and below, we abuse notation and use the same symbols for491

functions of either x or q. For example, we assume that f̃ (q) := f (x(q)) and remove492

the ˜ sign.493

Using the Jacobian of the mapping (52),494

dx

dq
=

1

2 cos2
( q

2

) =
1

1 + cos q
, (53)495

and the results of “Appendix A”, we rewrite Eqs. (1) and (2) for independent variables496

q and t as497

ωt = −a(1 + cos q)uωq + ω[H2πω + C2π
ω ], q ∈ (−π, π),

(1 + cos q)uq = [H2πω + C2π
ω ],

(54)498
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where the Hilbert transform H2π on the interval (−π, π) is defined by (see also499

“Appendix A”)500

H
2π f (q) :=

1

2π
p.v.

∫ π

−π

f (q ′)

tan(
q−q ′

2
)
dq ′, (55)501

and the constant C2π
ω is determined by502

C2π
ω = −

1

2π

∫ π

−π

ω(q ′) tan

(

q ′

2

)

dq ′. (56)503

We call Eq. (54) the transformed CLM equation. Note that Eq. (55) is the reduction504

of Eq. (2) to the class of 2π -periodic functions, see “Appendix A.” The decaying BC505

(7) allow a 2π -periodic extension of ω(q, t) with ω(q, t)|q=π+2πn = 0, n ∈ N. It506

enables us to work with ω(q, t) in terms of a Fourier series over q.507

8 Results of Time-Dependent Simulations on the Real Line508

Based on the results of Sect. 7, we numerically solve Eq. (54) on the real line x ∈ R with509

a pseudo-spectral Fourier method by representing the 2π -periodic solution ω(q, t) as510

a sum of 2N Fourier modes ω̂k(t) as511

ω(q, t) =

k=N−1
∑

k=−N

ω̂k(t)e
ikq . (57)512

We use 2N uniformly spaced grid points in q from −π to π −∆q, where ∆q = π/N .513

The fast Fourier transform (FFT) allows us to efficiently find numerical values of ω̂k(t)514

from values of ω(q, t) on that grid. The resolution N is chosen depending on the initial515

condition (IC) and adaptively adjusted throughout the computation so that the spectrum516

ω̂k is fully resolved with the desired precision. This means that |ω̂k | decays by 16–517

17 orders of magnitude at |k| ∼ N compared to max−N≤k≤N−1 |ω̂k |, down to the518

round-off floor of the error for double precision. For the multi-precision simulations519

which were performed, this decay is further enhanced (or equivalently, the round-off520

is reduced) by any desired number of orders. Below, we focus on the description of521

double precision simulations while noting that higher precision simulations were also522

extensively performed.523

The decay of the Fourier spectrum ω̂k is checked at the end of every time step. If524

|ω̂k | is larger than the numerical round-off at |k| ∼ N at the given time step, then the525

simulation is “rewound” for one time step backward with N increased by factor of 2,526

and the time stepping is continued. Amplitudes of the new extra Fourier modes are527

set to 0, which is equivalent to performing a spectral interpolation of the solution at528

the newly inserted grid points in q space. Rewinding is done to avoid accumulation of529

error due to the tails of the spectrum not being fully resolved at the time step before530

the grid refinement. For time marching, we use 11-stage explicit Runge–Kutta method531
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of 8th order (Cooper and Verner 1972) with the adaptive time step ∆t determined by532

the condition ∆t = CFL ·min{∆q/(a maxq |(1+cos q)u|), 1/ maxq |(1+cos q)uq |},533

where the numerical constant CFL is typically chosen as CFL = 1/4, 1/8, or 1/16534

to achieve numerical stability in the time stepping and ensure that the error of the535

method is near round-off level. Also, the scaling of ∆t with maxq |(1 + cos q)u|536

and maxq |(1 + cos q)uq | ensures numerical stability of the method during possible537

singularity formation events. We additionally enforced the real valuedness of ω(q)538

at each time step to avoid numerical instability, since the FFT and inverse FFT lead539

to accumulation of a small imaginary part at the level of round-off, which can be540

amplified during time evolution.541

Typically, we used the following two types of initial conditions (ICs):542

IC1: ω0(q) = −(sin(q) + 0.1 sin(2q)), (58)543

IC2: ω0(q) = i
4V 2

c

3Tc

(

1

(tan(
q
2
) − iVc)2

−
1

(tan(
q
2
) + iVc)2

)

, (59)544

where the real-line IC1 is similar in form to the periodic IC in Okamoto et al. (2008)545

except for an opposite sign. In IC2, Vc and Tc are real numbers and in most of our546

simulations we used Vc = 1, Tc = 1, for which IC2 reduces to547

ω0(q) = −
4

3
(sin(q) + 0.5 sin(2q)). (60)548

Note the first two derivatives of (60) are zero at q = ±π , i.e., ω
(n)
0 (q = ±π) =549

0 for n = 0, 1, 2. Both ICs (58) and (59) are real-valued odd functions with a negative550

slope at q = 0 and lead to the formation of a singularity at q = 0 at some moment551

in time for a < ac [see Eq. (8) for the definition of ac], while ω(q, t) stays real-552

valued and odd. The function ω0(q) in IC1 is an entire function, and that in IC2 has553

two double poles at x = tan
( q

2

)

= ±iVc in x-space or at q = ±iqc in q-space,554

where qc = 2 arctanh(Vc). Note that IC2 corresponds to the exact solution for the555

case a = 1/2 with a collapse at t = Tc [see Eq. (38)], while for other values of the556

parameter a, it is not an exact solution but qualitatively resembles one on the real557

interval [−π, π ] and serves as a good IC to obtain collapsing solutions.558

Computation of the 2π -periodic Hilbert transform H2π (see “Appendix A” for the559

definition of H2π ) is easily done in Fourier space as560

Ĥ
2π
k = −i sign(k), (61)561

where sign(k) = 1 for k > 0, sign(k) = 0 for k = 0, and sign(k) = −1 for562

k < 0. Also the constant C2π
ω (56) in Eq. (54) is computed from the condition that563

H2πω(q = −π) + C2π
ω = 0, i.e., −i

∑k=N−1
k=−N ω̂k(−1)−ksign(k) + C2π

ω = 0.564

While computing the values of uq from the second equation in (54), one has to565

take special care at the point q = −π . Expanding both the left-hand side (l.h.s.)566

and r.h.s. of that equation in a Taylor series at the point q = −π, we obtain that567

uq(q = −π) = H2π
qq ω(q = −π), which can also be computed using ω̂k . The term with568
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H2π
q in the Taylor series of the r.h.s. vanishes since H2π

q ω(q = −π) =
∑

k |k|ω̂k = 0569

for the real-valued odd function ω(q) with ω̂−k = −ω̂k .570

For each simulation, we made a least squares fit of the Fourier spectrum |ω̂k | at571

time t to the asymptotic decay model572

|ω̂k(t)| ≈ C(t)
e−δ(t)|k|

|k|p(t)
(62)573

for |k| ≫ 1 (Carrier et al. 1966), where C(t), δ(t) and p(t) are the fitting parameters574

for each value of t . This allows us to obtain both δ(t) > 0 and p(t) as functions of t .575

The value of δ(t) indicates the distance of the closest singularity of ω(q) from the real576

line in the complex q-plane, and the value of p(t) is related to the type or power of577

that complex singularity, see Okamoto et al. (2008), Dyachenko et al. (2013b, 2016),578

and Sulem et al. (1983) for more details. In particular, if the singularity in the solution579

is of a power-law type ω(q) ∼ (q − iqc)
−γ , then using complex contour integration580

one obtains (see, e.g., Carrier et al. 1966) that |ω̂k | ≈ Ce−qc|k|/|k|1−γ , meaning that581

δ = qc and582

p = 1 − γ (63)583

which follows from Eq. (62). According to Eq. (52), the distance δx from the closest584

singularity to the real line in the complex x-plane is δx = tanh
(

δ
2

)

. It implies that585

δx = δ
2

+ O(δ3) for δ ≪ 1.586

Results of a simulation with the parameter value a = 2/3 and IC2 with Vc = 1,587

Tc = 1 [i.e., Eq. (60)] are provided in Figs. 2 and 3. The maximal value maxq |ω(q, t)| 5588

of the numerical solution increases from an initial value ∼ 1 up to ∼ 1030 at the final589

simulation time. Figure 3 shows the spectrum |ω̂k | and its fit to model (62). This fit590

provides numerically extracted values of both δ(t) and p(t). Then, δx (t) = tanh
(

δ(t)
2

)

591

is computed from δ(t) and fitted to δx (t) ∝ (tc − t)α , per Eq. (6), to determine α. We592

first obtain an estimate for tc from a fit to maxx |ω(x, t)| ∝ 1
(tc−t)

by extrapolating593

the numerical solution up to t = tc. From these fits, we obtain that α ≈ 0.04517095,594

giving the temporal rate of singularity approach to the real line in complex x-space.595

The algebraic decay rate p(t) appears to stabilize at the value − 2 as t approaches the596

singularity time tc. An initial transient is not included in the data used for the δx (t) fit,597

since δ(t) and p(t) cannot be determined accurately at these times due to the spectrum598

|ω̂k | being oscillatory. These oscillations quickly die out as the self-similar regime is599

approached.600

We find that we get the best accuracy for δ and p from the fit of |ω̂k | to model (62)601

if we confine the least square fit to a window of data between 1/4 and 1/3 of the total602

effective width of the spectrum (shown on the left part of Fig. 3 with a green color).603

This is due to an increase in the relative error of the spectrum data at the tails, as the604

round-off floor is approached. Moreover, model (62) is accurate only asymptotically605

as |k| → ∞, so we cannot use too small values of |k|.606

For 0 ≤ a < ac [with ac given by Eq. (8)] and for both IC1 (58) and IC2 (59), we607

find that δx (t) evolves in time toward 0, while p(t) approaches a constant value after608
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Fig. 2 Results of the simulation of Eqs. (54)–(55) with a = 2/3 and initial condition IC2 (60). Left panels:

the solution ω(q, t), its derivative ωq (q, t) and u(q, t) for t = 1.15139. Right panels: the time dependence

of maximum values of these functions. Dashed lines show the prediction of Eq. (6) with α2 extracted from

the simulations as explained in the text. The collapse time tc is extracted from the fit (by extrapolation) to

max |ω(x, t)| ∝ 1
(tc−t)

a quick transient phase, see Fig. 3 (right panel). We observe spontaneous formation of609

a universal self-similar solution profile of form (6) during time evolution (see Fig. 4).610

These self-similar profiles as well as the value of α in δx (t) and the terminal value of611

p(t) as t → tc are the same for a wide class of ICs (e.g., one can change a power of612

singularity in IC2 from −2 to any negative number below −2 and/or change numerical613

values of both Vc > 0 and Tc > 0). Thus, these self-similar profiles are only functions614

of the parameter a. Table 1 provides the universal values of α and p versus a. Figure 1615

shows the dependence of α(a) on a. However, one can also find particular IC in which616

finite-time singularities do not form. Two such choices are − IC1 and − IC2, i.e.,617

IC1 (58) and IC2 (59), taken with the opposite sign. In these two cases, we did not618

observe collapse or singularity formation in finite time, but rather an algebraic-in-619

time approach of a singularity to the real line, δx (t) ∼ 1/tµ, µ > 0. Other smooth620
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Fig. 3 Left panel: The Fourier spectrum |ω̂k | at a particular time t = 1.15139 from the same simulation as

in Fig. 2 with a = 2/3. The red line represents a fit to model (62) with green line showing the portion of

the |ω̂k | used for the least-squares fit. Center and right panels: time dependence of δx (t) = tanh
(

δ(t)
2

)

and

p(t) recovered from the fit of the spectrum to Eq. (62) at different times. The red solid line at the center

panel represents a fit to the model δx (t) ∼ (tc − t)α

Fig. 4 Convergence of time-dependent numerical solution of Eqs. (54)–(55) with a = 1/2 (left panel) and

a = 2/3 (right panel) to the self-similar solution (6). In both cases, we used IC1 (58). Solutions shrink

horizontally and increase in amplitude vertically until collapse occurs at t = tc , tc ≈ 1.180602237542

(left panel) and tc ≈ 1.272876000077 (right panel). Solutions are plotted in x-space, where x = tan(
q
2 ).

Horizontal and vertical scales are dynamically changed in both panels to exactly match the positions and

amplitudes of the local maximum at x = xmax and minimum at x = −xmax

generic initial conditions that were tried were found to produce blow-up after an initial621

transient, as exemplified in Fig. 5. These transients made the simulation considerably622

slower (due to the need for more modes in the spectrum of to resolve the solution623

down to double precision round-off). However, in a space-time neighborhood of the624

singularity these solutions recover the same self-similar profile as shown in Fig. 4, see625

also Fig. 5. We note that the velocity u(x, t) evolves toward the self-similar profile626

(48) with maxx |u| → ∞ for 0 < a < ac. Below, we focus on IC1 and IC2, but the627

reader should but keep in mind that they appear generic.628

Using the terminal values of p extracted by fits to Eq. (62) with various a, and629

employing Eq. (63) to recover γ from p, we confirmed the formula γ (a) = 1
1−a

630

[see Theorem 1 and Eq. (21) in Sect. 2] and the corresponding formula p(a) = −a
1−a

631

within 0.5% for 0 ≤ a < ac. Figure 6 shows the numerical approximation, γnum(a) =632
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Fig. 5 Convergence of the time-dependent numerical solution of Eqs. (54)–(55) to the self-similar profile (6)

as t → tc . Here, a = 2/3 and we use the generic initial condition ω0(x) = − 1
64

(

1

(x−x+
1

)3
+ 1

(x−x−
1

)3

)

−

i
3

(

1

(x−x+
2

)2
− 1

(x−x−
2

)2

)

+ 1
32

(

1

(x−x+
3

)3
+ 1

(x−x−
3

)3

)

+ i
96

(

1

(x−x+
4

)2
− 1

(x−x−
4

)2

)

, where x±
1 =

−1 ± i
4 , x±

2 = − 1
2 ± i

2 , x±
3 = 1 ± i

4 , x±
4 = 3

2 ± i
8 . The solution is shown at two different moments

in time, where for each time we overlaid the self-similar profile as in Fig. 4, matching their corresponding

maximum and minimum positions horizontally and vertically

1 − p(a) using values of p(a) from Table 1 as well as the theoretical value γ = 1
1−a

633

for comparison. We note that the plot of 1/γnum(a) in Fig. 6 stops at a = ac, since it is634

difficult to obtain accurate values of p(a) (and hence γnum(a)) from time-dependent635

simulations when a > ac. This is due to a transition that occurs at a = ac, in which636

the fitted singularity for a < ac corresponding to collapse is no longer closest to the637

real x line when a > ac.638

In addition to Fourier fitting, we also extract values of α in an alternative way (these639

values are called α2 below), using the spatial derivative of the self-similar solution (6)640

given by641

ωx (x, t) =
1

(tc − t)1+α
f ′

(

x

(tc − t)α

)

. (64)642

Using Eq. (64), we fit maxx |ωx (x, t)| to the model maxx |ωx (x, t)| ∝ 1

(tc−t)1+α2
to643

find α2. Values of α2 for various a are also gathered in Table 1 for comparison with644

values of α. We confirmed that α and α2 obtained using the above two methods for645

0 < a � 0.689 agree within a relative error of < 0.02%.646

For a < 0, we observe a similar finite-time blow-up starting from both IC1 and IC2647

with maxx |ω| → ∞ as t → tc according to the self-similar profile in Eq. (6). The648

extracted values of α, p, and α2 for a < 0 are also given in Table 1, see also Figs. 7649

and 8 for results of simulations with a = −2 and IC2. The velocity u(x, t) during650

the temporal evolution approaches the self-similar profile (48) near the singularity651

location at x = q = 0. A qualitative difference for a < 0 (in comparison with652

0 < a < ac) is that the self-similar profile (48) approaches zero because α > 1 in653
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Fig. 6 Dependence of γnum (a) = 1 − p(a) using p(a) obtained via time-dependent simulations by the

fit to Eq. (62). These data are also provided in Table 1. Also shown is γ (a) = 1
1−a

from Eq. (21) for

comparison. Here, we plot 1/γ (a) instead of γ (a) for the easier comparison

the former case, while away from the spatial singularity location the value of u(x, t)654

is generally nonzero, even at t → tc. This extends the result of Castro and Córdoba655

(2010), who proved that there is finite-time singularity formation for a < 0 in the case656

of odd compactly supported data ω(x, 0) ∈ C∞
c (R) with Hω(0, 0) > 0, to examples657

with analytic initial data.658

We obtained much more accurate values of α(a) (up to 14 digits of precision) by659

numerically solving the nonlinear eigenvalue problem, as given in Eq. (47), for a self-660

similar solution of Eq. (1) (see Sect. 9). In contrast, for ac we were able to obtain 14661

digits of accuracy using both time-dependent simulations and the nonlinear eigenvalue662

problem with double precision arithmetic. Another 3 digits of precision are obtained663

(for a total of 17 digits of precision) if quadruple precision arithmetic is used in the664

nonlinear eigenvalue problem.665

We have also performed simulations specifically with a = 1 since this special case666

was addressed in Chen et al. (2019), who proved for this value of a the existence of667

an “expanding" self-similar solution of the type (6) for the problem on x ∈ R. In this668

case, f (ξ) is an odd function with a finite support and α = −1. Their solution implies669

that ω(x, t) → f ′(0)x as t → tc for any finite value of x ∈ R, while the boundary670

of the compact support expands infinitely fast into large |x | as t → tc. Our numerical671

findings show an approach to this kind of expanding solution with compact support672

starting from a generic analytic initial condition, see Figs. 9 and 10. This verifies that673

the similarity solution is attracting. The solution grows in amplitude and expands faster674

than exponentially in time, which is demonstrated by semi-log plots of maxx |ω(x)|(t)675

and its location xmax(t) in the middle and right panels of Fig. 9. It obeys the self-similar676
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Fig. 7 Results from simulations of Eqs. (54)–(55) with a = −2 and initial condition IC2 (60). Left panels:

the solution ω(q, t), its derivative ωq (q, t), and u(q, t) for t = 0.407228. Right panels: time dependence

of the maximum values of these functions. Dashed lines show the prediction of Eq. (6) with α2 extracted

from simulations as explained in the text

profile (6) and forms a finite-time singularity at t = tc. Figure 10 (right panels) confirms677

the scales maxx |ω(x)| ∝ 1/(tc − t) and |ωx (x = 0)| ∝ 1/(tc − t)1+α = const with678

α = −1. One can also see (from the middle panel of Fig. 10) that maxx |ωxx (x)| → ∞679

as t → tc. We are able to simulate the growth in amplitude of ω(x) only by about one680

order of magnitude with our spectral code, since the spectrum widens very quickly as681

t → tc and decays slowly, i.e., |ω̂k(x)| ∼ k−2, as shown in Fig. 11 (left panel). The682

approach to a self-similar solution with compact support is expressed in the complex683

x-plane by the approach of complex singularities (identified as branch points from684
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Fig. 8 Left panel: The Fourier spectrum |ω̂k | at time t = 0.407228 from the same simulation as in Fig. 7.

The red line represents a fit to model (62) with green line showing portion of the |ω̂k | used for the fit. Center

and right panels: Time dependence of δx (t) = tanh
(

δ(t)
2

)

and p(t) recovered from fit of the spectrum to Eq.

(62) at different times. The red solid line at the center panel represents a fit to the model δx (t) ∝ (tc − t)α .

Fig. 9 Left panel: Convergence of the time-dependent numerical solution to Eqs. (54)–(55) with a = 1 and

IC2 (60) to a self-similar profile with compact support. The solution expands horizontally and stretches

vertically until blowing up at t = tc ≈ 1.77864. The solution is plotted in x-space, where x = tan(
q
2 ),

and is scaled both horizontally and vertically to exactly match the positions of the local maximum and

minimum. Center and right panels: The time dependencies of maxx |ω(x, t)| and the absolute value its

location xmax(t) on t

our simulations) located at x = xsing to the real line near the boundaries of compact685

support. The small distances |Im(xsing)| of these singularities to the real line for t686

near tc mean that the solution is “almost of compact support” with “almost a jump" in687

the first derivative at the boundary of “compact support" in x-space. The singularity688

locations scale like689

xsing ≃ ±(tc − t)αxb ± i (tc − t)α3 yb (65)690

(i.e., there are four symmetrically located singularities), where α = −1 and α3 ≈ 3.68.691

Here, the real constants tc, xb, and yb depend on the IC. Note that α3 is different from α692

because it characterizes the approach of the solution to the compactly supported profile693

(6). In contrast, the value α = −1 is fully determined by Eq. (6) and characterizes694

the self-similar behavior of the central part of the solution. The nonzero value of α3695

suggests that the “almost compactly supported” solution turns into a truly compactly696

supported solution at t = tc, with a jump in the first derivative. Due to oscillations697

in the spectrum, it is difficult to accurately extract the value of α3 from the fit to698
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Fig. 10 Results of the same simulation as in Fig. 9 with a = 1 showing solution ω(q, t), ωq (q, t) and

u(q, t) in q-space (left panels) as well as the same solution in x-space (center panels) at time t = 1.582477.

Right panels show the time dependence of their maximum values as functions of (tc − t), where tc is the

blow-up time extracted from the fit to max |ω(x, t)| ∝ 1
(tc−t)

δx (t) ∼ (tc − t)α3 . However, using rational approximation via the AAA algorithm699

(see details about AAA in Sect. 10) we can observe two pairs of branch cuts with700

branch points approach the real line near x = ±(tc − t)αxb as t → tc, similar to the701

case a = 0.8. One can see from Fig. 12 (right panel) that the structure of the singularity702

for a = 0.8 is similar to the a = 1 case.703

For ac < a < 1 and both IC1 or IC2, we similarly observe finite-time singularity704

formation with an expanding self-similar solution approaching a compactly supported705

profile [described again by Eq. (6)]. This is qualitatively similar to the a = 1 case,706

but involves different values of α. Another difference compared to the a = 1 case is707

that there is a discontinuity in a higher-order derivative at the boundary of “compact708

support,” instead of a jump in the first derivative ωx as occurs for a = 1. Figures 12,709

13, and 14 show the results of simulations with the parameter a = 0.8 and IC2 (60).710

Here, we find a jump in ωxx forming at the boundary of “compact support.” Figure 13711

(right) shows the growth of both maxx |ω(x)| and maxx |ωx (x)| = |ωx (x = 0)| as712
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Fig. 11 Left panel: The Fourier spectrum |ω̂k | at time t = 1.58248 from the same simulation as in Fig. 10

with a = 1. The red line represents a fit to model (62) with green line showing a portion of the |ω̂k | used

for the fit. Right panel: Time dependence of δx (t) = tanh
(

δ(t)
2

)

recovered from the fit of the spectrum to

Eq. (62). The red solid line in the right panel represents a fit to the model δx (t) ∝ (tc − t)α3

functions of tc − t confirming the scales maxx |ω(x)| ∼ 1/(tc − t) and |ωx (x = 0)| ∼713

1/(tc − t)1+α with α = −0.26008.714

Qualitatively similar to the case a = 1, for ac < a < 1 we again observe two pairs715

of branch cuts approach the real line as t → tc according to Eq. (65). For example,716

when a = 0.8, we find that α = −0.26008 and α3 ≈ 0.908, see Fig. 12 (right panel).717

It was challenging to accurately extract values of δ(t) and p(t) from a fit to Eq. (62)718

due to the spectrum being oscillatory, see the left panel of Fig. 14. The right panel719

of Fig. 14 provides the best fit which we were able to obtain for δ(t). The fitting720

parameter p(t) was more sensitive to the oscillations and did not appear to stabilize721

at any particular value, so we do not provide a plot for it here.722

This type of oscillation in the spectrum occurs when there are two symmetric723

singularities that are equally close to the real line. In this case, a more elaborate fitting724

procedure with additional parameters to account for the oscillation can yield improved725

results, see, e.g., Baker et al. (1993). However, such fits are also more delicate to726

implement and are beyond the scope of the current work.727

Simulations with ICs either of type − IC1 or − IC2 and ac < a ≤ 1 resulted728

in monotonically decaying maxx |ω(x, t)| and maxx |u(x, t)|. The maximum slope729

maxx |ωx (t)| = |ωx (x = 0, t)| is found to approach a constant value for a = 1, while730

it decays for a < 1. Also, maxx |ωxx (x, t)| grows algebraically as a function of t ,731

while δx (t) decays algebraically, δx (t) ∼ 1/tµ, µ > 0. Since these ICs do not result732

in a finite-time singularity formation, we do not discuss these cases in further detail.733

For a � 1.3 and for both IC1 and IC2, we observe global existence of the solution.734

The vorticity ω has the form an expanding self-similar function which approaches735

a compactly supported profile (in the scaled variable ξ ) with infinite slope at the736

boundary of the compact region, so that maxx |ω| → 0 and maxx |ωx |, maxx |u| → ∞737

as t → ∞ (although ωx (x = 0) → 0 as t → ∞). The complex singularities approach738
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Fig. 12 Left panel: Convergence of time-dependent numerical solution to Eqs. (54)–(55) with a = 0.8 and

IC2 (60) to a self-similar profile with compact support. The solution expands horizontally and stretches

vertically until blowing up at t = tc ≈ 1.32761. The solution is plotted in x-space, where x = tan(
q
2 ), and is

scaled both horizontally and vertically to exactly match the positions of the local maximum and minimum.

Center panel: The time dependence xmax(t) of the location of maxx ω(x). The dashed lines show that it

scales like xmax(t) ∝ (tc − t)α with α ≃ −0.26008 as t → tc . Right panel: The structure of complex

singularities at t = 1.32593 obtained using AAA algorithm (described in Sect. 10) that approximates the

solution by a set of simple poles, ω(x) ≈ ωAAA(x) =
∑m−1

i=1
ai

x−bi
. The simple poles are shown as dots

at locations bi with a size of dot scaled with log10 |ai |. The branch cuts are shown as lines connecting

the dots and form “U-shaped” curves in the upper and lower complex plane. The accumulation of poles

approximates two pairs of branch points near the real line. The location of these branch points scale as

xsing ∼ ±(tc − t)αxb ± iy0(tc − t)α3 yb , where x0, y0 > 0, α = −0.26008 and α3 ≈ 0.908

the real line in infinite time with positions that scale like xsing = ±x0 exp (κ1tν1) ±739

iy0 exp (−κ2tν2), where the constants κ1, κ2, ν1, ν2 > 0 depend on a. For both − IC1740

and − IC2, we again observe global existence of the solution with decay of ω and741

infinite growth of ωx (x = 0), with an infinite slope forming at x = 0 and a singularity742

approaching the real line like xsing = 0 ± iy0 exp (−κ2tν2), where y0, κ2, ν2 > 0.743

For 1 < a � 1.3, we find from simulations that initially maxx |ω| grows. This744

period of initial growth is long, with the spectrum widening so quickly that it was745

challenging to distinguish between a finite-time singularity and global existence when746

a is near 1, but we have numerical evidence of global existence for a at least as small747

as 1.3, as described in the previous paragraph.748

Here, we summarize the behavior of solutions to Eqs. (54)–(55) on x ∈ R, and its749

dependence on the parameter a, for quite generic smooth IC:750

– a < ac with α(a) > 0: Collapse in ω, i.e., maxx |ω| → ∞ at the finite time tc.751

As t → tc, solutions with generic IC approach the shrinking universal self-similar752

profile (6) near the spatial location of maxx |ω|. As t → tc, the profiles shrink753

to zero width. The self-similar solution has leading-order complex singularities754

in agreement with Theorem 1 and Eq. (21). The location of these singularities755

approaches the real line as xsing = x0 ± i δx (t), where δx (t) ∝ (tc − t)α , α =756

α(a) > 0. In particular, x0 = 0 for both IC1 or IC2. Also u(x, t) near x0 follows757

the self-similar profile (48) with maxx |u| → ∞ for 0 < a < ac.758

– ac < a ≤ 1 with α(a) < 0: Blow-up in both ω and u at the finite time tc. As759

t → tc, solutions with generic IC approach the expanding self-similar profile Eq.760

(6) which has compact support. As t → tc, the rate of expansion turns infinite.761

The complex singularities closest to the real line correspond to the boundaries of762
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Fig. 13 Results of the same simulation as in Fig. 12 with a = 0.8 showing ω(q, t), ωq (q, t), and u(q, t) in

q-space (left panels) as well as in x-space (center panels) at time t = 1.32593. Right panels show the time

dependence of their maximum values as functions of (tc − t), where tc is the blow-up time extracted from

the fit to max |ω(x, t)| ∝ 1
(tc−t)

compact support, and they approach the real line as xsing ∼ ±(tc − t)αxb ± i (tc −763

t)α3 yb, where α = α(a) < 0 and α3(a) > 0,764

– a � 1.3 : Global existence of solutions with maxx |ω| → 0, maxx |ωx |, maxx |u|765

→ ∞ and ωx (x = 0) → 0 as t → ∞. The complex singularities approach the real766

line exponentially in time as xsing = ±x0 exp (κ1tν1) ± iy0 exp (−κ2tν2), where767

κ1, κ2, ν1, ν2 > 0.768

9 Numerical Solution of Nonlinear Eigenvalue Problem on the Real769

Line770

Similar to the transformation of Eqs. (1) to (54)–(55) in Sect. 7, we obtain a transformed771

equation for self-similar solutions of Eq. (47) by mapping the interval (−π, π) of the772
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Fig. 14 Left panel: The Fourier spectrum |ω̂k | at a particular time t = 1.32593 from the same simulation as

in Fig. 12 with a = 0.8. The red line represents a fit to model (62) with the green line showing the portion

of the |ω̂k | used for the fit. The purple line shows a fit to the rougher model (62) with δ = 0. Right panel:

Time dependence of δx (t) = tanh
(

δ(t)
2

)

recovered from the fit of the spectrum to Eq. (62). The red solid

line at the right panel represents a fit to the model δx (t) ∝ (tc − t)α3

auxiliary variable q onto the real line (−∞,∞) as773

ξ = tan
(q

2

)

. (66)774

With this mapping, Eq. (47) turns into775

M f := f + α sin q fq = −a(1 + cos q)g fq + f [H2π f + C2π
f ]776

:= N [ f ] f , q ∈ [−π, π ],777

(1 + cos q)gq = H
2π f + C2π

f , (67)778

where the 2π -periodic Hilbert transform H2π and the constant C2π
f are defined in Eqs.779

(55), (56), and the linear operator M is now defined in q space by the l.h.s. of the780

first Eq. (67). We also define in Eq. (67) the quadratically nonlinear operator N [ f ]781

such that N [ f ] f represents the r.h.s. of the first Eq. (67) with g expressed through782

the second equation in (67) as783

g = ∂−1
q

[

H2π f + C2π
f

(1 + cos q)

]

, ∂−1
q p :=

q
∫

−π

p(q ′)dq ′. (68)784

Then, Eq. (67) takes the following operator form785

M f = N [ f ] f . (69)786
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A linearization of Eq. (69) about f together with Eqs. (67) and (68) results in787

L[ f ]δ f := − Mδ f − a(1 + cos q)∂−1
q

[

H2πδ f + C2π
δ f

(1 + cos q)

]

fq788

− a(1 + cos q)∂−1
q

[

H2π f + C2π
f

(1 + cos q)

]

δ fq789

+ δ f [H2π f + C2π
f ] + f [H2πδ f + C2π

δ f ], (70)790

791

where L[ f ] is the linearization operator and δ f is the deviation from f .792

Taking δ f = f in Eq. (70) and using Eqs. (67), (69) to express the nonlinear terms793

in f through the linear terms prove the following theorem:794

Theorem 4 The solution f of Eq. (67) satisfies the relation795

L[ f ] f = M f . (71)796

Corollary 1 The invertibility of the operator M (see Sect. 6) and Eq. (71) imply that797

the operator M−1L[ f ] has the eigenvalue λ = 1 with eigenfunction f , which is the798

same as the solution f of Eq. (67).799

Similar to Eq. (57), we approximate a solution of Eq. (67) as a truncated Fourier800

series801

f (q) =

k=N−1
∑

k=−N

f̂keikq . (72)802

Then, the discrete Fourier transform allows us to rewrite Eq. (67) in matrix form as803

M f̂ = N̂ [ f ] f , M :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −αk2
2

αk1
2

1 −αk3
2

αk2
2

1 . . .

. . . . . . −αk2N

2
αk2N−1

2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (73)804

where f̂ = ( f̂k1 , f̂k2 , . . . , f̂k2N
)T is a column vector, the tridiagonal matrix M ∈805

R2N×2N represents the Fourier transform of the operator M and N̂ [ f ] f is the column806

vector of Fourier coefficients of N [ f ] f . Also k1 := −N , k2 := −N +1, . . . , k2N :=807

N − 1. Note that the tridiagonal form of M is a consequence of the term sin(q) =808

eiq−e−iq

2i
in the definition of M in Eq. (67).809

We solve Eq. (71) in the truncated Fourier representation (73) by iteration using810

the generalized Petviashvili method (GPM) (Lakoba and Yang 2007) which relates811

the n + 1th iteration f̂n+1 to the nth iteration f̂n of f̂ as follows:812
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f̂n+1 − f̂n =

(

[−f̂n + M−1
N̂ [ f ] f n] −

(

1 +
1

∆τ

)

〈f̂n,−M f̂n + N̂ [ f ] f n〉

〈f̂n, M f̂n〉
f̂n

)

∆τ,813

(74)814

where superscripts give the iteration number, 〈a , b〉 :=
∑k=N−1

k=−N ākbk is the complex815

dot product and∆τ is a parameter that controls the convergence rate of the iterations. At816

each iteration we need to solve Eq. (73) for f̂ (assuming N̂ [ f ] f is given) to effectively817

compute M−1N̂ [ f ] f n . Since M is a tridiagonal matrix, this is easily done in O(N )818

numerical operations in Fourier space. We note that if one tries to avoid the FFT and819

iterate Eq. (67) directly in q space, then the corresponding matrix M on the l.h.s. of820

Eq. (67) would be a full matrix and each iteration would require O(N 2) numerical821

operations.822

A fixed point of the iteration (74) corresponds to the solution of Eq. (71). The823

straightforward iteration of (71) [instead of (74)] would diverge because of the posi-824

tive eigenvalue λ = 1 of Corollary 1 for the linearized operator M−1L[ f ]. In contrast,825

Eq. (71) ensures an approximate projection into the subspace orthogonal to the cor-826

responding unstable eigenvector f . The original Petviashvili method (Petviashvili827

1976) is the nonlinear version of Eq. (74) for the particular value ∆τ = 1 and is often828

successful with both partial differential equations (PDEs) (see, e.g., Lakoba and Yang829

2007; Yang 2010) and nonlocal PDEs (see, e.g., Lushnikov 2001). However, the linear830

operator M−1L[ f ] generally has extra eigenvalues preventing the convergence of the831

original Petviashvili method. GPM, however, uses the freedom in choice of the param-832

eter ∆τ to achieve convergence even with such extra eigenvalues, see Dyachenko et al.833

(2013b), Lakoba and Yang (2007), and Yang (2010) for more discussion.834

An additional complication that arises in our Eq. (67), compared with the straight-835

forward use of GPM in general PDEs, is that we do not know α in advance. Instead,836

for each value of a there is a nonlinear eigenvalue α(a) to Eq. (67) that we need to837

determine. If we use a general value of α, then iteration (74) would not converge838

because the solution of Eq. (67) does not exist for such general values of α.839

To address this additional complication, we make an initial guess of α = αguess840

for fixed a and iterate Eq. (67) for αguess. If αguess < α(a), then the generalized841

Petviashvili iteration (after an initial transient) shrinks toward q = 0. If αguess >842

α(a), then the solution expands away from q = 0. We used the bisection method843

to determine α(a) for a given a. We start from a large enough interval [αL , αR], so844

that α(a) ∈ [αL , αR]. Then, we try αguess = (αL + αR)/2 and based on the shrinking845

versus expanding of iterations for αguess, we obtain the updated values [αL , αR]. These846

updated values ensure a factor 2 decrease of the length of the updated interval [αL , αR],847

completing the first step of the bisection method. We continue such bisection steps848

until convergence to α(a) [i.e., until the residual of Eq. (67) decreases down to near849

round-off values and does not decrease anymore]. For each updated αguess, we use the850

solution from the previous bisection step to speed-up the convergence. We judged the851

expansion/shrinking of the solution by tracking the movement of its maximum point852

which was determined as a critical point of the function f ′(q) =
∑k=N−1

k=−N ik f̂keikq
853

using spectral interpolation and a root-finding algorithm. Also, in order to pass over854

the initial transient dynamics (that depends on the initial guess of the solution) we skip855

123

SPI Journal: 332 Article No.: 9737 TYPESET DISK LE CP Disp.:2021/8/4 Pages: 56 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

_####_ Page 36 of 56 Journal of Nonlinear Science  _#####################_

Fig. 15 Convergence of the interval [αL , αR ] to α(a) (left panel) and convergence of the residual of Eq.

(73) (right panel) for the iteration (74) with a = 0.2. Here, we used IC2 (59) with Vc = 2−12 ≈ 2.44 ·10−4

and N = 218 as the zeroth iteration

10/∆τ − 20/∆τ initial GPM iterations before judging the expansion/shrinking of the856

solution to classify the current αguess. The larger ∆τ we used, the less iterations were857

needed, but too large a ∆τ leads to instability of the algorithm, so we need to keep it858

under a certain level. For the initial guess of the solution, we typically used IC2 from859

Eq. (59) with Vc = 1/2 for 0.6 < a < ac, and N = 64; ∆τ was reduced from 0.1860

at a = 0.6 to 10−4 near ac. For a < 0.6, we used ∆τ = 0.1 − 1 and progressively861

smaller Vc (down to 2−14) and larger N (up to 222) because of the slowly decaying862

tails of the function f (q) for small a (see the next paragraph). Figure 15 illustrates863

the convergence of the [αL , αR] interval to α(a) and convergence of the residual of864

Eq. (67) with bisection iterations for a = 0.2, starting with an initial condition IC2865

in (59) with Vc = 1/212 ≈ 2.44 × 10−4 (singularity is at ξ = iV c) and N = 218.866

The converged solution is shown in Fig. 16 (left panel) with a closest singularity at a867

distance ξc = 7.43·10−5 from the real line in ξ -space and at a distance qc = 1.49·10−4
868

in q-space.869

We note that symmetry (51) implies that ξc can be stretched by an arbitrary positive870

constant. Iteration (74) generally converges to different values of ξc depending on IC871

(i.e., the zeroth iteration). After that, one can rescale any such solution in ξ by any872

fixed value of ξc. This rescaling freedom can also be seen through the existence of the873

free parameter ṽc in the exact solutions (32) and (38), (39).874

We computed self-similar profiles f (ξ) and g(ξ) for various values of a < ac to875

obtain α(a) shown in Table 1 as αe(a). Additionally, we make sure that the f (ξ)876

profile tails scale as in Eq. (49) at ξ → ±∞ and we also fit the g(ξ) profile tails to877

the power law878

g(ξ) ∝ ξβ . (75)879

Figure 17 show examples of such scaling and fit for a = 0.2. Several other curves with880

different powers of ξ are present on the graphs for comparison. The fitted values of881

β(a) are given in Table 1 and Fig. 16 (right panel). Ignoring for the moment the Hilbert882

transform, the integration operator ∂−1
ξ involved in determining g(ξ) from f (ξ) in Eq.883
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Fig. 16 Left panel: a = 0.2. Functions f (ξ) and scaled g(ξ) obtained by the iteration (74). Right panel:

Power law of scaling of the tails of g(ξ) versus a

(47) suggests that884

g(ξ) ∝ ξ− 1
α
+1 at ξ → ±∞, (76)885

which implies that886

β = −
1

α
+ 1. (77)887

However, the Hilbert transform in Eq. (47) can affect this scaling. We find that (77)888

is valid for 0 < a � 0.4, while a transition to the constant scaling β = −1 occurs889

around a ≈ 0.45 as shown in Table 1 and Fig. 16 (right panel). In particular, the exact890

analytical solution (34) for a = 1/2 and α = 1/3 implies that β = −1 which is891

consistent with Table 1 and Fig. 16 (right panel). One can see from comparison of892

Eqs. (33) and (34) that the Hilbert transform indeed prevents the naive scaling (76) in893

this particular case. In contrast, the scaling (49) follows from the linear operator M as894

discussed in Sect. 6. That scaling was confirmed with high precision in our simulations895

so we do not show it in Table 1. For a < 0, we find that g(ξ) has two regions with896

two different scalings, see Fig. 18 for a = −0.1. While the tail of g(ξ) still decays as897

ξ → ±∞, there is an intermediate scaling regime which approximately obeys (77)898

as seen in Fig. 18 (left panel). We are able to observe this intermediate scaling for899

−0.2 ≤ a < 0. Going below a = −0.2 is difficult for the GPM method as the tails of900

f (ξ) and g(ξ) decay very slowly and it requires more than 106 grid points to achieve901

good accuracy. For a < 0, the values of β in Table 1 and in Fig. 16 (right panel) are902

from this intermediate scaling.903

We estimate that our iteration procedure provides at least 5–8 digits of precision of904

in α(a) and 2–3 digits of precision in β(a) for a ≥ 0.3, when the spectrum of f (q) is905

fully resolved. The values of α(a) and β(a) were challenging to obtain with more than906

3–4 and ∼2 digits of accuracy, respectively, for a � 0.2 (corresponding to α � 0.75)907

and especially for a < 0 (α > 1) since we could not resolve the Fourier spectrum | f̂k |908
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Fig. 17 a = 0.2. Left panel: Tail of f (ξ) from Fig. 16 (left panel). The dashed line shows the decay of

f (ξ) when it is approximated by its leading-order singularities alone, as obtained from (17), neglecting the

l.s.t. Right panel: Tail of g(ξ) from Fig. 16 (left panel) compared with different power laws

Fig. 18 Plots of g(ξ) for a = −0.1. Left panel: Graph of g(ξ) showing two extrema (one maximum and

one minimum) in each half-space of ξ . The inset gives a magnified view showing extrema at small ξ . Right

panel: Log–log plot of g(ξ) for positive ξ . Here, g(ξ0) = 0 at ξ0 ≈ 0.41. Solid lines show the scaling (76)

and a fit to power law (75)

down to round-off level 10−16, even with N = 222 modes. At its root, this is due to909

the slow decay of f (ξ) ∼ |ξ |−1/α for |ξ | → ∞ and relatively large α.910

The numerical values of β in the scaling (75) are important to distinguish between911

solutions with infinite and finite energy EK (10), which as mentioned is of interest in912

analogy with the question of singularity formation in the 3D Euler and Navier–Stokes913

equations. Assuming that the solution is close to the self-similar profile (6), changing914

the variable from x to ξ in (10) and using the self-similar profile (48) of the velocity915

u(x, t) we obtain that916

EK = E selfsim
K + Erest

K , (78)917
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where918

E selfsim
K =

xb
∫

−xb

u2(x)dx ∼ τ 3α−2

ξb
∫

−ξb

g2(ξ)dξ, ξb =
xb

τα
, (79)919

is the kinetic energy of the approximately self-similar part of the solution located at920

x ∈ [−xb, xb] and Erest
K is the kinetic energy of the numerical solution outside of this921

interval. Here, we define the cutoff value x = xb as the spatial location where the922

numerical solution deviates from the self-similar profile (6) by 5%, while inside of the923

interval [−xb, xb] the relative deviation is less than 5%. We determine the variable ξ924

by the same type of procedure as in Fig. 4. Then, xb is determined by 5% criterion925

above. We find from simulations with a < ac that926

xb(t) ≈ const ∼ τ 0. (80)927

Such behavior is typical for collapsing self-similar solutions, see, e.g., Sulem and928

Sulem (1999), Kuznetsov and Zakharov (2007), Dyachenko et al. (2013), and Lush-929

nikov et al. (2013). It implies that ξb → ∞ as t → tc.930

There is no qualitative difference between integrals Ig,ξb
:=

∫ ξb

−ξb
g2(ξ)dξ and931

Ig,∞ =
∫ ∞
−∞ g2(ξ)dξ provided Ig,∞ < ∞. The finiteness of Ig,∞ requires that932

β < − 1
2

for the scaling of the tails of g(ξ) in (75). Using Eq. (77), we obtain that933

β = − 1
2

implies α = 2
3

, i.e., β < − 1
2

for α < 2
3

. From the interpolation of the934

data of Table 1, we find that α = 2
3

corresponds to a = 0.265 ± 0.001. Therefore,935

for a self-similar profile, Ig,∞ < ∞ for a > 0.265 ± 0.001 and Ig,∞ = ∞ for936

a < 0.265 ± 0.001.937

However, we have to take into account that Ig,ξb
is multiplied by τ 3α−2 in Eq. (79).938

This means that in the limit t → tc and for α < 2
3

, there is a competition between the939

decrease of τ 3α−2 and the growth of Ig,ξb
as ξb → ∞. The scaling (77) for Eq. (75)940

is valid for a � 0.4 as shown in Fig. 16 (right panel). It implies that Ig,ξb
∝ ξ

2β+1
b =941

τ−α(2β+1)x
2β+1
b for a < 0.265 ± 0.001 and t → tc. Then, using Eqs. (77), (79) and942

(80) we obtain that E selfsim
K ∼ τ 0 ∼ const. Also since the main dynamics is happening943

in x ∈ [−xb, xb] with xb(t) ∼ const, we conclude that E rest
K → const as t → tc, so944

overall the growth of EK (t) as t → tc is very slow (i.e., slower than any power of τ )945

for such a where the scaling (77) is true. This result is in excellent agreement with946

our direct calculation of EK (t) from time-dependent simulations which shows that for947

a < 0.265 ± 0.001 the kinetic energy grows more slowly than log(τ ) or any power of948

τ as t → tc; see Fig. 19 (left panel) for a = 0.2.949

For 0.265 ± 0.001 < a ≤ 1, the kinetic energy EK → ∞ as t → tc (while being950

finite for any t < tc), since α < 0 and EK ∼ τ 3α−2 → ∞ as t → tc with Ig,∞ < ∞;951

see Fig. 19 (center panel) for a verification of this scaling when a = 0.4. For a � 1.3,952

which corresponds to an expanding solution with infinite-time singularity, EK → ∞953

as t → ∞, while being finite for any t < ∞; see Fig. 19 (right panel) for an example954
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Fig. 19 Growth of the kinetic energy EK over time. Left panel: a = 0.2, semi-log plot of EK versus

τ = tc − t shows that EK grows slower than log(τ ) or any power of τ as t → tc . Center panel: a = 0.4,

verification of the scaling EK ∼ τ3α−2 in (79) with Ig,∞ < ∞. Right panel: a = 1.5, EK → ∞

exponentially as t → ∞

with a = 1.5. For a > ac, the above splitting of EK into two parts is no longer valid,955

but we nevertheless verify the claims above via time-dependent numerical simulation.956

For some values of a, we computed α(a) and nonlinear self-similar profiles with957

much higher precision. For example, we used 68-digit arithmetic (using commercially958

available Advanpix MATLAB Toolbox https://www.advanpix.com) for a = 2/3 to959

find that α(a) = 0.0451709442203672185156916552716968964156893201125622960

408995729 . . . and to compute f (q) up to ∼60 digits of precision, see Fig. 20. High961

precision computations help validate the results from double precision calculations,962

and allow us to obtain a good quality analytic continuation of the solution f (ξ) =963

f (q(ξ)) from the real line ξ ∈ R to the complex plane ξ ∈ C via the AAA algorithm964

(Nakatsukasa et al. 2018), see Sect. 10.965

10 Analytical Continuation into the Complex Plane by Rational966

Approximation and Structure of Singularities967

Fits of the Fourier spectrum using Eq. (62) allow us to find only the singularity clos-968

est to the real line. A more powerful numerical technique of analytical continuation969

based on rational interpolants (Alpert et al. 2000; Dyachenko et al. 2016, 2019; Nakat-970

sukasa et al. 2018) allows us to go deeper (further away from the real line) into the971

complex plane, well beyond the closest singularity. However, analytic continuation972

further from the real line often requires an increase in numerical precision, even well973

above the standard double precision (Dyachenko et al. 2016, 2019). In this paper,974

we use a rational interpolation based on a modified version of the AAA algorithm975

of Nakatsukasa et al. (2018). AAA finds an approximation fAAA(ξ) to a complex976

function f (ξ) in barycentric form by minimizing the L2 error of the approximation977

on the real line.978

123

SPI Journal: 332 Article No.: 9737 TYPESET DISK LE CP Disp.:2021/8/4 Pages: 56 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f

https://www.advanpix.com


u
n
co

rr
ec

te
d

p
ro

o
f

Journal of Nonlinear Science  _#####################_ Page 41 of 56 _####_

Fig. 20 Convergence of the residual (left panel) and spectrum of the solution (right panel) to Eq. (73),

computed with a = 2/3 and 68-digit precision, and using IC2 (59) with Vc = 1/16 = 0.0625 and

N = 2048 in the zeroth iteration

The barycentric form is given by979

fAAA(ξ) :=
n(ξ)

d(ξ)
=

∑m
i=1

wi fi

ξ−ξi
∑m

i=1
wi

ξ−ξi

, (81)980

where m ≥ 1 is an integer, ξi are a set of real distinct support points, fi are a set of981

real data values, and wi are a set of real weights determined by L2 error minimization.982

The integer m is increased until the L2 error between fAAA(ξ) and f (ξ) on the real983

line is on the level of 10−P R , where P R is the current working precision. For analytic984

functions, the error decreases exponentially in m.985

The Barycentric form (81) is a quotient of two polynomials n(ξ) and d(ξ). A partial986

fraction expansion of this quotient results in a sum of m −1 first-order complex poles,987

f
poles
AAA (ξ) =

∑m−1
i=1

ai

ξ−bi
, with locations bi and residues ai determined by the values988

of wi and ξi . The pole locations bi , which are zeros of d(ξ), are determined by solving989

a generalized eigenvalue problem described in Nakatsukasa et al. (2018). The values990

of the residues ai can be computed using L’Hospital’s rule ai = res( fAAA, bi ) =991

n(bi )/d ′(bi ). If our data for an analytic function are given with precision P R on992

the real line, AAA and subsequent computations of bi approximate the location of993

single poles with maximum precision ∼ P R, double poles with precision ∼ P R/2,994

and triple poles with precision ∼ P R/3, etc. The progressive loss of precision in995

higher-order poles is due to cancellation errors. We find we can achieve the reduced996

error | f (ξ) − f
poles
AAA (ξ)| ≈ 10−P R on the real line in the case of higher order poles if997

we increase the precision of intermediate computations in the generalized eigenvalue998

problem by a factor of two for double poles and a factor of three for triple poles. We999

additionally modified the original AAA algorithm (Nakatsukasa et al. 2018) to deal1000

with odd and even functions more efficiently and output more symmetrical sets of1001

poles.1002
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Fig. 21 The structure of the complex singularities of the solution from Fig. 20 approximated by a set of

simple poles, f (ξ) ≈ f
poles
AAA (ξ) =

∑m−1
i=1

ai
ξ−bi

using the AAA algorithm (left panel), and the relative

error on the real line between the solution f (ξ) and its approximation fAAA(ξ) (right panel). The simple

poles are shown as dots at locations bi with the size of dot scaled with log10 |ai |. The branch cuts are

approximated as lines connecting the dots. The triple poles locations are ξ ≈ ±i0.04678, and branch points

are located at ξ = ξbranch ≈ ±0.05398 ± i0.07674

In the particular case a = 2/3, we use 68-digit precision arithmetic for the numer-1003

ical solution of f (ξ) described at the end of Sect. 9 and incorporate this into the AAA1004

algorithm. This method shows that the closest singularities to the real line are a pair1005

of the third order poles ∝ 1/(ξ ± iχc)
3, in full agreement with Theorem 1 (Eq. (21)1006

of Sect. 2) and the Fourier spectrum analysis of Sect. 8. The location ξ = ±iχc (here1007

Re(χc) > 0 and Re(χc) ≫ |Im(χc)|) and the third-order type of these poles are1008

automatically approximated by the AAA algorithm as three simple poles
∑3

i=1
ai

ξ−bi
1009

lying very close to each other (|b1 − b2|, |b2 − b3| < 1.54 · 10−12) with the sum of1010

their residues being essentially zero (|
∑3

i=1 ai |/|a1| ≈ 4.64 · 10−47). We define the1011

location of the triple pole by the average iχc =
∑3

i=1 bi/3 and have verified that the1012

dipole moment defined by D :=
∑3

i=1 (bi − iχc)ai is negligible, |D| ≈ 1.2 · 10−29.1013

In contrast, the quadrupole moment Q :=
∑3

i=1 (bi − iχc)
2ai is distinct from zero,1014

|Q| ≈ 1.5 · 10−4, so this multipole is well approximated by Q

(ξ−iχc)3 . The complex1015

conjugate point ξ = −iχc was treated in a similar way, i.e., by another set of three1016

poles of AAA.1017

We find that the rest of the singularities of f (ξ) are branch points with branch cuts1018

extending from them. AAA approximates branch cuts by sets of poles, and Dyachenko1019

et al. (2016, 2019) demonstrate how to recover branch cuts from this set of poles by1020

increasing the numerical precision. The increase of numerical precision requires an1021

increase in the number of poles m in rational interpolants to match the precision.1022

These poles, which are located on a branch cut, become more dense with the increase1023

in precision and thus recover the location of the branch cut in the continuous (infinite1024

precision) limit. The main motivation for using 68-digit precision in this paper was to1025

ensure that we robustly recover branch cuts, see Fig. 21 (left panel). In the particular1026

case a = 2/3, double precision allows us to robustly see ∼ 30 poles, whereas 68-digit1027
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precision allows us to see ∼ 150 poles. The number of poles we use for a fixed precision1028

is determined by the minimal number of AAA poles to match the numerical precision1029

of the solution on the real line. Increasing the number poles beyond this minimal1030

number produces spurious poles with very small residues, which is the analog of the1031

round-off floor in the Fourier spectrum. We note that the exact shape of the branch1032

cuts is not fixed analytically—the AAA algorithm simply provides a set of poles that1033

corresponds to the smallest L2 error on the real axis for the given number of poles.1034

Thus, the AAA approximation of the branch cut might move with a change of the1035

precision. In contrast, the branch points computed by the algorithm are fixed. One can1036

see four branch points in Fig. 21 (left panel), with two branch cuts going upward and1037

coalescing on the imaginary axis and extending further to +i∞. Another two branch1038

cuts extend downward and merge on the imaginary axis before going off to −i∞.1039

Our investigations of complex singularities via AAA approximations show that1040

for any a, except for a = n−1
n

, n = 1, 2, 3, . . . [which corresponds to the integer1041

values γ = n in Eq. (21)], there is another pair of vertical branch cuts coming out of1042

ξ = ±iχc and coalescing with the rest of the branch cuts on the imaginary axis. For1043

a < ac, the side branch points are always above the main singularity at ξ = ±iχc1044

and their locations are ξbranch = ±ǫ1(a)χc ± i(1 + ǫ2(a))χc, where roughly ǫ1(a) ∼1045

1, ǫ2(a) ∼ 1. In particular, Re[ξbranch]/χc < 0.74, Im[ξbranch]/χc > 2 for a < 0.6;1046

Re[ξbranch]/χc ≈ 1.15, Im[ξbranch]/χc ≈ 1.64 for a = 2/3 and Re[ξbranch]/χc ≈1047

1.23, Im[ξbranch]/χc ≈ 1.51 near a = ac.1048

11 Results of Time-Dependent Simulations and Petviashvili Iterations1049

for Periodic BC1050

Motivated by simulations of the generalized CLM equation (1) in Okamoto et al.1051

(2008) for 2π -periodic BC with a = 1, we performed simulations for a wide range1052

of values of the parameter a. For this, we used the periodic version of the Hilbert1053

transform H2π (55) in Eq. (1) instead of H.1054

Simulations for a < ac show collapsing solutions with α > 0, and different types1055

of IC give qualitatively similar results near the collapse time t = tc as in the real line1056

x ∈ R case with the same α(a) (see Table 1). Hence, we do not describe them here.1057

Expanding solutions for a > ac behave differently since the finite spatial interval1058

[−π, π ] arrested the increasing width of the solution at large enough times. Thus, we1059

focus our discussion on a > ac and present detailed results of our simulations, in1060

particular the cases of a = 0.8 and a = 1.1061

We performed a simulation with a = 0.8 and initial condition1062

ω0(x) = −
4

3
[sin(x) + 0.5 sin(2x)], (82)1063

which is qualitatively similar to the particular case (60) of IC2 (59), with q replaced1064

by x and Vc = 1, Tc = 1. After an initial spatial expansion, the solution is arrested by1065

the periodic boundary conditions. This arrest results in the qualitative change of the1066
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Fig. 22 Left panel: Convergence of time-dependent numerical solution of Eqs. (1) and (55) with a = 0.8

and IC (82) to a universal self-similar profile. The solution expands horizontally (until arrested by the

boundary condition) and extends vertically, blowing up at t = tc = 1.4736630 . . . . The plot is scaled

vertically by maxx |ω| and horizontally by the location xmax(t) of maxx |ω|. Right panel: Time dependence

of |xmax(t)|, which shows slowdown and eventual arrest of the horizontal expansion of the solution

dynamics, see, for example, the right panel of Fig. 22 for the time dependence of the1067

location xmax(t) of maxx |ω(x)|.1068

At later times, we still find a finite-time blow-up of the solution with maxx |ω(x)|1069

and maxx |u(x)| → ∞ as t → tc. However, instead of Eq. (6), the solution converges1070

to a new universal self-similar blow-up profile given by Eq. (9), as demonstrated in1071

left panel of Fig. 22. A comparison of Eqs. (6) and (9) reveals that we can formally1072

obtain Eq. (9) by setting α = 0 in Eq. (6) [although Eq. (9) has periodic boundary1073

conditions, versus decaying BC of Eq. (6)]. We note that taking the limit a → a−
c in1074

Eq. (6), we also obtain α = 0. However, it remains unknown if Eq. (9) can be obtained1075

from the continuation of Eq. (6) across a = ac.1076

The spectrum ω̂k is initially exponentially decaying but expands and becomes1077

mostly algebraically decaying (similar to Fig. 14). Finite precision arithmetic only1078

“sees" algebraic decay |ω̂k(x)| ∼ k−3 when t is close enough to tc, see Fig. 24. This1079

is because of a jump in ωxx forming at x = ±π , see Fig. 23 (left and middle panels).1080

Due to the spectrum being initially oscillatory, it was difficult to accurately extract1081

values of δ(t) and p(t) from a fit to Eq. (62), but using a nonoscillatory spectrum1082

which emerges later in the simulation we were able to recover some data for δ(t) and1083

p(t) as shown in Fig. 24. There, one can see that δ(t) → 0 and p(t) → 3 as t → tc.1084

For a = 1, we considered two different types of ICs. The first one is IC (82),1085

for which we observe global existence of the solution. Initially, the amplitude of the1086

solution ω(x) grows in time, similar to the infinite-domain case. But this growth slows1087

down at later times and eventually reaches a plateau with the same behavior in u(x),1088

see Fig. 25. Also maxx |ωx | = |ωx (x = 0)| remains nearly constant throughout the1089

simulation. We observe unbounded growth of |ωxx | near x = ±π that appears to be1090

exponential in time. Due to the spectrum being oscillatory, it was difficult to accurately1091

extract values of δ(t) and p(t) from a fit to Eq. (62). However, using AAA rational1092

approximation we were able to observe two pairs of branch cuts approach the real1093
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Fig. 23 Results of the simulation of Eqs. (1) and (55) with a = 0.8 and IC (82). Left panels: ω(x, t), its

derivatives ωx (x, t), ωxx (x, t), and u(x, t) at t = 1.4736627. Right panels: the growth of maximum values

of the corresponding quantities over time

line near x = ±π as t → ∞. Replacing IC (82) by the more general IC2 (59) (with1094

q replaced by x and Vc, Tc = 1) is found to only alter the transient dynamics of the1095

expanding solution without qualitatively changing the overall behavior.1096

The second type of IC we used for a = 1 is given by1097

ω0(x) = sin(x) + 0.1 sin(2x), (83)1098

which is the same as in Okamoto et al. (2008). It allows us to directly compare the1099

results of our simulations with Okamoto et al. (2008). We obtain exactly the same plots1100

as in Fig. 1 of Okamoto et al. (2008), see Fig. 26. The difference between simulations1101

with IC (82) and IC (83) is seen by comparing Figs. 25 and 26. For example, the1102
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Fig. 24 Left panel: Log–log plot of the Fourier spectrum |ω̂k | from Fig. 23 at t = 1.4736627 and a = 0.8.

The red line represents a fit to model (62) with green line showing a portion of the |ω̂k | used for the fit.

Center and right panels: δ(t) and p(t) obtained from the fit of |ω̂k | to Eq. (62) at different times. Red lines

in the center panel also show a fit to the model δ(t) ∝ (tc − t)α3

spatial derivatives of ω approach discontinuities at x = 0 in Fig. 25 versus x = ±π in1103

Fig. 26. The AAA rational approximation shows an approach of two vertical branch1104

cuts to x = 0 over time, so the spectrum is not oscillatory and we are able to easily1105

recover δ(t) and p(t) from the fit to Eq. (62). The fits show a stretched exponential1106

in time approach of the singularity to the real line, i.e., δ(t) ∼ e−κtν , see Fig. 271107

(middle panel). Figure 27 (middle and right panels) showing δ(t) and p(t) can be1108

compared with Fig. 3(a,b) of Okamoto et al. (2008). Our values of δ(t) match those1109

values from Fig. 3(a) of Okamoto et al. (2008) well, while values of p(t) do not match1110

precisely with Fig. 3(b) of Okamoto et al. (2008) because they marginally depend on1111

the particular part of spectrum |ω̂k | that is used for the fitting.1112

For a > 1 with IC (82), we observe global existence of the solution. Its ini-1113

tial expansion in x-space is arrested by the periodic boundary conditions with an1114

infinite slope forming at the boundary x = ±π so that maxx |ωx | → ∞ as1115

t → ∞ (although maxx |ω|, maxx |u|, |ωx (x = 0)| → 0 as t → ∞). The com-1116

plex singularities approach the real line in infinite time. Their positions scale like1117

xsing ∼ ±π ± iy0 exp (−κ2tν2), where y0, κ2, ν2 > 0. When a → 1+, we observe1118

that maxx |ω| grows for a short time and then decays. Unlike the x ∈ R case, it is1119

relatively easy to compute accurately for a → 1+ and we have been able to obtain1120

numerical evidence of global existence for a as small as 1.000001. For IC (83), we1121

also observe global existence of the solution with decay of maxx |ω| and unbounded1122

growth of |ωx (x = 0)| as t → ∞. The complex singularities approach the real line1123

like xsing ∼ 0 ± iy0 exp (−κ2tν2), where y0, κ2, ν2 > 0.1124

We find the same behavior of the kinetic energy for the periodic BC as in x ∈ R1125

case described in Sect. 9 for a ≤ 0.95, while for a = 1 we have that EK → const as1126

t → ∞ (because maxx |u| → const as t → ∞) and for a > 1 we have that EK → 01127

as t → ∞ (because maxx |u| → 0 as t → ∞).1128

Self-similar profiles from GPM. We also numerically computed the self-similar1129

profile f (x) in Eq. (9) for ac < a ≤ 0.85 using GPM described in Sect. 9 with α = 0.1130

In contrast to Sect. 9, we do not need to use the coordinate transformation (66) because1131

f (x) is now 2π -periodic with ξ ≡ x . We used GPM to solve Eq. (46) by the iteration1132
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Fig. 25 Results of the simulation of Eqs. (1) and (55) with a = 1 and IC (82) showing ω(x, t), its

derivatives ωx (x, t), ωxx (x, t), and u(x, t) at t = 2.60205. Also shown is the growth of their maximum

values as functions of time

(74) with M f and N [ f ] f from Eq. (67) replaced by1133

M f := f = −ag fx + f H
2π f := N [ f ] f ,

gx = H
2π f .

(84)1134

The matrix M used in Eq. (74) now turns into the identity matrix. We do not need to1135

solve the nonlinear eigenvalue problem for α because now α ≡ 0. While performing1136

the iteration (74), we had to reduce ∆τ even more than in Sect. 9 to make sure1137

the iterations converged and also had to use more Fourier modes in the spectrum,1138

since the spectrum decay is only algebraic for these solutions. Due to these technical1139
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Fig. 26 Results of the simulation of Eqs. (1) and (55) with a = 1 and IC (83) as in Okamoto et al. (2008)

showing ω(x), its derivatives ωx (x), ωxx (x), and u(x) at t ≈ 12 and the growth of their maximum values

as functions of time

limitations, we were unable to explore the range 0.85 < a < 1, but we fully expect that1140

self-similar solutions exist there because time-dependent simulations converge to self-1141

similar profiles, at least over the lower range ac < a � 0.95 (see Fig. 22). It was not1142

possible to obtain convergence in the upper range 0.95 � a < 1 because the solution1143

spectrum quickly widened, and we were unable to reach the self-similar regime before1144

the computation became prohibitively slow. The behavior of solutions (blow-up vs.1145

global existence) therefore remains unknown in this range. We conjecture that blow-up1146

occurs for all ac < a < 1 with global existence only for a = 1 (as demonstrated) and1147

for larger values of a.1148

The Fourier spectrum of |ω̂k | corresponding to the self-similar profile (9) has two1149

distinct domains for |k| ≫ 1. The particular case a = 0.71 shown in Fig. 28 depicts1150
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Fig. 27 Left panel: Log–log plot of the Fourier spectrum |ω̂k | for the solution in Fig. 26 and a fit to model

(62). Center and right panels: Time dependence of δ(t) and p(t) obtained from the fit to (62). Center panel

also shows a fit of δ(t) to the stretched exponential model δ(t) ∼ e−κtν

Fig. 28 The Fourier spectrum |ω̂k | of the self-similar profile (9) for a = 0.71 obtained by GPM iterations

(74) of Eq. (84). Two fits are shown in different ranges of k with the first fit to Eq. (62) with δ 
= 0 at

intermediate k and the second a power-law fit ∝ |k|−pb for larger |k|. Left panel: Log–linear plot where

the first fit turns into a nearly linear function. Right panel: Log–log plot where the second fit turns into a

nearly linear function

such domains. The first domain corresponds to complex singularities of Theorem 11151

(Eq. (21)) located at xsing = ±iδ. This domain is well fitted by Eq. (62). From this1152

fit, we find that δ = 1.15982 and p = −2.44941, as shown in Fig. 28. Using Eqs.1153

(21) and (63), we obtain the prediction of Theorem 1 that p = −a
1−a

= −2.44827 . . .1154

which agrees within an accuracy of < 0.05% with the numerical fit to Eq. (62).1155

The second domain is due to complex singularities located at x = ±π and results1156

in a discontinuity of high-order derivatives of ω(x) at the periodic boundary. This1157

domain has the power-law spectrum ∝ |k|−pb (i.e., in Eq. (62) it corresponds to δ = 01158

and p = pb) which is dominant for larger |k|. In the particular case of Fig. 28, we1159

obtain pb = 9.32592 . . . . This implies that the ninth- and higher-order derivatives of1160

ω(x) have a discontinuity at the periodic boundary. All these singularities can be seen1161

using the AAA algorithm described in Sect. 10. We also find that as a approaches1162

to ac from the right, i.e., a → a+
c , increasingly higher-order derivatives experience1163
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Fig. 29 Left panel: The Fourier spectra |ω̂k | of the self-similar profile (9) for various values of a as in

Table 2 obtained by GPM iterations (74) of Eq. (84). Right panel: p(a) and pb(a) from Table 2 extracted

from the two fits as in Fig. 28

discontinuities at the periodic boundary, i.e., pb → ∞ as a → a+
c , see Fig. 291164

(right panel). These solutions with finite smoothness at the periodic boundary can1165

be considered the analog of the self-similar solutions with compact support found in1166

Sects. 8 and 9, for solutions on the real line with ac < a ≤ 1.1167

Table 2 provides the values of δ, p and pb for various values of parameter a obtained1168

from the fits described above. We note that the symmetry (51) is not valid for periodic1169

BC. Thus, the parameter δ is now fixed for each a, contrary to the case x ∈ R where1170

it is a free parameter, cf. Sect. 9.1171

Here, we summarize the solution behavior of Eqs. (1) and (55) for x ∈ [−π, π ]1172

and generic smooth IC depending on the parameter a:1173

– a < ac: Behavior of solutions is the same at t → tc as for the x ∈ R case, with1174

collapse as in Eq. (6).1175

– ac < a � 0.95: Blow-up in both ω and u in finite time tc with solution approaching1176

the universal self-similar profile (9) as t → tc. That profile f (x) has discontinuities1177

in the high-order derivatives with complex singularities touching the real line only1178

at x = ±π . The number of continuous derivatives becomes infinite in the limit1179

a → a+
c . The singularities approach the real line as xsing ≃ ±π ± i(tc − t)α3 yb,1180

where α3(a) > 0.1181

– a = 1: Global existence of solution with a singularity approaching the1182

real line exponentially in time. For both IC (82) and IC (83), we find1183

maxx |ω|, maxx |u|, maxx |ux | → const, maxx |ωx | = |ωx (x = 0)| = const,1184

and maxx |ωxx | → ∞ as t → ∞.1185

– a > 1: Global existence of solution with a singularity approaching the real line1186

exponentially in time. For IC (82) the singularity approaches the real line near1187

x = ±π and maxx |ω|, maxx |u|, |ωx (x = 0)| → 0 and max |ωx | → ∞ as1188

t → ∞.1189
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Table 2 Values of δ, p and pb

extracted via a fit of spectra |ω̂k |

to model (62), obtained from

eigenvalue problem simulations

of Eq. (84) for various values of

a, ac < a < 1

a δ p pb

0.69 0.2338 −2.2446 –

0.695 0.5954 −2.2787 –

0.7 0.8177 −2.3333 16.407

0.71 1.1598 −2.4494 9.3259

0.72 1.44 −2.55 6.81

0.73 1.73 −2.79 5.51

0.75 2.20 −2.96 4.26

0.8 – – 3.26

0.85 – – 2.55

0.9 – – 2.21

δ and p are extracted from the fit |ω̂k | ∝ exp(−δ|k|)/|k|p to the

central part (k ∼ 0) of the spectrum and pb is extracted from the fit

|ω̂k | ∝ 1/|k|pb in the tails (k ≫ 1) of the spectrum. Simulations with

a ≥ 0.71 were performed in double precision arithmetic. To see the

power-law tail of the spectrum and extract pb in the case of a = 0.7,

we had to use quadruple precision. For ac < a ≤ 0.695, the power-

law tail was not observable even in quadruple precision. See Fig. 29

for the spectra and plots of p(a) and pb(a). The accuracy of δ, p and

pb approximately corresponds to the number of digits provided in the

table

12 Conclusions and Discussion1190

We have performed a systematic sweep of the parameter a in the generalized CLM1191

equation (1) to determine the possibility of singularity formation and, when it occurs,1192

its type, i.e., collapse versus blow-up. We identified a new critical value a = ac =1193

0.6890665337007457 . . . such that for a < ac collapse occurs both on the real line1194

x ∈ R and for periodic BC. Here, collapse means that not only is there a finite-1195

time singularity in which the amplitude of the solution ω(x, t) tends to infinity, but1196

there is also a catastrophic shrinking of the spatial extent of the solution to zero as1197

t → tc, described by the self-similar form (6). In the intermediate range ac < a ≤ 1,1198

we found there is finite-time singularity formation for x ∈ R, with the self-similar1199

solution (6) experiencing an infinite rate of expansion as t → tc. This type of self-1200

similar singularity formation, in which the spatial domain does not collapse, is termed1201

“blow-up.” The power α in Eq. (6) controls collapse (for α > 0, a < ac) versus1202

blow-up (α ≤ 0, a ≥ ac). We elucidated the dependence of α(a) on a via both direct1203

numerical simulation of Eq. (1) and the solution of a nonlinear eigenvalue problem (46)1204

using the generalized Petviashvili method (74). We have also performed multiprecision1205

simulations (up to 68 digits of accuracy) to demonstrate the possibility of recovering1206

α(a) and the structure of self-similar solutions with any desired precision.1207

We show that collapsing solutions of (1) have finite energy EK up to and including1208

the critical time tc for a < 0.265 ± 0.001. Such finite energy solutions are of interest1209

in analogy with the problem concerning global regularity of the 3D Euler and Navier–1210

Stokes equations with smooth initial data, see Fefferman (2006) and Gibbon (2008).1211
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We found for general values of a that the self-similar solution (6) is real analytic for1212

a < ac, while it has finite support for ac < a ≤ 1.1213

We identified that the blow-up for periodic BC with ac < a ≤ 0.95 is qualitatively1214

different from that for x ∈ R, because the periodic BC arrests or blocks the unbounded1215

spatial expansion of the solution on the real line. To our surprise, such arrest does1216

not result in the global existence of the solution but instead leads to a new form of1217

self-similar blow-up (9), in which weak singularities develop at the boundaries of the1218

periodic domain. In the limit a → a+
c , this self-similar solution turns into an infinitely1219

smooth (C∞) solution. We believe that the qualitative difference in blow-up between1220

x ∈ R and periodic BC might serve as an interesting lesson relevant to the search for1221

singularities in the 3D Euler equation.1222

Both self-similar solutions (6) and (9) are nonlinearly stable, as follows from our1223

simulations. Quite generic classes of IC converge to these solutions during the temporal1224

evolution. In the case of Eq. (6), such convergence/stability is understood in the sense1225

of convergence to a family of self-similar solutions, up to a rescaling in x , because of1226

the symmetry (51) of Eq. (46).1227

The structure of the leading-order singularities in the complex plane x (which is1228

the analytical continuation from x ∈ R) is determined by Theorem 1. That result is1229

valid for both x ∈ R and periodic BC and is in full agreement with simulations. For1230

a < ac, the leading-order singularities are the closest singularities to the real line1231

in the complex x-plane. For a > ac, these singularities still determine the structure1232

of self-similar solutions near x = 0, while the solution near the boundaries of finite1233

support in x ∈ R and the periodic boundaries for periodic BC are controlled by less1234

singular terms. The self-similar solution profiles for these a have been found with1235

high accuracy by solving a nonlinear eigenvalue problem. We have also proved in1236

Theorem 3 that, except for the exact closed-form solutions for a = 0 and a = 1/2, the1237

analytical structure of singularities in the complex x-plane goes beyond the leading-1238

order singularities. In particular, we numerically identified using the AAA algorithm1239

the existence of additional, nonleading-order branch points for a 
= 0, 1/2.1240

We found from our simulations that quite generic IC results in the global existence1241

of solutions for a � 1.3 and x ∈ R, while for periodic BC global existence is ensured1242

for a ≥ 1. In the remaining gaps 1 < a � 1.3 for x ∈ R and 0.95 < a < 1 for1243

the periodic case, our simulations are inconclusive and unable to distinguish between1244

singularity formation and global existence. We believe that more concrete results in1245

this range of a will require additional analysis and/or substantial efforts in simulation.1246

We suggest that among many other issues, the following questions would be inter-1247

esting to address in future work:1248

1. Analytical study of the complex singularities beyond the leading-order singulari-1249

ties addressed in Theorem 1. In particular, the case a = 2/3 might be especially1250

interesting because the leading-order singularity is very simple, namely a third-1251

order pole.1252

2. Either extend GPM to the compactly supported case a > ac for x ∈ R, or use1253

a version of the method in Chen et al. (2019) based on cubic splines. However,1254

splines generally lose information about the analyticity of solutions in the complex1255

plane. One way to improve the performance of GPM in this range of a might be1256
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to use a coordinate transform in the form of a conformal mapping which would1257

simultaneously resolve the numerical grid near x = ±xb while keeping the analyt-1258

icity of the solution intact. This type of approach has been suggested in Lushnikov1259

et al. (2017).1260

3. Fill the gaps in our knowledge on blow-up versus global existence of solutions in1261

the parameter regime 1 < a � 1.3 for x ∈ R and 0.95 < a < 1 for periodic BC.1262

4. Look for possible analytical continuation/bifurcation at a = ac between self-1263

similar solutions (6) for the case x ∈ R and Eq. (9) for periodic BC.1264

5. Perform an analysis of the nonlinear stability of the blow-up solutions. This could1265

be qualitatively similar to the stability of collapse in PDEs such as the nonlinear1266

Schrödinger equation and the Patlak–Keller–Segel equation, see, e.g., Zakharov1267

(1972), Childress and Percus (1981), Sulem and Sulem (1999), Brenner et al.1268

(1999), Kuznetsov and Zakharov (2007), and Lushnikov et al. (2013).1269

6. Analyze the formation of singularities at the initial time t = 0+. This can give1270

information on the type of singularities which first form in the complex plane,1271

and subsequently move toward the real line. Such an analysis has been previously1272

performed for the evolution of a vortex sheet in the Kelvin–Helmholtz problem1273

(Cowley et al. 1999), which is also governed by a nonlocal PDE. However, a1274

significant difference between the current problem and the vortex sheet problem is1275

that here the singularities initially form at infinity in the complex plane, whereas in1276

the vortex sheet problem they are generated at finite locations, due to a singularities1277

in the kernel of the nonlocal term at these locations.1278
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A Hilbert Transform for Transformed Variable1287

In this Appendix, we derive the expression for the Hilbert transform in the auxiliary1288

variable q (52) of Sect. 7.1289

The change of variable (52) in Eq. (2) together with (53) results in1290

H f (x) =
1

π
p.v.

∫ ∞

−∞

f (x ′)

x − x ′
dx ′ =

1

π
p.v.

∫ π

−π

f̃ (q ′)

tan
q
2

− tan
q ′

2

dq ′

2 cos2 q ′

2

1291

=
1

2π
p.v.

∫ π

−π

f̃ (q ′)
[

1 + tan
q
2

tan
q ′

2
− tan

q ′

2

(

tan
q
2

− tan
q ′

2

)]

tan
q
2

− tan
q ′

2

dq ′
1292
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=
1

2π
p.v.

∫ π

−π

f̃ (q ′)

tan
(

q−q ′

2

)dq ′ −
1

2π

π
∫

−π

f̃ (q ′) tan
q ′

2
dq ′ = H

2π f (q) + C2π
f ,

(85)

1293

1294

where we used the identities1295

tan (a − b) =
tan a − tan b

1 + tan a tan b
and

1

cos2 q
2

= tan2 q

2
+ 11296

1297

as well as definitions (55) and (56). Equation (85) ensures that lim
q→±π

[H2π f (q) +1298

C2π
f ] = 0.1299

Also H2π f (x), Eq. (55), is the reduction of H f (x), Eq. (2), to the class of 2π -1300

periodic functions. Assuming that f (x) is the periodic function with the period 2π ,1301

we obtain from Eq. (2) that1302

H f (x) =
1

π

∞
∑

n=−∞

p.v.

∫ π

−π

f (x ′)

x − x ′ + 2πn
dx ′ =

1

2π
p.v.

∫ π

−π

f (x ′)

tan
(

x−x ′

2

)dx ′ =: H
2π f (x),1303

(86)1304

where we used definition (55) and the identity1305

∞
∑

n=−∞

1

x + 2πn
=

1

2 tan x
2

. (87)1306

1307
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