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Abstract

The question of finite-time singularity formation versus global existence for solu-

tions to the generalized Constantin—-Lax—Majda equation is studied, with particular
emphasis on the influence of a parameter a which controls the strength of advec-

tion. For solutions on the infinite domain, we find a new critical value a, =
0.6890665337007457 . .. below which there is finite-time singularity formation that

has a form of self-similar collapse, with the spatial extent of blow-up shrinking to

zero. We prove the existence of a leading-order power-law complex singularity for
general values of a in the analytical continuation of the solution from the real spatial
coordinate into the complex plane and identify the power-law exponent. This singu-

larity controls the leading-order behavior of the collapsing solution. We prove that

this singularity can persist over time, without other singularity types present, provided

a = 0 or 1/2. This enables the construction of exact analytical solutions for these

values of a. For other values of a, this leading-order singularity must coexist with
other singularity types over any nonzero interval of time. Fora, < a < 1, we find a

blow-up solution in which the spatial extent of the blow-up region expands infinitely

fast at the singularity time. For a 2 1.3, we find that the solution exists globally with
exponential-like growth of the solution amplitude in time. We also consider the case
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of periodic boundary conditions. We identify collapsing solutions for a < a. which
are similar to the real line case. For a, < a < 0.95, we find new blow-up solutions
which are neither expanding nor collapsing. For a > 1, we identify a global existence
of solutions.

Keywords Constantin-Lax—Majda equation - Collapse - Blow-up - Self-similar
solution

1 Introduction

In this paper, we investigate finite-time singularity formation in the generalized
Constantin—Lax—Majda (CLM) equation (Constantin et al. 1985; De Gregorio 1990;
Okamoto et al. 2008)

w; = —auwy + oy, o, x €R,t >0,

D

uy, = How,

whichis a 1D model for the advection and stretching of vorticity in a 3D incompressible
Euler fluid. Here, w and u are a scalar vorticity and velocity, respectively, a € R is a
parameter, and 7 is the Hilbert transform,

“+00 a)(x/)

Ho(x) := %p.v.f dx’. )

/
—og

This equation, with a = 0, was first introduced by Constantin et al. (1985) as a
simplified model to study the possible formation of finite-time singularities in the 3D
incompressible Euler equations. It was later generalized by De Gregorio (1990) to
include an advection term uw, and by Okamoto et al. (2008), who introduced the real
parameter a to give different relative weights to advection and vortex stretching, u, w.
In addition to its relationship to the 3D Euler equation, (1) has a direct connection to
the surface quasi-geostrophic (SQG) equation (Elgindi and Jeong 2020).
The 3D incompressible Euler equations can be written as

dw+u-Vo=w -Vu, xeR> >0, (3)
u=Vx (—4) lw. “4)

The second equation above is the Biot—Savart law, which in free-space has an equiv-
alent representation as a convolution integral

ux, 1) = 1 [ -y xed.n)

il ey W ®

The term @ - Vu on the right-hand side (r.h.s.) of (3), where Vu = S(®) is a matrix
of singular integrals, is known as the vortex stretching term. Standard estimates from
the theory of singular integral operators (Stein 1970) show that ||@|z.r < ||Vu|lLr <
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cpll@llLr for1 < p < oo, which formally implies that the vortex stretching term scales
quadratically in the vorticity, i.e., S(w)® &~ w?. This term is therefore destabilizing
and has the potential to generate singular behavior. However, analysis of the regularity
of Egs. (3), (4) is greatly complicated by the nonlocal and matrix structure of S and
remains an outstanding open question (see Elgindi 2019; Elgindi and Jeong 2019 for
recent developments).

In contrast to the vortex stretching term, the advection term u - Ve does not cause
any growth of vorticity. As aresult, it has historically been thought to play an unimpor-
tant role in the regularity of the incompressible Euler and Navier—Stokes equations.
Recent studies, however, show that advection-type terms can have an unexpected
smoothing effect. For example, Lei and Hou (2009) present numerical evidence that a
finite-time singularity forms from smooth data in solutions to a reformulated version
of the Navier—Stokes equations for axisymmetric flow with swirl, when the so-called
convection terms u, 0y (wy /1) + u;0;(wy/r) and u, 9, (ug/r) + u;0;(ug/r) are omit-
ted. Here, (u,, ug,u;) and wy are velocity and vorticity components in cylindrical
coordinates (r, 0, 7). Adding the convection back is found to suppress a finite-time
singularity formation. Related work on the smoothing effect of advection/convection
in the Euler and Navier—Stokes equations is given in Hou et al. (2012, 2014, 2018),
Hou and Li (2006, 2008), and Okamoto and Ohkitani (2005).

The generalized CLM equation (1) (also called the Okamoto—Sakajo—Wunsch
model in Elgindi and Jeong 2020) is obtained from the 3D Euler equations by replac-
ing the advection term u - Vw with uw, and the vortex stretching term S(@)w by its
1D analogue H(w)w. The Hilbert transform H is the unique singular integral operator
in 1D that preserves certain important properties of S(@); namely, it commutes with
translations and dilations (Constantin et al. 1985). In addition, the 1D vortex stretch-
ing term H(w)w preserves the quadratic scaling of the vortex stretching term S(@)®
in the 3D problem. The resulting Eq. (1) provides a simplified setting to understand
the competition between the stabilizing effect of advection and destabilizing effect
of vortex stretching. In this work, we focus on smooth (analytic or C°°) initial data
which we consider as the most physically relevant. There are also a number of results
on singularity formation for (1) in the case of Holder continuous initial data, see Chen
et al. (2019) and Elgindi and Jeong (2020) for recent reviews.

We summarize some of the known results, concentrating on those which apply
to smooth (analytic or C*°) initial data. In the case a = 0, Constantin et al. (1985)
obtained a closed-form exact solution to the initial value problem for (1) which devel-
ops a self-similar finite-time singularity for a class of analytic initial data. Whena # 0,
the simplifications that enable a closed-form solution no longer hold, and various ana-
Iytical and numerical methods have been applied to investigate singularity formation.
Castro and Cérdoba (2010) proved finite-time blow-up for a < 0 using a Lyapunov-
type argument. In this case, advection and vortex stretching act together to produce a
singularity. In contrast, for a > 0 the stabilizing effect of advection competes with the
destabilizing effect of vortex stretching. For e-small values of @ > 0, vortex stretching
dominates and Elgindi and Jeong (2020) proved the existence of self-similar finite-time
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singularities in the form

1 X
wz_f(%-)"g:_a, 'L':tc_t, (6)
T T

where 7. > 0 is the singularity time and « depends on a, approaching o« = 1 in the
limit a — 0. Also, f(&) is an odd function, i.e., f(—§) = —f(&), € € R. The
proof of Elgindi and Jeong (2020) is based on a continuation argument in a small
neighborhood of the exact solution ata = 0. Chen et al. (2019) proved a similar result
using a different method.

The special case of a = 1 of Eq. (1) was first considered by De Gregorio (1990) and
has been the subject of extensive numerical computations in the periodic geometry by
Okamoto et al. (2008). These suggest that singularities do not occur in finite time from
smooth initial data on a periodic domain. Okamoto et al. (2008) use a least squares fit
to the decay of Fourier modes to track the distance §(¢) from the real line to the nearest
singularity in the complex x-plane. They find that §(¢) decays exponentially in time,
which is consistent with global existence. Global existence for a = 1 in the specific
case of nonnegative (or nonpositive) initial vorticity is proven by Lei et al. (2019).

The above analytical and numerical results might suggest the existence of a thresh-
old value a = areshold below which finite-time singularities occur for smooth initial
data and at/above which the solution exists globally in time. Okamoto et al. conjecture
that dreshola = 1. However, for this value a = 1, Chen et al. (2019) recently proved
the existence of an “expanding” self-similar solution (6) for the problem on x € R.
In this solution, f(£) is an odd function with finite support and « = —1. It implies
that w(x,1) — f'(0)x as t — . for any finite value of x € R, while the boundary
of compact support expands infinitely fast in the spatial coordinate x as t — .. We
compute this solution numerically and demonstrate that analytic initial data converge
to the expanding self-similar solution. The form of this solution is apparently incom-
patible with the periodic geometry and thus does not rule out the possibility of global
existence of the solution in that geometry when a = 1.

We are not aware of any theory or simulation which consider solutions to (1) over
a wide range of the parameter a as well as any simulation on x € R addressing even
the particular case @ = 1. The main goal of this paper is to fill this gap by presenting
theory and highly accurate computations to assess singularity formation for a wide
range of a for both the periodic geometry and x € R.

We obtain two main analytical results (Theorems 1 and 3). The first one (Theorem 1)
establishes the specific form of the leading-order complex singularity of f (&) in (6)
and determines its dependence on a, when that singularity is of power-law type. We
show that this singularity can persist over time, without other singularity types present,
provided a = 0 or 1/2. This enables the construction of exact analytical solutions for
these values of a. The second main analytical result (Theorem 3) proves that the exact
solutions, consisting only of leading-order power-law singularities, are impossible
beyond the particular cases a = 0 and 1/2. It implies that for any value of a, beyond
a = 0 and 1/2, the leading-order power-law singularity must coexist with other
singularities for any nonzero duration of time. If the initial condition contains only
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these leading-order singularities, then other singularities must appear in arbitrarily
small time to be consistent with Eq. (1).

Our spectrally accurate numerical simulations address all real values of a. We use a
variable numerical precision, beyond the standard double precision, to mitigate loss of
accuracy when computing poles and branch points in the complex plane, and employ
fully resolved spatial Fourier spectra on an adaptive grid with eighth-order adaptive
time stepping. Computations are performed both for periodic boundary conditions
(BC) and on the real line x € R with the decaying BC

w(x,t) — 0forx - +o0. @)

For the problem on R, we reformulate Eq. (1) in a new spatial variable g using a
conformal mapping from Lushnikov et al. (2017) between the real linex € Rand g €
(—m, ). Then, our spectral simulations with a uniform spatial grid for ¢ € (—m, 7)
ensure spectral precision on the corresponding highly nonuniform grid for x € R.

Our results make use of two distinct types of numerical simulation. The first type
is time-dependent simulation which allows us to establish the convergence of generic
initial conditions to the self-similar solution (6). As a by-product of such simulations,
we obtain values of @ and the functional form of f(&). The second type of simulation
directly solves the nonlinear eigenvalue problem for « to obtain the similarity solution
(6) of Eq. (1) for each value of a. We solve that nonlinear eigenvalue problem by
iteration on the real line x € R using a version of the generalized Petviashvili method
(GPM) (Petviashvili 1976; Lushnikov 2001; Lakoba and Yang 2007; Pelinovsky and
Stepanyants 2004; Dyachenko et al. 2013a). In Theorem 4, we show that there exists
anonstable eigenvalue for the linearization of the original Petviashvili method (Petvi-
ashvili 1976) which prevents its convergence. However, the version of GPM employed
here avoids that instability.

The results of the first and the second type of simulation are in excellent agreement
with Theorems 1-3 and the exact similarity solutions. The first major result of these
simulations is the discovery of a critical value

a = a. = 0.6890665337007457 . .. )

below which (i.e., for a < a.) there is finite-time singularity formation, but at which
point (i.e., for a = a,) the singularity transitions or changes character. For a < a., the
value of « is positive with f(£) an analytic function in a strip in the complex plane of &
containing the real line. The positive values of @ ensure, in accordance with Eq. (6), that
the solution shrinks in x as ¢ — f., while the solution amplitude diverges in that limit.
This type of shrinking self-similar solution is compatible with both kinds of boundary
conditions (i.e., periodic and decaying on R), and our simulations reveal the same
type of singularity formation at t — f.. The shrinking and divergence of amplitude
are qualitatively reminiscent of the collapse in both the nonlinear Schrodinger equation
and the Patlak—Keller—Segel equation, see, e.g., Zakharov (1972), Childress and Percus
(1981), Sulem and Sulem (1999), Brenner et al. (1999), Kuznetsov and Zakharov
(2007), and Lushnikov et al. (2013). The terminology “collapse” or “wave collapse”
was first introduced in Zakharov (1972) in analogy with gravitational collapse and has
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been widely used ever since. The singularity formation found for a < a. is therefore
of collapse type. We also find that o = 0O at the critical value a = a..

The second major result of our simulations is the uncovering of a qualitatively
different type of self-similar singularity formation for ¢, < a < 1, in which the
spatial scale of the solution does not shrink. We refer to this type of singularity as
“blow-up.” An additional finding in the aforementioned range of the parameter a
is that the blow-up solution on the real line x € R and the blow-up solution for
periodic BC are qualitatively different. In the case x € R, we find that —1 <« < 0
with « = —1 only for a = 1. Thus, Eq. (6) corresponds to an expanding self-
similar solution. In particular, at a = 1, we find that « = —1 in agreement with the
results of Chen et al. (2019). A Taylor-series expansion of Eq. (6) at x = 0 results in
w(x, 1) =t 7% f(0) + O(r~'72*x2). It shows that the linear slope o x increases
to infinity as t — 7. for a, < a < 1, while it remains constant for a = 1. Time-
dependent simulations for x € R with analytic initial conditions and a, < a < 1
demonstrate convergence of the solution att — ¢, to Eq. (6) with f(£) being of finite
support. This extends the results of Chen et al. (2019) froma =1toa, <a < 1.

The third major result of our simulations concerns periodic BC. While the collapse
case a < a, is similar for both x € R and periodic BC, as mentioned the case a, <
a < 1is qualitatively different. Indeed, the spatial expansion or blow-up observed for
a. < a <1 and x € R would contradict the periodic BC as ¢ approaches ?.. Instead,
we find a new self-similar blow-up solution

1
to—t

), &)

w(x,t) =

which is valid for a, < a < 0.95. Formally, we can interpret Eq. (9) as Eq. (6) with
a = 0. However, periodic BC are qualitatively different from the finite support solution
of Eq. (6) because of the nonlocality of the Hilbert transform in Eq. (1). We find that
f(x) in Eq. (9) has a discontinuity in a high-order (or nth-order) derivative at the
periodic boundary, i.e., at x = = when the domain is centered about the point x = 0
where the singularity occurs. In addition, n — oo in the limit a — af, i.e., f(x)
approaches a C* function in that limit. A complex singularity is also present in f (x)
on the imaginary axis away from the real line, the form of which obeys Theorem 1.

In the range 0.95 < a < 1, our simulations are inconclusive regarding whether
blow-up occurs. The value a = 1 is a special case for the periodic BC, with no blow-
up observed in our simulations for generic initial conditions. Instead, the solution
exists globally with the first spatial derivative remaining bounded, while the second
derivative grows exponentially in time. This agrees with the result on global existence
for the particular case a = 1 investigated in Okamoto et al. (2008).

For a > 1, we find that the solution exists globally for all initial conditions con-
sidered in the case of periodic BC, while for the solution on the real line the situation
is not conclusive. In the latter case, the maximum of |w| initially grows with time but
this growth saturates at larger times at least for a 2 1.3, so we expect the global exis-
tence of solutions in this parameter range. In the intermediate range 1 < a < 1.3, our
simulations catastrophically lose precision at sufficiently large times, and a conclusive
determination between blow-up and global existence of solutions is not possible.
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We also find from the simulations that the kinetic energy on the infinite line x € R,

oo

Eg = / u®(x, t)dx, (10)

—00

with an initially finite value approaches a constant as t — ¢, whena < 0.265+£0.001,
while it tends to infinity for 0.265+0.001 < a < 1.Inthe case a 2 1.3 corresponding
to global existence, the kinetic energy tends to infinity as t — 00. On the periodic
domain x € [—m, 7], we find the same behavior of the kinetic energy up toa = 0.95.
For @ > 1 (when there is global existence), Ex approaches a nonzero constant as
t — 00 (a = 1) or tends to zero (a > 1).

Solutions with finite energy are of interest by analogy with the fundamental question
on global regularity of the 3D Euler and Navier—Stokes equations with smooth initial
data, see Fefferman (2006) and Gibbon (2008).

To reveal the structure of singularities of w(x, ¢) and f(§) in the complex plane of
x and &, we use both a fitting of the Fourier spectrum similar to Okamoto et al. (2008)
(see also Carrier et al. 1966; Dyachenko et al. 2013b, 2016; Sulem et al. 1983 for more
detail), and more general methods of analytical continuation by rational interpolants
(see Alpertet al. 2000; Dyachenko et al. 2016, 2019; Nakatsukasa et al. 2018). As time
evolves, these singularities approach the real line in agreement with Eq. (6). We have
formulated a system of ordinary differential equations (ODEs) describing the motion of
such singularities. Fourier fitting allows us to track only singularities which are nearest
to the real axis, while rational interpolants go beyond this, by giving information on
singularities other than the closest one. In particular, it reveals that fora # 0, 1/2 with
a < ac, there are generically branch points beyond the leading-order singularities,
consistent with Theorem 3. The exceptional cases are a = 0, 1/2, and 2/3 where
the nearest singularities are poles of the first, second, and third order, respectively.
However, already for a = 2/3, the third-order pole coexists with additional branch
points. For other values of a, the nearest singularities are branch points. We find that
fora, < a < 1, the singularities approach the real line as t — ¢, in the spatial regions
near the boundary of the support of f(&).

The rest of this paper is organized as follows. Section 2 establishes Theorem 1,
which describes the leading-order complex singularity and determines its dependence
on a. Section 3 reinterprets the results of Constantin et al. (1985) for a = 0 in terms
of moving complex poles and the self-similar solution (6). In Sect. 4, we derive an
exact blow-up solution for ¢ = 1/2 (Theorem 2) and transform that exact solution
to the self-similar form (6). Section 5 considers solutions for general values of a and
establishes in Theorem 3 that, except for a = 0, 1/2, the leading-order singularity
cannot fully characterize the exact solution. Two preliminary steps for computations
on x € R are developed in Sects. 6 and 7. In particular, Sect. 6 reformulates Eq.(1) as a
nonlinear eigenvalue problem for the self-similar solution (6), and Sect. 7 rewrites Eq.
(1) in an auxiliary variable ¢ mapping the real line into the finite interval. Section 8 then
describes the results of time-dependent numerical simulations for x € R, and Sect. 9
presents self-similar solutions of the type (6) via numerical solution of the nonlinear
eigenvalue problem using a generalized Petviashvili method. Section 10 addresses
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the analytical continuation into the complex plane of x by rational approximation
and uses it to study the structure of singularities. Section 11 describes the results of
both time-dependent numerical simulations and the generalized Petviashvili method
for periodic BC. Section 12 provides a summary of the results and discusses future
directions. “Appendix A” gives a derivation for the form of the Hilbert transform over
X in variable ¢.

2 Leading-Order Spatial Singularity

We assume that w (x, ¢) is an analytic function in the open strip containing x € R in
the complex plane x € C decaying at x — Fo0. Then, we can represent w as

wo=o0t+o, (11)
where ™ (x.1) is analytic in the upper complex half-plane x € Ct and w™ (x.7) is
analytic in the lower complex half-plane x € C™.

The Hilbert transform (2) implies that

Ho = —i(wt — o). (12)

Assume that the solution exhibits a leading-order singularity of power y > 0 in the
complex plane x for w at x = +iv., v, > 0, so that

w_y (1) D—y(1)
[x —ive(D)]”  [x +ive(®)]”

w(x,t) = +1l.s.t., (13)

where [.s.t designates less singular terms at x = =iv,, i.e.,

lim [x Fiv.()]"l.s.t. = 0. (14)
x—Five
If we additionally assume that w(—x) = —w(x), for x € R, then Eq. (13) implies
that
w_y (1) w_y () w_y (1) w_y (1) (15)

[x — v x+ve®  [—x — v [—x +iv )]
ie., @_y () (—1)’T! = w_,, (t). Then, we can define
w_y (1) = —1e TV 2H_ (1), @_, (1) €R (16)

so that Eq. (13) takes the following form

- efiny/Z einy/Z
w(x, 1) = —iv_y, (1) ([x ST — T ivc(t)]V> +1l.s.t.. a7
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Using Eqgs. (1), (12), and (17), we obtain that

~ e—iny/Z einy/Z
Uy = Ho =6, (1) ([x o7 T T ivc(t)]y) + st (18)
and
L . 67)_),([) efiny/2 einy/2 >
=t == (T ) 19

where we have additionally assumed that y # 1.
Plugging Eqgs. (17)—(19) into Eq. (1) and collecting the most singular terms o
[x —iv.(£)]72 at x = iv.(¢) on the right-hand side of Eq. (1) give

ie—iﬂ?’cb%y(t) ( ay 1) _o 20)
[x —ive(n)]?” \y —1

By assumption, w_, (¢) # 0. Then, Eq. (20) implies that

21

Thus, we have proved the following:

Theorem 1 Ifasolutionw(x, t) of Eq. (1) is (i) analytic in an open strip of C containing
R, (ii) tends to zero as x — 00, and (iii) has a complex conjugate pair of power-law
singularities located at x = =iv. for v, > 0 given by Egs. (14), (17) with y > 0,
then y is determined by Eq. (21).

Remark 1 The condition y > 0 is essential in Theorem 1. If we assume y < 0, then
the leading-order term in Eq. (1) atx = Ziv, is o« [x — ive(1)]°.

Remark 2 Equation (21) is in excellent agreement with the simulations of Sect. 8. The
singularities with y < 0 in our simulations are always located further away from the
real axis than the leading-order singularities given by Eq. (21). These more remote
singularities provide a smaller contribution to the solution near the origin.

Equation (21) with @ = O results in y = 1. Also y — oo for a — 1—. For the
particular values

1
= , o n=1,2,3,..., (22)

we obtain the integer values y = n resulting in complex pole singularities of order » in
Eq. (17), while the other values of a € (0, 1) resultin the branch points at x = Fiv.(¢).
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3 Exact Blow-Up Solution fora = 0
The particular value of the parameter a = 0 implies from Eq. (21) that y = 1. This

case recovers the results of Constantin et al. (1985). The general solution of Eq. (1) is
immediately obtained by noticing that Eqgs. (1), (12) result in

o =0 +o; = -l +i() (23)
which decouples into two independent ODEs

+

of = —i(wh?, o =ilw)% (24)

The solutions of these ODEs with the generic initial conditions o™ (x, £)|,—0 = a)o+ (x)
and o™ (x, )|;=0 = w, (x) are given by

wg (x)

1 +itog (x)

wq (x)

+ _
@ = 1 —itwa(x)'

and o (x,t) = (25)

Equations (11), (12), and (25) lead to the solution of Constantin—Lax—Majda equation
found in Constantin et al. (1985)

4wy (x)
[2 — tHawo(x)]? + 2w} (x)

w(x,t) = (26)

for the generic initial condition w(x, t)|;=0 = wo(x) = wg' (x) + g (x). Also Egs.
(12) and (25) imply that (as in Constantin et al. 1985)

2Hawo (x)[2 — tHaw(x)] — 2t} (x)
Hw(x,t) = ) .
[2 — tHwo(x)]* + t=wj(x)

27)

Assume that there exists an xg € R such that wy(xg) = 0 and Hwy(xg) > 0.
Then, Eq. (26) implies a singularity in the solution at the time ¢, := 2/Hwq(xg) > 0.
If there are multiple points x € R such that wp(x) = 0 and Hwp(x) > 0, then
te = 2/sup{Hwo(x)|wo(x) = 0} > 0 (Constantin et al. 1985). Below, we assume
that xo corresponds to the singularity at the earliest time ¢ = ¢.. A particular example
is any odd function wg(x) with respect to x = xp (implying that wg(xp) = 0) which
is strictly positive for x > xo and decays at x — oo.

A series expansion of Eq. (26) at x — xp and r — 7. implies that

4& w(y(x0) [Hawo (x0)1?

. +0((te = 1)),
fe =1 ([Hwo(x0)]* — 28 Hew|(x0))” 4 462 [w)(x0)]?

w(x,t) =
(28)
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where

X — X0
te—1

£o= (29)

is the self-similar variable. Equations (28) and (29) provide a universal profile of the
solutionat# — ¢, ina spatial neighborhood of x — x( after we neglect the correction
term O ((t. —t)°). That profile has the form of a sum of two complex poles at complex
conjugate points & = &4 as follows:

i & &
‘”("’”‘zc—r(s—a s—s)’ <0
where
2
£ [Hwo(x0)] 31)

" 2[Howp(xo) * iw)(xo)]

are positions of poles in the complex plane of &.

Equations (30) and (31) provide the exact solution of Eq. (1) for w((xo) < 0 as
can be immediately verified by direct substitution into Eq. (1). Here, the condition
w(x0) < 0 ensures that &, € C™. This solution is asymptotically stable with respect
to perturbations of the initial condition as follows from Eq. (28). The only trivial
change due to the perturbation of the initial condition is a shift of both x¢ and ¢,.

One can also recover from solution (30) representation (17) with y = 1 which
gives the exact solution

- 1 1
1) =— - =
(1) ve <x—x0—1vc(tc—t)+x—xo+1vc(tc—t)>
B Ve 1 . 1 (32)
T te—t \E—iD,  E+iD.

of Eq. (1) for any values of the real constants 7., v, > 0 and xo. Here, without loss of
generality we have shifted the origin in the real direction compared with the solution
(30).

4 Exact Blow-Up Solution fora = 1/2

The particular value of the parameter a = 1/2 implies from Eq. (21) that y = 2. In
this section, we look for the solution to Eq. (1) in form (17) assuming that the /.s.z.
are identically zero, i.e.,

w(x,t) =1i0_o(t) ( ! : ) , (33)

[x —x0 — 0D [x — x0 + ive(1)]?

@ Springer

Journal: 332 Article No.: 9737 [ TYPESET [__|DISK [__]LE [_]CP Disp.:2021/8/4 Pages: 56 Layout: Small-Ex

[SPI




G
]
]
S
(=W}
-
o
=
+—
=
<

368

369

370

3N

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

_####_ Page 12 of 56 Journal of Nonlinear Science _ #HHHHHHHHHHHHHHHHHHHHE

where for generality we have also allowed a shift of the origin by introducing the
arbitrary real constant xo. Equation (19) then becomes

(34)

u=aw_t) ( ! 1 ) _ 20-2()(x = xp)

X — xg — ive(t) + X —x0+ive() ) (x — x0)% + ve ()2

Plugging Egs. (33) and (34) into Eq. (1), we find the latter equation is identically
satisfied provided

dve(r) @20
dt v’

(35)

and

do_o(t) @, (1)

= 36
dt 4vZ(t)’ (36)

Solving the system of ordinary differential equations (ODESs) (35) and (36) results in

~2
4v:

Uc(t) = (tc - t)l/SECﬂ @_2(t) T m’

(37

where v, > 0 and ¢, are two arbitrary real constants. Assuming the initial condition
is given at ¢+ = 0 and that . > 0, we obtain that t = ¢, is the time of singularity
formation.

Section 8 shows the convergence during the evolution in time ¢ of the solution of Eq.
(1) to the exact solution given by Eqgs. (33) and (37). The spatial extent of the solution
shrinks, while the maximum amplitude increases until the singularity is reached at
t =t.

One can rewrite solutions (33), (37) in the self-similar form as follows:

=2 =3
o 1) = 1 41UC< 1 1 >: 1 160& (38)

fe—t 3 \[E—i0 [E+ivc2)  te—13E2+ 52
where
.t T X
PR 59

is the self-similar variable.

Note After our arXiv preprint submission (Lushnikov et al. 2020), we learned that
the self-similar solution (38) was recently discovered by Chen (2020). The result
presented here was found independently via the complex singularity approach and has
a somewhat more general form by including the additional real parameter v,.

To summarize, this section proves the following theorem:
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Theorem 2 Equations (38) and (39) provide an exact solution of Eq. (1) fora = 1/2
for any value of the real constants t., v, > 0 and x.

Remark 3 The decay of u(x, t) in Eq. (34) as x — o0 ensures that the kinetic energy
(10) has a finite value for ¢ < t.. In contrast, Ex for solution (32) at ¢ = 0 is infinite.

5 The Solution for General Values of a

The explicit self-similar solutions (29)—(31) and (38), (39) (corresponding to the values
a = 0, 1/2) represent the particular situation where the leading-order singularity in
Egs. (17) and (21) provides the exact solution with identically zero l.s.z.. All other
values of a are addressed in the following theorem:

Theorem 3 A solution (17) and (21) of Eq. (1) which satisfies assumptions (i) and (ii)
of Theorem 1 requires l.s.t. which are not identically zero for any a € R excepta = 0
anda =1/2.

Proof The casea > 1is trivial because a = 1 corresponds to the singular value of y as
follows from Eq. (21), while @ > 1 implies that y < 0, contradicting the assumption
of Theorem 3 that w at x — F00. Thus, below we assume that ¢ < 1 which implies
that y > 0.

We assume by contradiction that /.s.z. in Eq. (17) are identically zero. Then, we
plug Eq. (17) into Eq. (1) and collect terms with different powers of x — iv.(¢). The
most singular term o [x — iv.(f)]~%" is identically zero by Eq. (21) as follows from
the proof of Theorem 1. Collecting the next most singular terms o< [x — iv.(£)] 7177,
we obtain that

dve()  2'"Vay (1)
de oy

(40)

which generalizes Eq. (35) to arbitrary values of y. We note that there is no overlap

between terms of different orders in this proof except in the case y = 1, for which

—2y = —y — 1. However, this case is fully considered in Sect. 3 and excluded by

assumption in the statement of Theorem 3 because it corresponds to a = 0.
Collecting the terms o [x — iv.(#)] Y, we obtain that

dé_y (1) _ 277y — DaZ, (1)

(41)
dr vl (1)
which generalizes Eq. (36) to arbitrary values of y.
However, at the next order, collecting terms o [x — ivc(t)]’V“ leads to
27 2(y = 2)(y + Die 7252 (1)
Y Y '~ =o, (42)

y+1
ve (1)

which cannot be satisfied by any nontrivial solution @_,, (¢) # O exceptif y =2, 1i.e.,
a = 1/2. This contradiction completes the proof of Theorem 3. O
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Remark 4 The ODE system (40) and (41) can be immediately solved for any y result-
ing in

2
Ve(t) = Ve (t, — 1) YO
; 27 9¢ =3 43)
w_.,(t) = t. — 1) v
V( ) y +1 (c )

where v, and 7. are arbitrary real constants. Then neglecting /.s.z., we obtain from
Egs. (17) and (43) the following self-similar “solution”

i 2)/62" efiny/Z einy/Z
wx,t) =— — — = ) (44)
fe—ty+1\[§—iv]” [ +ivc]Y

where

X — Xp 2

T w0 T yeED “

is the self-similar variable. For y = 1(a = 0) and y = 2(a = 1/2), Egs. (44) and (45)
recover Eqs. (29), (32) and (38), (39), respectively. However, Theorem 3 ensures that
Egs. (44) and (45) are not the exact solution for y # 1, 2. One may hope that even if
y # 1, 2, the self-similar solution is well approximated by Eqs. (44) and (45) because
(17) is the leading-order singularity of the solution. However, we find in Sect. 8 (see
also Fig. 1) that the numerically computed self-similar solution has a different power
scaling for & = (f e than in Eq. (45), i.e., ap # o« for y # 1, 2. This implies that
the /.s.z, neglected in (45), lead to a nontrivial modification of & compared with «.

6 Self-similar Solution and Nonlinear Eigenvalue Problem

The results of Sects. 3—5 suggest looking for a solution of Eq. (1) in the general
self-similar form (6). Substitution of the ansatz (6) into Eq. (1) reduces it to

Mf = f+aéfe =—a@; "Hf) fe + fHS (46)
where M is a linear operator. One can also rewrite Eq. (46) as the system
f+abfe =—agfs + fge, g=0; Hf, (47)
where
u=1""'g (). (48)

We can iterate Eq. (46) for different values of « to find the optimal o which realizes
the dominant collapse regime. To do this, we have to invert the operator M in Eq. (46)
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a(a)
22N T T
~
= g — (@) from time-dependent simulations
P — ae(a) from e-value problem simulations
1f = = =ag(a)=2(1-a)%/(2-a) -
N
~
~
~
N
05 1
~
~
d ~
-~ - -

0 -
0.5 1

1 . N . L N L
-0.2 0 0.2 0.4 06 a 0.8 1

a

Fig. 1T Dependence of o(a) on a, obtained via time-dependent simulations of Sect. 8 and via nonlinear
eigenvalue problem of Sect. 9. The green curve terminates at a = a. since the iteration used to solve the
nonlinear eigenvalue problem for x € R does not converge for a > a.. Also included for comparison is an
2(1—a)?

approximation to «(a) from Eq. (45), ap(a) = y(a)(yz(a)+l) = “o=a

at each iteration. The equation M f = 0 has a general solution

f o |glw (49)

for o # 0 and f = 0 for « = 0. Depending on the sign on «, this solution is singular
either at x — 0 or x — =£o0. Thus, the operator M is invertible for the class of
smooth solutions decaying at x — 300 which we use in Sect. 9.

The condition that the solution of Eq. (46) decays at both x — =00 requires a
specific choice of « for each a. It forms a version of nonlinear eigenvalue problem for
a(a). Section 9 finds «(a) by iterating Eq. (46) numerically.

Asymptotics for &€ — £oo. If we assume smooth (e.g., power law) decay in f and
its derivative as £ — oo, then in this limit the quadratically nonlinear r.h.s. of (47)
will be subdominant to the linear terms on the left-hand side. This implies that Eq. (49)
describes the decay of f for & — +oo provided o > 0, in agreement with the exact
results of Sects. 3 [Eq. (30)] and 4 [Eq. (38)] fora = 1 and & = 1/3, respectively. For
a < 0, the assumed smooth decay of f as £ — =oo is inconsistent with (49). This
suggests that

fE)=0até — F+oofora <O, (50)
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so that f(£) has the finite support for « < 0. This is consistent with Chen et al. (2019)
which considers the particular case o« = —1.
Equation (46) is invariant under a stretching of the self-similar coordinate &,

& — A&, A =const € R, (&2))

i.e., if (&) is a solution for Eq. (46), then f(A&) is also a solution of the same
equation. Therefore, if one finds a solution of Eq. (46), then it immediately implies
an infinite family of solutions from the stretching (51). Despite this nonuniqueness,
we find that the version of GPM employed here converges to a solution of Egs. (47),
(50). Further details are given in Sect. 9.

7 Transformed Version of the Equation

The analysis of previous sections assumes the solution exists on the real line x €
(—o00, 00) with the decaying BC (7). To address this infinite domain in simulations,
we use the auxiliary (computational) variable g defined by

x = tan (%) . (52)

Equation (52) maps the segment of the real line (—m, w) of g onto the real line
(—o00, 00) of x. Extending both x and g into the complex plane, we find that Eq. (52)
maps the infinite strip —7 < Re(g) < m onto the complex plane x € C, except for the
half-lines (—ioo, —i) and (i, +i00), with the upper half-strip being mapped onto the
upper half-plane C* and the lower half-strip being mapped onto the lower half-plane
C~. Also the boundaries of the strip, Re(¢) = £ are mapped onto (—ico, —i) and
(i, +i0c0), see, e.g., Dyachenko et al. (2016) and Lushnikov et al. (2017) for details
of this mapping. Here and below, we abuse notation and use the same symbols for
functions of either x or g. For example, we assume that f (¢) := f(x(g)) and remove
the ~ sign.
Using the Jacobian of the mapping (52),

dx 1 1
dg  2cos?(4) 1+cosq

and the results of “Appendix A”, we rewrite Egs. (1) and (2) for independent variables
q and t as

w; = —a(l 4 cos q)uwy + o[H w + CZ)”], q € (—m, ),

(54)
(14 cosqluy = [H™ w4 C37],
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where the Hilbert transform 72" on the interval (—m, ) is defined by (see also
“Appendix A”)

1 n '
H2 f(q) = 2—p.v./ IACRI (55)
T

— tan(q_Tq,)

and the constant C2" is determined by

2 1 T / q/ /
c2 =—E/7nw(q)tan ) dd" (56)

We call Eq. (54) the transformed CLM equation. Note that Eq. (55) is the reduction
of Eq. (2) to the class of 2rr-periodic functions, see “Appendix A.” The decaying BC
(7) allow a 2m-periodic extension of w(q, t) with w(q, t)|g=z+27n = 0,n € N. It
enables us to work with w (g, t) in terms of a Fourier series over g.

8 Results of Time-Dependent Simulations on the Real Line

Based on the results of Sect. 7, we numerically solve Eq. (54) on thereal line x € R with
a pseudo-spectral Fourier method by representing the 27 -periodic solution w(q, t) as
a sum of 2N Fourier modes @y (1) as

k=N—-1

wq. =Y e (57)

k=—N

We use 2N uniformly spaced grid points in g from —m to w — Ag, where Ag = /N.
The fast Fourier transform (FFT) allows us to efficiently find numerical values of &y (¢)
from values of w(q, t) on that grid. The resolution N is chosen depending on the initial
condition (IC) and adaptively adjusted throughout the computation so that the spectrum
@y, is fully resolved with the desired precision. This means that || decays by 16—
17 orders of magnitude at [k| ~ N compared to max_y<g<n—1 |@k|, down to the
round-off floor of the error for double precision. For the multi-precision simulations
which were performed, this decay is further enhanced (or equivalently, the round-off
is reduced) by any desired number of orders. Below, we focus on the description of
double precision simulations while noting that higher precision simulations were also
extensively performed.

The decay of the Fourier spectrum @y is checked at the end of every time step. If
|| is larger than the numerical round-off at |k| ~ N at the given time step, then the
simulation is “rewound” for one time step backward with N increased by factor of 2,
and the time stepping is continued. Amplitudes of the new extra Fourier modes are
set to 0, which is equivalent to performing a spectral interpolation of the solution at
the newly inserted grid points in g space. Rewinding is done to avoid accumulation of
error due to the tails of the spectrum not being fully resolved at the time step before
the grid refinement. For time marching, we use 11-stage explicit Runge—Kutta method
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of 8th order (Cooper and Verner 1972) with the adaptive time step Az determined by
the condition Az = CFL-min{Agq/(a max, |(1+cos g)ul), 1/ max, |[(1+cos q)uyl},
where the numerical constant CFL is typically chosen as CFL = 1/4,1/8, or 1/16
to achieve numerical stability in the time stepping and ensure that the error of the
method is near round-off level. Also, the scaling of At with max, [(1 + cosg)u|
and max, [(1 + cos g)u,| ensures numerical stability of the method during possible
singularity formation events. We additionally enforced the real valuedness of w(q)
at each time step to avoid numerical instability, since the FFT and inverse FFT lead
to accumulation of a small imaginary part at the level of round-off, which can be
amplified during time evolution.
Typically, we used the following two types of initial conditions (ICs):

IC1: wy(q) = —(sin(g) + 0.1sin(2q)), (58)
R/ 1 _ ! (59)
TR @ —v0? T @@ +ivo? )

where the real-line IC1 is similar in form to the periodic IC in Okamoto et al. (2008)
except for an opposite sign. In IC2, V. and T, are real numbers and in most of our
simulations we used V. = 1, T, = 1, for which IC2 reduces to

4
wo(q) = —g(sin(q) +0.5sin(2q)). (60)

Note the first two derivatives of (60) are zero at ¢ = =+, i.e., w(()")(q = +4n) =
0forn =0, 1, 2. Both ICs (58) and (59) are real-valued odd functions with a negative
slope at ¢ = 0 and lead to the formation of a singularity at ¢ = 0 at some moment
in time for a < a, [see Eq. (8) for the definition of a.], while w(q, r) stays real-
valued and odd. The function wg(q) in IC1 is an entire function, and that in IC2 has
two double poles at x = tan (%) = =iV, in x-space or at ¢ = =ig,. in g-space,
where g, = 2arctanh(V,). Note that IC2 corresponds to the exact solution for the
case a = 1/2 with a collapse at t = T, [see Eq. (38)], while for other values of the
parameter a, it is not an exact solution but qualitatively resembles one on the real
interval [—, ] and serves as a good IC to obtain collapsing solutions.

Computation of the 277 -periodic Hilbert transform H>* (see “Appendix A” for the
definition of ") is easily done in Fourier space as

H2T = —isign(k), 1)

where sign(k) = 1 for k > 0, sign(k) = 0 for k = 0, and sign(k) = —1 for
k < 0. Also the constant Cf)” (56) in Eq. (54) is computed from the condition that
H¥7 w(g = —7) + CE =0, ie., —i Y4 =V 5 (=) Fsign(k) + €27 = 0.

While computing the values of u,; from the second equation in (54), one has to
take special care at the point ¢ = —m. Expanding both the left-hand side (1.h.s.)
and r.h.s. of that equation in a Taylor series at the point ¢ = —m, we obtain that
ug(qg =—m) = Hf]’;w(q = —), which can also be computed using @ . The term with
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Hé” in the Taylor series of the r.h.s. vanishes since Hg”a)(q =-m)=7) |kl =0
for the real-valued odd function w(q) with ®_; = —x.

For each simulation, we made a least squares fit of the Fourier spectrum || at
time ¢ to the asymptotic decay model

oS WIK]

|k ()] ~ CO)W (62)

for |k| > 1 (Carrier et al. 1966), where C(t), §(¢) and p(t) are the fitting parameters
for each value of 7. This allows us to obtain both §(¢) > 0 and p(r) as functions of .
The value of §(¢) indicates the distance of the closest singularity of w(g) from the real
line in the complex g-plane, and the value of p(¢) is related to the type or power of
that complex singularity, see Okamoto et al. (2008), Dyachenko et al. (2013b, 2016),
and Sulem et al. (1983) for more details. In particular, if the singularity in the solution
is of a power-law type w(q) ~ (¢ — ig.)~", then using complex contour integration
one obtains (see, e.g., Carrier et al. 1966) that |wy| ~ Ce 9 /1|17, meaning that
8 =g and

p=1—-y (63)

which follows from Eq. (62). According to Eq. (52), the distance §, from the closest
singularity to the real line in the complex x-plane is §, = tanh (%) It implies that
8y =35+ 0(8% fors <« 1.

Results of a simulation with the parameter value @ = 2/3 and IC2 with V. = 1,
T. = 1[i.e., Eq. (60)] are provided in Figs. 2 and 3. The maximal value max, |w(q, t)|
of the numerical solution increases from an initial value ~ 1 up to ~ 103° at the final
simulation time. Figure 3 shows the spectrum |@y| and its fit to model (62). This fit

provides numerically extracted values of both § () and p(¢). Then, §, (¢) = tanh @)

is computed from §(¢) and fitted to 8, () o< (¢, — 1)*, per Eq. (6), to determine «. We
1

first obtain an estimate for 7. from a fit to max, |w(x, 1)| (=) by extrapolating
the numerical solution up to ¢ = f.. From these fits, we obtain that o« ~ 0.04517095,
giving the temporal rate of singularity approach to the real line in complex x-space.
The algebraic decay rate p(¢) appears to stabilize at the value — 2 as ¢ approaches the
singularity time 7.. An initial transient is not included in the data used for the §, (¢) fit,
since §(¢) and p(¢) cannot be determined accurately at these times due to the spectrum
|y | being oscillatory. These oscillations quickly die out as the self-similar regime is
approached.

We find that we get the best accuracy for § and p from the fit of |@ | to model (62)
if we confine the least square fit to a window of data between 1/4 and 1/3 of the total
effective width of the spectrum (shown on the left part of Fig. 3 with a green color).
This is due to an increase in the relative error of the spectrum data at the tails, as the
round-off floor is approached. Moreover, model (62) is accurate only asymptotically
as |[k| — oo, so we cannot use too small values of |k|.

For 0 < a < a, [with a. given by Eq. (8)] and for both IC1 (58) and IC2 (59), we
find that §y (¢) evolves in time toward O, while p(¢) approaches a constant value after
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Fig.2 Results of the simulation of Egs. (54)—(55) with @ = 2/3 and initial condition IC2 (60). Left panels:
the solution w (g, t), its derivative wq (¢, ) and u(qg, t) for t = 1.15139. Right panels: the time dependence
of maximum values of these functions. Dashed lines show the prediction of Eq. (6) with ap extracted from
the simulations as explained in the text. The collapse time 7. is extracted from the fit (by extrapolation) to

1
max |w(x, t)| [=

a quick transient phase, see Fig. 3 (right panel). We observe spontaneous formation of
a universal self-similar solution profile of form (6) during time evolution (see Fig. 4).
These self-similar profiles as well as the value of « in §, (#) and the terminal value of
p(t) ast — t. are the same for a wide class of ICs (e.g., one can change a power of
singularity in IC2 from —2 to any negative number below —2 and/or change numerical
values of both V. > 0 and 7, > 0). Thus, these self-similar profiles are only functions
of the parameter a. Table 1 provides the universal values of & and p versus a. Figure 1
shows the dependence of «(a) on a. However, one can also find particular IC in which
finite-time singularities do not form. Two such choices are —IC1 and —IC2, i.e.,
IC1 (58) and IC2 (59), taken with the opposite sign. In these two cases, we did not
observe collapse or singularity formation in finite time, but rather an algebraic-in-
time approach of a singularity to the real line, 8,(¢) ~ 1/t*, u > 0. Other smooth
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Fig.3 Left panel: The Fourier spectrum |@y | at a particular time # = 1.15139 from the same simulation as
in Fig. 2 with a = 2/3. The red line represents a fit to model (62) with green line showing the portion of

the |@y | used for the least-squares fit. Center and right panels: time dependence of J (f) = tanh (@) and

p(t) recovered from the fit of the spectrum to Eq. (62) at different times. The red solid line at the center
panel represents a fit to the model 8y (1) ~ (t, — 1)¥

wixlx . Nmaxlel, =112 wixiX, . Imaxlwl, a=213
—1t=0.000000 ——1t=0.000000

—t=0.660000 —t=0.797970
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Fig.4 Convergence of time-dependent numerical solution of Eqs. (54)—(55) with @ = 1/2 (left panel) and
a = 2/3 (right panel) to the self-similar solution (6). In both cases, we used IC1 (58). Solutions shrink
horizontally and increase in amplitude vertically until collapse occurs at t = f, t. ~ 1.180602237542
(left panel) and 7. ~ 1.272876000077 (right panel). Solutions are plotted in x-space, where x = tan(%).
Horizontal and vertical scales are dynamically changed in both panels to exactly match the positions and
amplitudes of the local maximum at x = xpax and minimum at x = —xmax

generic initial conditions that were tried were found to produce blow-up after an initial
transient, as exemplified in Fig. 5. These transients made the simulation considerably
slower (due to the need for more modes in the spectrum of to resolve the solution
down to double precision round-off). However, in a space-time neighborhood of the
singularity these solutions recover the same self-similar profile as shown in Fig. 4, see
also Fig. 5. We note that the velocity u(x, t) evolves toward the self-similar profile
(48) with max, |u| — oo for 0 < a < a.. Below, we focus on IC1 and IC2, but the
reader should but keep in mind that they appear generic.

Using the terminal values of p extracted by fits to Eq. (62) with various a, and
employing Eq. (63) to recover y from p, we confirmed the formula y (a) =
[see Theorem 1 and Eq. (21) in Sect. 2] and the corresponding formula p(a) = 1’”0
within 0.5% for 0 < a < a.. Figure 6 shows the numerical approximation, Yy, (@) =

lfa
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Fig.5 Convergence of the time-dependent numerical solution of Egs. (54)—(55) to the self-similar profile (6)

ast — t¢. Here,a = 2/3 and we use the generic initial condition wg(x) = _6i4 %3 + %3 -
(x—=x;") (x—x17)

i 1 1 1 1 1 i 1 1 +
| w | —+ —— 3z — ———— ), where x;- =
3 <(x—x;')2 (x—xz_)2> + 32 <(x—)c;')3 + (x—x3_)3) + 96 ((x—xr)z (x—)c4_)2 1
-1+, xgt =—5%5, xgt =1+ ﬁ,xf = % + . The solution is shown at two different moments
in time, where for each time we overlaid the self-similar profile as in Fig. 4, matching their corresponding
maximum and minimum positions horizontally and vertically

1 — p(a) using values of p(a) from Table 1 as well as the theoretical value y = ﬁ
for comparison. We note that the plot of 1/y,,m (a) in Fig. 6 stops ata = a., since it is
difficult to obtain accurate values of p(a) (and hence yy,;,,, (@)) from time-dependent
simulations when a > a.. This is due to a transition that occurs at a = a., in which
the fitted singularity for a < a, corresponding to collapse is no longer closest to the
real x line when a > a..

In addition to Fourier fitting, we also extract values of « in an alternative way (these
values are called oy below), using the spatial derivative of the self-similar solution (6)
given by

1 ’ X
wy(x,t) = (tc_t)l—i-af ((tc—t)a)' (64)

Using Eq. (64), we fit max, |wy (x, #)| to the model max, |wy (x, t)| to

1
)t
find op. Values of ay for various a are also gathered in Table 1 for comp(etfristg)n with
values of «. We confirmed that « and «» obtained using the above two methods for
0 < a < 0.689 agree within a relative error of < 0.02%.

Fora < 0, we observe a similar finite-time blow-up starting from both IC1 and IC2
with max, |w| — oo ast — ¢, according to the self-similar profile in Eq. (6). The
extracted values of «, p, and ap for a < 0 are also given in Table 1, see also Figs. 7
and 8 for results of simulations with a = —2 and IC2. The velocity u(x, t) during
the temporal evolution approaches the self-similar profile (48) near the singularity
location at x = g = 0. A qualitative difference for a < 0 (in comparison with
0 < a < a,) is that the self-similar profile (48) approaches zero because @ > 1 in
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1/~(a)
— 1I~,m‘m(a). where Y oum is from time-dependent simulations
= - = =1/y(a)=1-a
15T
1F
05T
0

Fig. 6 Dependence of y,um(a) = 1 — p(a) using p(a) obtained via time-dependent simulations by the
fit to Eq. (62). These data are also provided in Table 1. Also shown is y(a) = ﬁ from Eq. (21) for
comparison. Here, we plot 1/y (a) instead of y (a) for the easier comparison

the former case, while away from the spatial singularity location the value of u(x, t)
is generally nonzero, even at t — f.. This extends the result of Castro and Cérdoba
(2010), who proved that there is finite-time singularity formation for ¢ < 0 in the case
of odd compactly supported data w(x, 0) € C(R) with Hw (0, 0) > 0, to examples
with analytic initial data.

We obtained much more accurate values of a(a) (up to 14 digits of precision) by
numerically solving the nonlinear eigenvalue problem, as given in Eq. (47), for a self-
similar solution of Eq. (1) (see Sect. 9). In contrast, for a. we were able to obtain 14
digits of accuracy using both time-dependent simulations and the nonlinear eigenvalue
problem with double precision arithmetic. Another 3 digits of precision are obtained
(for a total of 17 digits of precision) if quadruple precision arithmetic is used in the
nonlinear eigenvalue problem.

We have also performed simulations specifically with a = 1 since this special case
was addressed in Chen et al. (2019), who proved for this value of a the existence of
an “expanding” self-similar solution of the type (6) for the problem on x € R. In this
case, f (&) is an odd function with a finite support and « = —1. Their solution implies
that w(x, 1) — f/(0)x as t — t. for any finite value of x € R, while the boundary
of the compact support expands infinitely fast into large |x| as t — .. Our numerical
findings show an approach to this kind of expanding solution with compact support
starting from a generic analytic initial condition, see Figs. 9 and 10. This verifies that
the similarity solution is attracting. The solution grows in amplitude and expands faster
than exponentially in time, which is demonstrated by semi-log plots of max, |w (x)|(¢)
and its location xpax (7) in the middle and right panels of Fig. 9. It obeys the self-similar
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Fig.7 Results from simulations of Eqs. (54)—(55) with @ = —2 and initial condition IC2 (60). Left panels:
the solution w (g, ), its derivative wg (g, 1), and u(q, t) for t = 0.407228. Right panels: time dependence
of the maximum values of these functions. Dashed lines show the prediction of Eq. (6) with «p extracted
from simulations as explained in the text

profile (6) and forms a finite-time singularity att = 7. Figure 10 (right panels) confirms
the scales max, |w(x)| o 1/(t; —t) and |wy(x = 0)| & 1/(t, — )% = const with
o = —1.One can also see (from the middle panel of Fig. 10) that max, |wy,(x)| — o0
ast — t.. We are able to simulate the growth in amplitude of @ (x) only by about one
order of magnitude with our spectral code, since the spectrum widens very quickly as
t — t. and decays slowly, i.e., |0k (x)] ~ k=2, as shown in Fig. 11 (left panel). The
approach to a self-similar solution with compact support is expressed in the complex
x-plane by the approach of complex singularities (identified as branch points from
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Fig. 8 Left panel: The Fourier spectrum |@y| at time = 0.407228 from the same simulation as in Fig. 7.
The red line represents a fit to model (62) with green line showing portion of the |@y | used for the fit. Center

and right panels: Time dependence of §x () = tanh (8(2—')> and p(t) recovered from fit of the spectrum to Eq.

(62) at different times. The red solid line at the center panel represents a fit to the model 8x (1) o< (£, — 1)“.
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Fig.9 Left panel: Convergence of the time-dependent numerical solution to Egs. (54)—(55) witha = 1 and
IC2 (60) to a self-similar profile with compact support. The solution expands horizontally and stretches
vertically until blowing up at r = . &~ 1.77864. The solution is plotted in x-space, where x = tan(%),
and is scaled both horizontally and vertically to exactly match the positions of the local maximum and
minimum. Center and right panels: The time dependencies of maxy |w(x, )| and the absolute value its
location xmax (f) on t

our simulations) located at x = Xsing to the real line near the boundaries of compact
support. The small distances |Im(xsing)| of these singularities to the real line for ¢
near . mean that the solution is “almost of compact support” with “almost a jump" in
the first derivative at the boundary of “compact support" in x-space. The singularity
locations scale like

Xsing &= H(te —)%xp £i(te — )% yp (65)
(i.e., there are four symmetrically located singularities), where« = —1 and a3 ~ 3.68.
Here, the real constants 7, x5, and y, depend on the IC. Note that o3 is different from o«
because it characterizes the approach of the solution to the compactly supported profile
(6). In contrast, the value « = —1 is fully determined by Eq. (6) and characterizes
the self-similar behavior of the central part of the solution. The nonzero value of a3
suggests that the “almost compactly supported” solution turns into a truly compactly
supported solution at t = ¢, with a jump in the first derivative. Due to oscillations
in the spectrum, it is difficult to accurately extract the value of «3 from the fit to
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Fig. 10 Results of the same simulation as in Fig. 9 with @ = 1 showing solution w(q, t), wq(q, t) and
u(q, t) in g-space (left panels) as well as the same solution in x-space (center panels) at time r = 1.582477.
Right panels show the time dependence of their maximum values as functions of (t. — t), where f is the
blow-up time extracted from the fit to max |w(x, )| o< ﬁ

8x(t) ~ (t. — t)*. However, using rational approximation via the AAA algorithm
(see details about AAA in Sect. 10) we can observe two pairs of branch cuts with
branch points approach the real line near x = +(¢t, — t)%xp as t — t., similar to the
case a = 0.8. One can see from Fig. 12 (right panel) that the structure of the singularity
for a = 0.8 is similar to the a = 1 case.

For a. < a < 1 and both IC1 or IC2, we similarly observe finite-time singularity
formation with an expanding self-similar solution approaching a compactly supported
profile [described again by Eq. (6)]. This is qualitatively similar to the a = 1 case,
but involves different values of «. Another difference compared to the a = 1 case is
that there is a discontinuity in a higher-order derivative at the boundary of “compact
support,” instead of a jump in the first derivative w, as occurs for @ = 1. Figures 12,
13, and 14 show the results of simulations with the parameter a = 0.8 and IC2 (60).
Here, we find a jump in wy, forming at the boundary of “compact support.” Figure 13
(right) shows the growth of both max, |@(x)| and max, | (x)| = |ox(x = 0)| as
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Fig. 11 Left panel: The Fourier spectrum |y | at time ¢ = 1.58248 from the same simulation as in Fig. 10
with a = 1. The red line represents a fit to model (62) with green line showing a portion of the |y | used

for the fit. Right panel: Time dependence of 8y (f) = tanh (MTI)) recovered from the fit of the spectrum to

Eq. (62). The red solid line in the right panel represents a fit to the model 8y (¢) o< (f — 1)%3

functions of ¢, — ¢ confirming the scales max, |w(x)| ~ 1/(t. —¢) and |y (x = 0)] ~
1/(t, — ) with @ = —0.26008.

Qualitatively similar to the case a = 1, fora. < a < 1 we again observe two pairs
of branch cuts approach the real line as ¢+ — . according to Eq. (65). For example,
when a = 0.8, we find that « = —0.26008 and «3 =~ 0.908, see Fig. 12 (right panel).
It was challenging to accurately extract values of §(¢) and p(¢) from a fit to Eq. (62)
due to the spectrum being oscillatory, see the left panel of Fig. 14. The right panel
of Fig. 14 provides the best fit which we were able to obtain for §(¢). The fitting
parameter p(t) was more sensitive to the oscillations and did not appear to stabilize
at any particular value, so we do not provide a plot for it here.

This type of oscillation in the spectrum occurs when there are two symmetric
singularities that are equally close to the real line. In this case, a more elaborate fitting
procedure with additional parameters to account for the oscillation can yield improved
results, see, e.g., Baker et al. (1993). However, such fits are also more delicate to
implement and are beyond the scope of the current work.

Simulations with ICs either of type —IC1 or —IC2 and a, < a < 1 resulted
in monotonically decaying max, |w(x, f)| and max, |u(x, ¢)|. The maximum slope
max, |wy ()] = |y (x = 0, £)] is found to approach a constant value for a = 1, while
it decays for a < 1. Also, maxy |wy.(x, t)| grows algebraically as a function of ¢,
while 8, (1) decays algebraically, 8, (t) ~ 1/t*, u > 0. Since these ICs do not result
in a finite-time singularity formation, we do not discuss these cases in further detail.

For a 2 1.3 and for both IC1 and IC2, we observe global existence of the solution.
The vorticity @ has the form an expanding self-similar function which approaches
a compactly supported profile (in the scaled variable &) with infinite slope at the
boundary of the compact region, so that max, |w| — 0and max, |wy|, maxy |u| — oo
ast — oo (although w, (x = 0) — 0ast — o0). The complex singularities approach
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Fig. 12 Left panel: Convergence of time-dependent numerical solution to Eqgs. (54)—(55) with @ = 0.8 and
IC2 (60) to a self-similar profile with compact support. The solution expands horizontally and stretches
vertically until blowingup att = 7. ~ 1.32761. The solution is plotted in x-space, where x = tan( %), andis
scaled both horizontally and vertically to exactly match the positions of the local maximum and minimum.
Center panel: The time dependence xmax (f) of the location of maxy w(x). The dashed lines show that it
scales like xmax (1) o (e — 1)* with @ >~ —0.26008 as 1 — t.. Right panel: The structure of complex
singularities at = 1.32593 obtained using AAA algorithm (described in Sect. 10) that approximates the

solution by a set of simple poles, w(x) ~ wAAA(X) = ;.":_11 xi—’hl The simple poles are shown as dots

at locations b; with a size of dot scaled with log;( |a;|. The branch cuts are shown as lines connecting
the dots and form “U-shaped” curves in the upper and lower complex plane. The accumulation of poles
approximates two pairs of branch points near the real line. The location of these branch points scale as
Xsing ~ E(te — )%xp £iyo(te — 1)*3 yp, where xg, yo > 0, @ = —0.26008 and a3 ~ 0.908

the real line in infinite time with positions that scale like xgjng = Fxg exp (k12"!) £
iyp exp (—k21"?), where the constants «1, k2, v, v2 > 0 depend on a. For both —IC1
and —IC2, we again observe global existence of the solution with decay of w and
infinite growth of wy (x = 0), with an infinite slope forming at x = 0 and a singularity
approaching the real line like xging = 0 & iyg exp (—k2t"?), where yo, k2, v2 > 0.

For I < a < 1.3, we find from simulations that initially max, |w| grows. This
period of initial growth is long, with the spectrum widening so quickly that it was
challenging to distinguish between a finite-time singularity and global existence when
a is near 1, but we have numerical evidence of global existence for a at least as small
as 1.3, as described in the previous paragraph.

Here, we summarize the behavior of solutions to Egs. (54)—(55) on x € R, and its
dependence on the parameter a, for quite generic smooth IC:

— a < ac with a(a) > 0: Collapse in w, i.e., max, |w| — oo at the finite time ¢..
Ast — t., solutions with generic IC approach the shrinking universal self-similar
profile (6) near the spatial location of max, |w|. As t — ft., the profiles shrink
to zero width. The self-similar solution has leading-order complex singularities
in agreement with Theorem 1 and Eq. (21). The location of these singularities
approaches the real line as xging = xo £ 18, (t), where 8, (¢) o< (fc — )%, a =
a(a) > 0. In particular, xo = 0 for both IC1 or IC2. Also u(x, t) near xo follows
the self-similar profile (48) with maxy |u| — oo for 0 < a < ac.

—a. < a < 1 with a(a) < 0: Blow-up in both @ and u at the finite time 7.. As
t — t., solutions with generic IC approach the expanding self-similar profile Eq.
(6) which has compact support. As t — t., the rate of expansion turns infinite.
The complex singularities closest to the real line correspond to the boundaries of
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Fig. 13 Results of the same simulation as in Fig. 12 witha = 0.8 showing w(q, 1), wg(q, 1), and u(q, t) in
g-space (left panels) as well as in x-space (center panels) at time ¢ = 1.32593. Right panels show the time

dependence of their maximum values as functions of (#. — t), where 7. is the blow-up time extracted from

the fit to max |w(x, 1)| ﬁ

763 compact support, and they approach the real line as xjng ~ £(tc —1)%xp £1i (tc —
764 )% yp, where @ = a(a) < 0 and az(a) > 0,

s — a 2 1.3 : Global existence of solutions with max, |w| — 0, max, |wy|, max, |u|
766 — oo and wy (x = 0) — Oast — 00. The complex singularities approach the real
767 line exponentially in time as xsng = Zxg exp (k12"") % iy exp (—«2t"?), where
768 K1, k2, V1, vy > 0.

7 9 Numerical Solution of Nonlinear Eigenvalue Problem on the Real
770 Line

m  Similar to the transformation of Egs. (1) to (54)—(55) in Sect. 7, we obtain a transformed
722 equation for self-similar solutions of Eq. (47) by mapping the interval (—m, 7) of the
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Fig. 14 Left panel: The Fourier spectrum |@y| at a particular time = 1.32593 from the same simulation as
in Fig. 12 with a = 0.8. The red line represents a fit to model (62) with the green line showing the portion
of the |@y | used for the fit. The purple line shows a fit to the rougher model (62) with § = 0. Right panel:

Time dependence of §x () = tanh (@) recovered from the fit of the spectrum to Eq. (62). The red solid
line at the right panel represents a fit to the model 8 (1) o (1o — 1)*3

auxiliary variable ¢ onto the real line (—oo, 00) as
£ = tan (i) . (66)
2
With this mapping, Eq. (47) turns into

Mf = f+asing f; = —a(l + cosq)gfy, —l—f[Hz”f—i-C?c”]
=NIfIf, qe€l-nn],
(1+4cosq)gg = H™ f + CJ%”, (67)

where the 277 -periodic Hilbert transform #>" and the constant C27 are defined in Egs.
(55), (56), and the linear operator M is now defined in ¢ space by the Lh.s. of the
first Eq. (67). We also define in Eq. (67) the quadratically nonlinear operator N[ f]
such that N[ f]f represents the r.h.s. of the first Eq. (67) with g expressed through
the second equation in (67) as

Han 4 C271 q
=t ———L |, o :=/ "dg'. 68
g =19, (1t cosq) g P r(q)dq (68)
-7
Then, Eq. (67) takes the following operator form
Mf =NIf1f. (69)
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A linearization of Eq. (69) about f together with Egs. (67) and (68) results in

(1 4+ cosgq)
H™ f + Cf,”]
— |4

q

L [Hsr+ e
LIfI8f :==—Msf —a(l+cosq)d, | ——— | [q

(1 4+cosgq)
+8fIHY f + C7 1+ fIH 8 f + C5F 1, (70)

—a(l —i—cosq)aqf1 |:

where L[ f] is the linearization operator and § f is the deviation from f.
Taking § f = f in Eq. (70) and using Eqgs. (67), (69) to express the nonlinear terms
in f through the linear terms prove the following theorem:

Theorem 4 The solution f of Eq. (67) satisfies the relation

LIf1f = Mf. (71)

Corollary 1 The invertibility of the operator M (see Sect. 6) and Eq. (71) imply that
the operator M~ L[ f] has the eigenvalue ) = 1 with eigenfunction f, which is the
same as the solution f of Eq. (67).

Similar to Eq. (57), we approximate a solution of Eq. (67) as a truncated Fourier
series

k=N-—1

f@= Y fee™. (72)
k=—N

Then, the discrete Fourier transform allows us to rewrite Eq. (67) in matrix form as

ki
i o
aky ks
R 2 =7
Mf =N[f]f, M:= 52 1 , (73)
_ akon
. =3
akyn_—
25/ 1 1
where f = ( fkl, sz, NN kaN)T is a column vector, the tridiagonal matrix M €
R*NVX2N represents the Fourier transform of the operator M and A £]f is the column
vector of Fourier coefficients of N[ f]f. Also k| := —N, kp := —N+1, ..., koy =
N — 1. Note that the tridiagonal form of M is a consequence of the term sin(g) =
el —e14

€—7—in the definition of M in Eq. (67).

We solve Eq. (71) in the truncated Fourier representation (73) by iteration using
the generalized Petviashvili method (GPM) (Lakoba and Yang 2007) which relates
the n + lth iteration £ ! to the nth iteration £ of f as follows:

@ Springer
| SPI

Journal: 332 Article No.: 9737 [ TYPESET [__] DISK [__]LE [_] CP Disp.:2021/8/4 Pages: 56 Layout: Small-Ex




S
o
o
il
[a W
-
o
=
+—
=
<

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

Journal of Nonlinear Science _ ##H#H#HHHHHHHHHHHHHHHENE Page 350f56  _####_

f-n+1 _f-n _ ([_f-n +M_1/\/’Tf]\f"] _ <1 + —

)(f Mf”+N[f]f" )
AT,
AT

(r, M)
(74)

where superscripts give the iteration number, (a, b) Z k__; ay by is the complex
dot product and At is a parameter that controls the convergence rate of the iterations. At

each iteration we need to solve Eq. (73) for f (assuming /\m is given) to effectively

compute M™ 1./\/ [f1f". Since M is a tridiagonal matrix, this is easily done in O (N)
numerical operations in Fourier space. We note that if one tries to avoid the FFT and
iterate Eq. (67) directly in g space, then the corresponding matrix M on the Lh.s. of
Eq. (67) would be a full matrix and each iteration would require O (N 2) numerical
operations.

A fixed point of the iteration (74) corresponds to the solution of Eq. (71). The
straightforward iteration of (71) [instead of (74)] would diverge because of the posi-
tive eigenvalue A = 1 of Corollary 1 for the linearized operator M~ L[ f]. In contrast,
Eq. (71) ensures an approximate projection into the subspace orthogonal to the cor-
responding unstable eigenvector f. The original Petviashvili method (Petviashvili
1976) is the nonlinear version of Eq. (74) for the particular value At = 1 and is often
successful with both partial differential equations (PDEs) (see, e.g., Lakoba and Yang
2007; Yang 2010) and nonlocal PDEs (see, e.g., Lushnikov 2001). However, the linear
operator M ' L[ f] generally has extra eigenvalues preventing the convergence of the
original Petviashvili method. GPM, however, uses the freedom in choice of the param-
eter At to achieve convergence even with such extra eigenvalues, see Dyachenko et al.
(2013b), Lakoba and Yang (2007), and Yang (2010) for more discussion.

An additional complication that arises in our Eq. (67), compared with the straight-
forward use of GPM in general PDEzs, is that we do not know « in advance. Instead,
for each value of a there is a nonlinear eigenvalue «(a) to Eq. (67) that we need to
determine. If we use a general value of «, then iteration (74) would not converge
because the solution of Eq. (67) does not exist for such general values of «.

To address this additional complication, we make an initial guess of & = Qgyess
for fixed a and iterate Eq. (67) for oguess. If dfguess < a(a), then the generalized
Petviashvili iteration (after an initial transient) shrinks toward g = 0. If agyess >
a(a), then the solution expands away from ¢ = 0. We used the bisection method
to determine «(a) for a given a. We start from a large enough interval [, ag], so
that a(a) € [ar, ar]. Then, we try dguess = (L + ag)/2 and based on the shrinking
versus expanding of iterations for o/gyess, we obtain the updated values [ar , ag]. These
updated values ensure a factor 2 decrease of the length of the updated interval [of,, ag],
completing the first step of the bisection method. We continue such bisection steps
until convergence to «(a) [i.e., until the residual of Eq. (67) decreases down to near
round-off values and does not decrease anymore]. For each updated atgyess, we use the
solution from the previous bisection step to speed-up the convergence. We judged the
expansion/shrinking of the solution by tracking the movement of its maximum point
which was determined as a critical point of the function f'(g) = i_f ik fke‘kq
using spectral interpolation and a root-finding algorithm. Also, in order to pass over
the initial transient dynamics (that depends on the initial guess of the solution) we skip
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Fig. 15 Convergence of the interval [« , ag] to a(a) (left panel) and convergence of the residual of Eq.
(73) (right panel) for the iteration (74) with a = 0.2. Here, we used IC2 (59) with V. = 2712 x 044,107
and N = 28 ag the zeroth iteration

10/ At — 20/ At initial GPM iterations before judging the expansion/shrinking of the
solution to classify the current orgyess. The larger At we used, the less iterations were
needed, but too large a At leads to instability of the algorithm, so we need to keep it
under a certain level. For the initial guess of the solution, we typically used IC2 from
Eq. (59) with V. = 1/2 for 0.6 < a < a., and N = 64; At was reduced from 0.1
ata = 0.6 to 107* near a.. For a < 0.6, we used At = 0.1 — 1 and progressively
smaller V, (down to 2~14) and larger N (up to 222 because of the slowly decaying
tails of the function f(g) for small a (see the next paragraph). Figure 15 illustrates
the convergence of the [«a, ar] interval to «(a) and convergence of the residual of
Eq. (67) with bisection iterations for ¢ = 0.2, starting with an initial condition IC2
in (59) with V, = 1/2!2 ~ 2.44 x 10~* (singularity is at £ = iV¢) and N = 2'8,
The converged solution is shown in Fig. 16 (left panel) with a closest singularity at a
distance & = 7.43-107 from the real line in £-space and at a distance g, = 1.49-10™*
in g-space.

We note that symmetry (51) implies that &, can be stretched by an arbitrary positive
constant. Iteration (74) generally converges to different values of &, depending on IC
(i.e., the zeroth iteration). After that, one can rescale any such solution in & by any
fixed value of &. This rescaling freedom can also be seen through the existence of the
free parameter v, in the exact solutions (32) and (38), (39).

We computed self-similar profiles f (&) and g(&) for various values of a < a. to
obtain «(a) shown in Table 1 as @.(a). Additionally, we make sure that the f(&)
profile tails scale as in Eq. (49) at £ — =00 and we also fit the g(&) profile tails to
the power law

g(&) o £F. (75)
Figure 17 show examples of such scaling and fit for a = 0.2. Several other curves with
different powers of & are present on the graphs for comparison. The fitted values of
B(a) are given in Table 1 and Fig. 16 (right panel). Ignoring for the moment the Hilbert
transform, the integration operator 9 Uinvolved in determining g(¢) from f (&) in Eq.
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i f(€) and g(£) Power of scaling of tails of g(£) as £—c0
) 0 —, where g(e)~¢" for €k
‘ 10* < g(€) ———-1/a(a)*+1, where f(¢)~¢ " for ¢+
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Fig. 16 Left panel: a = 0.2. Functions f (&) and scaled g(&) obtained by the iteration (74). Right panel:
Power law of scaling of the tails of g(£) versus a

(47) suggests that

g(6) o ETut ark — oo, (76)
which implies that
1
B=——+1. (77)
o

However, the Hilbert transform in Eq. (47) can affect this scaling. We find that (77)

is valid for 0 < a < 0.4, while a transition to the constant scaling 8 = —1 occurs
around a = 0.45 as shown in Table 1 and Fig. 16 (right panel). In particular, the exact
analytical solution (34) for @ = 1/2 and « = 1/3 implies that 8 = —1 which is

consistent with Table 1 and Fig. 16 (right panel). One can see from comparison of
Egs. (33) and (34) that the Hilbert transform indeed prevents the naive scaling (76) in
this particular case. In contrast, the scaling (49) follows from the linear operator M as
discussed in Sect. 6. That scaling was confirmed with high precision in our simulations
so we do not show it in Table 1. For @ < 0, we find that g(£) has two regions with
two different scalings, see Fig. 18 for a = —0.1. While the tail of g(&) still decays as
& — Zoo0, there is an intermediate scaling regime which approximately obeys (77)
as seen in Fig. 18 (left panel). We are able to observe this intermediate scaling for
—0.2 < a < 0. Going below a = —0.2 is difficult for the GPM method as the tails of
f(&) and g (&) decay very slowly and it requires more than 10° grid points to achieve
good accuracy. For a < 0, the values of § in Table 1 and in Fig. 16 (right panel) are
from this intermediate scaling.

We estimate that our iteration procedure provides at least 58 digits of precision of
in a(a) and 2-3 digits of precision in B(a) for a > 0.3, when the spectrum of f(g) is
fully resolved. The values of «(a) and B(a) were challenging to obtain with more than
3—4 and ~2 digits of accuracy, respectively, for a < 0.2 (corresponding to o 2 0.75)
and especially fora < 0 (¢ > 1) since we could not resolve the Fourier spectrum | fk|
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Fig. 17 a = 0.2. Left panel: Tail of f(&) from Fig. 16 (left panel). The dashed line shows the decay of
f (&) when it is approximated by its leading-order singularities alone, as obtained from (17), neglecting the
L.s.t. Right panel: Tail of g(¢) from Fig. 16 (left panel) compared with different power laws
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Fig. 18 Plots of g(¢) for a = —0.1. Left panel: Graph of g(&) showing two extrema (one maximum and
one minimum) in each half-space of &. The inset gives a magnified view showing extrema at small £. Right
panel: Log—log plot of g (&) for positive . Here, g(§p) = 0 at &y ~ 0.41. Solid lines show the scaling (76)
and a fit to power law (75)

down to round-off level 1071°, even with N = 222 modes. At its root, this is due to
the slow decay of f (&) ~ |&|71/% for |£| — oo and relatively large c.

The numerical values of B in the scaling (75) are important to distinguish between
solutions with infinite and finite energy Eg (10), which as mentioned is of interest in
analogy with the question of singularity formation in the 3D Euler and Navier—Stokes
equations. Assuming that the solution is close to the self-similar profile (6), changing
the variable from x to & in (10) and using the self-similar profile (48) of the velocity
u(x, t) we obtain that

__ pselfsim rest
Ex = E} +Ex,
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where
x, §
EIsim / u?(x)dx ~ 32 [ g2 ()ds, & = :_Z’ (79)
7)6/’ _Eb

is the kinetic energy of the approximately self-similar part of the solution located at
x € [—x,, x,]and E ;(‘)” is the kinetic energy of the numerical solution outside of this
interval. Here, we define the cutoff value x = x; as the spatial location where the
numerical solution deviates from the self-similar profile (6) by 5%, while inside of the
interval [—x,, x, ] the relative deviation is less than 5%. We determine the variable &
by the same type of procedure as in Fig. 4. Then, x;, is determined by 5% criterion
above. We find from simulations with a < a, that

x,,(t) A~ const ~ 70, (80)

Such behavior is typical for collapsing self-similar solutions, see, e.g., Sulem and
Sulem (1999), Kuznetsov and Zakharov (2007), Dyachenko et al. (2013), and Lush-
nikov et al. (2013). It implies that £, — co ast — ..

There is no qualitative difference between integrals I, s, = f’éh g%(£)dg and

I 00 = ffooo g%(£)d¢ provided I¢. 00 < oo. The finiteness of /g o requires that
B < —% for the scaling of the tails of g(&) in (75). Using Eq. (77), we obtain that
B = —% implies o = %, ie., B < —% for @ < % From the interpolation of the
data of Table 1, we find that ¢ = % corresponds to a = 0.265 £ 0.001. Therefore,
for a self-similar profile, I, oo < o0 fora > 0.265 & 0.001 and I; oc = oo for
a < 0.265 4+ 0.001.

However, we have to take into account that 7, ¢, is multiplied by 3*=2in Eq. (79).
This means that in the limit t — ¢, and for o < %, there is a competition between the
decrease of t3%~2 and the growth of I, ¢, as &, — oo. The scaling (77) for Eq. (75)

is valid for a < 0.4 as shown in Fig. 16 (right panel). It implies that I g, o szﬂﬂ =

7= @A+D 2P for ¢ < 0.265 4£0.001 and 1 — 7. Then, using Egs. (77), (79) and
(80) we obtain that E ?glf“m ~ 10 ~ const. Also since the main dynamics is happening
inx € [—x,, x,] with x, (t) ~ const, we conclude that E}?S‘ — const as t — 1., SO
overall the growth of Ex (t) as t — t. is very slow (i.e., slower than any power of )
for such a where the scaling (77) is true. This result is in excellent agreement with
our direct calculation of Eg (#) from time-dependent simulations which shows that for
a < 0.265 1 0.001 the kinetic energy grows more slowly than log(t) or any power of
T ast — t.; see Fig. 19 (left panel) for a = 0.2.

For 0.265 £+ 0.001 < a < 1, the kinetic energy Ex — oo ast — f. (while being
finite for any ¢ < #.), since ¢ < O and Eg ~ 32 5 coast — 1. with I 00 < 00;
see Fig. 19 (center panel) for a verification of this scaling when a = 0.4. Fora 2 1.3,
which corresponds to an expanding solution with infinite-time singularity, Ex — 00
as t — oo, while being finite for any < oo; see Fig. 19 (right panel) for an example
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Fig. 19 Growth of the kinetic energy Eg over time. Left panel: @ = 0.2, semi-log plot of Eg versus
T =t — t shows that Ex grows slower than log(t) or any power of v as t — #.. Center panel: a = 0.4,
verification of the scaling Eg ~ 732=2 ip (79) with Ig 00 < oo. Right panel: @ = 1.5, Ex — oo
exponentially as t — oo

witha = 1.5. For a > a., the above splitting of Eg into two parts is no longer valid,
but we nevertheless verify the claims above via time-dependent numerical simulation.

For some values of a, we computed «(a) and nonlinear self-similar profiles with
much higher precision. For example, we used 68-digit arithmetic (using commercially
available Advanpix MATLAB Toolbox https://www.advanpix.com) for a = 2/3 to
find that «(a) = 0.0451709442203672185156916552716968964156893201125622
408995729 . .. and to compute f(g) up to ~60 digits of precision, see Fig. 20. High
precision computations help validate the results from double precision calculations,
and allow us to obtain a good quality analytic continuation of the solution f(§) =
f(g(&)) from the real line & € R to the complex plane & € C via the AAA algorithm
(Nakatsukasa et al. 2018), see Sect. 10.

10 Analytical Continuation into the Complex Plane by Rational
Approximation and Structure of Singularities

Fits of the Fourier spectrum using Eq. (62) allow us to find only the singularity clos-
est to the real line. A more powerful numerical technique of analytical continuation
based on rational interpolants (Alpert et al. 2000; Dyachenko et al. 2016, 2019; Nakat-
sukasa et al. 2018) allows us to go deeper (further away from the real line) into the
complex plane, well beyond the closest singularity. However, analytic continuation
further from the real line often requires an increase in numerical precision, even well
above the standard double precision (Dyachenko et al. 2016, 2019). In this paper,
we use a rational interpolation based on a modified version of the AAA algorithm
of Nakatsukasa et al. (2018). AAA finds an approximation faaa (£) to a complex
function f(£) in barycentric form by minimizing the L; error of the approximation
on the real line.
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Fig. 20 Convergence of the residual (left panel) and spectrum of the solution (right panel) to Eq. (73),
computed with a = 2/3 and 68-digit precision, and using IC2 (59) with V., = 1/16 = 0.0625 and
N = 2048 in the zeroth iteration

The barycentric form is given by

WGPy =
dE) Yl gy

Sfaaa(§) : (81)

where m > 1 is an integer, &; are a set of real distinct support points, f; are a set of
real data values, and w; are a set of real weights determined by L, error minimization.
The integer m is increased until the L error between faaa (&) and f (&) on the real
line is on the level of 10~ where PR is the current working precision. For analytic
functions, the error decreases exponentially in m.

The Barycentric form (81) is a quotient of two polynomials n(§) and d(£). A partial
fraction expansion of this quotient results in a sum of m — 1 first-order complex poles,
fXOAlZS(é ) = Z:”:}l %, with locations b; and residues a; determined by the values
of w; and &;. The pole locations b;, which are zeros of d (&), are determined by solving
a generalized eigenvalue problem described in Nakatsukasa et al. (2018). The values
of the residues a; can be computed using L'Hospital’s rule a; = res(faaa, bi) =
n(b;)/d'(b;). If our data for an analytic function are given with precision PR on
the real line, AAA and subsequent computations of b; approximate the location of
single poles with maximum precision ~ P R, double poles with precision ~ PR/2,
and triple poles with precision ~ P R/3, etc. The progressive loss of precision in
higher-order poles is due to cancellation errors. We find we can achieve the reduced
error | f(§) — f EOA]ZS(E )| & 10~ PR on the real line in the case of higher order poles if
we increase the precision of intermediate computations in the generalized eigenvalue
problem by a factor of two for double poles and a factor of three for triple poles. We
additionally modified the original AAA algorithm (Nakatsukasa et al. 2018) to deal
with odd and even functions more efficiently and output more symmetrical sets of
poles.
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Fig. 21 The structure of the complex singularities of the solution from Fig. 20 approximated by a set of

simple poles, f(&) ~ f};&lzs &) = ;.":11 Eiifr using the AAA algorithm (left panel), and the relative
- 1

error on the real line between the solution f(£) and its approximation faaa (§) (right panel). The simple
poles are shown as dots at locations b; with the size of dot scaled with log; |a;|. The branch cuts are
approximated as lines connecting the dots. The triple poles locations are £ ~ £i0.04678, and branch points
are located at £ = &ppanch &~ £0.05398 +10.07674

In the particular case a = 2/3, we use 68-digit precision arithmetic for the numer-
ical solution of f (&) described at the end of Sect. 9 and incorporate this into the AAA
algorithm. This method shows that the closest singularities to the real line are a pair
of the third order poles o< 1/(§ 1 xe)3, in full agreement with Theorem 1 (Eq. (21)
of Sect. 2) and the Fourier spectrum analysis of Sect. 8. The location £ = %iy, (here
Re(xc,) > 0 and Re(x.) > |Im(x.)|) and the third-order type of these poles are

automatically approximated by the AAA algorithm as three simple poles Z?:l %

lying very close to each other (|b1 — b2|, |by — b3| < 1.54 - 10~'2) with the sum of
their residues being essentially zero (| Z?:l ail/la1| ~ 4.64 - 10~%7). We define the

location of the triple pole by the average iy, = Z?:l b; /3 and have verified that the
dipole moment defined by D := 3| (b; — ix.)a; is negligible, [D| ~ 1.2 - 10729
In contrast, the quadrupole moment Q := 213: ! Xe)?a; is distinct from zero,

|Q] ~ 1.5 - 1074, so this multipole is well approximated by ﬁ The complex
conjugate point £ = —iy, was treated in a similar way, i.e., by another set of three

poles of AAA.

We find that the rest of the singularities of f (&) are branch points with branch cuts
extending from them. AAA approximates branch cuts by sets of poles, and Dyachenko
et al. (2016, 2019) demonstrate how to recover branch cuts from this set of poles by
increasing the numerical precision. The increase of numerical precision requires an
increase in the number of poles m in rational interpolants to match the precision.
These poles, which are located on a branch cut, become more dense with the increase
in precision and thus recover the location of the branch cut in the continuous (infinite
precision) limit. The main motivation for using 68-digit precision in this paper was to
ensure that we robustly recover branch cuts, see Fig. 21 (left panel). In the particular
case a = 2/3, double precision allows us to robustly see ~ 30 poles, whereas 68-digit
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precision allows us to see ~ 150 poles. The number of poles we use for a fixed precision
is determined by the minimal number of AAA poles to match the numerical precision
of the solution on the real line. Increasing the number poles beyond this minimal
number produces spurious poles with very small residues, which is the analog of the
round-off floor in the Fourier spectrum. We note that the exact shape of the branch
cuts is not fixed analytically—the AAA algorithm simply provides a set of poles that
corresponds to the smallest L, error on the real axis for the given number of poles.
Thus, the AAA approximation of the branch cut might move with a change of the
precision. In contrast, the branch points computed by the algorithm are fixed. One can
see four branch points in Fig. 21 (left panel), with two branch cuts going upward and
coalescing on the imaginary axis and extending further to +ico. Another two branch
cuts extend downward and merge on the imaginary axis before going off to —ico.

Our investigations of complex singularities via AAA approximations show that
for any a, except for a = %, n = 1,2,3,... [which corresponds to the integer
values y = n in Eq. (21)], there is another pair of vertical branch cuts coming out of
& = +ix, and coalescing with the rest of the branch cuts on the imaginary axis. For
a < ac, the side branch points are always above the main singularity at £ = =iy,
and their locations are &yranch = £€1(a) xc £1(1 + €2(a))xc, where roughly €1(a) ~
1, e2(a) ~ 1. In particular, Re[&pranch]/xc < 0.74, Im[&pranch]/xc > 2 for a < 0.6;
Rel&pranchl/xe ~ 1.15, Im[&branch]/ xc =~ 1.64 for a = 2/3 and Re[&vranch]/ xc ~
1.23, Im[&pranch]/xc = 1.51 near a = a..

11 Results of Time-Dependent Simulations and Petviashvili Iterations
for Periodic BC

Motivated by simulations of the generalized CLM equation (1) in Okamoto et al.
(2008) for 2m-periodic BC with a = 1, we performed simulations for a wide range
of values of the parameter a. For this, we used the periodic version of the Hilbert
transform H>" (55) in Eq. (1) instead of .

Simulations for a < a. show collapsing solutions with o > 0, and different types
of IC give qualitatively similar results near the collapse time ¢ = . as in the real line
x € R case with the same «(a) (see Table 1). Hence, we do not describe them here.
Expanding solutions for a > a. behave differently since the finite spatial interval
[—m, 7] arrested the increasing width of the solution at large enough times. Thus, we
focus our discussion on a > a. and present detailed results of our simulations, in
particular the cases of a = 0.8 anda = 1.

We performed a simulation with @ = 0.8 and initial condition

wo(x) = —%[sin(x) + 0.5sin(2x)], (82)

which is qualitatively similar to the particular case (60) of IC2 (59), with g replaced
by x and V. = 1, T, = 1. After an initial spatial expansion, the solution is arrested by
the periodic boundary conditions. This arrest results in the qualitative change of the
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Fig. 22 Left panel: Convergence of time-dependent numerical solution of Eqs. (1) and (55) with a = 0.8
and IC (82) to a universal self-similar profile. The solution expands horizontally (until arrested by the
boundary condition) and extends vertically, blowing up at t = f. = 1.4736630.... The plot is scaled
vertically by maxy |w| and horizontally by the location xmax () of maxy |w|. Right panel: Time dependence
of |xmax (¢)|, which shows slowdown and eventual arrest of the horizontal expansion of the solution

dynamics, see, for example, the right panel of Fig. 22 for the time dependence of the
location xpay () of max, | (x)].

At later times, we still find a finite-time blow-up of the solution with max, | (x)]
and max, |u(x)| — oo ast — f.. However, instead of Eq. (6), the solution converges
to a new universal self-similar blow-up profile given by Eq. (9), as demonstrated in
left panel of Fig. 22. A comparison of Egs. (6) and (9) reveals that we can formally
obtain Eq. (9) by setting « = 0 in Eq. (6) [although Eq. (9) has periodic boundary
conditions, versus decaying BC of Eq. (6)]. We note that taking the limit a — a,_ in
Eq. (6), we also obtain &« = 0. However, it remains unknown if Eq. (9) can be obtained
from the continuation of Eq. (6) across a = ac.

The spectrum @y is initially exponentially decaying but expands and becomes
mostly algebraically decaying (similar to Fig. 14). Finite precision arithmetic only
“sees" algebraic decay | (x)| ~ k=3 when 1 is close enough to 7., see Fig. 24. This
is because of a jump in wy, forming at x = =+, see Fig. 23 (left and middle panels).
Due to the spectrum being initially oscillatory, it was difficult to accurately extract
values of §(¢) and p(¢) from a fit to Eq. (62), but using a nonoscillatory spectrum
which emerges later in the simulation we were able to recover some data for §(¢) and
p(t) as shown in Fig. 24. There, one can see that §(rf) — O and p(t) — 3 ast — ..

For a = 1, we considered two different types of ICs. The first one is IC (82),
for which we observe global existence of the solution. Initially, the amplitude of the
solution w (x) grows in time, similar to the infinite-domain case. But this growth slows
down at later times and eventually reaches a plateau with the same behavior in u(x),
see Fig. 25. Also maxy |wy| = |wy(x = 0)] remains nearly constant throughout the
simulation. We observe unbounded growth of |w,,| near x = =+ that appears to be
exponential in time. Due to the spectrum being oscillatory, it was difficult to accurately
extract values of §(¢) and p(¢) from a fit to Eq. (62). However, using AAA rational
approximation we were able to observe two pairs of branch cuts approach the real
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Fig. 23 Results of the simulation of Egs. (1) and (55) with @ = 0.8 and IC (82). Left panels: w(x, t), its
derivatives wy (x, 1), wxx (x, 1), and u(x, t) att = 1.4736627. Right panels: the growth of maximum values
of the corresponding quantities over time

line near x = £ as ¢t — oo. Replacing IC (82) by the more general IC2 (59) (with
q replaced by x and V., T, = 1) is found to only alter the transient dynamics of the
expanding solution without qualitatively changing the overall behavior.

The second type of IC we used for a = 1 is given by

wo(x) = sin(x) 4+ 0.1sin(2x), (83)
which is the same as in Okamoto et al. (2008). It allows us to directly compare the
results of our simulations with Okamoto et al. (2008). We obtain exactly the same plots

as in Fig. 1 of Okamoto et al. (2008), see Fig. 26. The difference between simulations
with IC (82) and IC (83) is seen by comparing Figs. 25 and 26. For example, the
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Fig.24 Left panel: Log—log plot of the Fourier spectrum |&y | from Fig. 23 att = 1.4736627 and a = 0.8.
The red line represents a fit to model (62) with green line showing a portion of the || used for the fit.
Center and right panels: §(¢) and p(¢) obtained from the fit of || to Eq. (62) at different times. Red lines
in the center panel also show a fit to the model §(¢) o (1o — £)*3

spatial derivatives of @ approach discontinuities at x = 0 in Fig. 25 versus x = £ in
Fig. 26. The AAA rational approximation shows an approach of two vertical branch
cuts to x = 0 over time, so the spectrum is not oscillatory and we are able to easily
recover §(¢) and p(¢) from the fit to Eq. (62). The fits show a stretched exponential
in time approach of the singularity to the real line, i.e., §(r) ~ e ", see Fig. 27
(middle panel). Figure 27 (middle and right panels) showing 6(¢) and p(¢) can be
compared with Fig. 3(a,b) of Okamoto et al. (2008). Our values of §(#) match those
values from Fig. 3(a) of Okamoto et al. (2008) well, while values of p(¢) do not match
precisely with Fig. 3(b) of Okamoto et al. (2008) because they marginally depend on
the particular part of spectrum || that is used for the fitting.

For a > 1 with IC (82), we observe global existence of the solution. Its ini-
tial expansion in x-space is arrested by the periodic boundary conditions with an
infinite slope forming at the boundary x = =+m so that max, |wx|] — 00 as
t — oo (although max, |w|, max, |u|, |wx(x = 0)] — 0 ast — o0). The com-
plex singularities approach the real line in infinite time. Their positions scale like
Xsing ~ £m Fiypexp (—«2t"?), where yo, k2, v2 > 0. Whena — 1+, we observe
that max, |w| grows for a short time and then decays. Unlike the x € R case, it is
relatively easy to compute accurately for @ — 17 and we have been able to obtain
numerical evidence of global existence for a as small as 1.000001. For IC (83), we
also observe global existence of the solution with decay of max, |w| and unbounded
growth of |w,(x = 0)| as + — oo. The complex singularities approach the real line
like xging ~ 0 £ iy exp (—k2t"?), where yg, k2, v2 > 0.

We find the same behavior of the kinetic energy for the periodic BC asin x € R
case described in Sect. 9 for a < 0.95, while for a = 1 we have that Ex — const as
t — oo (because maxy |u| — const as t — o0) and for a > 1 we have that Ex — 0
ast — oo (because max, |u| — 0 ast — 00).

Self-similar profiles from GPM. We also numerically computed the self-similar
profile f(x) in Eq. (9) fora, < a < 0.85 using GPM described in Sect. 9 with « = 0.
In contrast to Sect. 9, we do not need to use the coordinate transformation (66) because
f(x) is now 2mr-periodic with £ = x. We used GPM to solve Eq. (46) by the iteration
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Fig. 25 Results of the simulation of Egs. (1) and (55) with ¢ = 1 and IC (82) showing w(x, t), its
derivatives wy (x, 1), wxx(x,t), and u(x, t) at t = 2.60205. Also shown is the growth of their maximum

values as functions of time

(74) with M f and N[ f]f from Eq. (67) replaced by

Mf = f==agfi + fH” f = NIf1f,

g =H"f.

(84)

The matrix M used in Eq. (74) now turns into the identity matrix. We do not need to
solve the nonlinear eigenvalue problem for o because now o = 0. While performing
the iteration (74), we had to reduce At even more than in Sect. 9 to make sure
the iterations converged and also had to use more Fourier modes in the spectrum,
since the spectrum decay is only algebraic for these solutions. Due to these technical
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Fig. 26 Results of the simulation of Eqgs. (1) and (55) with @ = 1 and IC (83) as in Okamoto et al. (2008)
showing w(x), its derivatives wy (x), wxx (x), and u(x) at t &~ 12 and the growth of their maximum values
as functions of time

limitations, we were unable to explore the range 0.85 < a < 1, but we fully expect that
self-similar solutions exist there because time-dependent simulations converge to self-
similar profiles, at least over the lower range a, < a < 0.95 (see Fig. 22). It was not
possible to obtain convergence in the upper range 0.95 < a < 1 because the solution
spectrum quickly widened, and we were unable to reach the self-similar regime before
the computation became prohibitively slow. The behavior of solutions (blow-up vs.
global existence) therefore remains unknown in this range. We conjecture that blow-up
occurs for all a. < a < 1 with global existence only for @ = 1 (as demonstrated) and
for larger values of a.

The Fourier spectrum of |&y| corresponding to the self-similar profile (9) has two
distinct domains for |k| > 1. The particular case a = 0.71 shown in Fig. 28 depicts
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Fig. 27 Left panel: Log—log plot of the Fourier spectrum |@y | for the solution in Fig. 26 and a fit to model
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Fig. 28 The Fourier spectrum |@y | of the self-similar profile (9) for a = 0.71 obtained by GPM iterations
(74) of Eq. (84). Two fits are shown in different ranges of k with the first fit to Eq. (62) with § # 0 at
intermediate k and the second a power-law fit oc |k|~Pb for larger |k|. Left panel: Log-linear plot where
the first fit turns into a nearly linear function. Right panel: Log—log plot where the second fit turns into a
nearly linear function

such domains. The first domain corresponds to complex singularities of Theorem 1
(Eq. (21)) located at xgjng = #i8. This domain is well fitted by Eq. (62). From this
fit, we find that 6 = 1.15982 and p = —2.44941, as shown in Fig. 28. Using Eqgs.
(21) and (63), we obtain the prediction of Theorem 1 that p = % = —2.44827...
which agrees within an accuracy of < 0.05% with the numerical fit to Eq. (62).
The second domain is due to complex singularities located at x = £ and results
in a discontinuity of high-order derivatives of w(x) at the periodic boundary. This
domain has the power-law spectrum o |k|~7? (i.e., in Eq. (62) it corresponds to § = 0
and p = pp) which is dominant for larger |k|. In the particular case of Fig. 28, we
obtain pp = 9.32592 . ... This implies that the ninth- and higher-order derivatives of
(x) have a discontinuity at the periodic boundary. All these singularities can be seen
using the AAA algorithm described in Sect. 10. We also find that as a approaches
to a. from the right, i.e., a — a, increasingly higher-order derivatives experience
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Fig. 29 Left panel: The Fourier spectra || of the self-similar profile (9) for various values of a as in
Table 2 obtained by GPM iterations (74) of Eq. (84). Right panel: p(a) and pp(a) from Table 2 extracted
from the two fits as in Fig. 28

discontinuities at the periodic boundary, i.e., p, — 00 as a — al, see Fig. 29
(right panel). These solutions with finite smoothness at the periodic boundary can
be considered the analog of the self-similar solutions with compact support found in
Sects. 8 and 9, for solutions on the real line with a, < a < 1.

Table 2 provides the values of §, p and pj, for various values of parameter a obtained
from the fits described above. We note that the symmetry (51) is not valid for periodic
BC. Thus, the parameter § is now fixed for each a, contrary to the case x € R where
it is a free parameter, cf. Sect. 9.

Here, we summarize the solution behavior of Egs. (1) and (55) for x € [—m, 7]

and generic smooth IC depending on the parameter a:

— a < ac: Behavior of solutions is the same at t — 1. as for the x € R case, with
collapse as in Eq. (6).

- a. < a < 0.95: Blow-up in both w and « in finite time 7. with solution approaching
the universal self-similar profile (9) as  — .. That profile f (x) has discontinuities
in the high-order derivatives with complex singularities touching the real line only
at x = Zm. The number of continuous derivatives becomes infinite in the limit
a — aj. The singularities approach the real line as xgjng ~ 7w L i(te — 1)* yp,
where a3(a) > 0.

—a = 1: Global existence of solution with a singularity approaching the
real line exponentially in time. For both IC (82) and IC (83), we find
max, |w|, max, |u|, maxy |u,| — const, max, |wy| = |w,(x = 0)] = const,

and max, |wyy| — 00 ast — oo.

— a > 1: Global existence of solution with a singularity approaching the real line
exponentially in time. For IC (82) the singularity approaches the real line near
x = =% and max, |w|, maxy |u|, |wy(x = 0)] - 0 and max |w,|] — o0 as
r — o0.
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Table2 Values of 8, p and pp, a s

extracted via a fit of spectra |@y | P Pb

to model (62), obtained from 0.69 0.2338 —2.2446 -

eigenvalue problem simulations

of Eq. (84) for various values of 0.695 0.5954 —2.2787 )

a,ac <a<1 0.7 0.8177 —2.3333 16.407
0.71 1.1598 —2.4494 9.3259
0.72 1.44 —2.55 6.81
0.73 1.73 —-2.79 5.51
0.75 2.20 —2.96 4.26
0.8 - - 3.26
0.85 - - 2.55
0.9 - - 221

8 and p are extracted from the fit |@g| oc exp(—§lk|)/|k|P to the
central part (k ~ 0) of the spectrum and pj, is extracted from the fit
|@g | o< 1/|k|Pb in the tails (k >> 1) of the spectrum. Simulations with
a > 0.71 were performed in double precision arithmetic. To see the
power-law tail of the spectrum and extract pj, in the case of a = 0.7,
we had to use quadruple precision. For a, < a < 0.695, the power-
law tail was not observable even in quadruple precision. See Fig. 29
for the spectra and plots of p(a) and pp,(a). The accuracy of §, p and
pp approximately corresponds to the number of digits provided in the
table

12 Conclusions and Discussion

We have performed a systematic sweep of the parameter a in the generalized CLM
equation (1) to determine the possibility of singularity formation and, when it occurs,
its type, i.e., collapse versus blow-up. We identified a new critical value a = a, =
0.6890665337007457 . .. such that for a < a. collapse occurs both on the real line
x € R and for periodic BC. Here, collapse means that not only is there a finite-
time singularity in which the amplitude of the solution w(x, #) tends to infinity, but
there is also a catastrophic shrinking of the spatial extent of the solution to zero as
t — t., described by the self-similar form (6). In the intermediate range a, < a < 1,
we found there is finite-time singularity formation for x € R, with the self-similar
solution (6) experiencing an infinite rate of expansion as t — f.. This type of self-
similar singularity formation, in which the spatial domain does not collapse, is termed
“blow-up.” The power « in Eq. (6) controls collapse (for « > 0, a < a.) versus
blow-up (¢ < 0, a > a.). We elucidated the dependence of o (a) on a via both direct
numerical simulation of Eq. (1) and the solution of a nonlinear eigenvalue problem (46)
using the generalized Petviashvili method (74). We have also performed multiprecision
simulations (up to 68 digits of accuracy) to demonstrate the possibility of recovering
a(a) and the structure of self-similar solutions with any desired precision.

We show that collapsing solutions of (1) have finite energy E g up to and including
the critical time 7, for a < 0.265 £ 0.001. Such finite energy solutions are of interest
in analogy with the problem concerning global regularity of the 3D Euler and Navier—
Stokes equations with smooth initial data, see Fefferman (2006) and Gibbon (2008).
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We found for general values of a that the self-similar solution (6) is real analytic for
a < a., while it has finite support fora. < a < 1.

We identified that the blow-up for periodic BC with a, < a < 0.95 is qualitatively
different from that for x € R, because the periodic BC arrests or blocks the unbounded
spatial expansion of the solution on the real line. To our surprise, such arrest does
not result in the global existence of the solution but instead leads to a new form of
self-similar blow-up (9), in which weak singularities develop at the boundaries of the
periodic domain. In the limita — aj, this self-similar solution turns into an infinitely
smooth (C*°) solution. We believe that the qualitative difference in blow-up between
x € R and periodic BC might serve as an interesting lesson relevant to the search for
singularities in the 3D Euler equation.

Both self-similar solutions (6) and (9) are nonlinearly stable, as follows from our
simulations. Quite generic classes of IC converge to these solutions during the temporal
evolution. In the case of Eq. (6), such convergence/stability is understood in the sense
of convergence to a family of self-similar solutions, up to a rescaling in x, because of
the symmetry (51) of Eq. (46).

The structure of the leading-order singularities in the complex plane x (which is
the analytical continuation from x € R) is determined by Theorem 1. That result is
valid for both x € R and periodic BC and is in full agreement with simulations. For
a < ac, the leading-order singularities are the closest singularities to the real line
in the complex x-plane. For a > a,, these singularities still determine the structure
of self-similar solutions near x = 0, while the solution near the boundaries of finite
support in x € R and the periodic boundaries for periodic BC are controlled by less
singular terms. The self-similar solution profiles for these a have been found with
high accuracy by solving a nonlinear eigenvalue problem. We have also proved in
Theorem 3 that, except for the exact closed-form solutions fora = 0 and a = 1/2, the
analytical structure of singularities in the complex x-plane goes beyond the leading-
order singularities. In particular, we numerically identified using the AAA algorithm
the existence of additional, nonleading-order branch points for a # 0, 1/2.

We found from our simulations that quite generic IC results in the global existence
of solutions for a 2 1.3 and x € R, while for periodic BC global existence is ensured
for a > 1. In the remaining gaps 1 < a < 1.3 forx € Rand 0.95 < a < 1 for
the periodic case, our simulations are inconclusive and unable to distinguish between
singularity formation and global existence. We believe that more concrete results in
this range of a will require additional analysis and/or substantial efforts in simulation.

We suggest that among many other issues, the following questions would be inter-
esting to address in future work:

1. Analytical study of the complex singularities beyond the leading-order singulari-
ties addressed in Theorem 1. In particular, the case a = 2/3 might be especially
interesting because the leading-order singularity is very simple, namely a third-
order pole.

2. Either extend GPM to the compactly supported case a > a. for x € R, or use
a version of the method in Chen et al. (2019) based on cubic splines. However,
splines generally lose information about the analyticity of solutions in the complex
plane. One way to improve the performance of GPM in this range of a might be
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to use a coordinate transform in the form of a conformal mapping which would
simultaneously resolve the numerical grid near x = %x;, while keeping the analyt-
icity of the solution intact. This type of approach has been suggested in Lushnikov
etal. (2017).

3. Fill the gaps in our knowledge on blow-up versus global existence of solutions in
the parameter regime 1 < a < 1.3 for x € R and 0.95 < a < 1 for periodic BC.

4. Look for possible analytical continuation/bifurcation at a = a. between self-
similar solutions (6) for the case x € R and Eq. (9) for periodic BC.

5. Perform an analysis of the nonlinear stability of the blow-up solutions. This could
be qualitatively similar to the stability of collapse in PDEs such as the nonlinear
Schrodinger equation and the Patlak—Keller—Segel equation, see, e.g., Zakharov
(1972), Childress and Percus (1981), Sulem and Sulem (1999), Brenner et al.
(1999), Kuznetsov and Zakharov (2007), and Lushnikov et al. (2013).

6. Analyze the formation of singularities at the initial time ¢+ = 0. This can give
information on the type of singularities which first form in the complex plane,
and subsequently move toward the real line. Such an analysis has been previously
performed for the evolution of a vortex sheet in the Kelvin—Helmholtz problem
(Cowley et al. 1999), which is also governed by a nonlocal PDE. However, a
significant difference between the current problem and the vortex sheet problem is
that here the singularities initially form at infinity in the complex plane, whereas in
the vortex sheet problem they are generated at finite locations, due to a singularities
in the kernel of the nonlocal term at these locations.
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A Hilbert Transform for Transformed Variable

In this Appendix, we derive the expression for the Hilbert transform in the auxiliary
variable g (52) of Sect. 7.
The change of variable (52) in Eq. (2) together with (53) results in

1 e ’ 1 b4 £’ dg’
Hf(x) = —p.v. fx ),dx’ =—p V./ ACH) ; 1 ;
n oo X =X T —x tan § — tan & 2 cos? &
{ /n @) [1 + tan % tan% - tan% (tan% — tan %)] ,
= —p.V. 7 dg
2 x tan 4 — tan &
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~ b
1 T / 1 ~ /
= —p.V./ &dq/ -— / f(g) tan q—dq/ =H>" f(q) +CF",
2 —7 tan (q—q/> 2 2 :
2 -

(85)

where we used the identities

tana — tan b 1 2 q
tan(a —b) = ——  and ——— =tan" — + 1
1 +tanatanb cos? % 2

as well as definitions (55) and (56). Equation (85) ensures that lilgtl [(H?™ f (q9) +
q—=*m
c71=0.
Also HZ”f(x), Eq. (55), is the reduction of H f(x), Eq. (2), to the class of 27-

periodic functions. Assuming that f(x) is the periodic function with the period 2,
we obtain from Eq. (2) that

Hf(x) = Z pv/ T ACO R ip.v./ﬂ S (GNP Sy

x—x"+2mn 27 & tan(x—Tx’>
(86)
where we used definition (55) and the identity
- 1 1
n;oo X+27n 2tan g ®7)
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