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Abstract—The temperature dependence of the ionization
coefficients of AlAsSb has been determined from 210K to 335K by
measuring the avalanche multiplication in a series of three p*-i-n*
and two n*-i-p* diodes. Both electron and hole ionization
coefficients reduce at approximately the same rate as the
temperature increases but much less so than in InAlAs or InP. This
results in a significantly smaller breakdown voltage variation with
temperature of 13 mV/K in a 1.55 pm thick p*-i-n* structure and a
calculated 15.58mV/K for a 10Gb/s InGaAs/AlAsSb separate
absorption and multiplication avalanche photodiode (SAM-APD).
Monte-Carlo modelling suggests that the primary reason for this
reduced temperature dependence is the increased alloy scattering
in the Sb containing alloy, reducing the impact of variation in
phonon scattering rate with temperature.

Index Terms—Avalanche breakdown, avalanche photodiode
(APD), impact ionization, AlAsSb, InP, InAlAs temperature
dependence, ionization coefficient, Monte Carlo modelling

I. INTRODUCTION

Avalanche photodiodes (APDs) are widely used in optical
detection systems as they can provide higher sensitivity and a
larger signal to noise ratio than p-i-n diodes due to the internal
gain that is provided by avalanche multiplication. This
avalanche multiplication is a result of the impact ionization
process that electrons and holes undergo at high electric fields,
which can be highly temperature dependent. For impact
ionization to occur, carriers need to gain the ionization
threshold energy by traversing the high field multiplication
region. This threshold energy depends on the bandgap energy
(E) [1], which is only weakly dependent on temperature [2].
Prior to an impact ionization event, carriers travelling in an
electric-field gain and lose energy due to various scattering
processes [3]. Of these, phonon scattering is the most
temperature dependent process and can make the overall
avalanche multiplication factor highly temperature sensitive.
To ensure that the linear mode avalanche gain, and hence the
sensitivity, of an APD receiver module, or the breakdown
voltage and overbias in a Geiger mode APD, does not change
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with temperature, an active variable bias circuit is sometimes
required to modify the reverse bias voltage across the device as
the temperature changes [4]. Alternatively, the temperature
must be regulated by an embedded thermoelectric cooler (TEC)
and temperature sensor for the purpose of temperature
stabilization [5]. Both add extra complexity and cost to the
receiver modules unless the APD is made of a material which
has a weak temperature dependent ionization process and small
temperature coefficient of breakdown voltage,

AV,
Cpa= bd/AT >

where AV, is the change in breakdown voltage and AT is the
difference in temperature. These Cps values are material
dependent and can be significant in silicon APDs (1.1V/°C) [6]
and in InGaAs APDs (0.1V/°C) [7]. As carriers undergoing
impact ionization in a thicker avalanching structure will
encounter more phonons than in a thinner structure, they will
undergo a larger change in V,; with temperature, so it is
necessary to ensure that the widths of the high field regions are
similar when comparing different material systems.

Recently, there has been considerable interest in Sb containing
III-V alloy systems for use as the multiplication region in APDs.
These materials show significantly larger electron to hole
impact ionization coefficient («to f) ratios [8]-[10] compared
to silicon, InP or even InAlAs, so are attractive for low noise
APDs [11]. Xie et al. demonstrated a small C,; of 0.95 - 1.47
mV/K for 80 - 230nm thick A1AsSb lattice matched to InP [12].
Some of the reasons for using very thin avalanche regions are
to utilize the ‘dead-space‘ (the minimum distance carriers need
to travel to be in equilibrium with the electric-field), to reduce
the ionization excess noise [13]. Thin structures also provide a
higher gain-bandwidth product for a given «/f ratio [14], and
benefit from having a smaller C,;. However the appearance of
Sb containing alloys with very large o/f ratios means that we
can now achieve both very low noise and very high gain-
bandwidth product (GBP) operation with fairly thick
avalanching structures. While the Cp; of AllnAsSb alloy with
thick avalanching structures (0.89um) has been investigated
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[15], [16], no such study exists for AlAsSb. Unlike AllnAsSb,
which is lattice matched to GaSb, A1AsSb is lattice matched to
InP and InGaAs, offering the prospect for very high sensitivity
telecommunications APDs operating at very high bit rates [17].
In this work, we look at the avalanche multiplication
characteristics in five AIAsSb p-i-n and two n-i-p structures that
cover avalanche region widths of 80nm to 1.55um over a
temperature range of 210K to 335K. From these, we extracted
the temperature dependent ionization coefficients over a wide
electric field range of 220kV/cm to 1250kV/cm and compared
them to InP and InAlAs structures. We also highlight some of
the challenges in undertaking these measurements accurately in
materials that have a large o/fratio and a relatively small Cp.
Finally, we undertake Monte Carlo modelling to explain the
mechanism behind the reduced temperature dependence seen in
AlAsSb.

II. LAYER DETAILS
Table I: A summary of details of the layers used in this work

1\'Iomi.nal ?V f}tted i—re.gion
b | it | Ler | | rion | o

(nm) (um) 10'% em™)
Pl AlAsSb PIN 1.5 1.56 5
N1 AlAsSb NIP 1.5 1.58 7
P2 AlAsSb PIN 0.6 0.66 8
N2 AlAsSb NIP 0.6 0.66 8
P3 AlAsSb PIN 1 1.15 10
P4 AlAsSb PIN 0.25 0.23 1
P5 AlAsSb PIN 0.1 0.08 1
P6 InAlAs PIN 1.01 1.01 3
N3 InAlAs NIP 0.5 0.51 5
P7 InP PIN 0.55 0.51 1

The AlAsSb p*-i-n* and n*-i-p™ structures P1-P3 and N1-N2
were grown by a digital alloy growth technique as described
previously [9]. P4 and PS5 are two thin structures for which the
change in breakdown voltage with temperature has been
previously reported [12], [18]. To enable direct comparisons to
be made in the same measurement set-up, three further
structures were investigated; two InAlAs structures (P6, N3)
and one InP structure (P7). All structures grown are
homojunctions with heavily doped top cladding layers that
are >200 nm thick and undoped intrinsic regions. The depletion
region widths were determined by fitting the experimental
capacitance-voltage (C-V) to an electric field solver based on
Poisson’s equation and are detailed in Table I. By using
standard photolithography and wet chemical etching circular
mesa diodes were fabricated with diameters from 50um to
420pum.

1. METHODS
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Fig.1. a) Forward voltage drops across a 420pum diameter P3 device at 1pA over
a wide temperature range used to calibrate the junction temperature. Inset shows
the forward I-V characteristics at different temperatures. b) Activation energy
calculated from the temperature dependence forward bias voltages.

AlAsSb has an indirect bandgap of ~1.55¢V at room
temperature and therefore should have a low bulk dark current.
However, due to the high surface leakage current of the
unpassivated mesa diodes (especially at high temperatures), a
phase sensitive detection technique was used to extract the
photocurrent multiplication measurement with modulated
405nm laser light for A1AsSb and 532nm for InAlAs and InP.
These wavelengths have >99% absorption in the top doped
cladding layers and so ensure pure electron (in p*-i-n*) and hole
(in n*-i-p™) initiated multiplication (M. and M, respectively).
Photocurrent measurements as a function of reverse bias
voltage were repeated at different optical powers and on several
devices to ensure their repeatability. The real multiplication is
determined by applying a bias-dependent collection efficiency
correction to the measured photocurrent versus voltage
characteristic to account for the movement of the depletion edge
at the p+ (n+) — 5’ region in the p*-i-n* (n*-i-p*) structures
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respectively [19]. This enables the multiplication to be
determined to an accuracy of 5% or better. To measure small
values of C,; we need to know the actual junction temperature,
and this is determined using the forward voltage drop at a
current of 1 pA as an indication of the actual junction
temperature. This shows a linear relationship as shown in Fig.1a
for P3. The temperature dependent forward I-V also enables us
to determine an activation energy for the material (Fig. 1b) at
0V, which at ~0.8eV is very close to E,/2. When temperature
dependent photomultiplication measurements were undertaken,
as detailed in the subsequent section, in a low temperature
cryostat or on a heater stage, forward I-V measurements were
also undertaken to confirm the temperature of the device under
test.

IV. TEMPERATURE DEPENDENT AVALANCHE
MULTIPLICATION CHARACTERISTICS

In most semiconductors where the temperature dependence of
ionization coefficients have been investigated such as silicon
[20], GaAs [21], InP [22] and AlGaAs [23], both o and S
decrease at approximately the same rate with increasing
temperature. However, the behavior in a digitally grown
InAlAs alloy has been reported to be different, with a
decreasing and £ increasing with increasing temperature [24].
Extracting the values of @ and f as a function of temperature
requires us to have photomultiplication measurements on p*-i-
n* and n*-i-p* structures, preferably with different avalanching
widths to cover a wide electric field range.

Measurements of M. and M) were undertaken between 210K
and 335K at 30-40K intervals. Fig. 2a shows only the M. taken
at 210K, 295K and 335K on the three thick AlAsSb p*-i-n*
structures (P1, P2, P3), with the others omitted for clarity. The
change in the multiplication with temperature is small in even
the thickest A1AsSb structure (P1). This change is smaller in the
1.15pum structure (P3) and continues to decrease in the 0.66pum
structure (P2). Measurements on the two thinnest structures (P4,
P5) show extremely small changes between 210K and room
temperature in agreement with earlier results [12]. The results
on the two AlAsSb n*-i-p™ structures (N1, N2) show that M,
behaves in a similar manner with changing temperature to Me..
Fig. 2b shows the multiplication from P1 and N1 plotted as M-
1 on a log scale to accentuate the temperature dependence at
very low values of multiplication. Also shown for comparison
is the M-1 for the 1.01um thick InAlAs (P6) and the 0.55pum
thick InP p*-i-n* structures (P7).

Values of M}, could only be obtained up to ~2 in the AlAsSb n*-
i-p* samples, due to the fact that very high electric-fields are
necessary to measure any hole multiplication in this material
system [9]. For M < 1.05, the ionization process is primarily due
to the injected carrier type unlike at higher values of M when
feedback results in both electrons and holes contributing to the
multiplication. Comparing P1 and N1 in Fig. 2b therefore
suggests that both a and f decrease with increasing temperature
in AlAsSb and by approximately similar amounts. The results
also show that despite the InAlAs (P6) and InP (P7) structures
being thinner, they show larger changes with temperature.

Voltage (V)
Fig. 2. a) Temperature dependent multiplication in different thickness AIAsSb
p-i-n and n-i-p diodes. b) Temperature dependent M-1for the ~1.55um thick
AlAsSb p*-i-n* and n*-i-p*strucutres (P1, N1), 1.0lum InAlAs (P6) and
0.55um thick InP (P7). The blue, green and red symbols represent
measurements at 210K; 295K and 335K respectively. Solid lines are modelled
results using the parameterized ionization coefficients.

Using the multiplication data shown in Figs. 2a and 2b, the
ionization coefficients were extracted by solving the ionization
integral across the multiplication region given by [25]:

exp[ — f, (a(x) — B(x)) dx]

M(x) = W =
1— [y a@x)exp[— [; (a(x) — B(x»))dx"]dx

where M(x,) is the multiplication due to the injection of an
electron-hole pair at position x,, and W is the width of the high
field region. Uncertainties in W are largely due to the C-V
measurements and dielectric constant value assumed, giving
rise to a 3% uncertainty in the exact electric field.
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Fig.3. a) Ionization coefficient variation with temperature for both AIAsSb and
InAlAs from 210K to 335K. Solids lines are AlAsSb and dots are InAlAs. b)
ionization coefficient variation with temperature for InP from 200K to 350K.

The variation in the electric field across the depletion region
due to the background doping was accounted for in a numerical
model when extracting o and S, and these are shown in Fig.3a
and 3b for temperatures from 210K to 335K. While both a and
p decrease with increasing temperature in AlAsSb, the change
is very small and only significant at the lower electric fields. A
similar analysis was undertaken on the multiplication from the
InAlAs (P6, N3) and InP (P7) structures, supplemented with
data from ref [26]. Fig. 3a shows that between 210K to 335K
and for an ionization coefficient of 100 cm™', the electric-field
has to increase by ~2.4% for a and 3.4% for f in AlAsSb. For
InAlAs, however, the increase is much larger, at 4.8% for a and
5.7% for B. The change in InP is significantly larger over the
same temperature range (not shown in fig 3b), with the electric
fields increasing by 11.6% for a and 11.4% for . The results
from Taguchi et al. [22] are shown in Fig. 3b for comparison
and a similar temperature dependence is observed as the
temperature increases from 290K to 350K. The temperature
dependent ionization coefficients for AlAsSb, InAlAs and InP
are parameterized into the following equations [25], which can
be used to estimate the multiplication and breakdown voltage

as a function of temperature. These temperature dependent
ionization coefficients assume that the carriers are only
dependent on their local electric field and do not take any
account of ‘dead-space’ effects [27] or their history [28]. While
this will overestimate the low values of multiplication in very
thin avalanching structures [29], it will not affect the accuracy
of the multiplication in most thick APDs. This is demonstrated
by the modelled results in Figs. 2a and 2b, which agree well
with experimental data.

For AlAsSb:
° For 220 KV/em <E <500 KV/cm and

3.4—9x102><T+1.10><105)1_43]

a(E,T) = 5.70 X 10%exp [—( - cm
(2a)
e For500KV/cm<E < 1250 KV/cm
2 6
a(E, T) = 3.90 x 10° exp [-(ZZ22000125] - oy
(2b)
. For 360 KV/cm < E < 1250 KV/cm
2 6
B(E,T) = 3.20 x 105 exp [_(2.39><10 x;+1.63x10 )1_60] om’!
(20)
For InAlAs:
. For 220 KV/ecm < E <980 KV/cm and
2 5
a(E,T) = 2.20 x 105 exp [_(3.97x10 x;+7.76x10 )1_71] em’!
(2d)
2 6
B(E,T) = 2.95 x 105 exp [_(3.89><10 x;+1.04—x10 )1_71] om’!
(2e)
For InP:
. For 180 KV/cm < E < 480 KV/cm
3 6
a(E,T) = 1.41 x 106 exp [—(1'67“" Lt )1-23] cm!
\ . (29
B(E,T) = 211 x 10° exp [_(1.68X10 x;+1.32><10 )1.15] om!
(2g)
. For 480 KV/cm < E < 750 KV/cm
3 6
a(E,T) = 1.41 x 10° exp [_(2.01><10 x;+1.30><10 )1_15] om’!
(2h)
3 6
B(E,T) = 2.20 x 105 exp [_(2.37><10 x;+1.53><10 )1_01] om’!
(21)

Determination of the breakdown voltage at different
temperatures is often done by plotting the inverse of the
multiplication (//M) and extrapolating it to zero [30]. This //M
becomes increasingly inaccurate as a predictor of V,,; as the o/
ratio increases, as shown in Fig. 4. The larger the o/ ratio, as
in the thicker AlAsSb structures, the larger the multiplication
needs to be, to accurately predict V4. Even values of M, up to
40 (1/M~0.025) for P1 will not enable an accurate
extrapolation of the //M, line. Using empirical expressions like
those suggested by Miller [31] to predict M and estimate
Vpaappear to work well only for materials with o/ ratios close
to unity. Accurate predictions of V,,; should instead rely on
calculating the M, from the ionization coefficients as shown by
the solid lines in Fig. 4. Changes in voltage required for M.=6
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(or larger) measured experimentally, however, seem to agree
closely with those calculated at breakdown (to within 3%) and
so this can be used to provide us with accurate estimates of Cj, .
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Fig. 4. Determination of V,,from I/M showing an increasingly non-linear
behaviour when the a/f ratio is large. The blue (210K), green (295K) and red
(335) symbols refer to the experimental data taken on the five AlAsSb p*-i-n”*
structures. No high temperature measurements were done on the two thinnest
p-i-n*structures (P4, P5). The solid black lines are calculations using equations
2a-2c.
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Fig. 5. Comparison of C,; in AlAsSb (red symbols) of this work with the
reported data for other semiconductors including InP[32], InAlAs[32], Si[20],
AllnAsSb [16]. (%) are the measurements on InP and InAlAs done respectively

in this study. Black lines are the estimated values of P for the different materials.

The Cp,y of different thickness p™-i-n* or n*-i-p™ diodes for

different semiconductors obtained in this study are shown in Fig.

5. Data for the different thicknesses of InP and InAlAs
structures taken from [32] are shown as the green and blue
symbols respectively. Results from P7, P6, and N3 (shown as
symbols) agree well with this data. The C},; decreases with
decreasing avalanche thickness because carriers experience
fewer phonon collisions prior to impact ionization at the higher
electric fields [20],[33]. The Cpq in AlAsSb is however
significantly lower than those of InAlAs and InP of similar

thicknesses. The results for P1-P3 are in good agreement with
the previously published results on P4 and P5. The relationship
between the i-region thickness and Cp4 for different materials
can be parameterized as:
Coqg = P X W,, mVK™1 (3a)
Where P is the Cp4 gradient for different materials and W, is
the i-region thickness in um. P is 8.5, 16.5, 25, 43 mV/K/um
for AlAsSb, InAlAs, Si, and InP respectively and is shown by
the solid black lines in Fig.5. Here we assume that the Cpg is
equal to zero when there is no depletion region. This expression
holds true when the electric-field is constant across the
avalanche region width as in perfect p*-i-n* or n*-i-p*
structures. In very thin structures, the cladding layer depletion
needs to be taken into consideration to get agreement with P.
From Fig 5, for a given thickness of 0.6um, the C,, for InP, Si,
InAlAs and AlAsSb are 25.3mV/K, 15.5mV/K, 10.5mV/K and
5.14 mV/K respectively. Interestingly, the Aly7Ing3As3Sbo.7
quaternary alloy grown lattice matched to GaSb has been
reported recently as having an even lower Cp,4 than AlAsSb
(shown in Fig. 5).

Telecommunication wavelength APDs utilize a thick InGaAs
absorption region at a low electric field and a high field
multiplication region in a SAM-APD structure. It is
straightforward to show that the C,;0f a SAM-APD depends on
the Cp4 of the multiplication region width C,;(W,,) and the
total depletion of the device, as:

Coa(SAM APD) = Cyq(Wpy) X Z2I28R 7 =1 (3b)

m

where Wepietion is the total depletion width of the SAM APD
and W, is the multiplication region thickness [32].

By substituting equation 3a into 3b, the Cp4 expression for a
SAM APD can be given as:

Cpa(SAM APD) = P X (WopstWegtW;,) mVK ™1 (3c)
Where W, is the absorber thickness and W, is the thickness
of the charge/grading layers.

A 10Gb/s SAM APD using a 1.1um InGaAs absorber requires
a 0.2um InAlAs multiplication region with a V,,; of around
32V [34], and this would have an estimated C,, of 28.3mV/K.
Replacing the 0.2um InAlAs multiplication layer with 0.6um of
AlAsSb would still enable operation at 10Gb/s with a larger V4,
but would have a better sensitivity (due to the larger o/f ratio)
[17] and a much lower C,,; of 15.58mV/K.

V. DISCUSSION

The weak temperature dependence of o and f in ternary
semiconductors can be attributed to the presence of alloy

scattering, which is considered insensitive to temperature
changes [35]. The effect of alloy scattering on the temperature
dependence of a in InGaAs [36] and on the breakdown field in
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AlGaAs (x=0.6) [33] has been shown using analytical-band
Monte Carlo (MC) models. These simulations showed that the
alloy scattering contributes significantly to the overall
scattering rate, reducing the relative importance of phonon
scatterings in these ternary alloys. In this work, we employ a
conventional analytical-band MC model [37] to demonstrate
the effect of alloy scattering on the temperature dependence of
pB, in AlAsSb and InAlAs semiconductors. The scattering
mechanisms considered in this MC model are acoustic, polar
optical, non-polar optical, intra- and inter-band phonon
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Fig.6. a) Analytical-band MC model for temperature dependence of the f in
AlAsSb and InAlAs Symbols are data from Fig.3and lines (solid lines (210K)
and dashed lines (335K)) are MC simulation results. b) Shows the same data
but in a linear plot.

scattering processes and alloy scattering for hole transport in
the first three valence bands (the heavy hole, light hole and spin-
split off bands). This MC model is used to reproduce the field

dependence of £ in AlAsSb and InAlAs at a temperature of
335K, as shown in Fig.6. The alloy disorder potential used is
0.9¢V for AlAsSb and 0.6eV for InAlAs, comparable to the
values calculated by Ong et. al [38] based on the
electronegativity difference of Phillips [39]. Changing the
temperature to 210K while keeping the other parameters
essentially identical shows that the model produces results that

are in good agreement with S from the experimental
measurements for both AIAsSb and InAlAs at this temperature.
In order to demonstrate the role of alloy scattering on the weak
temperature dependence of £ in AlAsSb, we repeated the
simulations but this time reducing the alloy potential in AlAsSb
to that of InAlAs, i.e. 0.6 eV, while increasing the phonon
scattering rates to reproduce the f at 335K (grey dashed line in
Fig. 6). The simulations now show a much more significant
increase in f at 210K as shown in Fig. 6 by the solid grey line.
This is due to holes experiencing less alloy scattering while the
temperature sensitive phonon scatterings have a relatively more
significant effect. Therefore, this suggests that the temperature
dependence of ionization coefficients in any alloy
semiconductor is not just determined by the phonon (or total
scattering rates) but by the ratio of phonon scatterings and alloy
scattering rates in that material. Sb has a large mass, so the
phonon energy of Sb alloys is likely to be smaller, leading to
possibly a higher number of phonons. However, this may not
be as important as the relative increase in the proportion of
scattering events that are due to alloy scattering. Therefore, a
material with a large alloy potential like AlAsSb can exhibit a
weak temperature dependence of ionization coefficients given
that alloy scattering plays a more dominant role in the carrier
transport before impact ionization. The even lower C,,; seen in
Alp.7Ing 3As0.3Sbo.7 [16] may be due to the fact that it has more
Sb than AlAsSb, or because it is a quaternary alloy.

VI. CONCLUSION

Measurements of the avalanche multiplication in a range of
AlAsSb p-i-n and n-i-p diodes from 210K to 335K show that o
and f both decrease as the temperature increases and at similar
rates. The change in a and # with temperature decreases as the
electric field increases. AlAsSb also shows a significantly lower
breakdown voltage variation with temperature than equivalent
thickness InAlAs and InP structures. Monte Carlo modelling
suggests that the larger alloy potential of AlAsSb is primarily
responsible for this reduced temperature sensitivity. The
weaker temperature dependence of AlAsSb means that thicker
avalanching regions can be used in SAM-APD structures, and
these are still likely to be better than using InP or InAlAs
multiplication regions.
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