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Abstract—Mobile social sensing leverages a large group of
individuals having mobile devices capable of sensing and com-
puting to perform intelligence sensing tasks. To perform smart
participant selection (i.e. task assignment) for mobile social
sensing, most of the cloud-based platforms often require mobile
users to report their personal information, such as sensing cost,
location and sensing quality. Therefore, the users might suffer
from potential privacy breaches during the participant selection
phase especially when they are not selected for performing
the tasks. Existing solutions based on participant grouping can
resolve this privacy leakage by leveraging secure sharing or group
bidding within groups. However, the group formation problem
has not be well studied, and the communication overhead over
formed groups is usually ignored. To address these issues, in
this paper, we consider a new set of privacy-preserving grouping
problems over edge clouds to minimize the communication cost at
edge clouds during secure sharing/bidding, while satisfying each
participant’s privacy requirement. Various grouping schemes are
carefully designed to fulfill the optimization goal for two different
scenarios: tree-based hierarchical edge clouds and graph-based
interconnected edge clouds. Extensive simulations over both
synthetic and real-life datasets are conducted to confirm the
efficiency of all proposed schemes.

Index Terms—Privacy preservation, participant grouping, mo-
bile social sensing, mobile crowd sensing, edge computing.

I. INTRODUCTION

W ITH the rapidly growing number of mobile users who
carry their smart phones or various wearables equipped

with multiple low-power sensors, mobile social sensing (MSS)
(or called mobile crowd sensing, MCS) becomes a promising
sensing paradigm to collect observations of the physical world
[1]–[3]. Compared to traditional static sensing, mobile social
sensing provides better coverage at a lower cost by leveraging
sensing capability (and/or human intelligence) from a large
number of mobile users to accomplish large-scale sensing
task. A mobile social sensing system normally includes three
essential parts: a large pool of mobile participants, a set
of sensing tasks, and a cloud-based platform which recruits
specific participants for a given task. One of the key challenges
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in such a system is participant selection (also called task
assignment) at the platform, i.e., how to select the appropriate
mobile users to perform particular sensing tasks under certain
constraints. Recently, various participant selection problems
have been well studied from different aspects, such as cover-
age optimization [4], [5], energy efficiency [6]–[8], incentive
mechanism [9]–[15], sensing quality [16]–[19], data collection
[20]–[22] and truth discovery [23]–[25]. In this paper, we in-
vestigate another important but less studied issue in participant
selection: privacy-preserving participant grouping.

To protect sensitive information of mobile participants in
mobile social sensing, different privacy protection techniques
have been proposed [17], [24], [26]–[32]. In a mobile sensing
system, usually there are two types of sensitive information
need to be protected from privacy breaches: sensing data and
participant information. On one hand, sensing data collected
from mobile participants may include various sensitive per-
sonal information, such as actual value of sensed data, location
tag or user ID. To protect these sensitive information, vari-
ous protection methods designed for data privacy, participant
anonymity, and location privacy can be adopted [24], [29]–
[33]. On the other hand, mobile users usually need to provide
some participant information (e.g., bid value, location trace, or
sensing quality) to the platform so that the platform can select
the appropriate users. However, the submitted information
could be sensitive. For example, the bid value may indicate a
user’s context (e.g., location or route) [26]–[28], or the sensing
quality may leak the sensing ability of a user device (e.g.,
mobile device quality) [17]. Although data/location privacy
of sensed data have been well studied, privacy-preserving
participant selection to protect participant information during
participant selection has rarely been discussed until quite
recently [17], [26]–[28].

Current solutions for privacy-preserving participant selec-
tion usually have two steps: participant grouping and secure
bidding/sharing. First, based on the concept of k-anonymity,
the mobile users are assigned into small groups [27], [28],
[47] where their privacy requirement could be satisfied (i.e.
the group size of their group is larger than the desired group
size k). Then a secure bidding or sharing [17], [27], [28] will
be conducted within and across the formed groups so that
the platform can select the participants to perform the task.
Comparing to complex encryption methods over all users at the
platform, grouping-based solutions not only protect participant
information by guaranteeing k-anonymity but also make the
secure sharing/bidding process more scalable by significantly
reducing its computation or communication overheads.
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The idea of privacy-preserving grouping for participant
selection was first introduced by [27] but without discussion
on how to form the groups. In an extended version, Li et
al. [28] formally define and investigate the privacy-preserving
participant grouping problem, where each participant should
be put into a group whose size smaller than or equal to
its privacy requirement. The overall goal of the grouping is
to minimize the total communication cost during the secure
bidding/sharing of participant selection. Two concise and
straightforward solutions based on sorting or dynamic pro-
gramming are then proposed. However, they did not consider
the realistic communication delay/cost among group members,
which makes them perform poorly in a real distributed cloud-
based mobile sensing system. Therefore, in this paper, we
focus on how to group users together in consideration of more
realistic communication cost.

In existing solutions, participant selection are usually per-
formed at the centralized platform located on a remote cloud
server. Mobile users have to submit their participant infor-
mation (such as bids, sensing qualities) to the remote server
for participating the selection processing. This leads to long
communication delays (might not acceptable for time-sensitive
tasks) and privacy concerns (sending sensitive information
to the cloud). To mitigate these issues, we adopt the edge
computing [34]–[36] in our design by putting the grouping
and selection processing over edge clouds (a group of small-
scale servers at the edge of the network). Fig. 1 shows the
overall architecture. Using edge clouds not only reduces the
communication latency but also provides another layer of
privacy protection [37] (since the sensitive information is
kept within nearby edge servers which is closer to the users
compared with the remote platform)1. In this paper, two types
of edge cloud architectures (hierarchical or interconnected)
will be considered.

We specifically investigate the privacy-preserving partici-
pant grouping over edge clouds, where each user’s privacy re-
quirement must be satisfied with the minimum communication
cost among group members depending on their locations in the
edge cloud. Privacy-preserving participant grouping over edge
clouds has its own unique challenges. First, there is an trade-
off to find the optimal group location for each group in the
edge cloud. To reduce the communication latency, it prefers to
place the group on the server closer to group members, while
grouping with users from further servers could provide better
privacy. Second, the group size matters too. The larger group
size is, the better privacy protection is. However, the group
with larger number of users leads to higher computation and
communication cost during the secure sharing/bidding. Last,
the overall costs and loads among the groups and edge servers
should be balanced or optimized.

Our contributions of this work are summarized as follows.

1In general, edge computing provides better security and privacy protection.
First, local data processing, filtering and anonymizing by an edge server can
reduce the amount of sensitive and private information that is sent to the public
cloud [37]. Second, compromising a single edge server will only affect a small
amount of users, while a break at a centralized cloud will cause security breach
at a very large scale [34]. Last, there are also significant existing efforts on
secure edge servers via different protection techniques [38]–[40], including
several dedicated for edge-computing-enabled mobile sensing [41]–[46].

…

Task Owners

Mobile Sensing Platform

Edge Clouds

3. Tasks

2.Group

Mobile Users

1. Group Size

4. Tasks

5. Tasks 6. Bid/Quality

8. Selected
Users/Groups

7. Group 
Bid/Quality

9. Selected Users

Participant 
Selection

IntraGroup Secure 
Bidding/Sharing

Participation 
Grouping

Fig. 1. Mobile sensing system over edge clouds mainly comprises three
components: mobile users - participants, edge clouds - a third party for
grouping and secure sharing/bidding, and the mobile sensing platform -
receiving sensing tasks from task owners and performing the participant
selection. Arrows with numbered labels (1 to 9) show the whole sequence
of steps and interactions of participant selection over edge clouds.

• We mold privacy-preserving participant grouping (PPPG)
over edge clouds into different optimization problems,
Min-Max of group size (or its square) and Min-Sum of
group size (or its square) reflecting the communication
cost between hierarchical or interconnected edge servers.
To the best of our knowledge, this is the first work
coping with the privacy-preserving participant grouping
problem over the mobile sensing architecture with edge
clouds with considering the communication cost between
edge servers. The problems in this paper are much
more challenging and complex than a simpler version of
participant grouping in our previous work [28] where the
communication delay is ignored.

• We propose solutions for PPPG problems for two cases:
with hierarchical edge clouds (PPPG-HEC) or with inter-
connected edge clouds (PPPG-IEC). Two heuristic algo-
rithms Top-Down and Bottom-Up with time complexity
O(N log N) are proposed to resolve the grouping problem
with HEC. Two more efficient algorithms Merge-Server
and Merge-User with time complexity O(Y + X log X)
and O(Y + N log N) are proposed to cope with the more
general grouping problem under IEC. Here N , X , and Y
are the number of users, the number of edge servers, and
the number of links among all servers, respectively.

• Simulations on both synthetic and real-life datasets are
conducted to verify the proposed approaches. Simula-
tion results confirm the efficiency of these methods to
generate privacy-preserving groups over hierarchical or
interconnected edge clouds architecture and minimize the
communication cost.

The remainder of this paper is organized as follows. In Sec-
tion II, we give the problem definition of Privacy-preserving
participant grouping over edge clouds for two different situa-
tions: PPPG-HEC or PPPG-IEC. We then propose correspond-
ing grouping algorithms for these two scenarios in Section III
and Section IV, respectively. In Section V, we evaluate our
algorithms using simulations based on both synthetic and
real-world data traces. Finally, we present related work in
Section VI and conclude in Section VII. A preliminary of
this paper appeared in [47], and this version includes newly
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Fig. 2. Participant grouping over edge clouds: An example where 10 users (u1 to u10) are connected to different edge servers, and formed into three
groups at servers a, b & c for both HEC and IEC cases.

introduced grouping problem/schemes under interconnected
edge clouds, additional sets of simulation results, more com-
prehensive related works, and new theoretical analysis.

II. PARTICIPANT GROUPING OVER EDGE CLOUDS

A. MCS System with Edge Clouds

As shown in Fig. 1, the mobile sensing system with edge
clouds typically has three components: mobile users as partic-
ipants, the edge clouds near to mobile users, and the mobile
sensing platform at a remote cloud. Here, the edge clouds
(EC) play the role of a third party to divide all participants into
groups and facilitate secure sharing/bidding within groups. The
participants are still selected by the mobile sensing platform
over the remote cloud. Here we assume that both the platform
and the third party EC are semi-honest, i.e., they follow the
protocol but are curious to learn the information of others. In
this paper, we particularly concentrate on participant grouping
over edge clouds. After such grouping, standard participant
selection with secure sharing/bidding [17], [27] can be applied.
Fig. 1 describes the overall flows in mobile sensing system
with hierarchical or interconnected edge clouds.

Hierarchical vs Interconnected Edge Clouds: In this
paper, we consider two types of edge clouds, tree-based
hierarchical edge clouds and graph-based interconnected edge
clouds. Recall that the edge servers (or called edge nodes) are
semi-honest which only has influence on the secure bidding
process but not grouping. As shown in Fig. 2(a), the hierar-
chical edge clouds (HEC) can be represented by a tree with
multiple levels, connecting a set of X edge nodes (denoted by
V = {v1, v2, · · · , vX }). The number of children for each node
varies and is determined by the edge network architecture. For
each node v in the tree, we use lv , Av and Dv to denote its
level, its ancestor and descendant sets, respectively. Assume
that the root node has level 0, and there are I levels in total.
Then, the ancestor (or descendant) of node v at level l are
defined as Al,v (or Dl,v). We assume that mobile users are
directly connected to a leaf node in HEC where the delay
between mobile user and its connected edge node could be
neglected. In HEC, a mobile user can be grouped at any of
its ancestor node in the tree. When a mobile user is grouped
at a server at lower level (nearer to the root with a smaller
l), more potential participants can be grouped together for
better privacy but with the cost of longer communication
delay. As shown in Fig. 2(b), the interconnected edge clouds

(IEC) is represented by a graph G(V,E) where there could
be a link between any two edge servers. We assume that
X edge server nodes (denoted by V = {v1, v2, · · · , vX }) are
connected via Y links among them ( the link set is denoted by
E = {vivj | servers i and j connected}). For each link vivj ,
there is an associated cost ci, j = c(vi, vj) (such as delay
between the two edge servers). We can also use a cost matrix
to represent all the cost, i.e., C = {ci, j}. Note that HEC is a
special case of IEC where graph G(V,E) is a tree.

Participant Grouping: To protect the participants’ privacy
during participant selection, we adopt the idea of k-anonymity,
where the information of each individual contained in the
release cannot be distinguished from at least k − 1 individ-
uals whose information also exist in the release, to perform
participant grouping. Assume that there is a set of N mobile
users, denoted by U = {u1,u2, · · · ,uN }. During the grouping,
mobile users are divided into small groups based on their
privacy requirement (i.e. group size requirement γ(ui)). (1)
When user ui joins in the system through a nearby edge server
s0(ui), it submits his registration request (γ(ui), s0(ui)), where
γ(ui) and s0(ui) are his group size requirement and the edge
node he is connected to, respectively. (2) During the grouping,
an edge node v can put its user ui to an edge node at a lower
level if either γ(ui) cannot be satisfied locally at v or the node
at the lower level needs more users. (3) After grouping, the
system notifies ui the grouping result (s(ui),g(ui))) where s(ui)
is the edge node where ui’s final group sits after grouping and
g(ui) is the index of the final group of ui . In other words,
after the grouping process, each user ui is put in a group
Gg(ui ) which sits on the server s(ui). Assume that we end
up with x groups, denoted by G1,G2, · · · ,Gx . We know that∑x

i=1 |Gi | = N and |Gi | ≥ maxu∈Gi γ(u) (i.e., in each group,
the total amount of users is equal to or larger than the largest
group size requirement in that group). For HEC, due to the tree
structure of edge clouds, the users on s0(ui) can only be put
to one of its ancestors As0(ui ), i.e., s(ui) ∈ {s0(ui)} ∪ As0(ui )

and 0 ≤ ls(ui ) ≤ ls0(ui ). However, for IEC, s(ui) can be any
connected edge server in the edge clouds, i.e., s(ui) ∈ V .

Participant Selection: As shown in Fig. 1, after group-
ing, privacy-preserving participant selection will be performed
within each group and at platform level to select the partic-
ipants for each sensing task (see details in [27], [28]). Note
that the participant grouping performance has no influence on
the participant selection decision and payment process. In this
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paper, two secure bidding or sharing methods are considered:
the secure bidding approach in [27], [28] with O(|G |)messages
exchanged (assuming user IDs are public) and the secure
sharing method in [17] with O(|G |2) messages exchanged. For
simplicity, we use |G | and |G |2 as the communication costs
of a group G during secure bidding/sharing.

B. Privacy-Preserving Participant Grouping Problems

Now we formally formulate the optimization problem of
privacy-preserving participant grouping (PPPG) over cloud
edges. Its goal is to divide the participants into several groups
at cloud edges, so that both the privacy requirements of all
participants are satisfied and the total communication cost
during the participant selection (secure bidding or sharing
over groups) is minimized. In this paper, we investigate PPPG
under two distinct scenarios: PPPG-HEC and PPPG-IEC,
with different edge cloud topology. Before introducing them,
we first review and extend our previous results on a simpler
PPPG problem.

Scenario 0: PPPG w/o Delays: In [28], we have defined
a simpler PPPG problem where communication costs among
group members are the same. In other words, the delay be-
tween edge servers is negligible. We assume that the commu-
nication cost of secure bidding/sharing is only linear with the
group size |G |. To perform the secure bidding/sharing within
groups in parallel, we only care about the communication cost
of the largest group. Then the participation grouping problem
can be defined as follows:

f1 = min xmax
i=1
|Gi |, s.t. |Gi | ≥ max

u j ∈Gi

γ(u j).

The objective of this PPPG is to minimize the maximal group
size, while the constraint makes sure that the number of
participants in each group must be larger than or equal to
the largest group size requirement of any participant in that
group. For this problem, [28] has proposed two algorithms:
one based simple sorting and the other one based on dynamic
programming (DP). The sorting algorithm is proved to be
a 2-approximation while the DP algorithm can find optimal
solution of this version of PPPG.

We can further extend the optimization goal in this model
to consider other three cases of PPPG: f2 = min maxx

i=1 |Gi |
2

or f3 = min
∑x

i=1 |Gi | or f4 = min
∑x

i=1 |Gi |
2. Note f1 and

f2 are for the Min-Max case when the groups are dealt
with in parallel, while f3 and f4 are for the Min-Sum case
when the groups are dealt with sequentially. Note that f3
is meaningless since it is equal to N . For the other three
optimization problems, the sorting and DP algorithms from
[28] can be applied. The sorting algorithm can be proved to
be a 2- or 4- approximation comparing to optimal solution for
f1 and f2 with complexity O(N log N). The DP algorithm can
find optimal solution for f1, f2 and f4 with complexity O(N2).

However, [28] and above extension do not consider the re-
alistic communication delay/cost among different group mem-
bers over different edge servers, which makes these proposed
algorithms perform poorly in a real edge cloud based mobile
sensing system. Therefore, in this paper, we focus on PPPG-
HEC and PPPG-IEC, where the delays among edge servers

do matter and edge cloud topology plays an important role in
the optimization.

Scenario I: PPPG-HEC: In this scenario, with the tree
topology of HEC, the communication cost is considered as
the delay among different levels of edge servers. Although the
servers can provide better privacy resource at lower level, it
may cause longer communication delays between levels. The
delay for mobile user ui is bounded by the level difference
between ls0(ui ) (where ui originally sits) and ls(ui ) (where
the final group he sits). For example, in Fig. 2(a), the level
difference of u1 is 1, while u5’s is 2 and u8’s is 0. Here, we
assume that all group members communicate with each other
via the edge server where the group sits. We define the four
types of grouping optimization problems (two of Min-Max and
two of Min-Sum) as following:

fI1 = min xmax
i=1

∑
u j ∈Gi

(ls0(u j ) − ls(u j )) or

fI2 = min xmax
i=1
(|Gi |

2 max
u j ∈Gi

(ls0(u j ) − ls(u j ))) or

fI3 = min
x∑
i=1

∑
u j ∈Gi

(ls0(u j ) − ls(u j )) or

fI4 = min
x∑
i=1
(|Gi |

2 max
u j ∈Gi

(ls0(u j ) − ls(u j )))

s.t. |Gi | ≥ max
u∈Gi

γ(u),∀Gi,

s(ui) ∈ {s0(ui)} ∪ As0(ui ),∀ui .

(1)

Besides each participant’s privacy requirement needs to be
satisfied (the first constraint), each user’s final group could
only sit on either the original server or its server’s ancestor
nodes (the second constraint). For simplicity, we assume that
there is at most one group sitting on each edge node, and
the maximal level difference among all the group members is
utilized for fI2 and fI4 (such as 2 for group 2 in Fig. 2(a). Note
that the worst solution is that all users are grouped in a single
group at the root node. The proposed methods can be extended
to solve the optimization problems with more accurate delay
definitions.

Scenario II: PPPG-IEC: In this scenario, the edge servers
are interconnected and the delay between any two edge servers
vi and vj can be modeled by c(vi, vj) based on the graph
G(V,E)2. Again all in-group communications are via the
edge server where the group sits, thus we consider the delay
between the original server s0(u j) of the group member u j and
his final group server s(u j), i.e., c(s0(u j), s(u j)). Therefore, we

2Note that our model is general enough to also consider remote cloud. In
our experiments, we include an additional node in V to represent the remote
cloud and add links from it to all edge servers with a cost D or d.
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define the optimization problems as follows:

fI I1 = min xmax
i=1

∑
u j ∈Gi

c(s0(u j), s(u j)) or

fI I2 = min xmax
i=1
(|Gi |

2 max
u j ∈Gi

c(s0(u j), s(u j))) or

fI I3 = min
x∑
i=1

∑
u j ∈Gi

c(s0(u j), s(u j)) or

fI I4 = min
x∑
i=1
(|Gi |

2 max
u j ∈Gi

c(s0(u j), s(u j)))

s.t. |Gi | ≥ max
u∈Gi

γ(u),∀Gi

c(s0(u j), s(u j)) < ∞,∀ui .

(2)

In this model the final group location s(u j) is not be restricted
by the tree structure anymore.

Note that while PPPG is in P and can be optimally solved by
DP algorithm, PPPG-HEC and PPPG-IEC are more complex
and computationally challenging. We conjecture that both
PPPG-HEC and PPPG-IEC are NP-hard, but formal proofs
of their NP-hardness are still open.

III. GROUP FORMATION FOR PPPG-HEC
In this section, we present several grouping algorithms

for PPG-HEC optimization problems. Genetic algorithms and
stimulated annealing algorithms are not suitable here because
there are limited feasible solutions in the grouping space so
that the mutation of current solution (neighboring solution in
the space) may be infeasible with high probability3. Instead,
two heuristic algorithms are proposed here: Top-Down and
Bottom-Up to solve fI3 . Then we extend them for fI2 . With
further modifications they can be applicable for other opti-
mization cases in Scenario I too.

A. Top-Down Algorithm

The main idea of our proposed Top-Down algorithm is to
arrange the users with largest privacy requirements starting at
the root, and try to push them towards the leaf edge nodes via
the root’s children. When the users on the root and its children
are satisfied, repeat such a process to the next level. The whole
procedure is done from top to bottom of the tree. Algorithm 1
shows the details of Top-Down algorithm. Initially, we first
put all users at the root, and then consider to push them to its
child nodes. At each child node of the root, we place all of
the users whose original leaf edge server is the descendant of
the current child node to that child. Then we check whether
there are users who could not be satisfied at these child nodes,
if so we have to place them back to the root node. After this
step, the requirements of all users in groups on the child nodes
are satisfied. However if at least one of the users at root node
are not satisfied with the current grouping, we need to move
more users from child nodes back to the root through certain
exchanges (by calling Algorithm 2 at Line 16). After this, all

3Here infeasible solution means that the privacy requirement of certain
mobile user is not satisfied in such solution. An upper bound on the probability
of getting a feasible solution with randomly generated solutions is given in
the Appendix.

Algorithm 1 Top-Down Algorithm for fI3
Input: each user’s location s0(ui) and requirement γ(ui)
Output: each user’s final group g(ui) and location s(ui)

1: Create an empty group Gv for each node v

2: Place all users at the root
3: for l = 0 to I − 1 do
4: for all nodes v at level l do
5: TD(v, l)
6: return g(ui) and s(ui) for all users

7: Function TD(v, l)
8: if v is a leaf node then
9: return

10: for all u ∈ Gv do
11: Place u in Gv′ , where v′ is the unique child of v that

is an element As0(u)

12: for all v′ that are children of v do
13: while maxu∈Gv′

γ(u) > |Gv′ | do
14: Move all u ∈ Gv′ with γ(u) > |Gv′ | to Gv

15: if |Gv | < maxu∈Gv γ(u) then
16: Call Algorithm 2 with node v and level l + 1

Fig. 3. An example of Top-Down algorithm: (a) initially, there are 6 users
on leaf nodes of a 3-level edge tree; here, each number stands for the group
size requirement of a user; (b) starting with the root node, 5, 4 and 2 cannot
fit in the root’s children groups, thus they are left at the root (shown as blue
arrows); Then Algorithm 2 is called at the root (as shown in Fig. 4) to add 2
more users (related interactions shown as black arrows); (c) the left user with
1 will be remained at the leaf when TD is called at the next level.

of the users on both root node and its child nodes are satisfied.
We then move to the next level, and repeat this process for
each node at that level. Overall, this algorithm aims to retain
the users towards as higher levels as possible. Fig. 3 shows
a detailed example of the top-down algorithm, and Fig. 4
illustrates the corresponding exchange process of Algorithm 2.
Since sorting the users’ privacy requirement needs O(N log N)
and Algorithm 1 just traverses all the nodes in the tree to check
the satisfaction of each user only once with Θ(N), the overall
time complexity of Algorithm 1 is O(N log N).

B. Bottom-Up Algorithm

Different from Top-Down method, Bottom-Up algorithm
starts from the bottom of the tree and has two steps. It first
places the users on the highest level (lowest in the tree) where
his privacy requirement could be satisfied by all users within
the subtree at that node, and then moves them up as necessary
to meet all users’ privacy requirement. Algorithm 3 shows
the details of Bottom-Up algorithm. In Step 1 (Lines 2-9),
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Algorithm 2 Update Gv at node v

Input: Node v and level l ′ (along with all user/group info.)
1: while |Gv | < maxu∈Gv γ(u) do
2: for all v′ ∈ Dl′,v do
3: Define Sv′ = ∅, and take any u ∈ Gv′ with γ(u) =

maxu′∈Gv′
γ(u′) and place it into Sv′

4: while maxu∈Gv′\Sv′
γ(u) > |Gv′ \ Sv′ | do

5: Take any u ∈ Gv′ \ Sv′ with γ(u) =

maxu′∈Gv′\Sv′
γ(u′) and place it into Sv′

6: Sort v′ in order of increasing |Sv′ |
7: if maxv′ |Sv′ | ≤

(
maxu∈Gv γ(u) − |Gv |

)
then

8: Choose the last v′ and move all u ∈ Sv′ to Gv

9: else
10: Choose the first v′ s.t. |Sv′ | ≥ maxu∈Gv γ(u) − |Gv |

and move all u ∈ Sv′ to Gv

Fig. 4. An example of Algorithm 2: (a) to recruit more users, node A
requests the help from nodes B and C; (b) node B has more users while C
has no user to offer, and thus B offers the user with 3 to A and A accepts. A
asks again since his group size does not meet the requirement yet; (c) after
accepting one more user from B, A is satisfied and finished. Red arrow and
blue arrow represent the user request and user offloading, respectively.

we place all users to the groups on leaves (where they are
connected to the edge cloud). If the user cannot be satisfied
at current node (considering a group with the users on this
nodes and all of the descendant nodes), then this user will be
moved up to the parent node. This process will be repeated
for all nodes toward to the root node. After this, the users in
the group located at leaf nodes are guaranteed to be satisfied.
Then, in Step 2 (Lines 10-17), we start at the root by applying
Algorithm 2 to add more users on each node so that all the
users on each node have satisfied group size. This step is
similar to Top-Down method, but such interaction (Line 13) is
performed with all descendants. In Top-Down, it is restricted
to children nodes only (Line 12) An detailed example is shown
in Fig. 5. The overall time complexity of Algorithm 3 is
O(N log N) too. Bottom-Up usually takes longer time than
Top-Down since it has the additional Step 1, but Bottom-Up
performs slightly better than Top-Down as shown in Section V.
Therefore, there is a trade-off between running time and
performance.

C. Extended Algorithm for fI2
Solutions of Algorithm 1 and Algorithm 3 not only ensure

that every user’s requirement is satisfied but also aim to min-
imize the total level difference (which is relevant to the goal
of fI3 ). However, they can be further extended to optimize fI2
(where the square of group size matters). Algorithm 4 shows
the details. Starting from a feasible solution by executing

Algorithm 3 Bottom-Up Algorithm for fI3
Input: each user’s location s0(ui) and requirement γ(ui)
Output: each user’s final group g(ui) and location s(ui)

1: Create an empty group Gv on each node v

2: for all users u do
3: Place u into Gs0(u)

4: for l = (I − 1) to 0 do
5: for all nodes v at level l do
6: if |Gv | , 0 then
7: Set Hv = Gv′ ∪

(⋃
v′∈Dv

Gv′
)

8: while maxu∈Gv γ(u) > |Hv | do
9: Move all u ∈ Gv with γ(u) > |Hv | from Gv to

Gvp where vp is the parent of v

10: for l = 0 to (I − 1) do
11: for all v at level l do
12: if Gv , ∅ and |Gv | < maxu∈Gv γ(u) then
13: for l ′ = l + 1 to I − 1 do
14: if

∑
v′∈Dl′ ,v

|Gv′ | + |Gv | < maxu∈Gv γ(u) then
15: Move all users from

⋃
v′∈Dl′ ,v

Gv′ to Gv

16: else
17: Call Algorithm 2 at v and l ′, and break
18: return g(ui) and s(ui) for all users

Fig. 5. An example of Bottom-Up algorithm: take the same example in
Fig. 3(a); (a) first move each user to an ancestor node on highest level where
its privacy requirement could be satisfied when considering all the users from
descendant nodes; e.g. the user with 3 could be satisfied on node B since its
descendants D and E have two more users; (b) starting from the root, run
Algorithm 2 for each node whose users are unsatisfied yet; here the root gets
the user with 3 from B and the user with 1 from D; (c) the algorithm ends
when all users meet their group size requirements.

Algorithm 1 or Algorithm 3, we repeatedly find the edge node
v with the highest cost (in term of the optimized function
fI2 ) and distribute some of its users to other edge nodes
so that the value of fI2 decreases. During the redistribution
procedure, all users’ privacy requirements are kept satisfied.
We first find all possible subsets of users in v’s group, where
the privacy requirement of v’s group is still guaranteed after
redistributing the uses in the subset to other nodes. Fig. 6
illustrates an example of possible partitions for these subsets.
With a feasible partition, we move the users in the subset
to one of their common ancestor nodes. To optimize the
objective function, we either choose the ancestor with the
least increasing cost (as shown in Line 6 of Algorithm 4)
or select the ancestor that cause the most decreasing cost
of current node v. We repeatedly decrease the maximal cost
until no further reduction is possible. We denote such method
(Algorithm 4) by Extended-LI (or the variation version of
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Algorithm 4 Extended Algorithm for fI2
Input: each user’s location s0(ui) and requirement γ(ui)
Output: each user’s final group g(ui) and location s(ui)

1: Get a feasible solution from Algorithm 1 or 3
2: max = maxx

i=1(|Gi |
2 maxu j ∈Gi (ls0(ui ) − ls(ui )) and v =

arg maxx
i=1(|Gi |

2 maxu j ∈Gi (ls0(ui ) − ls(ui ))
3: repeat
4: Add all users u ∈ Gv into a list L and sort L based on

γ(u)
5: Find all possible user partitions of L and consider all

subsets either from the head or tail (as long as the
remaining users in L can be still satisfied), as shown
in Fig. 6(b) and (c)

6: For each user partitions, we find their common ances-
tors and move these users to the ancestor node whose
cost increases the least and all requirements of the users
are still satisfied (after moving).

7: max = maxx
i=1(|Gi |

2 maxu j ∈Gi (ls0(ui ) − ls(ui )) and v =

arg maxx
i=1(|Gi |

2 maxu j ∈Gi (ls0(ui ) − ls(ui ))
8: until max does not decrease anymore and all nodes v with

max cost have been tried
9: return g(ui) and s(ui) for all users

𝛾 8 7 7 7 7 7 6 6 6 5

(c)

(a)

(b)

𝛾 8

𝛾 8 7

𝛾 8 7 7

𝛾 5

𝛾 6

𝛾 6 5

Fig. 6. User partition in Algorithm 4: (a) the original sorted user list L at
v; (b) the subset of users by partitioning L from the head; (c) the subset of
users by partitioning L from the tail. Algorithm 4 will try all possible subsets.

selecting the most decreasing cost of v by Extended-MD).
Since there are only linear possible partitions, the overall time
complexity of Algorithm 4 is still O(N log N), dominated by
the complexity of Algorithm 1 or Algorithm 3.

IV. GROUP FORMATION FOR PPPG-IEC
In this section, we propose several group formation algo-

rithms to solve the optimization problem in PPPG-IEC. As
mentioned, the edge servers in this scenario are interconnected
and can connect to several other edge servers at same time.
In PPPG-HEC, edge server only connect to its ancestor or
children in the tree. The optimization problem becomes more
complicated in PPPG-IEC since users could group with any
users as long as their edge servers are connected. Hence,
derived from clustering and sorting, we propose two algo-
rithms Merge-Server and Merge-User to solve the optimization
problems fI I1 in PPPG-IEC. Note that they could be easily
adopted for other optimization functions fI I2 , fI I3 and fI I4 .

A. Merge-Server Algorithm

Merge-Server method aims to merge edge servers with
unsatisfied users together based on distance measurement until

Algorithm 5 Merge-Server Algorithm for fI I1

Input: each user’s γ(ui) and s0(ui), G(V,E)
Output: each user’s final group g(ui) and location s(ui)

1: Compute a X × X cost matrix M , which has the least cost
path among any two edge servers via Dijkstra algorithm

2: Sort the users on each edge server v with its group size
requirement γ in descending order

3: Mark every edge server unprocessed
4: while there is an unprocessed server do
5: Consider an unprocessed server vk as a new cluster
6: while the max group size requirement in vk’s cluster >

the number of users of vk’s cluster do
7: if there exists unprocessed servers then
8: Find the closest unprocessed server vj in M and

merge vj’s users to vk’s cluster, mark vj processed
9: else

10: Merge users of the closest processed server vj , who
holds a cluster, to vk’s cluster

11: Mark vk processed
12: for all processed edge server who holds a cluster do
13: Find the optimal edge server within this cluster to group

all users (regarding to the objective function), and make
it as the location s(ui) of all users in this cluster

14: return g(ui) and s(ui) for all users

the requirements of all users get satisfied. Algorithm 5 shows
the details. First, the pair-wise distances among any edge
servers (including the remote cloud if there is one) are obtained
via Dijkstra algorithm. Second, if there is an unprocessed
server, we treat it as a new cluster and check whether the
privacy requirements of its users are satisfied or not. If not,
we group it with the nearest connected and unprocessed server.
If there is no unprocessed server, we merge it with the nearest
processed cluster. The merge process will repeat until all users
on the current cluster get satisfied. Finally, the final location
of each group (cluster) is decided based on the optimization
goal (Line 13). The time complexity of this algorithm is
O(Y +X log X), which is dominated by the Dijkstra algorithm.
Here Y is the number of links among all servers and X is the
number servers.

B. Merge-User Algorithm
Merge-User method is similar with Merge-Server, except

for that clustering is over mobile users instead of edge servers.
By merging users with unsatisfied privacy requirements, larger
cluster is formed. Such merging process ends until all the
users’ requirements get satisfied. The details are given in
Algorithm 6. The time complexity of this algorithm is O(Y +
N log N). Notice that the algorithm needs to take an unpro-
cessed user to process in Line 4. Different orderings to pick
the user can be used, such as picking it randomly or picking
the one with the largest/smallest group size requirement. We
will test these methods in our experiments in the next section.

V. PERFORMANCE EVALUATIONS

In this section, we assess the proposed algorithms perfor-
mance with one synthetic and two real-world datasets. We
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Algorithm 6 Merge-User Algorithm for fI I1

Input: each user’s γ(ui) and s0(ui), G(V,E)
Output: each user’s final group g(ui) and location s(ui)

1: Compute a N ×N cost matrix M , which has the least cost
path among any two users via Dijkstra algorithm

2: Mark every user unprocessed
3: while there is unprocessed user do
4: Consider an unprocessed user uk as a new cluster
5: while the max group size requirement in uk’s cluster >

the number of users of uk’s cluster do
6: if there exists unprocessed users then
7: Find the closest unprocessed users u j in M and

merge u j into uk’s cluster, and mark u j processed
8: else
9: Merge users of the closest processed cluster to uk’s

cluster
10: Mark uk processed
11: for all processed user cluster do
12: Find the optimal edge server within this cluster to group

all users (regarding to the objective function), and make
it as the location s(ui) of all users in this cluster

13: return g(ui) and s(ui) for all users

begin with a brief introduction of these datasets and our
simulation settings, then we analyze the performances of our
algorithms for both scenarios via extensive simulations.

A. Simulator, Datasets and Simulation Settings

All simulations are preformed within a mobile crowd sens-
ing simulator developed by our team, which has been used in
[5], [18], [19], [21], [27], [28], [47]. It is written in Java. The
experiments are running on a computer with an Intel Core i7
processor at 3.4 GHz with 24 GB of RAM. All the topology
of edge clouds, sensing tasks, and mobile users are simulated
within the simulator based either a synthetic dataset and two
real-world datasets. Next, we introduce these datasets and all
simulation settings in detail.

Synthetic Dataset: This dataset is only used for the com-
parison between our proposed methods and optimal solution
in Scenario I. We construct a 3-level balanced binary tree
with 50 mobile users randomly distributed on the leaf nodes.
In the experiment, the group size requirement of users are
generated by a uniform distribution U(0,r), and where r =
[10,12,14,16,18,20,22,24,26,28,30] respectively.

D4D Dataset: This dataset, from Orange’s Data for De-
velopment (D4D) challenge [48], consists anonymous phone
call records of 50,000 Orange mobile users in the Ivory Coast
from December 1, 2011 to April 28, 2012. Here, we only use
a two-week records (from December 5, 2011 and January 8,
2012), since the released data is anatomized based on two-
week periods.

For Scenario I ( fI ), in order to construct the hierarchical
edge clouds, we chose 18 towers with highest call records
as edge servers and organized them into a 4-level tree as

TABLE I
PARAMETERS IN D4D AND SFC SIMULATIONS.

Dataset Parameter Value or Range
number of accessible towers 9 out 18 towers
number of data records 50, 898
total period of traces used Dec 5, 2011 to Jan 8, 2012
total number of tasks 34 or 100
# of candidate N ( fI3 ) 100, 200, 300, 400, 500
# of candidate N ( fI2 ) 50

D4D # of candidate N ( fI I1 , fI I3 ) 50 or 200, 300, ..., 800, 900
max group size req. r ( fI3 ) 30, 60, 90, 120, 150, 180
max group size req. r ( fI2 ) 2, 3, 4, 5, 6, 7
max group size req. r ( fI I1 , fI I3 ) 60, 90, 120, 150, 180
cost to cloud D ( fI I1 , fI I3 ) 10, 20, 30, 40, 50
link threshold ∆ ( fI I1 , fI I3 ) 2, 4, 6, 8, 10
cost to cloud d ( fI I1 , fI I3 ) 163 or 140, 150, 160, 170, 180
distance threshold δ ( fI I1 , fI I3 ) 100, 200, 300, 400, 500
number of regions 16
number of data records 508, 979
total period of traces used June 6, 2008

SFC total number of tasks 310
# of candidate N 50, 100, 150, 200, 250, 300
max group size req. r for fI3 20, 40, 60, 80, 100, 120
max group size req. r for fI2 2, 3, 4, 5, 6, 7

919

532 1027727119138191627977

1023

561 10227761020

1069 209 995 311

(a) D4D tree (b) SFC quad tree

Fig. 7. Hierarchical edge clouds for Scenario I: (a) a 4-level unbalanced
tree with 18 edge servers (towers with showing their IDs) in D4D dataset; (b)
a 3-level balanced quad tree with 16 grid cells as its leaves for SFC dataset.

shown in Fig. 7(a)4. We only choose the users who access
the edge servers at those 9 leaf nodes, and there are the
number of users are 6,880 and 50,898 call records. Without
loss of the generality, we run our experiment with 34 distinct
tasks and report the average of simulation results. For each
experiment, the number of participating users is either 100-
500 or 50. Besides, each user’s group size (privacy require-
ment) is assigned by a uniform distribution U(0,r), where
r = [30,60,90,120,150,180] or [2,3,4,5,6,7].

For Scenario II ( fI I ), we evaluate our algorithms over
two different graph-based interconnected edge clouds to cover
broader application scenarios. Different graph models are used
to generate the topology, and communication cost between
edge servers are either identical or various in each model.
In the first model (graph model (∆,D)), we assume that the
connection between two edge servers exists if there are more
than ∆ users visiting those two servers in certain time. Hence,
for a certain dataset, we could construct various interconnected
graph with different value of ∆. For the cost of each link, we
set to 1 for links among edge servers and D for links from edge

4Hierarchical edge cloud could also be constructed with additional servers
beyond cellular towers, and here we only use the towers since those are
available in this dataset.
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server to the remote cloud. We run and average our simulation
results on 100 tasks with 50 or 200-600 users, 60-180 maximal
group size requirement, and various values of ∆ and D. In the
second model (graph model (δ, d)), to have a more realistic
network topology, we generate both the link between edge
servers and its cost based on physical distance between edge
servers (towers) in D4D dataset. A link would exist between
two servers if the physical distance between them is smaller
than a threshold δ. We set δ with various value from 100 to
500. The communication cost on each link is determined based
on its distance with about 5ms per 100 units [49], [50]. The
cost d from edge servers to the remote cloud is set at 163ms
based on [51] or from 140ms to 180ms. We also run and take
the average of 10 tasks with 200-900 users.

The parameters for D4D simulations with all different
settings are summarized in the upper section of Table I.

SFC Dataset: Although D4D dataset provides a real-life
large scale traces for human mobility, it does not have high
spatial resolution (only at cellular tower level). Therefore, San
Francisco Cab (SFC) dataset [52] is used for our simulations
too. SFC dataset includes the GPS records of 536 taxi during
May 17 to June 10, 2008 at San Francisco. Similarly, we
choose a single day with the most users and data records
(June 6 with 504 users and 508,979 data records). Without
specific towers as edge servers, we create a 3-level balanced
quad tree by dividing the area of San Francisco into 16
cells/leaves, as shown in Fig. 7(b)). We also run simulations
multiple time (with 310 tasks and 50 − 300 users) and take
the average of results to avoid the simulation bias. The
group size also follows the uniform distribution U(0,r), where
r = [20,40,60,80,100,120]. SFC dataset is mainly used for
Scenario I. The parameter settings of SFC simulations are
summarized in the lower section of Table I.

B. Performance Metrics

To evaluate our proposed algorithms, we utilize the follow-
ing performance metrics under various simulation settings.

Group Ratio: This metric (denoted by η) aims to describe
the changes made by the grouping method, by measuring
the moving distance of all the users between their original
location and final group location after grouping process. In
Scenario I, group ratio indicates the ratio between the total
moving distance of all users and the total depth of all users
in the hierarchical tree. It is defined as the ratio between the
optimization function value after grouping and the original
summation of levels (which is the largest possible function
value where every one is grouped at the root), as follows.

η =
fI∑

u ls0(u)
=

∑
u(ls0(u) − ls(u))∑

u ls0(u)
= 1 −

∑
u ls(u)∑
u ls0(u)

.

where η ∈ [0,1], and the larger moving distance leads to a
larger value of η. It equals to 0, when everyone are grouped
at their original server node. If all of the users are grouped to
the group at root node, η = 1. For Scenario II, η is the ratio
of average moving distance of each user and the distance to
the remote cloud. Therefore, η = fI I

N×D or fI I
N×d for fI I .
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Fig. 8. Synthetic data simulation for fI3 : group ratios of Top-Down,
Bottom-Up and BruteForce with 50 participants and r = 10 to 30.

Objective Function: We use the function value f defined in
Equation (1) and Equation (2) to evaluate the communication
cost during the secure sharing/bidding.

Iteration Times of Algorithm 4: To optimize problem fI2 ,
we repeatedly move a set of users to other nodes so that the
objective function value can be further decreased (Lines 3-8
in Algorithm 4). Therefore, we count the number of iterations
to measure the efficiency of that algorithm. The smaller value
indicates the algorithm converges faster.

Notice that we report the average values of these metrics
over multiple rounds of simulations.

C. Simulations for Scenario I

For Scenario I, due to space limitation, we only shows the
performance results of our proposed methods for fI3 and fI2 .

Simulation Results for fI3 : To testify the efficiency of pro-
posed algorithms, we first compare the performances of Top-
Down (Algorithm 1) and Bottom-Up (Algorithm 3), against
to a brute force solution (BruteForce) over a small synthetic
dataset. Results on group ratio η of these three algorithms
are reported in Fig. 8. Recall that η indicates the number of
moves among levels during grouping and we try to keep it
small. In Fig. 8, the group ratio η increases with the growth
of r . It is obvious that with higher privacy requirement more
group members (larger moving towards the root) are needed.
In addition, the gaps between performances of our proposed
methods and the one of BruteForce (which is the optimal
solution) are relevantly small. This confirms the efficiency of
Top-Down and Bottom-Up algorithms.

Then, we test our proposed methods over two real-life
datasets with larger number of users and various group size re-
quirements. BruteForce cannot be conducted on these datasets
due to large search spaces. To demonstrate the improvement
by considering communication costs in the hierarchical tree
structure, we also compare our methods with the simple sort-
ing method [28] (Sorting). To make it working for Scenario I,
for each group, we set the common ancestor node of all
users in the group as the final group location. If there are
multiple groups on the same server, they are merged together.
Fig. 9 shows the simulation results of D4D and SFC datasets.
First, Sorting performs much worse than the two proposed
methods for both datasets since it completely ignores the
communication costs among groups caused by the level of
edge structure. Second, all resulting curves have analogous
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Fig. 9. D4D/SFC simulations for fI3 : (a) group ratios with maximal group requirement r = 60 and various number of users on D4D; (b) group ratios with
300 participants and different maximal group requirement r on D4D; (c) group ratios with maximal group requirement r = 40 and various number of users
on SFC; (d) group ratios with 200 participants and different maximal group requirement r on SFC.
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Fig. 10. D4D/SFC simulations for fI2 : (a) cost fI2 and (b) the iteration times of Algorithm 4 with different maximal group size requirement r on D4D; (c)
cost fI2 and (d) the iteration times of Algorithm 4 with different maximal group size requirement r on SFC.

trends on both datasets, and this confirms the performances are
consistent across different settings. Third, from Fig. 9(a)/(c),
we can see that the group ratios decrease with more users.
Clearly, with more users to select, the privacy requirement of
a user can be satisfied at a higher level (lower in the tree
near the leafs) with less moving. Fourth, from Fig. 9(b)/(d),
it is obvious that the group ratios increase with the larger
group size requirements. This is because that the users need
to move towards the root to satisfy the requirements with larger
group size requirement. Last, there is no significant difference
between the performance of Top-Down and that of Bottom-
up. Bottom-Up performs slightly better. Remember that after
Step 1 (Lines 2-9) of Algorithm 3, Bottom-Up has already
moved all users up to the level where their requirements can
be satisfied. Most of the users with large requirements can
stay at this level if there is no further grouping requests from
ancestors. But in Top-Down, they may be retained at near the
root to help requests from other users.

Simulation Results for fI2 : We also evaluate the perfor-
mance of two extended algorithms Extended-LI and Extended-
MD (Algorithm 4 and its variation) with the feasible solution
from Algorithm 3 for fI2 . Fig. 10 presents the simulation
results. Instead of measuring the group ratio, we observe the
function value f directly. We also report iteration times to
show the convergence speeds of these extended algorithms.
From the results, we can have following observations. First,
the value of f rises with larger group size requirement since
users are move towards to the root and their group sizes
become bigger. Second, both Extended-LI and Extended-MD
can achieve better performance than Bottom-Up. This confirms
the advantage of further improvement of extended algorithms
for fI2 . Third, even though the curves grows analogously,

Extended-LI performs better than Extended-MD but with more
iteration times. The reason may be that the longer the user
list from partition is, the less opportunity that the participants
has common ancestor and then it is more likely that vibration
happens, i.e., the receiver sends the same list of users to
the sender. Last, the iteration times diminishes with larger
group size requirement because there are less receivers with
sufficient participants to accept user partitions while satisfying
the privacy requirement.

D. Simulations for Scenario II

We now evaluate the performance with four different meth-
ods for both fI I1 and fI I3 : Merge-Server (MS), Merge-User
with Random Picking (MU-Rnd), Merge-User with Minimum
Requirement (MU-Min), and Merge-User with Maximum Re-
quirement (MU-Max). Note that MU-Rnd, MU-Min and MU-
Max are three variations of Algorithm 6 where in Line 4 it
picks the user randomly or the one with minimum/maximum
group size requirement.

Simulations over Graph Model (∆,D): In this model, each
link between edge servers has the identical communication
cost and the topology is formed based on social ties between
edge servers. We first compare the performances of our
proposed algorithms with the optimal solution obtained from a
brute force method (BruteForce) for both fI I1 and fI I3 , using
a small D4D dataset with only 50 users. Results are reported
in Fig. 11. Here, various maximal group size requirements
r = [10,14,18,22,26,30] are used. With the increasing group
size requirement, the group ratio grows since more users
needs to move around and further. MU-Min performs the
worst since the group is built with the user who has larger
group size requirement. The new group member is barely
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Fig. 11. D4D simulation for fI I1 (a) and fI I3 (b) - Graph Model (∆,D):
group ratios of Brute Force, Merge-Sever and Merge-User with 50 participants
and r = 10 to 26.
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Fig. 12. D4D simulation for fI I1 - Graph Model (∆,D): (a) group ratios
with various number of users N where γ = 120, D = 30, ∆ = 6; (b) group
ratios with different γ where N = 400, D = 30, ∆ = 6.
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Fig. 13. D4D simulation for fI I1 - Graph Model (∆,D): (a) group ratios
with various cost to the remote cloud D where N = 400, γ = 120, ∆ = 3;
(b) group ratios with different distance threshold ∆ where N = 400, γ = 120,
D = 30.

to be satisfied and the group need more users. MU-Rand
performs poorly since we merge the users with random group
size requirement. When the group size requirement is small,
the performance of MU-Max is better than that of MS. MS
performs closer to optimal solution obtained by BruteForce
when the group size requirement is large. This is because MS
performs grouping on servers where the users on a sever are
handled together. Overall, the results confirm the efficiency of
proposed solutions MU (mainly MU-Max) and MS.

Next, we evaluate the performance of proposed algorithms
on a larger D4D dataset with various group size requirements
and numbers of users. Due to space limit, we only present the
results for fI I1 in Fig. 12. MU-Min again perfroms the worst
among all the methods since it always groups with users who
have larger group size requirements. With growing number
of users, the group ratio drops since more groups could be
formed locally and less users are shifted. With larger group
size requirement, more users need to shifted to other servers so
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Fig. 14. D4D simulation for fI I1 (a) and fI I3 (b) - Graph Model (δ, d):
group ratios of Brute Force, Merge-Sever and Merge-User with 50 participants
and r = 10 to 26.
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Fig. 15. D4D simulation for fI I1 - Graph Model (δ, d): (a) group ratios
with various number of users N where γ = 120, d = 163, δ = 500; (b) group
ratios with different γ where N = 700, d = 163, δ = 500.

that the group ratio becomes larger. MU-Max always preforms
the best.

Last, we demonstrate the influence of the cost to remote
cloud D and the link threshold ∆ on group ratios in Fig. 13.
Notice that with rising cost to the cloud, the group ratio
decreases. This fits the definition of group ratio with larger
denominator. On the other hand, the larger ∆ indicates the
more isolation of each server nodes. Hence, the unsatisfied
users are shifted to the remote cloud so that the group ratio
becomes greater.

Simulations over Graph Model (δ, d): Different from
graph model (∆,D), graph model (δ, d) generates the edge
cloud topology and its link cost based real distance between
edge servers in D4D. The cost between different edge severs
are various, and thus this is more realistic. Similarly, we first
run the our proposed algorithms with small amount of data (50
users) to compare with the brute force solution, and results are
given in Fig. 14 for fI I1 and fI I3 . We could see that the group
ratio grows with larger group size requirement, just as in Fig.
11. Comparing with Fig. 11, the curves from different methods
in Fig. 14 are more distinguishable, since link costs in this
graph model are not identical anymore. Among all methods,
MU-Max outperforms all other strategies with a clear margin.
MS performs worse for fI I1 than for fI I3 , which is much
higher than MU-Min. Note that in this graph model, the delay
is based on physical distance between edge servers instead of
an identical value (1), thus total group delay is not scale with
group size any more. In addition, in fI I1 , it only considers the
maximal total delay among groups other than the total delay
in all groups. This observation (MS is worse than MU-Min)
also exists in Fig.15 and Fig.16.
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Fig. 16. D4D simulation for fI I1 - Graph Model (δ, d): (a) group ratios
with various cost to the remote cloud d where N = 400, γ = 120, δ = 500;
(b) group ratios with different link threshold δ where N = 400, γ = 120,
d = 163.

Fig. 15 shows the simulation results for fI I1 with various
number of users and group ratios. Clearly, compared with
Fig. 12, the curves are more distinguishable and the group ratio
of MS-Rnd is much higher than MU-Max as well. Similar to
Fig. 14(a), MU-Max is the best and MS is the worst among
all solutions. In Fig.15(a), with more users, the group size
requirement gets satisfied easier. In Fig.15(b) with a certain
number of users, the group ratio grows with larger group size
requirement.

Finally, Fig. 16 show the results with various cost to cloud
d and distance threshold δ. In Fig. 16(a), since the distance
threshold δ keep as 500 whose delay is much smaller than the
delay to cloud d, group ratio stays the same for most of the
time. In Fig. 16(b), the group ratio raises with larger distance
threshold δ. This is because users have more opportunities to
be in a group on a further edge server.

VI. RELATED WORKS

A. Participant Selection in Mobile Sensing

Due to the large number of participants and the diverse
sensing tasks in mobile sensing, the participant selection for
different tasks becomes challenging. On one hand, assigning
more participants for certain task can lead to better quality of
the sensed data. On the other hand, mobile sensing platforms
have to pay more rewards to the participants to cover their
sensing cost. Recently, there are several studies on participant
selection in mobile social sensing or mobile crowd sensing
with various optimization goals such as coverage optimization
[4], [5], energy efficiency [6]–[8], user incentive and truthful-
ness [9]–[15], [53], sensing quality [16]–[19], data collection
[20]–[22] and truth discovery [23]–[25]. In this paper, we
focus on the privacy protection during participant selection
where secure bidding or sharing is used at edge clouds.

B. Mobile Sensing over Edge Clouds

Using edge computing with edge servers in mobile sensing
could not only reduce the connection latency to enable timely
performing larger-scale sensing tasks, but also better protect
the privacy by keeping data locally at the edge (instead of
sensing it to remote cloud). There are a few recent studies
[44]–[46], [54] adopting this idea for tasking allocation, col-
lusion resistance, incentive mechanism, and privacy protection.
In [44], the edge node could allocate tasks locally based on the

users’ local information. The authors mainly focus on how to
securely remove the duplicated date reports without revealing
the user’s information. Along the same line, Zhu et al. [46]
leverage encryption techniques to prevent collusion attacks
over fog nodes during the privacy-preserving data reporting
and requesting. Li et al. [54] study how to better attract
more participants for edge-based crowd sensing with the help
of POI-tagging Apps. The authors model the interactions of
users, platform, and Apps by a three-stage decision process
and provide solutions for all reward, selection and payment
decisions. In [45], edge nodes allocate the tasks to a targeted
subset of users with high reputation obtained and maintained
through the context online learning at cloud. The authors
adopt the differential-privacy to protect the users’ privacy by
selecting the users according to a probability function. Note
that all these studies are not on privacy-preserving grouping
over edge clouds.

C. Privacy Protection in Mobile Sensing

To protect the users’ privacy in mobile crowd sensing,
many privacy-preserving techniques, such as data transform
language [55], data aggregation [33], [56], [57], location
obfuscation [30], [58], [59], cloaking [31], [60], k-anonymity
[32], pseudonym [61], adding noise [29], and differential
privacy [10], [26], [45], have been used in different procedures
(e.g., data collection, data aggregation, location generation) to
achieve the protection of the sensing data privacy, participants’
anonymity or their location privacy.

D. Privacy-Preserving Participant Selection

In contrast to the data or location privacy solutions above,
there are also recent efforts [17], [26]–[28] on protecting
bid privacy or sensing quality privacy during the procedure
of participant selection. Jin et al. [26] consider bid privacy
in an aggregated MCS system. They define the bid privacy
with differential privacy over the aggregated sensing data
and assume that all sensing tasks are binary classification
tasks. Li et al. [27], [28] consider a more general and direct
model, where sensing tasks have sensing requests on both
temporal and spacial domains and privacy is defined on the
bids from participants. By leveraging Lagrange polynomial
interpolation (LPI), their solution perturbs the participants’
bids within groups so that bid information is protected during
the group bidding and the final bidding at the platform. The
communication cost of the LPI-based secure biding within a
group with k members is O(k). Xiao et al. [17] also address
privacy-preserving participant selection by using secret sharing
schemes. They consider quality-aware participant selection
while trying to protect the inputs (sensing qualities) of each
user from being revealed to the platform or to other users. The
basic idea is to leverage the secure multi-party multiplication
and secure multi-party comparison protocols. Their solution’s
communication cost is O(k2), where k is the number of partic-
ipants. Note that secure sharing/bidding schemes has already
been studied [17], [27], [28] and are discussed here. In this
paper, we focus on privacy-preserving user grouping, which
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can be combined with these secure sharing/bidding schemes
to achieve overall privacy-preserving participant selection.

In [28], we did consider a simpler version of participant
grouping which simplifies the communication cost between
group members as the same value. Such problem can be easily
solved by the proposed dynamic programming method. In
this paper, we extend the problem into multiple optimization
problems over edge clouds and consider the different types
of communication costs and topologies of edge clouds. To
the best of our knowledge, this is the first work tackling the
privacy preserving participant grouping for MSS over edge
clouds.

E. Grouping/Clustering for Privacy Protection
Grouping/clustering has been recently studied for privacy

preserving [62]–[64] . Given a set of n points in general metric
space and a value r , the r-gather problem is defined as cluster-
ing the points into groups at least r points each such that the
largest diameter of clusters are minimized [62]. Aggarwal et al.
[62] prove that there’s a polynomial time algorithm that give
a 2-approximation to the problem. Armon [63] extends such
results and shows that it’s NP-hard to approximate with a ratio
better than 3 for r > 2 for general metric space. Zeng et al.
[64] describes a distributed algorithm with an approximation
factor of 4 for r-gather problem. All of these existing works
cluster the points with only one parameter r , however, in our
model, the privacy criteria r is different from each user and
the optimization problem is formulated differently. Also, the
existing algorithms (e.g. sweep algorithm) could not applied
here in HEC architecture since the location of users’ group
could be only on its ancestor node but anywhere else. Last,
none of algorithms are proposed for problem Min-Sum.

VII. CONCLUSION

In this paper, we form and investigate the participant
grouping problems over hierarchical or interconnected edge
clouds in mobile crowd sensing to protect participants’ privacy.
Via privacy-preserving grouping at edge clouds, participants’
information is hidden in groups at local edge server and par-
ticipant selection can be performed by secure bidding/sharing
among group members efficiently. Overall both privacy and
scalability are significantly improved. Particularly, we propose
a set of grouping schemes to achieve our goal for different
scenarios under various optimization functions. Extensive sim-
ulations over three datasets have been conducted to substan-
tiate the efficiency of our proposed methods. We leave the
NP-harness proof of PPPG-HEC/PPPG-IEC and theoretical
analysis of our proposed methods as possible future works.
In addition, we will further develop more privacy-preserving
schemes for MSS in aim to balance privacy protection with
participant selection performance.
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APPENDIX

Theorem 1: Let N be the total number of participants and I
be the number of levels in the hierarchical edge cloud tree. If
η is the number of all feasible solution divided by all possible
solution, then

η ≤
1

(I − 1)Nn

(
I − 1

I

)N−NI

,

where Nn is the number of participants on the root node and NI

is the total number of participants on leaf nodes after running
Lines 4-9 of Algorithm 3.

Proof: We begin by calculating the denominator. Since
there are N participants and each can be at any one of I levels,
there are IN ways to place the participants when there are no
restrictions. Hence, the denominator is IN . We now turn to
the numerator. Lines 4-9 in Algorithm 3 place participants in
levels such that there does not exist a feasible solution with
them at a lower level. Thus, the Nn placed at the root must
stay at the root and so there is only one way to place them. NI

at the leaves can be placed at any level, thus there are INI way
to place them. The remaining N −Nn−NI cannot be placed at
the leaves, thus there are at most I−1 possible levels for them.
It follows that they can be placed in, at most, (I − 1)N−Nn−NI

levels. Hence, the numerator is INI (I−1)N−Nn−NI . Performing
the division and simplifying gives the result.

We now plot the upper bound on η for various values of
the parameters NI ,N,Nn, I. This shows that the upper bound,
η, can be quite small. Notice that 0 ≤ 1

(I−1)Nn
( I−1

I )
N−NI ≤ 1,

hence, its log will increase to 0 as the ratio approaches 1. With
the prediction from the formulation, we can clearly notice that
the value linearly decreases with growth of N in Fig. 17(a) and
the same trend as with Nn in Fig. 17(c). The ratio rises with
increasing I and growth slowly even decrease a little bit with
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larger I in Fig. 17(b) because I−1
I is getting close to 1 while

at the same time 1
I−1 is getting smaller. At last, Fig. 17(d) also

testifies that the ratio increases with larger NI .
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Fig. 17. Bound of η: (a) with different total number of users and (b) with
different levels of tree structure, here Nn = 1 while NI and I are set with
various values. (c) with different number of users on the root node and (d)
with different number of users on the leaf nodes when Nn = 1.
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