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a b s t r a c t

Like human beings, many animals produce sounds for communication and social interac-
tions. The vocalizations of mice have the characteristics of songs, consisting of syllables
of different types determined by the frequency modulations and structure variations.
To characterize the impact of social environments and genotypes on vocalizations, it is
important to identify the patterns of syllables based on the shapes of frequency contours.
Using existing hypothesis testing methods to determine the shape classes would require
testing various null and alternative hypotheses for each curve, and is impractical for
vocalization studies where the interest is on a large number of frequency contours. A
new penalization-based method is proposed, which provides function estimation and
automatic shape identification simultaneously. The method estimates the functional
curve through quadratic B-spline approximation, and captures the shape feature by
penalizing the positive and negative parts of the first two derivatives of the spline
function in a group manner. It is shown that under some regularity conditions, the
proposed method can identify the correct shape with probability approaching one,
and the resulting nonparametric estimator can achieve the optimal convergence rate.
Simulation shows that the proposed method gives more stable curve estimation and
more accurate curve classification than the unconstrained B-spline estimator, and it is
competitive to the shape-constrained estimator assuming prior knowledge of the curve
shape. The proposed method is applied to the motivating vocalization study to examine
the effect of Methyl-CpG binding protein 2 gene on the vocalizations of mice during
courtship.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Like many animals, rodents produce sounds and more specifically ultrasonic vocalizations to communicate within
species. The vocalization of mice is a complex behavior that is used primarily for parenting, territorial purposes and
courtship. These vocalizations have the characteristics of songs, consisting of several different syllable types, determined
by the shapes of the frequency contours. Under different societal circumstances such as mating and parenting, diverse
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ultrasonic vocalizations with different temporal structure can be induced (Mahrt et al., 2013). For example, Fig. 2 plots the
sonogram of a ultrasonic vocalization produced by a male mouse evoked by female urine. The plot suggests that the fre-
quency contours of each syllable exhibit different patterns such as upward, downward, chevron and so on. Understanding
the social information carried by vocalization, with respect to the motor commands that produced these vocalizations,
is central for understanding how vocalization is used to guide animal behaviors for survival and reproduction. Because
early deafness has profound effects on vocal development in humans as well as in mice, understanding how vocalization
is produced and perceived will provide a framework toward which neural mechanisms underlying vocal development in
humans can be studied. To characterize the social signals embedded in ultrasonic vocalizations, it is helpful to identify
the patterns of syllables based on frequency modulations and structure variations. This motivated us to develop a new
statistical method for simultaneous estimation and shape identification of smooth contours.

In the statistical literature, researchers have developed shape-constrained nonparametric estimation methods when
prior knowledge on the shape of the function such as monotonicity and convexity is available (He and Shi, 1998; Hall and
Huang, 2001; Dette et al., 2006; Yatchew and Härdle, 2006; Meyer, 2008; Carroll et al., 2011; Seijo and Sen, 2011; Wang
and Ghosh, 2012; Feng et al., 2014; Papp and Alizadeh, 2014; Boente et al., 2020). All these methods require knowing the
shape information of the functional curve in advance.

Some researchers proposed hypothesis testing methods to test the validity of specific shape constraints (Ghosal et al.,
2000; Abrevaya and Jiang, 2005; Meyer, 2008; Wang and Meyer, 2011; Du et al., 2013; Ahkim et al., 2017). To determine
the shape of a functional curve using hypothesis testing, we need to consider a large number of different null and
alternative hypotheses and perform estimation based on different shape constraints. The hypothesis testing approach
is feasible if we are interested in estimating few functional curves. However, the motivating mice ultrasonic vocalization
study (see more details in Section 5) involves in total 6273 frequency contours (syllables), and it would be computationally
impractical to determine the shapes of so many contours through hypothesis testing. The scientific interest of the
motivating study is to classify the functional curves to pre-defined shape classes, such as upward, downward, chevron
etc., and this can be regarded as semi-supervised clustering. Therefore, the existing unsupervised clustering methods for
functional data, are not suitable (Jacques and Preda, 2013; Zeng et al., 2019).

To overcome the limitation of hypothesis testing, we propose a novel penalization-based method. Specifically, we
approximate the nonparametric functional curve by quadratic B-splines, and penalize the positive and negative parts
of the first and second derivatives at the knots, using an adaptive group penalty. Our new approach has the following
advantages. First, the proposed method provides function estimation and shape identification simultaneously. Second,
using the properties of quadratic B-splines, the method reduces the identification of the function shape over the domain
of interest to the identification of signs of the derivatives at interior knots, which is computationally efficient. Third, the
proposed method is consistent for shape identification in terms of preserving the signs of the first two derivatives of
the function. Fourth, the resulting nonparametric estimator can achieve the optimal convergence rate obtained by Stone
(1985) for piece-wise polynomial approximations. Theorem 4.1 of Wang and Shen (2013) showed that shape constraints,
specifically convex constraints, do not affect the optimal rate of convergence of the shape-constrained estimator. Their
proof is based on the prior information of the true shape. The proof in our paper is more challenging since the true shape
is unknown and left to be identified through the proposed procedure. Through simulation studies we demonstrate that
the proposed method gives more stable curve estimation and more accurate shape identification than the unconstrained
B-spline estimator, and it is competitive to the shape-constrained estimator assuming prior knowledge of the functional
shape.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed estimation method and
computation. In Section 3, we present the asymptotic properties. In Section 4, we conduct simulation to compare the
finite sample performance of the proposed estimator with the oracle estimator with known shape information and
the unpenalized estimator without any shape constraints. In Section 5, we apply the proposed method to analyze the
motivating mice data to classify ultrasonic vocalizations of male mice and study the effect of Mecp2 gene on the ultrasonic
vocalizations. Section 6 concludes the paper with some discussion. All the technical proofs are deferred to Appendix A.
The developed R package is available at http://blogs.gwu.edu/judywang/software/.

2. Penalized estimation for shape identification

2.1. The proposed method

Suppose that Yi is the response associated with the univariate predictor Xi, which has a bounded support. We assume
the following regression model

Yi = f (Xi) + εi, i = 1, . . . , n, (1)

where f (·) is an unknown smooth function, and εi are independent random errors with mean zero and variance σ 2 < ∞.
Without loss of generality, we assume that Xi ∈ [0, 1]. In the motivating mice vocalization study (see Section 4), one
main interest is to identify whether the continuous frequency contour f (·) has the upward, downward, chevron, reverse-
chevron, wave or more complex shapes, which can be characterized by f ′(·) and f ′′(·), the first and second derivatives of
f (·). We consider the simple nonparametric regression model (1) with an univariate predictor because of the motivating
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study. However, the proposed idea can also be extended to other models such as single index models and partially linear
models to accommodate multiple predictors.

Let Bj,q(·) be the jth normalized B-spline basis function with order q, and we propose to approximate f (·) by quadratic
(q = 3) B-spline basis functions. We consider using B-spline basis functions to approximate f (·) due to its computational
efficiency and stability. Huang et al. (2004), Wang and Yang (2009) and Ma and Racine (2013) Let 0 = x∗

−2 = x∗

−1 = x∗

0 <

x∗

1 < · · · < x∗

kn < x∗

kn+1 = x∗

kn+2 = x∗

kn+3 = 1 be an extended partition of [0, 1], where kn is the number of internal
knots. In our implementation, we choose x∗

j , j = 1, . . . , kn, as the j/(kn + 1)th sample quantile of {Xi, i = 1, . . . , n}. Let
B3(·) = (B1,3(·), . . . , BN,3(·))T be the normalized quadratic B-splines based on the distinct knots x∗∗

1 = {x∗

k}
kn+1
k=0 , where

N = kn + 3 is the number of basis functions. Let S(3, x∗∗

1 ) be the functional space spanned by {Bj,3}
N
j=1, then f (·) can be

approximated by a spline function sn(x) ∈ S(3, x∗∗

1 ), that is,

f (x) ≈ sn(x) =

N∑
j=1

Bj,3(x)βj
.
= B3(x)Tβ, (2)

where β = (β1, . . . , βN )T is the unknown coefficient vector. By the definition of the B-spline basis functions (de Boor,
1972; Zhou and Wolfe, 2000; Ma and Song, 2015), f ′(·) and f ′′(·) can be approximated by

f ′(x) ≈ s′n(x) =

N−1∑
j=1

2
βj+1 − βj

x∗

j − x∗

j−2
Bj,2(x),

f ′′(x) ≈ s′′n(x) =

N−2∑
j=1

2(x∗

j − x∗

j−1)
−1
(βj+2 − βj+1

x∗

j+1 − x∗

j−1
−

βj+1 − βj

x∗

j − x∗

j−2

)
Bj,1(x),

where B1(·)
.
= (B1,1(·), . . . , BN−2,1(·))T and B2(·)

.
= (B1,2(·), . . . , BN−1,2(·))T are the basis functions corresponding to

piece-wise constant and piece-wise linear B-splines.
To simplify the notations, we introduce two knot-dependent matrices M1,M2 to rewrite the derivatives of f (·) as

f ′(x) ≈ s′n(x) = B2(x)TMT
1 β, f ′′(x) ≈ s′′n(x) = B1(x)TMT

2M
T
1 β,

where the transformation matrices M1 and M2 are defined as

M1 = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
x∗1−x∗

−1
0 0 · · · 0 0

1
x∗1−x∗

−1

−1
x∗2−x∗0

0 · · · 0 0

0 1
x∗2−x∗0

−1
x∗3−x∗1

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · ·
1

x∗N−2−x∗N−4

−1
x∗N−1−x∗N−3

0 0 0 · · · 0 1
x∗N−1−x∗N−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N×(N−1)

,

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
x∗1−x∗0

0 0 · · · 0 0

1
x∗1−x∗0

−1
x∗2−x∗1

0 · · · 0 0

0 1
x∗2−x∗1

−1
x∗3−x∗2

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · ·
1

x∗N−3−x∗N−4

−1
x∗N−2−x∗N−3

0 0 0 · · · 0 1
x∗N−2−x∗N−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(N−1)×(N−2)

.

Since B2(x) are piece-wise linear functions, thus for f (·) to be nondecreasing in (0, 1), it suffices to require B2(·)TMT
1 β ≥ 0

at all distinct knots {x∗

k}
kn+1
k=0 . In addition, B1(x) are piece-wise constant functions and the domain of X is divided into

meshes [x∗

k, x
∗

k+1), so B1(·)TMT
2M

T
1 β is piecewise constant and right continuous on knots x∗∗

2 = {x∗

k}
kn
k=0. Therefore, to achieve

convexity, it suffices to require B1(·)TMT
2M

T
1 β ≥ 0 at x∗∗

2 , that is, the right limits of the second derivative at all but the
right boundary knots.

Define γ = (γ0, γ1, . . . , γkn+1)T with γk = B2(x∗

k)
TMT

1 β for k = 0, . . . , kn + 1, and δ = (δ0, δ1, . . . , δkn )
T with

δk = B1(x∗

k)
TMT

2M
T
1 β for k = 0, . . . , kn, representing the right limit of the first two derivatives of sn(·) at knots. Denote
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the component-wise positive and negative parts of γ and δ, respectively, as γ +
≥ 0 and γ −

≥ 0, and δ+
≥ 0 and δ−

≥ 0,
such that γ = γ +

− γ − and δ = δ+
− δ−. We propose to estimate β by

β̂ = argmin
β

n∑
i=1

[ {
Yi − B3(Xi)Tβ

}2
(3)

+ λ1n(ω1∥γ
+
∥∞ + ω2∥γ

−
∥∞) + λ2n(ω3∥δ

+
∥∞ + ω4∥δ

−
∥∞)

]
,

where ∥ · ∥∞ is the L∞ norm, λ1n and λ2n are the regularization parameters for the first and second derivatives, and
{ω1, ω2, ω3, ω4} are the adaptive group weights. In our implementation, the adaptive weights are chosen as

ω1 = ∥γ u+
∥

−1
∞

, ω2 = ∥γ u−
∥

−1
∞

, ω3 = ∥δu
+
∥

−1
∞

, ω4 = ∥δu
−
∥

−1
∞

, (4)

where γ u+, γ u−, δu+, δu− are the initial estimators based on the unconstrained estimator βu, that is, the minimizer of (3)
with λ1n = λ2n = 0. The purpose of the adaptive weights is to assign a larger penalty to the vector that is more likely to
be sparse, thus shrinking it toward zero at a faster rate.

We penalize γ +, γ − and δ+, δ− in a group manner with the L∞ penalty for two reasons. Firstly, it is intuitive, for
instance, if the largest component in γ + is shrunk to zero, this implies that γ +

= 0 and the function is non-increasing.
Secondly, it is easy to cast the optimization problem into quadratic programming, so that any existing optimization
algorithms can be applied. As discussed earlier, the properties of quadratic B-splines imply that f (·) is (i) non-increasing
if all elements of γ + are shrunk to zero; (ii) concave if all elements in δ+ are shrunk to zero; (iii) non-increasing and
concave if both γ + and δ+ contain only zeros; (v) of a complex shape form if none of γ +, γ −, δ− and δ+ are shrunk to
zero.

For a given pair (λ1, λ2), there exists a pair of regularization parameters (s1, s2) such that minimizing (3) is equivalent
to solving the following constrained minimization problem

min
n∑

i=1

{
Yi −

N∑
j=1

Bj,3(Xi)βj

}2
, (5)

s.t. ω1∥γ
+
∥∞ + ω2∥γ

−
∥∞ ≤ s1, ω3∥δ

+
∥∞ + ω4∥δ

−
∥∞ ≤ s2.

The minimization problem can be solved by using quadratic programming, see next subsection for more details. When
s1 and s2 are large enough, minimizing (5) gives the unpenalized estimator βu. On the other hand, letting s1 = s2 = 0
will lead to an estimator of β that gives a flat curve with derivatives equal to zero. By the definition of weights in (4), the
tuning parameters s1 and s2 have the range of [0, 2]. We discuss the selection of tuning parameters in the next subsection.

2.2. Computational details

In this subsection, we present the computational details, including the explicit quadratic programming formulation
and the tuning selection criterion.

Recall that β = (β1, . . . , βN )T , and we further denote Y = (Y1, . . . , Yn)T , X = (X1, . . . , Xn)T ,

B(X) =

⎛⎜⎜⎝
B1,3(X1), B2,3(X1), · · · , BN,3(X1)
B1,3(X2), B2,3(X2), · · · , BN,3(X2)

...
...

. . .
...

B1,3(Xn), B2,3(Xn), · · · , BN,3(Xn)

⎞⎟⎟⎠ and α =

⎛⎜⎜⎜⎝
β

γ +

γ −

δ+

δ−

⎞⎟⎟⎟⎠ .

Thus, the squared loss in expression (5) can be rewritten as{
Y − B(X)β

}T{
Y − B(X)β

}
=

(
Y − Dα

)T(
Y − Dα

)
,

where D = (B(X),O) with O denoting a n × (4N − 6) zero matrix and N = kn + 3 is the number of basis functions.
The constraints in (5) are equivalent to ∀i, j ∈ {0, 1, . . . , kn + 1}, ω1γ

+

i + ω2γ
−

j ≤ s1 and ∀i′, j′ ∈ {0, 1, . . . , kn},
ω3δ

+

i′ + ω4δ
−

j′ ≤ s2. By the definition of α, we can rewrite the constraints as

Aα ≤

(
S⃗1
S⃗2

)
,

where the first (kn +2)2 rows of Aα include all pair combinations of (γ +

i , γ −

j ), i, j = 0, 1, . . . , kn +1, and the rest (kn +1)2

rows include all pair combinations of (δ+

i′ , δ
−

j′ ), i
′, j′ = 0, 1, . . . , kn, and S⃗1 = s1 · 1⃗(kn+2)2 , S⃗2 = s2 · 1⃗(kn+1)2 .

In addition, by the definitions of {γ +, γ −, δ+, δ−
}, we have the following constraints,

D1α = γ +
− γ −

− B2(x∗∗

1 )TMT
1 β = 0⃗,
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D2α = δ+
− δ−

− B1(x∗∗

2 )TMT
2M

T
1 β = 0⃗,

D3α ≥ 0⃗,

where D1 = (−B2(x∗∗

1 )TMT
1 , I1, I1,O1), D2 = (−B1(x∗∗

2 )TMT
2M

T
1 ,O2, I2, I2), D3 = (O3, I3) and x∗∗

2 = (x∗

0, . . . , x
∗

kn )
T , i.e. x∗∗

2
represents the whole distinct knot vector except the right boundary; B2(x∗∗

1 ) = (B2(x∗

0), . . . , B2(x∗

kn+1)) is a (N−1)×(kn+2)
matrix, with B2(x∗

j ) being its column, and similar for B1(x∗∗

2 ). The reason we omit the right end point is that δkn
.
=

B1(x∗

kn )
TMT

2M
T
1 β (right limit on the knot x∗

kn ) is enough to decide the second derivative in the middle of last mesh
[x∗

kn , x
∗

kn+1]. Here I1, I2 and I3 are identity matrices of dimensions kn + 2, kn + 1 and 4kn + 6, and O1, O2 and O3 are
zero matrices of dimensions (kn + 2) × (2kn + 2), (kn + 1) × (2kn + 4) and (kn + 3) × (kn + 3), respectively. With these
notations, we can rewrite the optimization problem (5) as

min
α

(Y − Dα)T (Y − Dα) ,

s.t. Aα ≤

(
S⃗1
S⃗2

)
,

(
D1
D2

)
α = 0⃗ and D3α ≥ 0⃗. (6)

This optimization problem can be solved by any existing quadratic programming algorithm. In our implementation, we
use the function ‘‘solve.QP’’ in the R package quadprog.

The tuning parameters (s1, s2) are chosen by the covariance information criterion in Tibshirani and Knight (1999); see
also Shen and Huang (2006) and Sklar et al. (2013). The covariance information criterion is defined as

CIC(s1, s2) =
1
n
RSS(s1, s2) +

2
n
C(s1, s2),

where RSS(s1, s2) =
∑n

i=1{Yi − f̂(s1,s2)(Xi)}2 is the sum of squared residuals based on the penalized estimator f̂(s1,s2)
associated with tuning parameters (s1, s2), and C(s1, s2) is the covariance penalty defined as

C(s1, s2) =

n∑
i=1

Cov{f̂(s1,s2)(Xi), Yi}.

The covariance information criterion is an unbiased estimate of MSE{f̂(s1,s2)} + σ 2. The covariance penalty C(s1, s2) is a
measurement of model complexity, and C(s1, s2)/σ 2 is equivalent to the generalized degree of freedom defined in Ye
(1998) for general modeling procedures including nonparametric regression.

In our implementation, we estimate the covariance penalty by a bootstrap method (Tibshirani and Knight, 1999;
Efron, 2004). Let {Y ∗

i,b, i = 1, . . . , n} be the bth bootstrap sample of {Yi, i = 1, . . . , n}, where b = 1, . . . , nb. Let
{f̂ ∗

b (Xi), i = 1, . . . , n} be the penalized estimation based on the bootstrap data {(Y ∗

i,b, Xi)}, i = 1, . . . , n and the tuning
parameters (s1, s2). Then the bootstrap estimator of the covariance penalty for the ith observation is calculated as

Ĉovi(s1, s2) =
1

nb − 1

nb∑
b=1

f̂ ∗

b (Xi)(Y ∗

i,b − Ȳ ∗

i· ),

where Ȳ ∗

i· =
∑nb

b=1 Y
∗

i,b/nb. Then the covariance penalty function C(s1, s2) can be estimated by Ĉ(s1, s2) =
∑n

i=1 Ĉovi(s1, s2).
Finally, we choose the tuning parameters (s1, s2) by minimizing

ĈIC(s1, s2) =
1
n
RSS(s1, s2) +

2
n
Ĉ(s1, s2),

over a grid of (s1, s2) in [0, 2] × [0, 2].

3. Asymptotic properties

We establish the asymptotic properties of the proposed penalized estimator in terms of selection consistency and
convergence rate. For notation, we denote an ≲ bn if an/bn ≤ c for some positive constant c , and an ∼ bn if an ≲ bn and
bn ≲ an. We assume the following conditions. Condition C1 requires that the variances of the errors are bounded, and C2
poses some condition on the distribution of Xi. Condition C3 is about the smoothness of the underlying function, which
is standard in nonparametric regression when the second derivative is of interest.

C1. The random errors εi are independent with mean zero and the maximum variance satisfying max1≤i≤n Var(εi) ≤

c0 < ∞ for some positive constant c0.
C2. The distribution of Xi is absolutely continuous with density function g in [0, 1]. Furthermore, there exist two

constants c1 > 0 and c2 < ∞ such that c1 ≤ g(x) ≤ c2 for any x ∈ [0, 1].
C3. The second order derivative of f (·) satisfies Hölder condition of order ν. That is, there exists a constant c3 > 0 such

that |f ′′(s) − f ′′(t)| ≤ c3|s − t|ν, for any 0 ≤ s, t ≤ 1.



6 Z. Gao, Y. Tang, H.J. Wang et al. / Computational Statistics and Data Analysis 148 (2020) 106956

Let r = min{3, 2 + ν} and kn ∼ n
1

2r+1 . Denote β̂ as the proposed B-spline coefficient estimator, f̂ (·) = B3(·)T β̂ as the
estimated curve, and γ̂ = B2(x∗∗

1 )TMT
1 β̂ and δ̂ = B1(x∗∗

2 )TMT
2M

T
1 β̂ as the estimated first two derivatives of the curve at the

knots. We establish the consistency of the sign identification of the first two derivatives and the convergence rate of the
proposed estimator in Theorems 1–2. Theorem 1 is for the case where the signs of f ′(·) and f ′′(·) are common across the
domain of X , and Theorem 2 is for the case where the signs change across the domain.

Theorem 1. Assume that C1–C3 hold with ν > 0.5, and c4 ≲ λ1n/λ2n ≲ kn with some positive constants c4. Suppose that
f (x) is increasing and convex across x ∈ [0, 1], then
(I) if (n

1
2r+1 log n)−1λ2n → ∞ and n−1λ2n → 0, we have P{∥γ̂ −

∥∞ = 0, ∥δ̂−
∥∞ = 0} → 1;

(II) if n−
r−3/2
2r+1 λ2n → 0, we have n−1∑n

i=1{f̂ (Xi) − f (Xi)}2 = Op
(
n−

2r
2r+1

)
.

Theorem 1(I) shows that with probability approaching one, the proposed estimator can correctly identify the signs of
the first two derivatives as long as the signs of f ′(·) and f ′′(·) are common across the domain of X . Theorem 1(I) solely
presents the correct identification for f (·) being increasing and convex for illustration, but the consistency also hold for
other scenarios as long as the signs of the derivatives do not change across the domain. Theorem 1(II) shows that the
proposed estimator can achieve the optimal convergence rate of the quadratic B-spline approximation.

Theorem 2. Assume that C1–C3 hold with ν > 0.5, and c4 ≲ λ1n/λ2n ≲ kn with some positive constants c4.
(I) If n−

2r−3
2r+1 λ2n → 0, we have

(i) if ∃ x1, x2 ∈ (0, 1), s.t. f ′(x1) · f ′(x2) < 0, then P{∥γ̂ +
∥∞ = 0 or ∥γ̂ −

∥∞ = 0} → 0;
(ii) if ∃ x1, x2 ∈ (0, 1), s.t. f ′′(x1) · f ′′(x2) < 0, then P{∥δ̂+

∥∞ = 0 or ∥δ̂−
∥∞ = 0} → 0.

(II) If n−
r−3/2
2r+1 λ2n → 0, we have n−1∑n

i=1{f̂ (Xi) − f (Xi)}2 = Op
(
n−

2r
2r+1

)
.

Theorem 2(I) suggests that if the derivatives of the function change signs across the domain, that is, the function is
not monotonic or convex/concave across the domain, then with probability approaching one the proposed estimator will
not identify the signs to be common. Theorem 2(II) shows that with a slower rate of λ2n, the proposed estimator can
achieve the optimal convergence rate of the quadratic B-spline approximation. This together with Theorem 1(II) suggests
that the optimal convergence rate can be achieved regardless of the shape of the underlying curve. When λ2n satisfies the
conditions (n

1
2r+1 log n)−1λ2n → ∞ and n−

r−3/2
2r+1 λ2n → 0, results in both Theorems 1–2 will hold.

4. Simulation study

We carry out a simulation study to assess the finite sample performance of the proposed penalized estimator. The
simulation data is generated from model (1) with Xi ∼ U(0, 1) and εi ∼ N(0, σ 2), i = 1, . . . , n. We consider four different
cases. In Case 1, we set f (x) = 1+10(x−0.3)2 being a convex function with σ = 1. In Case 2, we set f (x) = 1+5 exp(0.7x2)
being an increasing and convex function with σ = 1. In Case 3, we set f (x) = 1+10 sin(πx2) being increasing and convex
for x ∈ (0, 1/

√
2) and decreasing and concave for x ∈ (1/

√
2, 1) with σ = 4. In Case 4, we set f (x) = 1+5 sin(2πx2.5)+10x

being a complex form: it changes from increasing and convex to decreasing and concave, and then to increasing and
convex, with σ = 4. We consider two sample sizes n = 50 and 200, and the number of replicates is 300 for each scenario.

We consider four methods for comparison, (I) the unpenalized B-spline estimator, that is, the conventional B-spline
estimator without any shape constraints or penalization, (II) the oracle estimator, that is, the shape-constrained B-spline
estimator assuming correct shape knowledge of the underlying function, (III) the proposed penalized estimator, that is, the
solution from optimization problem (5), and (IV) the cubic smoothing spline estimator (Green and Silverman, 1994). The
first three methods are all based on quadratic B-splines. To assess the sensitivity of three B-spline based estimators against
the choice of knots, we vary the number of internal knots as kn = ⌊cn1/10

⌋ with c ∈ [3, 6], resulting in kn ∈ {4, . . . , 8}
for n = 50 and kn ∈ {5, . . . , 10} for n = 200, and the internal knots are assigned to be equally spaced in (0, 1). For the
unpenalized estimator, we also include a variation with kn selected by the Bayesian information criterion (Huang and
Yang, 2004) over kn ≥ 0, and the chosen kn is denoted as k∗

n. Estimation based on the smoothing spline is implemented
by the function smooth.spline in the R package splines with the smoothing parameter selected by cross validation.

We first assess the estimation accuracy of different estimators by comparing the mean integrated squared error,
E∥f̂ (X) − f (X)∥2

2. Fig. 1 summarizes the performance of different estimators against the number of internal knots kn for
n = 50; results for n = 200 can be found in the on line Supporting Information (Figure S.1). Results suggest that the
unpenalized estimator is more sensitive to kn than the penalized estimator and oracle estimator, and even with the data-
driven k∗

n chosen by Bayesian information criterion, it still in general gives higher mean integrated squared errors. The
penalized estimator is quite robust to kn, chosen based on this rule of thumb across c ∈ [3, 6] in terms of the estimation
efficiency, and the performance is similar with the oracle estimator in most of the cases, and the former is even slightly
better in Cases 1–2. One explanation of this seemingly surprising result is that the proposed penalization tends to shrink
the derivatives at internal knots, and this leads to more smoothed curves, which have smaller finite-sample variance
than the oracle estimator. The proposed penalized estimator is also consistently more accurate than the smoothing spline
estimator.



Z. Gao, Y. Tang, H.J. Wang et al. / Computational Statistics and Data Analysis 148 (2020) 106956 7

Fig. 1. Mean integrated squared errors for n = 50. Penalized estimator: solid circle; oracle estimator: open triangle; unpenalized estimator: open
square; smoothing spline estimator: horizontal dashed line; unpenalized estimator with k∗

n: horizontal dotted line. The horizontal bars around the
squares and the shaded area around the horizontal dotted line represent the 95% confidence intervals/belt of the unpenalized estimator with kn
varying and fixed at k∗

n , respectively.

We next compare the performance of different methods for shape identification, in terms of the correct identification of
derivative signs and the shape-class classification. More specifically, for the identification of derivative signs, we calculate
the average percentages that the signs of the first/second derivatives of f (x) are correctly identified over a 50-point grid
on [0.02, 0.98]. The shape-class classification is motivated by the ultrasonic vocalization study, where we aim to classify
functional curves to some pre-defined shapes, such as upward, downward, chevron, reverse chevron, wave and complex.
We report the percentages of replicates in which the shape class is correctly identified, where the true classes of the
curves in Cases 1–4 are reverse chevron, upward, chevron and wave, respectively. To account for the identifiability issue
of signs around zero, we exclude the regions of x for which f (j)(x) are close to zero, using

P
[
sign{f̂ (j)(x)} = sign{f (j)(x)}

⏐⏐ |f (j)(x)| > cj
]
, j = 1, 2,

where cj = sd{f (j)(ui)}/maxi{|f (j)(ui)|} and {ui}
50
i=1 is the grid in [0.02, 0.98].

Table 1 summarizes the shape identification results for the unpenalized estimator with data-adaptive k∗
n and the

proposed penalized estimators with kn = ⌊4n1/10
⌋; results for kn = ⌊cn1/10

⌋ with c ∈ [3, 6] can be found in the on
line Supporting Information (Table S.1), which shows that the proposed method is quite robust to kn, chosen based on
this rule of thumb across c ∈ [3, 6]. Overall, the penalized and unpenalized estimators perform similarly in terms of
derivative sign identification, and both are better than the smoothing spline estimator in sign identification of the second
derivative. The penalized estimator performs much better in the shape-class classification, especially in Cases 2–4. Our
investigation shows that the unpenalized estimator is sensitive to the choice of k∗

n, and the estimates are often unstable
on the boundary of x if k∗

n is not chosen well; the distribution of k∗
n in the on line Supporting Information (Table S.2)

shows that the selection of a suitable k∗
n is challenging especially when the convexity of the function changes across x. To

help understand why the unpenalized estimator under-performs in terms of shape identification, we show some typical
data sets from each case in Figure S.2 of the Supporting Information.

5. Analysis of the mice ultrasonic vocalization data

Rett Syndrome is a neurodevelopment disorder, for which the symptoms are characterized by pseudo-stationary stage
of seizures, stereotypical hand wringing, autistic-like symptoms and debilitating respiratory problems leading to sudden
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Table 1
Percentages of correct identification of derivative signs and shape classes.
Case Method n = 50 n = 200

PS1 PS2 PC PS1 PS2 PC

1 UPE 92·5 93·4 79·0 97·5 99·0 98·5
PE 94·2 94·9 87·0 98·7 97·2 99·5
SME 91·0 78·9 61·5 93·7 81·7 64·4

2 UPE 88·8 92·7 32·5 89·4 93·7 18·5
PE 98·1 91·2 74·0 98·5 93·5 91·5
SME 87·9 82·7 64·9 94·5 85·6 80·8

3 UPE 87·7 81·0 54·5 91·3 93·8 48·0
PE 93·7 79·4 86·5 96·4 85·8 88·5
SME 87·9 73·6 56·7 92·2 79·2 58·2

4 UPE 82·4 54·3 23·5 89·3 75·8 91·5
PE 85·1 68·8 65·0 91·9 71·3 97·0
SME 83·0 69·9 21·2 91·4 73·7 57·7

UPE: unpenalized estimator; PE: penalized estimator; SME: smoothing spline estimator; PSj: average percentages that
the signs of the jth derivatives of f (x) are correctly identified over x, j = 1, 2; PC: percentages of replicates in which
the shape class is correctly identified.

unexplained death (Hagberg et al., 1983). Methyl-CpG binding protein 2 is a chromosome binding protein and regulator
for brain development. Mutations of methyl-CpG-binding protein 2 have been shown to cause Rett Syndrome in terms of
language and motor deficits (Amir et al., 1999). To understand the disruptions of mutated methyl-CpG-binding protein
2 in brain development and function, mice models of Rett Syndrome have been created with mutations (Shahbazian
et al., 2002; Collins et al., 2004; Santos et al., 2007; Goffin et al., 2012). Like human beings, mice could generate
different ultrasonic vocalizations to communicate under different social scenarios such as isolation, aggression and
courtship (Scattoni et al., 2009). In this analysis, we study the effect of methyl-CpG-binding protein 2 on the ultrasonic
vocalizations of mice under the courtship paradigm.

The experiment was conducted in the Department of Psychology at George Washington University. The data includes
seven methyl-CpG-binding protein 2-null male mice with the gene knocked out, and their eight wild type siblings. On the
testing day, the ultrasonic vocalizations of each subject was recorded for 300 s with the presence of female mice urine
in the cage. The ultrasonic vocalizations have the characteristics of songs, consisting of syllables of different lengths and
types. Signals with more than 30 ms gaps between spectrally pure time points were considered as separate syllables. This
resulted in total 723 syllables vocalized by knocked out mice and 5550 syllables by wild type mice.

For illustration, Fig. 2 shows an example sonogram of ultrasonic vocalizations generated by one knocked out mouse
in the first 0.8 s. The y-axis is the transformed frequency contour in Cent scale, calculated as 12 log2(F/25 kHz), where F
is the frequency in unit Hz. During the first 0.8 s, the mouse produced 12 syllables of different shapes.

As suggested in Fig. 2 and previous studies, Scattoni et al. (2008) and Grimsley et al. (2011) the frequency contours
of typical ultrasonic vocalizations can be classified into 10 classes: ‘‘harmonic’’, ‘‘short’’, ‘‘jump’’, ‘‘flat’’, ‘‘upward’’,
‘‘downward’’, ‘‘chevron’’, ‘‘reverse chevron’’, ‘‘wave’’ and ‘‘complex’’. We first identify the four classes ‘‘harmonic’’, ‘‘short’’,
‘‘jump’’, ‘‘flat’’ based on some commonly used hard rules. Specifically, we identify a frequency contour with spectral
energy with 0.5 octaves from the fundamental frequency as ‘‘harmonic’’; with duration less than 10 ms as ‘‘short’’; with
more than 2 cents difference in consecutive frequencies as ‘‘jump’’ and with the ratio of range over duration less than
0.03 as ‘‘flat’’. Next we apply our proposed penalization method to classify the remaining smooth contours into the
six classes ‘‘upward’’, ‘‘downward’’, ‘‘chevron’’, ‘‘reverse chevron’’, ‘‘wave’’ and ‘‘complex’’. For each syllable, we choose
kn = ⌊4n1/10

⌋ number of equally spaced internal knots, where n is the number of measurements (duration) of the
frequency contour. The shape of the syllable is identified based on the signs of the first derivative of the penalized curve
estimator at the internal knots. A syllable is identified as ‘‘upward’’/‘‘downward’’ if the first derivative of the estimated
curve is positive/negative at all internal knots, as ‘‘chevron’’/‘‘reverse chevron’’ if the first derivative changes once from
positive/negative to negative/positive, as ‘‘wave’’ if the sign of the first derivative changes twice, as ‘‘complex’’ if the sign
changes three times or more.

For comparison, we also consider using the bootstrap test procedure in Du et al. (2013), which is based on kernel
smoothing, to identify shapes through testing the validity of various shape constraints. We use four example syllables to
demonstrate the differences of the penalization-based and testing-based methods. Fig. 3 shows the frequency contours,
the penalized curve estimation and the unconstrained Nadaraya–Watson estimation (Du et al., 2013). Table 2 summarizes
the hypothesis testing results (based on 200 bootstrap), and the computing times of the testing and penalization methods.
The penalization method classifies the four syllables to the classes ‘‘downward’’, ‘‘chevron’’, ‘‘reverse chevron’’ and ‘‘wave’’,
respectively. For Syllable 1, the testing method fails to reject the two shape constraints: ‘‘downward’’ (decreasing across
t) and ‘‘reverse chevron’’ (decreasing for t ∈ [1, 64] and increasing for t ∈ [65, 80]). If we choose the shape as the one
giving the largest p-value, the testing method will classify the four syllables to ‘‘reverse chevron’’, ‘‘chevron’’, ‘‘reverse
chevron’’, and ‘‘reverse chevron’’, which appear to be misleading for Syllables 1 and 4. On the other hand, choosing the
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Fig. 2. Sonogram of an example ultrasonic vocalization of a male mice evoked by female urine during the first 0.8 s. The curves are the transformed
frequency contours of different syllables, and the letters above or below the syllables are the identified shape classes.

Fig. 3. The proposed penalized estimation (dashed) and the unconstrained Nadaraya–Watson estimation (solid) for four example syllables from the
ultrasonic vocalization study. D: down; C: chevron; RC: reverse chevron; W: wave.

one giving the smallest test statistic will often classify syllables to the ‘‘complex’ class, since the test statistic measures
the distance of probability weights associated with the shape-constrained and unconstrained estimations, and tends to be
smaller for more complex shape constraints. In addition, the testing method requires more than 10 times of computing
time than the penalization method. All these suggest that the testing procedure is not suitable for identifying shapes for
the ultrasonic vocalization study that involves thousands of contours, since the testing procedure may be unreliable and
it also requires user’s manual intervention by specifying the exact shape constraints and regions for each contour.

Table 3 summarizes the percentages of syllables classified by our proposed penalization method for the knocked out
and wild type mice separately. The variation of vocalization between methyl-CpG-binding protein 2-null and wild type
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Table 2
The hypothesis testing results, and the computing times of the method in Du et al. (2013) and the proposed penalization
method from analyzing four example syllables. The H0 denotes the type of shape constraint to be tested.
Syllable Du et al. (2013) Proposed

H0 Statistic P-value Time (s) Time (s)

1 D⋆ 0·0003 0·180 414 38
U 0·6206 0·010
RC 0·0001 0·955

2 D 0·3257 0·155 333 28
U 0·0446 0·010
C⋆ 0·0000 0·849

3 D 0·0240 0·040 438 30
U 0·2826 0·050
RC⋆ 0·0001 0·595
X 0·0007 0·180

4 D 0·0737 0·000 671 38
U 0·8165 0·000
C 0·0991 0·200
RC 0·6734 0·740
W⋆ 0·0030 0·190
X 0·0030 0·430

D: down; U: upward; C: chevron; RC: reverse chevron; W: wave; X: complex. Bold: classified by Du et al. (2013),
chosen as the shape associated with the largest p-value; with superscript ⋆: classified by the proposed penalization
method.

Table 3
Percentages of syllables classified into each shape class for the knocked out and wild type groups separately.
Type H S J F U D C RC W X #

KO 10 29 31 4 4 2 8 3 6 3 723
WT 4 19 30 6 8 5 14 3 7 3 5550

KO: knocked out; WT: wild type; H: harmonic; S: short; J: jump; F: flat; U: up; D: down; C: chevron; RC: reverse chevron; W: wave; X: complex.
#: Total amount of syllables. The last column is the total number of syllables.

mice are visible. First, methyl-CpG-binding protein 2-null mice produced significantly much less vocal signs than the wild
type mice. Second, In terms of the distribution of syllable types, methyl-CpG-binding protein 2-null mice produced more
short syllables, but less ‘‘upward’’, ‘‘downward’’, and ‘‘chevron’’ types of syllables than wild type mice.

To further assess the impact of methyl-CpG-binding protein 2 on the vocalization of mice, we summarize the average of
mean and range of frequencies, and the average duration of syllables within each class (excluding the harmonic class) for
the knocked out and wild type mice, separately, in Table 4. Results suggest that methyl-CpG-binding protein 2-null mice
have much smaller average frequency, narrower frequency range and shorter duration of syllables than wild type mice,
especially for the smooth contours in the ‘‘upward’’, ‘‘downward’’, ‘‘chevron’’, ‘‘reverse chevron’’, ‘‘wave’’ and ‘‘complex’’
classes, which are informative due to their modulation in frequency. The reduced vocalization of methyl-CpG-binding
protein 2-null mice can be seen as an implication of isolation and defect during communication. As observed in the earlier
study (Chahrour and Zoghbi, 2007; Guy et al., 2011; Marschik et al., 2012), the brain regions responsible for movement and
cognitive functions could be compromised in animals and patients with methyl-CpG-binding protein 2 mutations, which
in turn may undermine the production of vocal signals of the methyl-CpG-binding protein 2-null mice. The findings from
our study will shed light on understanding the influence of methyl-CpG-binding protein 2 on language development, and
pinning down the target of methyl-CpG-binding protein 2-affected areas for communication.

6. Conclusion and discussion

In some practical settings, information about the relationship between the responses and predictors may be available.
Some popular examples include the study of utility functions, cost functions, and profit functions in economics (Gallant
and Golub, 1984; Terrell, 1996), the study of dose response curve in the phase I clinical trials, growth curves of animals
and plants in ecology, and the estimation of the hazard rate and the failure rate in reliability and survival analysis (Molitor
and Sun, 2002; Chang et al., 2007). Even though this paper is motivated by mice vocalization, the proposed method can
also be applied to the aforementioned areas such as economics, social sciences, biology, clinical trials to confirm the shape
assumption, or to help identify the shape and improve the estimation efficiency when the exact shape information is not
known in advance.

In this paper, we adopt the quadratic B-spline basis functions, so that f ′(·) is approximated by a piece-wise linear
function, and f ′′(·) is approximated by a piece-wise constant function, which makes the shape identification easier. One
may consider adopting higher order B-splines, such as cubic B-splines, to obtain smother curve estimation, but the
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Table 4
The average mean and range of transformed frequency contour and the average duration of syllables within each identified class. Values in the
parentheses are standard errors.
Type S J F U D C RC W X

Average mean of transformed frequency contour
KO 16.1 16.3 14.3 19.9 18.5 16.7 12.8 15.3 12.6

(0.6) (0.3) (0.4) (0.7) (0.8) (0.7) (0.7) (1.2) (1.3)
WT 18.1 18.2 18.2 19.8 18.5 19.1 17.9 17.9 17.7

(0.1) (0.1) (0.2) (0.1) (0.1) (0.1) (0.4) (0.3) (0.3)

Average range of transformed frequency contour
KO 1.9 6.8 0.4 1.8 2.2 2.3 1.6 2.5 2.3

(0.3) (0.2) (0.1) (0.1) (0.2) (0.2) (0.2) (0.3) (0.1)
WT 1.0 6.2 0.5 2.1 2.9 3.0 2.1 2.9 4.8

(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.2)

Average duration of syllabus
KO 7.4 27 20 17 22 22 19 31 32

(0.1) (1.6) (3.4) (1.1) (5.1) (1.8) (2.0) (4.7) (6.3)
WT 7.3 49 21 19 32 35 29 45 90

(0.1) (0.9) (0.7) (0.3) (1.2) (1.0) (2.0) (2.1) (4.2)

KO: knocked out; WT: wild type; S: short; J: jump; F: flat; U: up; D: down; C: chevron; RC: reverse chevron; W: wave; X: complex.

computation for shape penalization will be much more complicated since it would require penalization at all points
instead of only at the knots required by quadratic B-splines.
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Appendix A. Proof of Theorems 1–2

A.1. Notations

Recall that knots x∗∗

1 = (x∗∗

2
T , x∗

kn+1)
T , and B-spline derivatives (right limits) at knots

γ = (γ0, γ1, . . . , γkn+1)T
.
= B2(x∗∗

1 )TMT
1 β, δ = (δ0, δ1, . . . , δkn )

T .
= B1(x∗∗

2 )TMT
2M

T
1 β. (A.1)

For notational ease, we let B .
= B3(X), B′ .

= B′(x∗∗

1 ) .
= B2(x∗∗

1 )TMT
1 , B

′′ .
= B′′(x∗∗

2 ) .
= B1(x∗∗

2 )TMT
2M

T
1 . Decompose β , B′(x∗∗

1 ),
B′′(x∗∗

2 ) as: β
.
= (β1, β̃

T )T , B′(x∗∗

1 ) .
= (B′

(1), B̃
′), B′′(x∗∗

2 ) .
= (B′′

(1), B̃
′′), with β1, B′

(1), B
′′

(1) being the first element or column. Then,(
γ

δ

)
.
=

(
B′

(1)β1 + B̃′β̃

B′′

(1)β1 + B̃′′β̃

)
. (A.2)

For notational ease, we define

Q (β) = (Y − Bβ)T (Y − Bβ) + λ1n(ω1∥γ
+
∥∞ + ω2∥γ

−
∥∞) + λ2n(ω3∥δ

+
∥∞ + ω4∥δ

−
∥∞). (A.3)

We use λmin(·) and λmax(·) to denote the minimum and maximum eigenvalues of a matrix.

A.2. Some useful lemmas

We first introduce some useful lemmas. Lemma 1 states some inequalities, and the proof is routine. Lemma 2 gives a
property of B-spline expansion, which is the same as Lemma A.1 in Tang et al. (2012). Lemma 3 presents the convergence
rate of an infeasible intermediate estimator, which is derived by combining Lemma 2 and Lemma A.4 in Tang et al.
(2012). Lemma 4 establishes the asymptotic order of the adaptive weights, which is a special case of the Proposition A.1
in Wang and Yang (2009). Lemma 5 studies the difference between the proposed estimator and the infeasible intermediate
estimator. Lemma 6 gives the detailed structure of the transformation matrices. The proof of Lemmas 5–6 can be found
at the end of Appendix A.
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Lemma 1. Let a and b be two arbitrary vectors of the same length, then

|∥(a + b)+∥∞ − ∥a+
∥∞| ≤ ∥b∥∞ and |∥(a + b)−∥∞ − ∥a−

∥∞| ≤ ∥b∥∞.

Lemma 2. Suppose that C2 and C3 hold. The eigenvalues of n−1knB(X)TB(X) are uniformly bounded away from zero and
infinity in probability.

Lemma 3. Suppose that C1–C3 hold with ν > 0.5. Let βc
= {B(X)TB(X)}−1B(X)TE(Y |X). For kn ∼ n1/(2r+1), we have

∥B(X)βc
− f (X)∥2 = Op[n1/{2(2r+1)}

].

Lemma 4. Suppose that C1–C3 hold with ν > 0.5. Let r = min{3, 2 + ν}. For kn ∼ n
1

2r+1 ,

sup
x∈[0,1]

|B′(x)βu
− f ′(x)| = Op(n−

r−1
2r+1 log n), sup

x∈[0,1]
|B′′(x)βu

− f ′′(x)| = Op(n−
r−2
2r+1 log n),

where βu is the unpenalized estimator.

Lemma 5. For Y = (Y1, . . . , Yn)T and X = (X1, . . . , Xn)T , define βc
= {B(X)TB(X)}−1B(X)TE(Y |X). Suppose that C1–C3 hold

with ν > 0.5. For kn ∼ n1/(2r+1) and c4 ≲ λ1n/λ2n ≲ kn, we have ∥β̂ − βc
∥2 = Op

[
max{n−r/(2r+1), λ2nn−(2r−2)/(2r+1)

}
]
.

Lemma 6. The structure and components of matrices B̃′ and B̃′′ defined in (A.2) are fully determined once x∗∗

1 is given. The
rank of B̃′ is full and δ = B̃′′(B̃′)−1γ . Specifically, for equally spaced knots, let κ = kn + 1, we have

B̃′′(B̃′)−1
=

⎛⎜⎜⎜⎜⎝
−κ κ 0 · · · 0 0
0 −κ κ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · κ 0
0 0 0 · · · −κ κ

⎞⎟⎟⎟⎟⎠
(kn+1)×(kn+2)

.

A.3. Proof of Theorem 1

We only prove Theorem 1 for 0.5 < ν ≤ 1, so that 2.5 + η ≤ r ≤ 3 for some positive constant η, and the proof for
ν > 1 is similar.

(I) Proof of part (I) of Theorem 1. We use the method of contradiction to prove the consistency in shape identification.
For f (·) being strictly increasing and strictly convex, the false shape identification implies that limn→∞ P{∥(B′β̂)−∥∞ >

0} = η1 for some constant 0 < η1 < 1, or limn→∞ P{∥(B′′β̂)−∥∞ > 0} = η2 for some constant 0 < η2 < 1, or both cases.
Each situation is discussed as follows.

(I.1) Assume limn→∞ P{∥(B′(x∗∗

1 )β̂)−∥∞ > 0} = η1 for some constant 0 < η1 < 1. We start with the case that the
estimated first derivative is negative only at the jth knot, i.e.,

γ̂j = (B̃′ ˆ̃β)j < 0 and γ̂i ≥ 0, ∀ i ̸= j, (A.4)

where β̂ = (β̂1,
ˆ̃
β). Define γ ∗

= (γ ∗

0 , γ ∗

1 , . . . , γ ∗

kn+1)
T , where γ ∗

j = 0 and γ ∗

i = γ̂i, ∀i ̸= j. From Lemma 6, we have that B̃′

is of full rank. Through equations (A.2), we can construct a vector β∗ corresponding to γ ∗ as

β∗
=

(
β∗

1
β̃∗

)
.
=

(
1 0⃗T

1⃗ (B̃′)−1

)(
β̂1
γ ∗

)
,

where β∗

1 = β̂1. Again, by Lemma 6, we have the corresponding second derivatives as

δ̂ = B̃′′(B̃′)−1γ̂ , δ∗
= B̃′′(B̃′)−1γ ∗.

From the definition of B̃′′(B̃′)−1 in Lemma 6, we know that δ∗ and δ̂ differ only at the (j-1)th and jth knots as

0 ≥ δ∗

j−1 = −κj−1,j−1γ
∗

j−1 + κj−1,jγ
∗

j = −κj−1,j−1γ̂j−1 + 0 = δ̂j−1,

0 < δ∗

j = −κj,jγ
∗

j + κj,j+1γ
∗

j+1 = 0 + κj,j+1γ̂j+1 ≤ −κj,jγ̂j + κj,j+1γ̂j+1 = δ̂j,

which implies ∥δ∗−
∥∞ ≤ ∥δ̂−

∥∞ and ∥δ∗+
∥∞ ≤ ∥δ̂+

∥∞. Hence for β∗, we know that

β∗

1 = β̂1, (B′β∗)+ = (B′β̂)+, (B′β∗)− = 0⃗, (A.5)

∥(B′′β∗)+∥∞ ≤ ∥(B′′β̂)+∥∞, ∥(B′′β∗)−∥∞ ≤ ∥(B′′β̂)−∥∞.
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As β̂ is the minimizer of Q (β) in (A.3), we prove Q (β̂) − Q (β∗) > 0 for contradiction. We decompose Q (β̂) − Q (β∗)
into Ml and Mp as

Ml = (Y − Bβ̂)T (Y − Bβ̂) − (Y − Bβ∗)T (Y − Bβ∗),
Mp = λ2n[ω3{∥(B′′β̂)+∥∞ − ∥(B′′β∗)+∥∞} + ω4{∥(B′′β̂)−∥∞ − ∥(B′′β∗)−∥∞}] + λ1nω2∥(B′β̂)−∥∞.

For the Ml term, by some routine calculation, with βc from Lemma 5, we get

Ml = (β̂ − β∗)TBTB(β̂ − β∗) − 2(Y − Bβc)TB(β̂ − β∗) − 2(βc
− β∗)TBTB(β̂ − β∗). (A.6)

According to the Cauchy–Schwartz inequality and Lemma A.1 of Tang et al. (2012), we have for some constant C1 > 0,
(βc

− β∗)TBTB(β̂ − β∗) ≤ C1nk−1
n ∥β̂ − β∗

∥2∥β
c
− β∗

∥2. From the triangle inequality, we get ∥βc
− β∗

∥2 ≤ ∥βc
− β̂∥2 +

∥β̂ − β∗
∥2. Combining with Lemma 5, we get

(βc
− β∗)TBTB(β̂ − β∗) ≤ Op(n1/2

+ λ2nn
2

2r+1 )∥β̂ − β∗
∥2 + n

2r
2r+1 ∥β̂ − β∗

∥
2
2. (A.7)

Define e = (f (X1), . . . , f (Xn))T − Bβc . By Theorem 1 of Shi and Li (1995), we have ∥e∥2
2 = n

1
2r+1 . According to Lemma A.1

of Tang et al. (2012) and the Cauchy–Schwartz inequality, we have

|(Y − Bβc)TB(β̂ − β∗)| ≤ |eTB(β̂ − β∗)| + |εTB(β̂ − β∗)| = Op
(
n1/2)

∥β̂ − β∗
∥2. (A.8)

Combining (A.6), (A.7) and (A.8) together, we have

Ml ≥ −Op(n1/2
+ λ2nn

2
2r+1 )∥β̂ − β∗

∥2. (A.9)

For the Mp term, combining Lemmas 1 and 4 (with r ≤ 3), we have the convergence rate of unpenalized deriva-
tive estimator as |∥{B′(x∗∗

1 )βu
}
±
∥∞ − ∥{f ′(x∗∗

1 )}±∥∞| = Op(n−
r−1
2r+1 log n) and |∥{B′′(x∗∗

2 )βu
}
±
∥∞ − ∥{f ′′(x∗∗

2 )}±∥∞| =

Op(n−
r−2
2r+1 log n). For f (·) being strictly increasing and convex, we know that ∥f ′(x∗∗

1 )+∥∞ > 0, ∥f ′(x∗∗

1 )−∥∞ = 0,
∥f ′′(x∗∗

2 )+∥∞ > 0, and ∥f ′′(x∗∗

2 )−∥∞ = 0. By the definition of adaptive weight, with probability approaching one, we
have, for some positive constants a1, a2, a3, a4,

ω1 ≤ {∥f ′(x∗∗

1 )+∥∞/2}−1
≤ a1, ω2 ≥ a2(log n)−1n

r−1
2r+1 , (A.10)

ω3 ≤ {∥f ′′(x∗∗

2 )+∥∞/2}−1
≤ a3, ω4 ≥ a4(log n)−1n

r−2
2r+1 .

Hence by Lemma 4, (A.5), (A.10), Theorem 1 conditions c4 ≲
λ1n
λ2n

≲ kn and kn ∼ n
1

2r+1 , there exists some positive constants
C2 and C3 such that

Mp ≥ λ1nω2∥(B′β̂)−∥∞ ≥ c4λ2nω2∥B′(β∗
− β̂)∥∞ (A.11)

≥ λ2nC2(log n)−1n
r−1
2r+1 k1/2n ∥β∗

− β̂∥2
.
= C3λ2n(log n)−1n

r−1/2
2r+1 ∥β̂ − β∗

∥2.

Combining (A.9) and (A.11), we have, with probability approaching one,

Q (β̂) − Q (β∗) ≥ −C4(n1/2
+ λ2nn

2
2r+1 )∥β̂ − β∗

∥2 + C3λ2n(log n)−1n
r−1/2
2r+1 ∥β̂ − β∗

∥2,

for some positive constant C4. With 2.5 < r ≤ 3 and λ2n/(n
1

2r+1 log n) → ∞, we have Q (β̂) − Q (β∗) > 0, which is a
contradiction with β̂ being the solution minimizing the optimization. Thus (A.4) is denied.

If there exists multiple knots at which the signs of the first derivatives are incorrectly estimated, we can construct
corresponding γ ∗ to show the contradiction similarly.

(I.2) Assume limn→∞ P(∥(B′′(x∗∗

2 )β̂)−∥∞ > 0) = η2 for some constant 0 < η2 < 1. By Lemma 6, we have the derivative
transformation as

δ = B̃′′(B̃′)−1γ
.
= Hγ =

(
H(1) H̃

)(
γ1
γ̃

)
= H(1)γ1 + H̃γ̃ ,

γ =

(
γ1
γ̃

)
=

(
1 0⃗T

−H̃−1H(1) H̃−1

)(
γ1
δ

)
, (A.12)

where γ̃ is the sub vector of γ excluding the first component, H(1) is the first column of H , and H̃ contains the rest columns
of H . By Lemma 6, we have

H = B̃′′(B̃′)−1
=

⎛⎜⎜⎜⎜⎝
−κ1,1 κ1,2 0 · · · 0 0
0 −κ2,2 κ2,3 · · · 0 0
0 0 −κ3,3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −κkn+1,kn+1 κkn+1,kn+2

⎞⎟⎟⎟⎟⎠
(kn+1)×(kn+2)

.
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Thus H̃ has the dimension (kn + 1) × (kn + 1) and it is of full rank. We can solve out that

H̃−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
κ1,1

0 · · · 0 0
κ1,2

κ1,1κ2,2
1

κ2,2
· · · 0 0

...
...

. . .
...

...∏kn
i=1 κi,i+1∏kn
i=1 κi,i

∏kn
i=2 κi,i+1∏kn
i=2 κi,i

· · ·
1

κkn,kn
0

∏kn+1
i=1 κi,i+1∏kn+1
i=1 κi,i

∏kn+1
i=2 κi,i+1∏kn+1
i=2 κi,i

· · ·
κkn,kn+1∏kn+1
i=kn

κi,i

1
κkn+1,kn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(kn+1)×(kn+1)

.

By the form of H̃−1, if γ1 is given, we can recover γ from δ by (A.12) as

γ =

(
γ1
γ̃

)
=

(
γ1

H̃−1δ − γ1H̃−1H(1)

)
=

(
1 0⃗T

−H̃−1H(1) H̃−1

)(
γ1
δ

)
,

where −H̃−1H(1) =

(
1, κ2,1

κ2,2
, . . . ,

∏kn
i=1 κi,i+1∏kn

i=1 κi+1,i+1

)T
, and for equally spaced knots, −H̃−1H(1) = 1⃗. Combining with (A.2), we

have

β =

(
1 0⃗T

1⃗ (B̃′)−1

)⎛⎝1 0 0⃗T

1 1 0⃗T

1⃗ −H̃−1H(1) H̃−1

⎞⎠(β1
γ1
δ

)
. (A.13)

That is, given β1 and γ1, we can recover β from δ.
For limn→∞ P(∥(B′′(x∗∗

2 )β̂)−∥∞ > 0) = η2, without loss of generality, we can assume

δ̂ℓ = (B̃′′ ˆ̃β)ℓ < 0, δ̂i ≥ 0, ∀i ̸= ℓ, (A.14)

an incorrectly estimation at the lth knot. Define δ∗∗
= (δ∗∗

1 , . . . , δ∗∗

kn+1)
T , with δ∗∗

i = δ̂i, ∀i ≤ ℓ − 1, and δ∗∗

ℓ = · · · =

δ∗∗

kn+1 = 0. Corresponding γ ∗∗ can be constructed by (A.12). Since −H̃−1H(1) is determinant for given knots, we have
γ ∗∗

i = γ̂i, 1 ≤ i ≤ ℓ − 1 and γ ∗∗

ℓ = γ ∗∗

ℓ+1 = · · · = γ ∗∗

kn+1 = γ̂ℓ−1. It is easy to derive that ∥(γ ∗∗)−∥∞ = 0 and
∥(γ ∗∗)+∥∞ ≤ ∥γ̂ +

∥∞. Then, for the corresponding β∗∗ by (A.13) from γ ∗∗, we get

β∗∗

1 = β̂1, γ ∗∗

1 = γ̂1, (B′′β∗∗)+ = (B′′β̂)+, (B′′β∗∗)− = 0⃗,

∥(B′β∗∗)+∥∞ ≤ ∥(B′β̂)+∥∞, ∥(B′β∗∗)−∥∞ ≤ ∥(B′β̂)−∥∞. (A.15)

In addition, γ ∗∗

1 can be replaced by any other γ̂i, and the inequalities in (A.15) still hold.
Similar to (I.1), we can decompose Q (β̂) − Q (β∗∗) as Ml′ and Mp′ , where

M ′

l = (Y − Bβ̂)T (Y − Bβ̂) − (Y − Bβ∗∗)T (Y − Bβ∗∗),
M ′

p = λ1n[ω1{∥(B′β̂)+∥∞ − ∥(B′β∗∗)+∥∞} + ω2{∥(B′β̂)−∥∞ − ∥(B′β∗∗)−∥∞}] + λ2nω4∥(B′′β̂)−∥∞.

The bound of M ′

l is similar to Ml in (I.1). For M ′
p, by (A.15) and kn ∼ n

1
2r+1 , we have

M ′

p ≥ λ2nω4∥(B′′β̂)−∥∞ = λ2nω4∥B′′(β∗∗
− β̂)∥∞ (A.16)

= λ2nC5(log n)−1n
r−2
2r+1 k

3
2
n ∥β∗∗

− β̂∥2
.
= C6λ2n(log n)−1n

r−1/2
2r+1 ∥β∗∗

− β̂∥2,

for some positive constants C5 and C6. Similar to (I.1), we can prove Q (β̂) − Q (β∗∗) > 0, which is a contradiction and
deny (A.14).

Also, similar arguments can be derived when the signs of second derivatives are incorrectly estimated at multiple
knots.

(I.3) We discuss the simultaneous sign identification of derivatives. We use As to denote the event that ‘‘on all knots,
sth derivative is correct in sign’’, s = 1, 2, and A3 = A1 ∩ A2. From results in (I.1) and (I.2), we have limn→∞ P(Ac

1) =

limn→∞ P(∥B′β̂−
∥∞ ̸= 0) = 0 and limn→∞ P(Ac

2) = limn→∞ P(∥B′′β̂−
∥∞ ̸= 0) = 0, and therefore limn→∞ P(Ac

3) = 0.
Thus, the proposed estimator can provide correct sign identification at knots for both first and second derivatives
simultaneously. Extending from the knots to meshes, the proposed estimator based on quadratic B-splines is consistent
in shape detection in the whole domain.

(II) Proof of part (II) of Theorem 1. Now we establish the convergence rate of the proposed estimator. It is easy to
show that

∥Bβ̂ − f (X)∥2 ≤ ∥Bβ̂ − Bβc
∥2 + ∥Bβc

− f (X)∥2 ≤ λ1/2
max(B

TB)∥β̂ − βc
∥2 + ∥Bβc

− f (X)∥2.
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Combining λmax(BTB) = O(n
2r

2r+1 ) from Lemma 2, ∥Bβc
− f (X)∥2 = Op{n

1
2(2r+1) } from Lemma 3 and ∥β̂ − βc

∥2 =

Op(n
−r+1/2
2r+1 + λ2nn

−2r+2
2r+1 ) from Lemma 5, we have

n−1
n∑

i=1

{B(Xi)β̂ − f (Xi)}2 = n−1
∥Bβ̂ − f (X)∥2

2 = Op(n
−2r
2r+1 + λ2

2nn
−

4r−3
2r+1 ).

With 2.5 < r ≤ 3 and n−
r−3/2
2r+1 λ2n → 0, we have n−1∑n

i=1{B(Xi)β̂ − f (Xi)}2 = Op{n−2r/(2r+1)
}.

A.4. Proof of Theorem 2

The proof of part (II) is similar to that of part (II) of Theorem 1, thus is omitted. We use the method of contradiction
to prove part (I). We only prove Theorem 2 for 0.5 < ν ≤ 1, so that 2.5 + η ≤ r ≤ 3 for some positive constant η, and
the proof for ν > 1 is similar.

(I.1) Given that ∃x1, x2 ∈ (0, 1), s.t . f ′(x1) · f ′(x2) < 0, then ∃x0 ∈ (x1, x2), s.t . f ′(x0) < 0. If limn→∞ P{∥(B′(x∗∗

1 )β̂)−∥∞ =

0} ̸= 0, then with positive probability γ̂i = (B̃′ ˆ̃β)i > 0 for all i = 0, 1, . . . , kn + 1. Without loss of generality, we can
assume that

γ̂j > 0, while f ′(x∗

j ) < 0, (A.17)

a false derivative estimation at jth knot x∗

j . According to Lemma 5, we have that ∥β̂ − βc
∥2 = Op{max(n

−r
2r+1 , λ2nn−

2r−2
2r+1 )}.

By Lemma 4 we have limn→∞ γ c
j = f ′(x∗

j ) < ηj < 0, for some constant ηj < 0.
If assumption γ̂j > 0 is true, then |γ̂j − γ c

j | ≥ |ηj|, which implies that ∥γ̂ − γ c
∥2 ≥ |ηj|. However, from Lemma 5, we

have ∥γ̂ − γ c
∥2 = ∥B′(β̂ − βc)∥2 = Op{max(n−

r−1/2
2r+1 , λ2nn−

2r−5/2
2r+1 )}. Under Theorem 1 conditions n−

2r−5/2
2r+1 λ2n → 0 and

2.5 < r ≤ 3, we have ∥γ̂ − γ c
∥2 → 0. Therefore, for n−

2r−5/2
2r+1 λ2n → 0, we have ∥γ̂ − γ c

∥2 → 0.
Thus, the assumption (A.17) is conflicted with Lemma 5, which makes the contradiction. Hence, we have limn→∞ P

{∥(γ̂ )−∥∞ = 0} = 0 when f ′(x1) · f ′(x2) < 0. In a similar way, we can prove that limn→∞ P{∥(γ̂ )+∥∞ = 0} = 0 when
f ′(x1) · f ′(x2) < 0.

(I.2) Given that ∃ x1, x2 ∈ (0, 1), s.t . f ′′(x1) · f ′′(x2) < 0, using the similar strategy as in (I.1), we can prove that
P{∥(δ̂)−∥∞ = 0 or ∥(δ̂)+∥∞ = 0} → 0 if n−

2r−3
2r+1 λ2n → 0.

A.5. Proof of Lemmas 5 and 6

Proof of Lemma 5. To simplify the notation, we set B .
= B(X). By the triangle inequality, we have ∥β̂−βc

∥2 ≤ ∥β̂−βu
∥2+

∥βu
− βc

∥2. According to the central limit theorem, it is easy to prove that ∥βu
− βc

∥2 = ∥(BTB)−1BTε∥2 = Op(n−1/2k1/2n ).
Next we derive the bound for ∥β̂ − βu

∥2.
For ∥β̂ − βc

∥2, we assume that β̂ − βu
= dnu, where dn is a scalar and u is a vector satisfying ∥u∥2 = 1. By Lemma 2,

we have

(Y − Bβ̂)T (Y − Bβ̂) − (Y − Bβu)T (Y − Bβu) = d2nu
TBTBu ≥ d2nnk

−1
n λmin(V ). (A.18)

Since β̂ is the minimizer of Q (β), thus Q (β̂) − Q (βu) ≤ 0. We write

Q (β̂) − Q (βu) = d2nu
TBTBu +

{
λ1n(ω1∥γ̂

+
∥∞ + ω2∥γ̂

−
∥∞ − ω1∥γ

u+
∥∞ − ω2∥γ

u−
∥∞)

+ λ2n(ω3∥δ̂
+
∥∞ + ω4∥δ̂

−
∥∞ − ω3∥δ

u+
∥∞ − ω4∥δ

u−
∥∞)

}
.
= d2nu

TBTBu + M1. (A.19)

Now we consider the penalty difference M1. In the case that f (·) is strictly increasing and strictly convex, we know
∥f ′(x∗∗

1 )+∥∞ > 0 and ∥f ′′(x∗∗

2 )+∥∞ > 0. By Lemma 4, we have, with probability approaching one,

ω1 ≤ {∥f ′(x∗∗

1 )+∥∞/2}−1
≤ a1, ω3 ≤ {∥f ′′(x∗∗

2 )+∥∞/2}−1
≤ a3,

where a1 and a3 are some positive constants. By the definitions of ω2 and ω4, we have

M1 = λ1nω1(∥γ̂ +
∥∞ − ∥γ c+

∥∞) + λ1nω2(∥γ̂ −
∥∞ − ∥γ u−

∥∞)
+ λ2nω3(∥δ̂+

∥∞ − ∥δc+∥∞) + λ2nω4(∥δ̂−
∥∞ − ∥δu−∥∞)

≥ −λ1na1|∥γ̂ +
∥∞ − ∥γ u+

∥∞| + λ1n(ω2∥γ̂
−
∥∞ − 1)

− λ2na3|∥δ̂+
∥∞ − ∥δu+∥∞| + λ2nω4∥δ̂

−
∥∞ − λ2n

≥ −λ1na1|∥γ̂ +
∥∞ − ∥γ u+

∥∞| − λ2na3|∥δ̂+
∥∞ − ∥δu+∥∞| − λ1n − λ2n.
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By Lemma 1 we have

|∥γ̂ +
∥∞ − ∥γ u+

∥∞| ≤ ∥dnB̃′u∥∞, |∥δ̂+
∥∞ − ∥δu+∥∞| ≤ ∥dnB̃′′u∥∞.

According to the norm inequality ∥ · ∥∞ ≤ ∥ · ∥2 and the exact form of B′, B′′, we have

∥dnB̃′u∥∞ ≤ ∥dnB̃′u∥2 ≤ dnC7kn, ∥dnB̃′′u∥∞ ≤ ∥dnB̃′′u∥2 ≤ dnC8k2n,

for some positive constants C7 and C8. Given
λ1n
λ2n

≲ kn, we have

M1/λ2,n ≥ −a1C7dnk2n − a3C8dnk2n − kn − 1. (A.20)

Let kn = C9n
1

2r+1 for some positive constant C9. Combining (A.18), (A.19) and (A.20), we have, with probability
approaching one,

Q (β̂) − Q (βu) = d2nu
TBTBu + M1 ≥ d2nnk

−1
n λmin(V ) − λ2,n{(a1C7 + a2C8)dnk2n + kn + 1}

≥ C−1
9 d2nn

2r
2r+1 λmin(V ) − 2λ2,n(a1C7 + a2C8)C2

04dnn
2

2r+1 .

Thus, if the order of dn is larger than λ2nn−(2r−2)/(2r+1), we have Q (β̂) − Q (βc) > 0, which is a contradiction to the
definition of β̂ , the minimizer of Q (·). Combining the fact that ∥βu

− βc
∥2 = Op(n−1/2k1/2n ), we have ∥β̂ − βc

∥2 =

Op[max{n−r/(2r+1), λ2nn−(2r−2)/(2r+1)
}].

Proof of Lemma 6. By the definition,

Bj,3(x) = (x∗

j+2 − x∗

j )
−1(x − x∗

j )Bj,2(x) + (x∗

j+3 − x∗

j+1)
−1(x∗

j+3 − x)Bj+1,2(x), j = 1, . . . , kn + 3,

where x∗

−2 = x∗

−1 = x∗

0 = 0, x∗

kn+1 = x∗

kn+2 = x∗

kn+3 = 1. Then

d
dx

Bj,3(x) = 2(x∗

j+2 − x∗

j )
−1Bj,2(x) − 2(x∗

j+3 − x∗

j+1)
−1Bj+1,2(x),

where at each knot x∗

i , Bj,2(x∗

i ) can only take value 1 or 0. We construct B′ .
=

(
d
dxB·,3(x)|x=x∗∗

1

)
= MT

1 and decompose B′ as

(B′

(1) B̃
′), where B′

(1) = (−2(x∗

1 − x∗

−1)
−1, 0, . . . , 0)T and

B̃′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(x∗

1 − x∗

−1)
−1 0 · · · 0 0

−2(x∗

2 − x∗

0)
−1 2(x∗

2 − x∗

0)
−1

· · · 0 0

0 −2(x∗

3 − x∗

1)
−1

· · · 0 0
...

...
. . .

...
...

0 0 · · · 2(x∗

N−3 − x∗

N−4)
−1 0

0 0 · · · −2(x∗

N−2 − x∗

N−3)
−1 2(x∗

N−2 − x∗

N−3)
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where B̃′ is a square matrix and has full rank.
Similarly, we can derive the second derivative of the basis function as

d2

dx2
Bj,3(x) = 2{(x∗

j+2 − x∗

j )(x
∗

j+1 − x∗

j )}
−1Bj,1(x) + 2{(x∗

j+3 − x∗

j+1)(x
∗

j+3 − x∗

j+2)}
−1Bj+2,1(x)

−2{(x∗

j+3 − x∗

j+1)(x
∗

j+2 − x∗

j )(x
∗

j+2 − x∗

j+1)}
−1(x∗

j+3 − x∗

j+1 + x∗

j+2 − x∗

j )Bj+1,1(x),

where at each knot x∗

i , Bj,1(x∗

i ) can only take value 1 or 0. Notice that d2

dx2
Bj,3(x) is not continuous at knot, thus we consider

the right-limit as

d2

dx2
Bj,3(x)|x=x∗i

.
= lim

h→0+

d2

dx2
Bj,3(x + h)|x=x∗i

, i = 0, . . . , kn,

for j = 1, . . . , kn + 3. Then, we can construct

B′′ .
=

(
d2

dx2
B·,3(x)|x=x∗∗

2

)
= MT

2M
T
1

=

⎛⎜⎜⎜⎜⎜⎜⎝

▽0,1 ▽0,2 ▽0,3 · · · 0 0
0 ▽1,2 ▽1,3 · · · 0 0
0 0 ▽2,3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ▽N−4,N−1 0
0 0 0 · · · ▽N−3,N−1 ▽N−3,N

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where ▽i,j ̸= 0. We decompose B′′ as (B′′

(1) B̃
′′), where B′′

(1) = (▽0,1, 0, . . . , 0)T and

B̃′′
=

⎛⎜⎜⎜⎜⎜⎜⎝

▽0,2 ▽0,3 0 · · · 0 0
▽1,2 ▽1,3 ▽1,4 · · · 0 0
0 ▽2,3 ▽2,4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ▽N−4,N−1 0
0 0 0 · · · ▽N−3,N−1 ▽N−3,N

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since the spline knots are non-stochastic and nearly uniformly spaced in domain [0, 1], combining the above discussion
and (A.2) in the main file, we can show that

β̃ = (B̃′)−1γ − (B̃′)−1B′

(1)β1 = (B̃′)−1γ + 1⃗ · β1,

where one can easily check −(B̃′)−1B′

(1) = 1⃗ by the definitions. Hence we have

δ = B′′

(1)β1 + B̃′′
{(B̃′)−1γ + 1⃗ · β1} = B̃′′(B̃′)−1γ ,

where B′′

(1) + B̃′′1⃗ = 0⃗ by definition. If the knots are equally spaced, denoting κ = kn + 1,

B̃′′(B̃′)−1
=

⎛⎜⎜⎜⎜⎝
−κ1,1 κ1,2 0 · · · 0 0
0 −κ2,2 κ2,3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · κkn,kn+1 0
0 0 0 · · · −κkn+1,kn+1 κkn+1,kn+2

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
−κ κ 0 · · · 0 0
0 −κ κ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · κ 0
0 0 0 · · · −κ κ

⎞⎟⎟⎟⎟⎠
(kn+1)×(kn+2)

.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2020.106956. The
online supporting information contains additional simulation results. The developed R package is available at http:
//blogs.gwu.edu/judywang/software/.
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