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Abstract
Spatial cluster detection, which is the identification of spatial units adjacent in
space associated with distinctive patterns of data of interest relative to back-
ground variation, is useful for discerning spatial heterogeneity in regression
coefficients. Some real studies with regression-based models on air quality data
show that there exists not only spatial heterogeneity but also heteroscedasticity
between air pollution and its predictors. Since the low air quality is awell-known
risk factor for mortality, various cardiopulmonary diseases, and preterm birth,
the analysis at the tail would be of more interest than the center of air pollu-
tion distribution. In this article, we develop a spatial cluster detection approach
using a threshold quantile regression model to capture the spatial heterogene-
ity and heteroscedasticity. We introduce two threshold variables in the quantile
regression model to define a spatial cluster. The proposed test statistic for iden-
tifying the spatial cluster is the supremum of the Wald process over the space
of threshold parameters. We establish the limiting distribution of the test statis-
tic under the null hypothesis that the quantile regression coefficient is the same
over the entire spatial domain at the given quantile level. The performance of
our proposed method is assessed by simulation studies. The proposedmethod is
also applied to analyze the particulate matter (PM2.5) concentration and aerosol
optical depth (AOD) data in theNortheasternUnited States in order to study geo-
graphical heterogeneity in the association between AOD and PM2.5 at different
quantile levels.
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1 INTRODUCTION

Fine particulate (PM2.5) is a well-known harmful air pollutant as a risk factor for mortality (Samoli et al., 2008), var-
ious cardiopulmonary diseases (Dominici et al., 2006; Pope & Dockery, 2006), and preterm birth (Chang et al., 2012).
The satellite-derived aerosol optical depth (AOD) is a proxy measurement of particle air pollution data since it mea-
sures light extinction due to particles (e.g., dust, smoke, pollution) in the atmospheric column. Previous studies showed
that PM2.5 concentrations have positive associations with AOD (Chu et al., 2016; Grantham et al., 2018; Ma et al., 2016;
Yu et al., 2017). For spatial data, it is often assumed that regression coefficients are homogeneous across the entire spa-
tial domain of interest. However, real applications often show spatial heterogeneity in regression coefficients. That is,
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regression coefficients may be different in specific subregions from the rest of the area. For example, the PM2.5–AOD data
studied in Section 5 demonstrates spatial heterogeneity in the relationship between PM2.5 and AOD (Figure 3).

Spatial heterogeneity in regression coefficients has been addressed by clustered varying coefficient regression for
the spatial data. Lawson et al. (2014) proposed the grouped spatial varying coefficient regression when the total num-
ber of groups is given. Recently, Lee, Gangnon, and Zhu (2017) and Lee et al. (2020) proposed spatial cluster detection
approaches of regression coefficients. Spatial cluster detection is a statistical methodology to identify observations
adjacent in space that are associated with distinctive patterns of data of interest relative to background variation
(Gangnon, 2010, 2012; Gangnon&Clayton, 2000; Kulldorff, 1997; Kulldorff &Nagarwalla, 1995). However, the aforemen-
tioned spatially clustered varying coefficient regression approaches are developed for mean regression. Mean regression
model assumes the constant relationship between a response and covariates across the population. These constant regres-
sion coefficients are based on the homoscedastic assumption that random errors are drawn from identical distributions.
Thus, mean regression is fragile when the homoscedastic assumption is violated, which is often seen in medicine and
survival analysis, financial and economic statistics, and environmental modeling (Yu et al., 2003). Grange et al. (2016)
studied black carbon (BC) contributions to PM2.5 in London, United Kingdom, and showed that these two variables did
not follow a mean rate of change; the contribution of BC was getting bigger as PM2.5 was moving to the upper tail of its
distribution. Recently, Yoshida (2021) showed heteroscedasticity of air quality data in Beijing, China, and considered the
model at the tail of PM2.5 instead of at central. Since a number of studies have shown that high levels of PM2.5 are fatal
(Chang et al., 2012; Dominici et al., 2006; Pope & Dockery, 2006; Samoli et al., 2008), in PM2.5 studies, upper quantiles
would be of more interest than themedian ormean. Furthermore, the PM2.5–AOD data studied in Section 5 demonstrates
not only spatial heterogeneity but also heteroscedasticity (Figure 3).

Quantile regression (Koenker & Bassett, 1978) provides a natural and automatic way to capture the unknown data
heteroscedasticity since it enables us to model the impact of predictors at different quantiles of the response distribution;
see Koenker (2005) for a more detailed review of quantile regression. There have been a number of studies on threshold
quantile regression (Cai, 2010; Cai & Stander, 2008; Caner, 2002; Galvao et al., 2011, 2014; He & Zhu, 2003; Horowitz &
Spokoiny, 2002; Lee et al., 2011; Otsu, 2008; Zheng, 1998). More recently, Zhang et al. (2014) and Tang et al. (2015) devel-
oped procedures for testing change points due to a covariate threshold, andKuan et al. (2017) and Su andXu (2019) studied
confidence intervals for the estimated threshold parameter in regression quantiles. Threshold quantile regressionmodels
consider piecewise effects in subregions divided by one threshold variable with jumps occurring at the unknown change
points. However, although there are some previous studies on quantile regression with spatial data (Hallin et al., 2009;
McMillen, 2013), there appears to be very limited work for spatial cluster analysis.

In this article, we propose a novel approach that enables us to not only address the spatial heterogeneity in regression
coefficients but also accommodate data heteroscedasticity. We define a set of potential spatial clusters by considering geo-
graphical coordinates of the observations as threshold variables and introducing two threshold parameters. And then, we
first test if there exists a spatial cluster against the null hypothesis that the quantile regression coefficient is the same over
the entire spatial domain at the given quantile level. This test for the existence of a spatial cluster requires the limiting
distribution of the supremum test statistic under the null hypothesis to control the Type I error. If the test rejects the null
hypothesis, then we choose the cluster that gives the largest test statistic among all candidate clusters, as the spatial clus-
ter estimator. The main challenge in developing our method comes from the fact that the limiting null distribution is not
pivotal. In similar situations in the mean regression approach, a parametric bootstrap was adopted to obtain the p-value
(Lee, Gangnon, & Zhu, 2017; Lee et al., 2020, 2021). However, in the quantile regression setup, a p-value via aMonte Carlo
method is computationally costly. Thus, we resolve this challenge by proposing a simulation-based algorithm for calcu-
lating the critical values. We believe that our proposed method is the first of its kind to address the spatial heterogeneity
issue in the quantile regression coefficients. We assess the performance of our proposed method via simulation studies
and the analysis of the air quality data in the Northeastern United States. These studies suggest that the proposedmethod
provides better performance than themean regression approach (Lee, Gangnon, & Zhu, 2017) by producing robust results
to the heavy-tailed distribution and capturing the heteroscedasticity.

The remainder of this article is organized as follows. In Section 2, we introduce the proposed spatial threshold quantile
regression framework. In Section 3, we define the test statistic, present its asymptotic null distribution, and introduce
one simulation-based algorithm for approximating the asymptotic critical values for the test statistic. We also introduce a
sequential scheme for the identification and estimation of multiple spatial clusters. In Section 4, we conduct simulation
studies to evaluate and compare the proposedmethod with existing approaches. Section 5 presents a real data application
by studying the impacts of AOD on PM2.5 from the Northeastern United States. Lastly, Section 6 contains some discussion
and conclusions. Proofs are provided in the Supplementary Material.
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2 STATISTICAL MODEL

In this section, we construct a statistical model to capture the heteroscedasticity and spatial heterogeneity in regression
coefficients. First, we introduce the conditional quantile function on the spatial data to address the heteroscedasticity.
And then, we extend the conditional quantile function with threshold variables to define the spatial cluster. We assign
the separate regression coefficient to the cluster to take the spatial heterogeneity into account.

Let ys ∈ R and xs ∈ Rp denote the dependent variable and the covariate vector at s, respectively, where s = (s1, s2)⊤
is a geographical location on the unit square [0, 1]2 ∈ R2. In this article, we assume that {(ys,w⊤

s )⊤ | s ∈ [0, 1]2} is an
independent process although the results can be generalized to weak stationary processes, wherews = (s⊤, x⊤s )⊤.

LetQys(𝜏|ws) denote the conditional 𝜏th quantile of ys givenws, where 𝜏 ∈ (0, 1). Then, we assume that when there is
no spatial cluster, the effect of xs on the 𝜏th quantile of ys is linear and the same across space. If there is a spatial cluster,
then we assume that xs shows distinctive association to the 𝜏th quantile of ys within the cluster relative to the rest of the
region. Thus, for a given 𝜏 ∈  = [𝜏L, 𝜏U] ⊂ (0, 1), we could consider the following hypotheses:

H0 ∶ Qys (𝜏|ws) = x⊤s 𝜽1(𝜏),
versus H1 ∶ Qys (𝜏|ws) = (s1 ∉ [a∗1, b

∗
1] or s2 ∉ [a∗2, b

∗
2]) ⋅ x

⊤
s 𝜽1(𝜏)

+ (s1 ∈ [a∗1, b
∗
1], s2 ∈ [a∗2, b

∗
2]) ⋅ x

⊤
s 𝜽2(𝜏), for some a∗1, a

∗
2, b

∗
1, b

∗
2,

where (⋅) is the indicator function, a∗1, a
∗
2, b

∗
1, and b

∗
2 ∈ [0, 1] are the threshold parameters such that a∗1 < b∗1, a

∗
2 < b∗2,

and 𝜽1(𝜏) ≠ 𝜽2(𝜏) for s ∈ [a∗1, b
∗
1] × [a∗2, b

∗
2]. That is, for a given 𝜏, the quantile regression model has the uniform coeffi-

cient 𝜽1(𝜏) ∈ Rp over all s ∈ [0, 1]2 under H0, while H1 assumes an additional quantile regression coefficient 𝜽2(𝜏) ∈ Rp.
A rectangular spatial cluster is defined to be [a∗1, b

∗
1] × [a∗2, b

∗
2] by the threshold parameters, and each coordinate of s, s1

and s2, plays a role of the threshold variable in a threshold regression model.
For convenience, we reparameterize as 𝜷 (1)(𝜏) = 𝜽1(𝜏) and 𝜷 (2)(𝜏) = 𝜽2(𝜏) − 𝜽1(𝜏), and re-express the hypotheses:

H0 ∶ Qys(𝜏|ws) = zs(𝜸1, 𝜸2)⊤𝜷(𝜏) with 𝜷(2)(𝜏) = 0, for all (𝜸1, 𝜸2) ∈ 𝚪2,
versus H1 ∶ Qys(𝜏|ws) = zs(𝜸∗1, 𝜸

∗
2)

⊤𝜷(𝜏) with 𝜷 (2)(𝜏) ≠ 0, for some (𝜸∗1, 𝜸
∗
2) ∈ 𝚪2, (1)

where zs(𝜸1, 𝜸2) = (x⊤s , (s ∈ 𝜸1 × 𝜸2) ⋅ x⊤s )⊤, 𝜸1 = (a1, b1)⊤ ∈ 𝚪, 𝜸2 = (a2, b2)⊤ ∈ 𝚪, 𝚪 = {(𝛾L, 𝛾U)⊤| 0 ≤ 𝛾L < 𝛾U ≤ 1},
𝜸1 × 𝜸2 = {si | si1 ∈ [a1, b1], si2 ∈ [a2, b2], i = 1, … ,n}, 𝜷(𝜏) = (𝜷 (1)(𝜏)⊤, 𝜷(2)(𝜏)⊤)⊤, 𝜷 (1)(𝜏) = 𝜽1(𝜏), and 𝜷(2)(𝜏) = 𝜽2(𝜏) −
𝜽1(𝜏). That is, a rectangular spatial cluster is defined to be 𝜸1 × 𝜸2 by two threshold parameter vectors 𝜸1 and 𝜸2. Then,
when the threshold parameters (𝜸1, 𝜸2) are known, with the given data {(ysi ,w

⊤
si)

⊤}ni=1 and a given 𝜏 ∈  , we can estimate
the quantile regression coefficient 𝜷(𝜏) by the following estimator:

𝜷̂(𝜏, 𝜸1, 𝜸2) = arg min
b∈R2p

n−1
n∑
i=1

𝜌𝜏(ysi − zsi(𝜸1, 𝜸2)
⊤b), (2)

where 𝜌𝜏(u) = u ⋅ {𝜏 − (u ≤ 0)} is the check function (Koenker & Bassett, 1978).

3 TEST STATISTIC AND ESTIMATION

3.1 Test statistic

As shown in Lemma C.1 in the Supplementary Material, with known (𝜸∗1, 𝜸
∗
2) , 𝜷̂(2)(𝜏, 𝜸1, 𝜸2)

p
→ 0 for each (𝜸1, 𝜸2) ∈

𝚪 × 𝚪whenH0 is true, while 𝜷̂ (2)(𝜏, 𝜸∗1, 𝜸
∗
2)

p
→ 𝜷 (2)(𝜏) ≠ 0whenH1 is true, where “

p
→” denotes convergence in probability.

Therefore, it is reasonable to rejectH0 if 𝜷̂ (2)(𝜏, 𝜸∗1, 𝜸
∗
2) is far from 0 enough. However, since the true value of the threshold

parameter (𝜸∗1, 𝜸
∗
2) is unknown, it is not adequate to choose 𝜷̂ (2)(𝜏, 𝜸∗1, 𝜸

∗
2) as the test statstic for the existence of a spatial

cluster. Instead, we can consider to rejectH0 if the magnitude of 𝜷̂ (2)(𝜏, 𝜸1, 𝜸2) is large enough for some (𝜸1, 𝜸2) ∈ 𝚪2 since
𝜷̂ (2)(𝜏, 𝜸1, 𝜸2) ≈ 0 for any (𝜸1, 𝜸2) ∈ 𝚪2 when H0 is true. Thus, we choose the supremum of the Wald statistic as the test
statistic

SWn(𝜏) = sup
(𝜸1,𝜸2)∈𝚪2

n𝜷̂(2)(𝜏, 𝜸1, 𝜸2)⊤{V22(𝜏, 𝜸1, 𝜸2)}−1𝜷̂ (2)(𝜏, 𝜸1, 𝜸2), (3)
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where V22(𝜏, 𝜸1, 𝜸2) is the asymptotic covariance matrix of
√
n𝜷̂(2)(𝜏, 𝜸1, 𝜸2) under H0 and can be replaced by a suitable

consistent estimate in practice. Further, the distribution of the test statistic SWn(𝜏) is required under H0 to control the
Type I error. Thus, we establish its limiting distribution under suitable regularity conditions and H0.

Let 𝜷∗
(1)(𝜏) ∈ Rp denote the unique solution to E[(𝜏 − {ys ≤ x⊤s 𝜷∗

(1)(𝜏)}) ⋅ xs] = 0, and let 𝜷∗(𝜏) = (𝜷∗
(1)(𝜏)

⊤, 0⊤)⊤ ∈
R2p. Let 𝓁∞( × 𝚪2) denote the space of all bounded functions on  × 𝚪2, and let (𝓁∞( × 𝚪2))2p denote the (2p)-product
space of 𝓁∞( × 𝚪2). And then, we make the following the regularity conditions C1–C5.

C1: {(ys,w⊤
s )⊤, s ∈ [0, 1]2} is an independent process.

C2: E[||xs||q] < ∞ for some q > 2.
C3: LetF(⋅|w)denote the conditional distribution function of ys givenws = w. Assume thatF(⋅|w)has aLebesgue density

f (⋅|w) such that

(i) |f (y|w)| ≤ Cf on the support of (ys,w⊤
s )⊤ for some Cf > 0,

(ii) |f (y1|w) − f (y2|w)| → 0 as |y1 − y2| → 0 for each fixedw.

C4: The threshold variable s has a continuous distribution.
C5: 𝛀0(𝜸1, 𝜸2) is positive definite for each (𝜸1, 𝜸2) ∈ 𝚪2, and𝛀1(𝜏, 𝜸1, 𝜸2) is positive definite for each (𝜏, 𝜸1, 𝜸2) ∈  × 𝚪2,

where

(i) 𝛀0(𝜸1, 𝜸2) = E
[
zs(𝜸1, 𝜸2)zs(𝜸1, 𝜸2)⊤

]
for 𝜸1, 𝜸2 ∈ 𝚪,

(ii) 𝛀1(𝜏, 𝜸1, 𝜸2) = E
[
f (x⊤s 𝜷∗

(1)(𝜏)|ws)zs(𝜸1, 𝜸2)zs(𝜸1, 𝜸2)⊤
]
.

C1 guarantees the independent observations, but it can be generalized to weak stationary processes. C2 is a moment
condition. C3, for each w, guarantees the (i) uniformly bounded and (ii) continuous density which is standard in the
quantile regression literatures (Angrist et al., 2006; Galvao et al., 2011, 2014; Su & Xu, 2019). C4 is a standard condition
in the threshold quantile regression literatures (Galvao et al., 2011, 2014; Hansen, 1996, 2000; Su & Xu, 2019), and it is
satisfied by spatial data (e.g., bivariate uniform distribution on [0, 1]2). C5 guarantees that the matrices 𝛀0(𝜸1, 𝜸2) and
𝛀1(𝜏, 𝜸1, 𝜸2) do not degenerate for each (𝜸1, 𝜸2) ∈ 𝚪2 and (𝜏, 𝜸1, 𝜸2) ∈  × 𝚪2, respectively.

Theorem 1. For a given 𝜏 ∈  , and under the regularity conditions C1–C5 and H0, we have√
n{𝜷̂(𝜏, 𝜸1, 𝜸2) − 𝜷∗(𝜏)} ⇒ 𝛀1(𝜏, 𝜸1, 𝜸2)−1W(𝜏, 𝜸1, 𝜸2) in (𝓁∞( × 𝚪2))2p,

where “⇒” denotes weak convergence, and W(𝜏, 𝜸1, 𝜸2) is a zero-mean, continuous Gaussian process on  × 𝚪2 with
covariance kernel

E[W(𝜏, 𝜸1, 𝜸2)W(𝜏, 𝜸1, 𝜸2)⊤] = 𝜏(1 − 𝜏) ⋅𝛀0(𝜸1, 𝜸2).

Theorem 1 presents the asymptotic null distribution of the quantile regression estimator, 𝜷̂(𝜏, 𝜸1, 𝜸2) in (2), when the
regularity conditions C1–C5 hold. Thus, from Theorem 1, the asymptotic null distribution of SWn(𝜏) in (3) can be derived
as in the following corollary.

Corollary 1. For a given 𝜏 ∈  , and under the regularity conditions C1–C5 and H0,

SWn(𝜏) ⇒ sup
(𝜸1,𝜸2)∈𝚪2

S(𝜏, 𝜸1, 𝜸2)⊤{V22(𝜏, 𝜸1, 𝜸2)}−1S(𝜏, 𝜸1, 𝜸2), (4)

where S(𝜏, 𝜸1, 𝜸2) = R𝛀1(𝜏, 𝜸1, 𝜸2)−1W(𝜏, 𝜸1, 𝜸2),R = [ O, Ip ]p×2p, andV22(𝜏, 𝜸1, 𝜸2) = E[S(𝜏, 𝜸1, 𝜸2)S(𝜏, 𝜸1, 𝜸2)⊤] = 𝜏(1 −
𝜏)R𝛀1(𝜏, 𝜸1, 𝜸2)−1𝛀0(𝜸1, 𝜸2)𝛀1(𝜏, 𝜸1, 𝜸2)−1R⊤.

3.2 Implementation

For the implementation of the limiting distribution of SWn(𝜏) given by (4), we consider the estimates of𝛀0,𝛀1, andV22 as

𝛀̂0(𝜸1, 𝜸2) = n−1
n∑
i=1

zsi(𝜸1, 𝜸2)zsi(𝜸1, 𝜸2)
⊤, (5)
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𝛀̂1(𝜏, 𝜸1, 𝜸2) = n−1
n∑
i=1

f̂ sizsi(𝜸1, 𝜸2)zsi(𝜸1, 𝜸2)
⊤, (6)

V̂22(𝜏, 𝜸1, 𝜸2) = 𝜏(1 − 𝜏)R𝛀̂1(𝜏, 𝜸1, 𝜸2)−1𝛀̂0(𝜸1, 𝜸2)𝛀̂1(𝜏, 𝜸1, 𝜸2)−1R⊤, (7)

where f̂ si is estimated via the Hendricks–Koenker sandwich (Hendricks & Koenker, 1992; Koenker, 2005):

f̂ si
(
x⊤si 𝜷̂

∗
(1)(𝜏)

)
= max

⎧⎪⎨⎪⎩
0, 2hn
x⊤si

(
𝜷̂
∗
(1)(𝜏 + hn) − 𝜷̂

∗
(1)(𝜏 − hn)

)
⎫⎪⎬⎪⎭

with hn = O(n−1∕3). In the implementation, the bandwidth hn is chosen by the bandwidth.rq function in the
quantreg package for R (R Core Team, 2017).

However, the main challenge remains in estimating the critical value directly from the asymptotic result (4). The
limiting null distribution is not pivotal, and thus in similar situations in the mean regression approach, a parametric
bootstrapwas adopted to obtain the p-value (Lee, Gangnon,&Zhu, 2017; Lee et al., 2020).However, aMonteCarlomethod
is computationally costly in the quantile regression setup. Thus, we propose a simulation-based algorithm to calculate
the critical values for a spatial cluster’s existence. The simulation-based method was also used in Hansen (1996), Galvao
et al. (2014), and Su and Xu (2019) in different quantile regression settings. The quantile regression estimator (2) requires
the computational complexity of O(n1.25p3 logn) (Portnoy & Koenker, 1997). Thus, the Monte Carlo method requires the
computational complexity ofO(BCGn1.25p3 logn) to findmultiple clusters, where B is the number of simulations to obtain
the p-value or a critical value, C is the number of true clusters, and G is the number of potential clusters over 𝚪2. In
contrast, the simulation-based approach only requires O((BG + C)n1.25p3 logn) since we only need single B simulations
for the approximate critical value. An approximate critical value for the test statistic SWn(𝜏) can be computed as in the
following steps:

(i) Generate {ubsi}
n
i=1 independently from the uniform distribution on [0, 1] for each b = 1, … ,B, where B is a large

positive integer.
(ii) SetWb

n(𝜏, 𝜸1, 𝜸2) = n−1∕2
∑n

i=1{𝜏 − (ubsi ≤ 𝜏)}zsi(𝜸1, 𝜸2) for each b = 1, … ,B.

(iii) For each b = 1, … ,B, compute ŜW
b
n(𝜏) = max(𝜸1,𝜸2)∈𝚪2 Ŵ

b
n(𝜏, 𝜸1, 𝜸2), where

Ŵb
n(𝜏, 𝜸1, 𝜸2)

= Wb
n(𝜏, 𝜸1, 𝜸2)⊤𝛀̂1(𝜏, 𝜸1, 𝜸2)−1R⊤{V̂22(𝜏, 𝜸1, 𝜸2)}−1R𝛀̂1(𝜏, 𝜸1, 𝜸2)−1Wb

n(𝜏, 𝜸1, 𝜸2).

(iv) For the significance level 𝛼 ∈ (0, 1), take the empirical (1 − 𝛼)-quantile of the simulated sample
{ŜW

1
n(𝜏), … , ŜW

B
n(𝜏)} as the approximate critical value ĉB1−𝛼 .

In practice, we can take the maximum of Ŵb
n(𝜏, 𝜸1, 𝜸2) in step (iii) over the discretized 𝚪2. That is, we first discretize

the unit interval [0, 1] into {𝛾0, 𝛾1, … , 𝛾l}, where 𝛾0 = 0, 𝛾l = 1, and 𝛾k < 𝛾k′ for k < k′. Then, we can get the discretized
𝚪2, where 𝚪 =

{
(𝛾L, 𝛾U)⊤| 𝛾L, 𝛾U ∈ {𝛾0, 𝛾1, … , 𝛾l}, 𝛾L < 𝛾U

}
. Thus, the number of potential clusters over the discretized

𝚪2 will be G = |𝚪2| = 4−1l2(l + 1)2, where | ⋅ | denotes the cardinality of a set. And then, we reject H0 if SWn(𝜏) > ĉB1−𝛼 . If
the test rejectsH0, then it suggests the presence of threshold effects, and thus we can estimate the spatial cluster together
with the threshold parameter. It is reasonable to choose the cluster that gives the largest test statistic among all candidate
clusters as the spatial cluster estimator. Furthermore, its corresponding (𝜸1, 𝜸2) is considered as the threshold parameter
estimator (𝜸̂∗1, 𝜸̂

∗
2):

(𝜸̂∗1, 𝜸̂
∗
2) = arg sup

(𝜸1,𝜸2)∈𝚪2
n𝜷̂(2)(𝜏, 𝜸1, 𝜸2)⊤{V22(𝜏, 𝜸1, 𝜸2)}−1𝜷̂ (2)(𝜏, 𝜸1, 𝜸2), (8)

where 𝜸̂∗1 × 𝜸̂∗2 is the spatial cluster estimator.
This implementation is based on the fact that

√
n{𝜷̂(𝜏, 𝜸1, 𝜸2) − 𝜷∗(𝜏)} admits the Bahadur representation under

the regularity conditions and H0 (see the proof of Theorem 1 in the Supplementary Material). The first term of its



6 of 15 LEE et al.

Bahadur representation is n−1∕2
∑n

i=1[𝜏 − {ysi ≤ x⊤si𝜷
∗
(1)(𝜏)}]zsi(𝜸1, 𝜸2). Since {ysi ≤ x⊤si𝜷

∗
(1)(𝜏)}, i = 1, … ,n, are indepen-

dent Bernoulli trials with the success probability 𝜏, we could replace them with
{
(usi ≤ 𝜏)

} n
i=1, where usi , i = 1, … ,n,

are generated from iid  (0, 1).
Let𝝓𝜏 =

(
𝜷(𝜏)⊤, 𝜸⊤1 , 𝜸

⊤
2
)
⊤ ∈ R2p × 𝚪2 and𝜷∗(𝜏) ∈ R2p denote the unique solution toE[(𝜏 − {ys ≤ zs(𝜸∗1, 𝜸

∗
2)

⊤𝜷∗(𝜏)}) ⋅
xs] = 0. And then, we make the following assumption C6 to establish the consistency of 𝝓̂𝜏 =

(
𝜷̂(𝜏, 𝜸̂∗⊤1 , 𝜸̂∗⊤2 )⊤, 𝜸̂∗⊤1 , 𝜸̂∗⊤2

)
⊤

under H1.
C6: LetΔ(zs,𝝓𝜏) = zs(𝜸1, 𝜸2)⊤𝜷(𝜏) − zs(𝜸∗1, 𝜸

∗
2)

⊤𝜷∗(𝜏). Then, there exists c∗ > 0 such that P(|Δ(zs,𝝓𝜏)| > c∗) > 0 for all
𝝓𝜏 ∈ R2p × 𝚪2 such that 𝝓𝜏 ≠ 𝝓∗

𝜏 , where 𝝓∗
𝜏 =

(
𝜷∗(𝜏)⊤, 𝜸∗⊤1 , 𝜸∗⊤2

)
⊤.

Theorem 2. For a given 𝜏 ∈  , and under the regularity conditions C1–C6, we have 𝝓̂𝜏 = 𝝓∗
𝜏 + op(1).

3.3 Identification and estimation of multiple clusters

We have introduced the procedure for detecting and estimating the existence of a spatial cluster. However, all of these are
based on the single cluster assumption when H1 is true, while in practice, more than one cluster may exist in the study
area. Thus, we propose a sequential procedure to identify multiple clusters, where the non-cluster and the single cluster
are also covered in the procedure as special cases. The detailed procedure for a given quantile 𝜏 is as follows.

(i) Fit the model in (1) under H0, Qys(𝜏|ws) = x⊤𝜷(1)(𝜏), and update the response ỹsi = ysi − x⊤si 𝜷̂ (1)(𝜏).
(ii) Obtain the test statistic SWn(𝜏) in (3) based on the data {(ỹsi ,w

⊤
si)

⊤}ni=1. If SWn(𝜏) is not significant, do not reject H0
and stop. If rejecting H0, move to the next step.

(iii) Identify the spatial cluster and obtain the threshold parameter estimator (𝜸̂∗1, 𝜸̂
∗
2) as in (8), and calculate the residual

𝜀̃si = ỹsi − zsi(𝜸̂
∗
1, 𝜸̂

∗
2)⊤𝜷̂(𝜏, 𝜸̂

∗
1, 𝜸̂

∗
2).

(iv) Replace the response with the residual ỹsi = 𝜀̃si to remove the effect of (𝜸̂
∗
1, 𝜸̂

∗
2) from the data. Update 𝚪2 with 𝚪2 ⧵

{(𝜸1, 𝜸2) | (𝜸1 × 𝜸2) ∩ (𝜸̂∗1 × 𝜸̂∗2) ≠ ∅} to remove all the cluster candidates, which overlap the previously identified
cluster 𝜸̂∗1 × 𝜸̂∗2, where ∅ is the empty set. And then, go to step (ii) to detect and identify a new cluster.

Let (𝜸̂∗k1 , 𝜸̂∗k2 ) and 𝜷̂(𝜏, 𝜸̂∗k1 , 𝜸̂∗k2 ) be the kth obtained threshold parameter estimator and the corresponding coefficient
estimates, respectively. If we identify a total ofM clusters and there is an index set ⊂ {1, 2, … ,M}, where (𝜸̂∗k1 × 𝜸̂∗k2 )s
are adjacent each other and 𝜷̂(𝜏, 𝜸̂∗k1 , 𝜸̂∗k2 ) = 𝜷̂(𝜏, 𝜸̂∗k

′

1 , 𝜸̂∗k
′

2 ) for k, k′ ∈ , then∪k∈(𝜸̂∗k1 × 𝜸̂∗k2 ) can be seen an approximation
of an irregular shaped cluster.

4 SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate our proposed method. Our simulation studies mainly consist
of four parts: model set up for the data simulation, false positive and power analysis for the hypothesis testing of the
threshold effect, and cluster identification. For the comparison, we apply the mean regression approach (Lee, Gangnon,
& Zhu, 2017) as well.

4.1 Simulation design

We generate data based on the following model:

ysi = xsi + 𝛿1 ⋅ 
(
si ∈ 𝜸∗1 × 𝜸∗2

)
⋅ xsi +

{
1 + 𝛿2 ⋅ 

(
si ∈ 𝜸∗3 × 𝜸∗4

)
⋅ xsi

}
⋅ 𝜀si , (9)

where xsis are generated from iid  (0, 1), and 𝜀sis are iid random errors with zero mean and the cumulative distribution
function (CDF) F𝜀(⋅). We predefine two spatial clusters to be 𝜸∗1 × 𝜸∗2 and 𝜸

∗
3 × 𝜸∗4 with the corresponding threshold effects

𝛿1 and 𝛿2, respectively. Thus, under this model (9), we have

Qysi
(𝜏|wsi) = xsi + 𝛿1 ⋅ 

(
si ∈ 𝜸∗1 × 𝜸∗2

)
⋅ xsi

+
{
1 + 𝛿2 ⋅ 

(
si ∈ 𝜸∗3 × 𝜸∗4

)
⋅ xsi

}
⋅ F−1

𝜀 (𝜏), (10)

E(ysi |wsi) = xsi + 𝛿1 ⋅ 
(
si ∈ 𝜸∗1 × 𝜸∗2

)
⋅ xsi . (11)
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TABLE 1 False positive rates in Case 0 at the nominal significance level 𝛼 = 0.05

Quantile 𝝉

Errors Sample size Grid size 0.5 0.7 0.9 Mean

 (0, 1) n = 302 10 × 10 0.051 0.041 0.071 0.047

20 × 20 0.060 0.057 0.063 0.053

n = 502 10 × 10 0.044 0.053 0.055 0.052

20 × 20 0.049 0.054 0.055 0.063

n = 702 10 × 10 0.048 0.039 0.039 0.043

20 × 20 0.056 0.044 0.044 0.043

𝜎 ⋅ t(2) n = 302 10 × 10 0.098 0.108 0.277 0.178

20 × 20 0.089 0.140 0.341 0.149

n = 502 10 × 10 0.054 0.057 0.167 0.148

20 × 20 0.059 0.066 0.187 0.131

n = 702 10 × 10 0.047 0.046 0.115 0.142

20 × 20 0.066 0.048 0.126 0.147

n = 1002 10 × 10 0.054 0.052 0.064 0.149

20 × 20 0.057 0.055 0.087 0.146

n = 1502 10 × 10 0.041 0.046 0.050 0.121

20 × 20 0.048 0.046 0.055 0.119

We consider four cases. In Case 0, the threshold effects are set to be 𝛿1 = 𝛿2 = 0 for the false positive analysis. Cases 1
and 2 are for the power evaluation. InCase 1, the threshold effects are set to be 𝛿1 = 𝛿 ≠ 0 and 𝛿2 = 0 for the homoscedastic
errors. That is, the threshold effect is uniformly over the all quantile level 𝜏 ∈  ⊂ [0, 1]. However, in Case 2, 𝛿1 = 0
and 𝛿2 = 𝛿 ≠ 0 for the heteroscedastic errors. Thus, the threshold effect does not exist at the median (𝜏 = 0.5) while it
gets larger as the quantile level is further away from the median. Threshold vectors for the spatial clusters are set to
be 𝜸∗1 = 𝜸∗2 = 𝜸∗3 = 𝜸∗4 = 𝜸 = (0.3, 0.7)⊤. That is, a cluster is predefined to be 𝜸 × 𝜸 = [0.3, 0.7]2 both in the homoscedastic
errors (Case 1) and heteroscedastic errors (Case 2). Lastly, in Case 3, we set 𝛿1 = 𝛿2 = 𝛿 ≠ 0 and 𝜸∗1 × 𝜸∗2 ≠ 𝜸∗3 × 𝜸∗4 for the
dual-cluster identification. Further, for the random errors, we consider the normal errors from (0, 1) or the heavy-tailed
errors from 𝜎 × t(2), where t(2) is the Student’s t-distribution with 2 degrees of freedom. We set 𝜎 = 1∕1.21054 so that
the normal errors and the heavy-tailed errors would have the same median absolute deviation (MAD) as 0.6745. We
consider sample sizes n = 302, 502, or 702, corresponding to a 30 × 30, a 50 × 50, or a 70 × 70 square grid in the unit square
[0, 1] × [0, 1], respectively.

From now, we simplify the notations ysi , xsi ,wsi , and 𝜀si by yi, xi,wi, and 𝜀i, respectively, at the location si, i = 1, … ,n.
Each simulation case is conducted with 1000 repetitions. Furthermore, we use the empirical critical value ĉB1−𝛼 defined in
Section 3.1 with B = 5000 at the nominal significance level 𝛼 = 0.05.

4.2 False positive

To evaluate the false positive rate of the threshold effect test, we generate data from the model (9) when 𝛿1 = 𝛿2 = 0
with the normal errors and the heavy-tailed errors, respectively. And then, we perform the hypothesis testing for the
threshold effect in the quantile regression at quantile levels 𝜏 ∈ {0.5, 0.7, 0.9} as well as in the mean regression. The grid
size for the discretized 𝚪2 is set to be 10 × 10 or 20 × 20. That is, 𝚪 =

{
(𝛾L, 𝛾U)⊤| 0 ≤ 𝛾L < 𝛾U ≤ 1

}
⊂ {0.0, 0.1, … , 1.0}2

or {0.00, 0.05, … , 1.00}2. The false positive rate is defined as the proportion of the simulations in which the test statistic
SWn(𝜏) is greater than the critical value ĉB1−𝛼 .

We consider more sample sizes, n = 1002 and 1502, for the study with heavy-tailed errors. Table 1 summarizes the
empirical false positive rates at the significance level 𝛼 = 0.05. The standard error of the estimated false positive rate is
about

√
(0.05)(0.95)∕1000 ≈ 0.007with 1000 simulations. Thus, with normal errors, (0, 1), the false positives are within

or lie slightly more than one standard error away from the nominal level 0.05 both in the quantile regression and the
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F IGURE 1 Power curves of the mean regression and the quantile regression at 𝜏 = 0.5, 0.7, and 0.9. The nominal significance level and
the sample size are set to be 𝛼 = 0.05 and n = 302, 502, or 702, respectively. (a) Homoscedastic normal errors. (b) Homoscedastic heavy-tailed
errors, 𝜎 ⋅ t(2). (c) Heteroscedastic normal errors

mean regression. However, with heavy-tailed errors, 𝜎 ⋅ t(2), the mean regression always produces inflated false positives
comparing to the quantile regression at 𝜏 = 0.5 and 0.7. The mean regression even shows the higher false positive rates
than the higher quantile (𝜏 = 0.9) for relatively large sample sizes (n = 1002 or 1502). In the meanwhile, the quantile
method produces the false positive rates close to the nominal 𝛼 at 𝜏 = 0.9 when the sample sizes are large enough as
n = 1002 or 1502.

4.3 Power evaluation

To evaluate the power of the threshold effect test, we consider three settings for generating data: homoscedastic normal
errors, homoscedastic heavy-tailed errors, and heteroscedastic normal errors. We simulate the data from each setting,
and perform the hypothesis testing at quantile levels 𝜏 ∈ {0.5, 0.7, 0.9} as well as at the mean. The grid size for the dis-
cretized 𝚪2 is set to be 10 × 10. That is, 𝚪 =

{
(𝛾L, 𝛾U)⊤| 0 ≤ 𝛾L < 𝛾U ≤ 1

}
⊂ {0.0, 0.1, … , 1.0}2. We define the power as the

proportion of the simulations in which the test statistic SWn(𝜏) is greater than ĉB1−𝛼 .
Figure 1 illustrates the power curves for each setting and the sample size. In Figure 1(a,b), where the data are

generated with homoscedastic errors, median has the largest power and power at 𝜏 = 0.9 is the smallest among the three
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F IGURE 2 Maps of mean regression slopes 𝜂i,mean and quantile regression slopes 𝜂i(𝜏), where 𝜏 = 0.5, 0.7, or 0.9. (a) Normal error. (b)
Heavy-tailed error. The first row shows the truth, the second shows the estimated coefficients, and the third row presents the mean squared
errors of the estimators

quantile levels. Considered enough sample size (n ≥ 502), both the quantile regression and mean regression approaches
provide S-shaped power curves. However, Figure 1(b) shows that mean regression cannot produce enough power with
heavy-tailed errors comparing to the results at 𝜏 = 0.5 and 0.7.

In Figure 1(c), where the data are generated with the heteroscedastic normal errors, power is largest at 𝜏 = 0.9 and
smallest at median. This is what we expect since the threshold effect is getting stronger as 𝜏 is getting away from the
median.

4.4 Cluster identification

In this study, we evaluate how well our method identifies the true thresholds or clusters which are predefined in the
simulation. We generate data from Case 3 (𝛿1 = 𝛿2 = 𝛿 ≠ 0 and 𝜸∗1 × 𝜸∗2 ≠ 𝜸∗3 × 𝜸∗4 ). The size of the threshold effect is set
to be 𝛿 = 1 based on the power analysis results, and two clusters are predefined to be 𝜸∗1 × 𝜸∗2 = [0.15, 0.45]2 and 𝜸∗3 × 𝜸∗4 =
[0.55, 0.85]2, respectively. We also consider both heteroscedastic normal and heavy-tailed errors.

For i = 1, … ,n, Equations (10)–(11) can be re-expressed as:

Qyi(𝜏|wi) = 𝜁i(𝜏) + 𝜂i(𝜏) ⋅ xi + F−1
𝜀 (𝜏),

E(yi|wi) = 𝜁i,mean + 𝜂i,mean ⋅ xi,

where 𝜁i(𝜏) = 𝜁i,mean = 0, 𝜂i(𝜏) = 1 + 𝛿1 ⋅ (si ∈ 𝜸∗1 × 𝜸∗2) + 𝛿2 ⋅ (si ∈ 𝜸∗3 × 𝜸∗4) ⋅ F
−1
𝜀 (𝜏), and 𝜂i,mean = 1 + 𝛿1 ⋅ (si ∈ 𝜸∗1 ×

𝜸∗2). Thus, at 𝜏 = 0.5 and mean, the truth is one cluster. For each simulated dataset, we estimate threshold parameters
(𝜸̂∗1, 𝜸̂

∗
2, 𝜸̂

∗
3, and 𝜸̂∗4) at quantile levels 𝜏 ∈ {0.5, 0.7, 0.9} as well as at the mean, and estimate the corresponding regres-

sion coefficients at each location: 𝜁 i(𝜏)s, 𝜁 i,mean, 𝜂̂i(𝜏)s, and 𝜂̂i,mean for i = 1, … ,n. And then, we map these regression
coefficient estimates.

Figure 2 illustrates the maps of slope estimates 𝜂̂i,mean and 𝜂̂i(𝜏)s, where n = 502 and the grid size for the discretized
𝚪2 is set to be 20 × 20. That is, 𝚪 =

{
(𝛾L, 𝛾U)⊤| 0 ≤ 𝛾L < 𝛾U ≤ 1

}
⊂ {0.00, 0.05, … , 1.00}2. The first two rows are the maps
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of the true value of the slopes and of the mean of slope estimates across 1000 simulations, respectively. The last row is
the maps of the corresponding mean-squared error (MSE). As shown in the figure, true clusters are on the lower left
(𝜸∗1 × 𝜸∗2 = [0.15, 0.45]2) and on the upper right (𝜸∗3 × 𝜸∗4 = [0.55, 0.85]2), respectively. While the lower left cluster affects
uniformly over the quantile level with the same effect size 𝛿1, the upper-right cluster has steeper slopes at higher quantiles
with the quantile-specific effects as 𝛿2 ⋅ F−1

𝜀 (𝜏). The results for the other sample sizes, n = 302 or 702, are omitted because
findings are similar to those shown in Figure 2.

In Figure 2(a) with heteroscedastic normal errors, we see that only the lower left cluster is identified at 𝜏 = 0.5 and
mean, while the quantile method could correctly identify both clusters well at 𝜏 = 0.7 and 0.9. That is, the quantile
method can help identify spatial clusters at tails of the distribution, which are caused by heteroscedasticity, while the
mean method may overlook those. In Figure 2(b) with heteroscedastic heavy-tailed errors, we see similar results as in
Figure 2(a). However, mean regression cannot identify the lower left cluster clearly with the higher MSE comparing to
the median. Thus, there are less chances to detect the cluster at the mean.

5 DATA APPLICATION

We apply the proposed quantile regression approach to study the impact of AOD on PM2.5 for the summer (June–August)
2012. AOD is a proxy measurement of particle air pollution data since it measures light extinction due to particles in the
atmospheric column. We consider the regression model with PM2.5 as the response variable and AOD as the covariate
since AOD was shown in previous studies to have positive impacts on PM2.5 (Chu et al., 2016; Grantham et al., 2018; Ma
et al., 2016; Yu et al., 2017). The study domain covers the Northeastern United States (Connecticut, Delaware, Maine,
Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and District
of Columbia), which is defined by the National Climatic Data Center (Karl & Koss, 1984).

We obtain the daily PM2.5 values and satellite-measured AOD data from the Environmental Protection Agency (EPA,
https://www.epa.gov/cmaq) and the Moderate Resolution Imaging Spectroradiometer (MODIS, https://modis.gsfc.nasa.
gov/data), respectively. Since a 12 × 12 km2 grid is the common resolution available whenwe consider the data from these
different sources (EPA andMODIS), we organize the data on a 12 × 12 km2 grid up to match the EPA grid cell with a total
of 3186 observations. Furthermore, we prepare the data for summer 2012 by averaging each daily variables (PM2.5 and
AOD) over June–August, 2012.

Figure 3(a,b) shows the maps of PM2.5 and AOD data averaged over the summer season in 2012. The scatterplot is
provided in Figure 3(c), and it shows the positive association between AOD and PM2.5. However, it looks there are at least
three chunks of observations, which we circle by navy plus (+) signs on the scatterplot. They look like having different
features to one another with respect to the intercepts and slopes. Furthermore, heteroscedasticity is also shown with
the funnel-shaped variation within each group. Thus, we suspect the stronger contribution of AOD at the upper tail of
the PM2.5 distribution. Our goal is to identify spatial clusters geographically where the spatial observations show similar
associations between the response and the covariate. Thus, if those observations are close to each other geographically
within some subregions, it is important to find such subregions and model a clustered varying coefficient regression with
them. Furthermore, if the association between two variables does not follow a mean rate of change, it is also crucial to
take the heteroscedasticity into account. Thus, these PM2.5 and AOD data let us have the scientific motivation to develop
statistical models with spatially and quantile level-wise varying AOD effects when estimating PM2.5 by identifying spatial
clusters and considering a flexible regression model to capture the heteroscedasticity.

Thus, we apply the proposed quantile regression approach to the PM2.5 and AOD data. Themean regression approach
(Lee, Gangnon, & Zhu, 2017) is applied to the same data as well for comparisons. In the simulation studies, we compare
two methods when the sample size is at least n = 502 with the searching grid size 20 × 20. We use the ratio between these
two sizes as a reference to define the searching grid in the real data analysis. Thus, we consider 30 × 30 km2 grid resolution
(12 km × 50

20
) for the searching grid in the PM2.5 and AOD dataset. The covariate (AOD) is centered to have a zero mean

in the application.
Figure 4 illustrates maps of regression coefficient estimates at the mean and quantile levels 𝜏 = 0.5, 0.7, and 0.9. The

scatterplots between PM2.5 andAOD,with the fitted regression lines for each cluster, are provided below the slope estimate
maps. Further, the colors in each scatterplot and the corresponding slope estimate map match each other. In each map
and scatterplot, observations are colored based on the coefficient estimates: red colors for high values and blue colors
for low values. Mean and median detect four clusters, while three clusters are found at 𝜏 = 0.7 and 0.9. At 𝜏 = 0.5, the
central cluster, beige color in the intercept map, is not found in the slope map. It means that this cluster has the effect in

https://www.epa.gov/cmaq
https://modis.gsfc.nasa.gov/data
https://modis.gsfc.nasa.gov/data
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F I GURE 3 Average of daily aerosol optical depth (AOD) and PM2.5 concentration during the summer 2012

F IGURE 4 Row 1: Maps of the intercept estimates. Row 2: Maps of the slope estimates. Row 3: Scatterplots between PM2.5 and aerosol
optical depth (AOD) with the fitted regression lines. The colors in each scatterplot match the colors in the corresponding slope estimates
map. Observations are colored based on the coefficient estimates: Red colors for high values and blue colors for low values
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F IGURE 5 Row 1: Common subregions covered by both mean and median. Row 2: Common subregions covered by all quantile levels
𝜏 = 0.5, 0.7, and 0.9. Each subregion is indicated in different colors: Purple for the west, gray for the north-east, brown for the upper-central,
and orange for the central. Scatterplots are provided next to the maps in the same color of each subregion with fitted regression lines. Fitted
line and equation are in black at the mean, in red at 𝜏 = 0.5, in green at 𝜏 = 0.7, and in blue at 𝜏 = 0.9, respectively

the intercept only. On the other hand, at 𝜏 = 0.7, the upper-central cluster has the effect in the slope only. The identified
clusters are not identical across quantile levels, but they agree with what we observed in Figure 3. We see that there are
several areas commonly covered by spatial clusters at the mean and different quantiles. Thus, for further comparisons,
we investigate these common areas by looking at the corresponding distributions and fitted regression lines. We call these
common areas as subregions to distinguish from the clusters which are separately detected at each quantile.

Figure 5 shows the maps of the subregions commonly covered by the clusters at the mean and median in Row 1, and
at different quantiles in Row 2, respectively. That is, Figure 5 illustrates the locations {s | s ∈ ∩𝜏∪

J𝜏
j=i(𝜸̂

∗j
1 × 𝜸̂

∗j
2 )}, where J𝜏

is the number of detected spatial clusters at 𝜏 and 𝜸̂∗j1 × 𝜸̂
∗j
2 is the jth spatial cluster estimator. Each subregion is indicated

in different colors: purple for the west, gray for the north-east, brown for the upper-central, and orange for the central.
Scatterplots are provided next to the maps in the same color of each subregion with fitted regression lines. A total of four
subregions are shared by the clusters at themean andmedian. In the purple and orange subregions, the fitted equations are
very close each other between the mean and median. However, the mean provides the steeper slope estimates in the gray
and brown subregions. That is, PM2.5 is skewed to the right given AOD value in the north-east area and the upper-central
area. In the meanwhile, clusters of the quantile regression method at 𝜏 ∈ {0.5, 0.7, 0.9} share two subregions in the west
and the north-east. If the homoscedastic assumption holds, observations should show the pipeline-shaped variation, and
fitted regression models should provide the uniform slope for all quantiles. However, we see that observations within
each scatterplot have the funnel-shaped variation, and that fitted regressionmodels have the steeper slopes for the higher
quantiles. That is, the heteroscedasticity exists in the west area and the north-east area. In these two subregions, there is
the stronger contribution of AOD at the upper tail of the PM2.5 distribution, as indicated in Figure 3.

Our analysis shows geographical heterogeneity in the AOD–PM2.5 relationship for each given quantile level. The
geographical heterogeneity for different quantiles can further facilitate developing statistical models with spatially and
quantile level-wise varying AOD effects when estimating PM2.5. Identified clusters at median are qualitatively the same
to those from the mean regression. However, median shows robust regression estimates when the distribution of PM2.5
is skewed for given AOD value.

6 CONCLUSION AND DISCUSSION

In this article, we have proposed a new methodology to identify spatial clusters of regression coefficients on the quantile
of the response. The novelty of this article is that we have addressed both issues of the heteroscedasticity and geographical
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heterogeneity in spatial regression models. Our proposed model addresses spatial heterogeneity through spatial cluster
detection and accommodates heteroscedasticity via the quantile regression approaches. In the presence of heteroscedas-
ticity, the quantile regression coefficients 𝜷(𝜏) and the spatial cluster will vary across 𝜏 as shown in the upper-right cluster
of Figure 2 and Row 2 of Figure 5. Both simulation studies and data application demonstrate that the proposed quantile
approach provides better performance than the mean approach (Lee, Gangnon, & Zhu, 2017), especially for distributions
with heavy-tails or heteroscedasticity. By conducting analysis at multiple quantiles, the quantile regression framework
provides a natural and automatic way to capture the heteroscedasticity. Thus, our proposed method could be an answer
in practice with spatial data that do not show the homogeneous features across the study area and that the tail of the
distribution is of more interest than mean.

The formal testing for heteroscedasticity is a separate topic from spatial cluster detection. To test for heteroscedasticity,
one sufficient way is to test whether 𝜷(𝜏) is constant over 𝜏 or not. To construct this testing procedure, the key assumption
in the spatial cluster detection (coefficients are constant within the cluster for any given 𝜏) should hold. If not (e.g., con-
tinuous coefficients in s), it will bemore complicated due to the confounding effect of spatial homogeneity, heterogeneity,
and heteroscedasticity. Thus, we do not consider a separate formal testing procedure for checking the heteroscedasticity
in this article and leave the formal study of heteroscedasticity testing for future research.

Spatial cluster detection approaches, including our proposedmethod, aim to identify specific clusterswith features dif-
ferent from the background. Our model’s key advantage over the varying coefficient model with smooth {𝜷s| s ∈ [0, 1]2}
is the explicit identification of specific, contiguous, and compact geographic regions (clusters) associated with different
sets of regression coefficients. The associated regression equation applies to a well-identified subset of space in ourmodel.
Further, the key assumption of spatial cluster detection approaches is that the number of clusters components is rela-
tively small compared with the number of observations. However, when this assumption is strongly violated, a spatially
varying coefficient model, which allows for continuous variation in the regression coefficients (e.g., Gaussian processes,
generalized additive models, geographically weighted regression), would be more appropriate. Neither approach is uni-
versally optimal or parsimonious. However, in the case of finding spatial hot spots, which aims to identify distinct features
comparing to the background, our proposed method seems more suitable than a varying coefficient model with smooth
{𝜷s| s ∈ [0, 1]2}.

The proposedmethod is for a given quantile level and assumes rectangular spatial clusters. And, here are several ideas
that can extend this method. Themethod can be further extended to handle multiple quantile levels simultaneously (e.g.,
Galvao et al., 2014; Su & Xu, 2019). Further, although we consider the rectangular window for the spatial cluster because
we have the regular grid data, it can be modified with other shapes, such as circles, ellipses, squares, and even arbitrary
shapes (Assunção et al., 2006; Kulldorff, 1997; Kulldorff et al., 2006; Lee, Gangnon, & Zhu, 2017; Lee et al., 2020, 2021;
Tango & Takahashi, 2005). However, in practice, especially with the irregular grid data (e.g., county-level data), consid-
ering simple windows (circular or rectangular) is common in cluster detection or scan statistic approaches. Recently, Lee
et al. (2021) showed that true clusters in arbitrary shapes are identified effectively, albeit not parsimoniously, by using
circular windows. Thus, we believe that the rectangular window will act as well in practice with the irregular grid data.

We can also develop statistical inference for threshold parameters or spatial clusters. Statistical inference for threshold
parameters is a challenging problem since the limiting distribution of the estimator is nonstandard due to the nonsmooth-
ness of the indicator function in thresholding. Seo and Linton (2007) proposed a smoothed estimator for mean threshold
regression by smoothing the indicator function to achieve asymptotic normality. Lee, Gangnon, Zhu, and Liang (2017)
developed statistical inference on the estimated cluster instead of on threshold parameters by defining a confidence set
for the true cluster in the one-dimensional space. It is possible to adopt these ideas mentioned above in our setup, and we
leave this topic for future research.

ACKNOWLEDGMENTS
This publication is based upon work supported by King Abdullah University of Science and Technology (KAUST), Office
of Sponsored Research (OSR) under Award No. OSR-2019-CRG7-3800; by the IR/D program and grant DMS-1712760
from the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors
thank Dr. Howard H. Chang for providing the satellite data.

REFERENCES
Angrist, J., Chernozhukov, V., & Fernández-Val, I. (2006). Quantile regression under misspecification, with an application to the U.S. wage

structure. Econometrica, 74(2), 539–563.



14 of 15 LEE et al.

Assunção, R., Costa, M., Tavares, A., & Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, 25(5),
723–742.

Cai, Y. (2010). Forecasting for quantile self-exciting threshold autoregressive time series models. Biometrika, 97(1), 199–208.
Cai, Y., & Stander, J. (2008). Quantile self-exciting threshold autoregressive time series models. Journal of Time Series Analysis, 29(1),

186–202.
Caner, M. (2002). A note on least absolute deviation estimation of a threshold model. Econometric Theory, 18(3), 800–814.
Chang, H. H., Reich, B. J., & Miranda, M. L. (2012). Time-to-event analysis of fine particle air pollution and preterm birth: Results from North

Carolina, 2001–2005. American Journal of Epidemiology, 175(2), 91–98.
Chu, Y., Liu, Y., Li, X., Liu, Z., Lu, H., Lu, Y., Mao, Z., Chen, X., Li, N., Ren, M., Liu, F., Tian, L., Zhu, Z., & Xiang, H. (2016). A review on

predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere, 7(10), 129.
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital

admission for cardiovascular and respiratory diseases. JAMA, 295(10), 1127–1134.
Galvao, A. F., Kato, K.,Montes-Rojas, G., &Olmo, J. (2014). Testing linearity against threshold effects: Uniform inference in quantile regression.

Annals of the Institute of Statistical Mathematics, 66(2), 413–439.
Galvao, A. F., Montes-Rojas, G., & Olmo, J. (2011). Threshold quantile autoregressive models. Journal of Time Series Analysis, 32(3), 253–267.
Gangnon, R. E. (2010). Amodel for space-time cluster detection using spatial clusters with flexible temporal risk patterns. Statistics inMedicine,

29(22), 2325–2337.
Gangnon, R. E. (2012). Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution. Biometrics, 68(1), 174–182.
Gangnon, R. E., & Clayton, M. K. (2000). Bayesian detection and modeling of spatial disease clustering. Biometrics, 56(3), 922–935.
Grange, S. K., Lewis, A. C., & Carslaw, D. C. (2016). Source apportionment advances using polar plots of bivariate correlation and regression

statistics. Atmospheric Environment, 145, 128–134.
Grantham, N. S., Reich, B. J., Liu, Y., & Chang, H. H. (2018). Spatial regressionwith an informativelymissing covariate: Application tomapping

fine particulate matter. Environmetrics, 29(4), e2499.
Hallin, M., Lu, Z., & Yu, K. (2009). Local linear spatial quantile regression. Bernoulli, 15(3), 659–686.
Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64(2), 413–430.
Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica, 68(3), 575–603.
He, X., & Zhu, L. X. (2003). A lack-of-fit test for quantile regression. Journal of the American Statistical Association, 98(464), 1013–1022.
Hendricks, W., & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the

American Statistical Association, 87(417), 58–68.
Horowitz, J. L., & Spokoiny, V. G. (2002). An adaptive, rate-optimal test of linearity for median regression models. Journal of the American

Statistical Association, 97(459), 822–835.
Karl, T., & Koss, W. J. (1984). Regional and national monthly, seasonal, and annual temperature weighted by area, 1895-1983. National Climatic

Data Center.
Koenker, R. (2005). Quantile regression. Cambridge University Press.
Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50.
Kuan, C. M., Michalopoulos, C., & Xiao, Z. (2017). Quantile regression on quantile ranges – A threshold approach. Journal of Time Series

Analysis, 38(1), 99–119.
Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics, Part A, 26, 1481–1496.
Kulldorff, M., Huang, L., Pickle, L., & Duczmal, L. (2006). An elliptic spatial scan statistic. Statistics in Medicine, 25(22), 3929–3943.
Kulldorff, M., & Nagarwalla, N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14(8), 799–810.
Lawson, A. B., Choi, J., & Zhang, J. (2014). Prior choice in discrete latent modeling of spatially referenced cancer survival. Statistical Methods

in Medical Research, 23(2), 183–200.
Lee, J., Gangnon, R. E., & Zhu, J. (2017). Cluster detection of spatial regression coefficients. Statistics in Medicine, 36(7), 1118–1133.
Lee, J., Gangnon, R. E., Zhu, J., & Liang, J. (2017). Uncertainty of a detected spatial cluster in 1D: Quantification and visualization. Stat, 6(1),

345–359.
Lee, J., Kamenetsky, M. E., Gangnon, R. E., & Zhu, J. (2021). Clustered spatio-temporal varying coefficient regression model. Statistics in

Medicine, 40(2), 465–480.
Lee, J., Sun, Y., & Chang, H. H. (2020). Spatial cluster detection of regression coefficients in amixed-effects model. Environmetrics, 31(2), e2578.
Lee, S., Seo,M.H., & Shin, Y. (2011). Testing for threshold effects in regressionmodels. Journal of the American Statistical Association, 106(493),

220–231.
Ma, Z., Liu, Y., Zhao, Q., Liu, M., Zhou, Y., & Bi, J. (2016). Satellite-derived high resolution PM2.5concentrations in Yangtze River Delta Region

of China using improved linear mixed effects model. Atmospheric Environment, 133(2016), 156–164.
McMillen, D. P. (2013). Quantile regression for spatial data. Springer.
Otsu, T. (2008). Conditional empirical likelihood estimation and inference for quantile regression models. Journal of Econometrics, 142(1),

508–538.
Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air &Waste Management

Association, 56(6), 709–742.
Portnoy, S., & Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: Computability of squared-error versus absolute-error

estimators. Statistical Science, 12, 279–300.
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.



LEE et al. 15 of 15

Samoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., Dominici, F., Burnett, R., Cohen, A., Krewski, D., Samet, J., & Katsouyanni,
K. (2008). Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study.
Environmental Health Perspectives, 116(11), 1480–1486.

Seo, M. H., & Linton, O. (2007). A smoothed least squares estimator for threshold regression models. Journal of Econometrics, 141, 704–735.
Su, L., & Xu, P. (2019). Common threshold in quantile regressions with an application to pricing for reputation. Econometric Reviews, 38(4),

417–450.
Tang, Y., Song, X., & Zhu, Z. (2015). Threshold effect test in censored quantile regression. Statistics & Probability Letters, 105, 149–156.
Tango, T., & Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics, 4,

11.
Yoshida, T. (2021). Extreme value inference for quantile regressionwith varying coefficients.Communications in Statistics - Theory andMethods,

50(3), 685–710.
Yu, K., Lu, Z., & Stander, J. (2003). Quantile regression: Applications and current research areas. Journal of the Royal Statistical Society: Series

D (The Statistician), 52(3), 331–350.
Yu, W., Liu, Y., Ma, Z., & Bi, J. (2017). Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian

hierarchical setting. Sci Rep, 7(1), 7048.
Zhang, L., Wang, H. J., & Zhu, Z. (2014). Testing for change points due to a covariate threshold in quantile regression. Statistica Sinica, 24(4),

1859–1877.
Zheng, J. X. (1998). A consistent nonparametric test of parametric regression models under conditional quantile restrictions. Econometric

Theory, 14(1), 123–138.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Lee, J., Sun, Y., & Judy Wang, H. (2021). Spatial cluster detection with threshold
quantile regression. Environmetrics, e2696. https://doi.org/10.1002/env.2696

https://doi.org/10.1002/env.2696
https://doi.org/10.1002/env.2696

