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Abstract

Spatial cluster detection, which is the identification of spatial units adjacent in
space associated with distinctive patterns of data of interest relative to back-
ground variation, is useful for discerning spatial heterogeneity in regression

coefficients. Some real studies with regression-based models on air quality data
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show that there exists not only spatial heterogeneity but also heteroscedasticity
between air pollution and its predictors. Since the low air quality is a well-known
risk factor for mortality, various cardiopulmonary diseases, and preterm birth,
the analysis at the tail would be of more interest than the center of air pollu-
tion distribution. In this article, we develop a spatial cluster detection approach
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using a threshold quantile regression model to capture the spatial heterogene-
ity and heteroscedasticity. We introduce two threshold variables in the quantile
regression model to define a spatial cluster. The proposed test statistic for iden-
tifying the spatial cluster is the supremum of the Wald process over the space
of threshold parameters. We establish the limiting distribution of the test statis-
tic under the null hypothesis that the quantile regression coefficient is the same
over the entire spatial domain at the given quantile level. The performance of
our proposed method is assessed by simulation studies. The proposed method is
also applied to analyze the particulate matter (PM, 5) concentration and aerosol
optical depth (AOD) data in the Northeastern United States in order to study geo-
graphical heterogeneity in the association between AOD and PM, s at different
quantile levels.
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1 | INTRODUCTION

Fine particulate (PM;s) is a well-known harmful air pollutant as a risk factor for mortality (Samoli et al., 2008), var-
ious cardiopulmonary diseases (Dominici et al., 2006; Pope & Dockery, 2006), and preterm birth (Chang et al., 2012).
The satellite-derived aerosol optical depth (AOD) is a proxy measurement of particle air pollution data since it mea-
sures light extinction due to particles (e.g., dust, smoke, pollution) in the atmospheric column. Previous studies showed
that PM, s concentrations have positive associations with AOD (Chu et al., 2016; Grantham et al., 2018; Ma et al., 2016;
Yu et al., 2017). For spatial data, it is often assumed that regression coefficients are homogeneous across the entire spa-
tial domain of interest. However, real applications often show spatial heterogeneity in regression coefficients. That is,

Environmetrics. 2021;e2696.
https://doi.org/10.1002/env.2696

wileyonlinelibrary.com/journal/env © 2021 John Wiley & Sons, Ltd. 1o0f15


http://crossmark.crossref.org/dialog/?doi=10.1002%2Fenv.2696&domain=pdf&date_stamp=2021-07-13

20f15 Wl LEY LEE ET AL.

regression coefficients may be different in specific subregions from the rest of the area. For example, the PM, s-AOD data
studied in Section 5 demonstrates spatial heterogeneity in the relationship between PM, 5 and AOD (Figure 3).

Spatial heterogeneity in regression coefficients has been addressed by clustered varying coefficient regression for
the spatial data. Lawson et al. (2014) proposed the grouped spatial varying coefficient regression when the total num-
ber of groups is given. Recently, Lee, Gangnon, and Zhu (2017) and Lee et al. (2020) proposed spatial cluster detection
approaches of regression coefficients. Spatial cluster detection is a statistical methodology to identify observations
adjacent in space that are associated with distinctive patterns of data of interest relative to background variation
(Gangnon, 2010, 2012; Gangnon & Clayton, 2000; Kulldorff, 1997; Kulldorff & Nagarwalla, 1995). However, the aforemen-
tioned spatially clustered varying coefficient regression approaches are developed for mean regression. Mean regression
model assumes the constant relationship between a response and covariates across the population. These constant regres-
sion coefficients are based on the homoscedastic assumption that random errors are drawn from identical distributions.
Thus, mean regression is fragile when the homoscedastic assumption is violated, which is often seen in medicine and
survival analysis, financial and economic statistics, and environmental modeling (Yu et al., 2003). Grange et al. (2016)
studied black carbon (BC) contributions to PM, s in London, United Kingdom, and showed that these two variables did
not follow a mean rate of change; the contribution of BC was getting bigger as PM;, 5 was moving to the upper tail of its
distribution. Recently, Yoshida (2021) showed heteroscedasticity of air quality data in Beijing, China, and considered the
model at the tail of PM, 5 instead of at central. Since a number of studies have shown that high levels of PM, 5 are fatal
(Chang et al., 2012; Dominici et al., 2006; Pope & Dockery, 2006; Samoli et al., 2008), in PM; s studies, upper quantiles
would be of more interest than the median or mean. Furthermore, the PM, s—AOD data studied in Section 5 demonstrates
not only spatial heterogeneity but also heteroscedasticity (Figure 3).

Quantile regression (Koenker & Bassett, 1978) provides a natural and automatic way to capture the unknown data
heteroscedasticity since it enables us to model the impact of predictors at different quantiles of the response distribution;
see Koenker (2005) for a more detailed review of quantile regression. There have been a number of studies on threshold
quantile regression (Cai, 2010; Cai & Stander, 2008; Caner, 2002; Galvao et al., 2011, 2014; He & Zhu, 2003; Horowitz &
Spokoiny, 2002; Lee et al., 2011; Otsu, 2008; Zheng, 1998). More recently, Zhang et al. (2014) and Tang et al. (2015) devel-
oped procedures for testing change points due to a covariate threshold, and Kuan et al. (2017) and Su and Xu (2019) studied
confidence intervals for the estimated threshold parameter in regression quantiles. Threshold quantile regression models
consider piecewise effects in subregions divided by one threshold variable with jumps occurring at the unknown change
points. However, although there are some previous studies on quantile regression with spatial data (Hallin et al., 2009;
McMillen, 2013), there appears to be very limited work for spatial cluster analysis.

In this article, we propose a novel approach that enables us to not only address the spatial heterogeneity in regression
coefficients but also accommodate data heteroscedasticity. We define a set of potential spatial clusters by considering geo-
graphical coordinates of the observations as threshold variables and introducing two threshold parameters. And then, we
first test if there exists a spatial cluster against the null hypothesis that the quantile regression coefficient is the same over
the entire spatial domain at the given quantile level. This test for the existence of a spatial cluster requires the limiting
distribution of the supremum test statistic under the null hypothesis to control the Type I error. If the test rejects the null
hypothesis, then we choose the cluster that gives the largest test statistic among all candidate clusters, as the spatial clus-
ter estimator. The main challenge in developing our method comes from the fact that the limiting null distribution is not
pivotal. In similar situations in the mean regression approach, a parametric bootstrap was adopted to obtain the p-value
(Lee, Gangnon, & Zhu, 2017; Lee et al., 2020, 2021). However, in the quantile regression setup, a p-value via a Monte Carlo
method is computationally costly. Thus, we resolve this challenge by proposing a simulation-based algorithm for calcu-
lating the critical values. We believe that our proposed method is the first of its kind to address the spatial heterogeneity
issue in the quantile regression coefficients. We assess the performance of our proposed method via simulation studies
and the analysis of the air quality data in the Northeastern United States. These studies suggest that the proposed method
provides better performance than the mean regression approach (Lee, Gangnon, & Zhu, 2017) by producing robust results
to the heavy-tailed distribution and capturing the heteroscedasticity.

The remainder of this article is organized as follows. In Section 2, we introduce the proposed spatial threshold quantile
regression framework. In Section 3, we define the test statistic, present its asymptotic null distribution, and introduce
one simulation-based algorithm for approximating the asymptotic critical values for the test statistic. We also introduce a
sequential scheme for the identification and estimation of multiple spatial clusters. In Section 4, we conduct simulation
studies to evaluate and compare the proposed method with existing approaches. Section 5 presents a real data application
by studying the impacts of AOD on PM, s from the Northeastern United States. Lastly, Section 6 contains some discussion
and conclusions. Proofs are provided in the Supplementary Material.
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2 | STATISTICAL MODEL

In this section, we construct a statistical model to capture the heteroscedasticity and spatial heterogeneity in regression
coefficients. First, we introduce the conditional quantile function on the spatial data to address the heteroscedasticity.
And then, we extend the conditional quantile function with threshold variables to define the spatial cluster. We assign
the separate regression coefficient to the cluster to take the spatial heterogeneity into account.

Let y; € R and x; € R? denote the dependent variable and the covariate vector at s, respectively, where s = (s, 5,)"
is a geographical location on the unit square [0,1]*> € R2. In this article, we assume that {(ys,w/)" | s € [0,1]?} is an
independent process although the results can be generalized to weak stationary processes, where wg = (s7,x])".

Let Q) (r|wy) denote the conditional zth quantile of ys given wg, where 7 € (0, 1). Then, we assume that when there is
no spatial cluster, the effect of x; on the rth quantile of ys is linear and the same across space. If there is a spatial cluster,
then we assume that x; shows distinctive association to the rth quantile of y; within the cluster relative to the rest of the
region. Thus, for a given r € T = [z, 7y] C (0, 1), we could consider the following hypotheses:

Hy : Q,(t|ws) = X{6,(2),
versus Hi : Q) (r|ws) = I(s1 & [a],by] or s, & [a5,b]) -x10,(7)

+ I(s; € [a],b]], s € [a5,b5]) - xg T0,(z), for some aj,a;, by, b5

2> 72 1° 72

where Z(-) is the indicator function, aj, a3, b}, and b; € [0, 1] are the threshold parameters such that a] < b}, a; < b},

and 0,(7) # 0,(r) for s € [a], b]] X [a}, b;]. That is, for a given 7, the quantile regression model has the un1forrn coeffl-
cient 8,(r) € R over all s € [0, 1] under Hy, while H, assumes an additional quantile regression coefficient 0,(r) € RP.
A rectangular spatial cluster is defined to be [a}, b{] X [a5, b]] by the threshold parameters, and each coordinate of s, s
and s;, plays a role of the threshold variable in a threshold regression model.

For convenience, we reparameterize as f;,(r) = 01(r) and B ,)(7) = 0,(7) — 0:(z), and re-express the hypotheses:

Hy @ Qy,(zlwy) = z5(y1.7,) " B(r) With B, (r) =0, forall (y,7,) € I?,
versus Hy @ Qy (t|wy) = z5(y}, v3) T B(r) with B, (z) # 0, for some (v}, 7};) € T?, €8]

where 2Zy(y1,72) = (%, I(s € y1 X7 - ¥)T, y1=(a,b)" €L, v, =(az,b)" €T, T'= {1, y0)"| 0<yp <yy <1},
YiXya={si|sa€ [al» bil, sp € [az,bs), i=1, ... ,n}, B(2) = (B (D), By (D)D), By(r) = O1(z),and B, (7) = 0,5(7) —
0:(7). That is, a rectangular spatial cluster is deflned to be y; X y, by two threshold parameter vectors y, and y,. Then,
when the threshold parameters (y,, y,) are known, with the given data {(ys,, w T)T ,and agiven v € 7, we can estimate
the quantile regression coefficient f(r) by the following estimator:

n
p: _ -1 _ T
B(r,v1,72) = arg minn ; p(s, — 25, (Y1, 72)' b), (2)

where p.(u) = u - {r — I(u < 0)} is the check function (Koenker & Bassett, 1978).

3 | TESTSTATISTIC AND ESTIMATION

3.1 | Test statistic

As shown in Lemma C.1 in the Supplementary Material, with known (y},73) , B(z)(f Y1,Y2) Z 0 for each (Y1.72) €

I' X I when Hj is true, while ,B(z)(r Y yz) L B)(r) # 0 when H; is true, where “ 2> denotes convergence in probability.
Therefore, it is reasonable to reject Hy if ﬁ(z)(r Y3, ¥5) is far from 0 enough. However, since the true value of the threshold
parameter (y],y3) is unknown, it is not adequate to choose B ,)(z,y],5) as the test statstic for the existence of a spatial
cluster. Instead, we can consider to reject Hy if the magnitude of [3(2)(1, ¥1,7>) is large enough for some (y,,y,) € I'* since
B(z)(r, ¥1.7,) ~ 0 for any (y,,7,) € I'> when Hj is true. Thus, we choose the supremum of the Wald statistic as the test
statistic

SWy(z) = sup nB(z)(T, 140 Yz)T{sz(T, Y1 }'2)}_13(2)(7, Y1, Y2) (3)
(}’1s72)€r2
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where V,(r,7,,7,) is the asymptotic covariance matrix of ﬁﬁ(z)(r, 71,7,) under Hy and can be replaced by a suitable
consistent estimate in practice. Further, the distribution of the test statistic SW,(z) is required under Hy to control the
Type I error. Thus, we establish its limiting distribution under suitable regularity conditions and H,.

Let B}, (7) € RP denote the unique solution to E[(z — T{ys < xsTﬁfl)(r)}) -xs] =0, and let g*(r) = (ﬁfl)(r)T,OT)T €
R?. Let £#°(T x I'*) denote the space of all bounded functions on 7 x I'>, and let (£ (7 x I'*))? denote the (2p)-product
space of #°(T x I'?). And then, we make the following the regularity conditions C1-C5.

Cl: {(ys,w])",s € [0,1]?} is an independent process.

C2: E[||x5]|7] < oo for some g > 2.

C3: Let F(-|w)denote the conditional distribution function of ys given wg = w. Assume that F(-|w) has a Lebesgue density
f(-|w) such that

(i) [f@Iw)| < Cy on the support of (ys,w])T for some Cy > 0,
(i) If1lw) —f@2lw)| - 0as [y; —y,| — 0 for each fixed w.

C4: The threshold variable s has a continuous distribution.
C5: Qo(y4,7,) is positive definite for each (y,,y,) € I'?, and Q(r, ¥1,Y,) is positive definite for each (z,y,,7,) € T X r,
where

(1) Qo(yy,7) =E [ZS(YI’ Y2)Zs(¥ 1 Yz)T] fory,, v, €T,
(i) i(r.71.72) = E [0 B ()wy)2s(ra. r2)zs(r1. )" |-

C1 guarantees the independent observations, but it can be generalized to weak stationary processes. C2 is a moment
condition. C3, for each w, guarantees the (i) uniformly bounded and (ii) continuous density which is standard in the
quantile regression literatures (Angrist et al., 2006; Galvao et al., 2011, 2014; Su & Xu, 2019). C4 is a standard condition
in the threshold quantile regression literatures (Galvao et al., 2011, 2014; Hansen, 1996, 2000; Su & Xu, 2019), and it is
satisfied by spatial data (e.g., bivariate uniform distribution on [0, 1]?). C5 guarantees that the matrices Q¢(y;,7,) and
Qi(z,7,,7,) do not degenerate for each (y,,y,) € I* and (r,7,,7,) € T x I'*, respectively.

Theorem 1. For a given t € T, and under the regularity conditions C1-C5 and Hy, we have
\/;l{ﬁ(f, Yi.¥2) = B} = Qu(z,71,7,) ' Wz, ¥1.7,) in (€T xI?)%,

where “=” denotes weak convergence, and W(z,y,,Y,) is a zero-mean, continuous Gaussian process on T x % with
covariance kernel

E[W(z, 71, ¥2)W(T,¥1.72) 1 = 7(1 = 7) - Qo(¥1, ¥2)-

Theorem 1 presents the asymptotic null distribution of the quantile regression estimator, B(z, y,,7,) in (2), when the
regularity conditions C1-C5 hold. Thus, from Theorem 1, the asymptotic null distribution of SW,(z) in (3) can be derived
as in the following corollary.

Corollary 1. For a given = € T, and under the regularity conditions CI-C5 and H,,

SWu(r) = sup  S(z,71,7) {Vaa(7,71,72)} 'Sz, 71, 72), 4)
(71»}'2)€F2

where S(z,y1,7,) = RQy(7, ¥, 72)_1W(T’ 71. Y2, R=1[0, I, |px2p, and Voo (7, Y1, ¥,) = E[S(z7, 71, ¥)S8(7, 71, 72)T] =7(1-
RO (7, Y1, 7)) ' Qo(r1, ¥2)Q1 (2, 71, 72)_1RT-

3.2 | Implementation

For the implementation of the limiting distribution of SW, (r) given by (4), we consider the estimates of Qq, Q;, and V>, as

n
Qo(r1,7) =n"Y 26 (r1 122 (11 12) (5)

i=1
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n
(11,72 =17 ) Fozs (1 122 (0 1) (6)
i=1
Vo (7,71, 72) = 7(1 — 0RO (7, 1, 72) ' Qo(r1, ¥2)Qu (7, 71, 7,) 'R, (7)

where f” 5 is estimated via the Hendricks-Koenker sandwich (Hendricks & Koenker, 1992; Koenker, 2005):

2h,
* (Bl + ) = Bz = o))

I <xsTiBf1)(r)) = max0,

with h, = O(n~'/3). In the implementation, the bandwidth h, is chosen by the bandwidth.rq function in the
quantreg package for R (R Core Team, 2017).

However, the main challenge remains in estimating the critical value directly from the asymptotic result (4). The
limiting null distribution is not pivotal, and thus in similar situations in the mean regression approach, a parametric
bootstrap was adopted to obtain the p-value (Lee, Gangnon, & Zhu, 2017; Lee et al., 2020). However, a Monte Carlo method
is computationally costly in the quantile regression setup. Thus, we propose a simulation-based algorithm to calculate
the critical values for a spatial cluster’s existence. The simulation-based method was also used in Hansen (1996), Galvao
et al. (2014), and Su and Xu (2019) in different quantile regression settings. The quantile regression estimator (2) requires
the computational complexity of O(n'?*p? log n) (Portnoy & Koenker, 1997). Thus, the Monte Carlo method requires the
computational complexity of O(BCGn'?°p?® log n) to find multiple clusters, where B is the number of simulations to obtain
the p-value or a critical value, C is the number of true clusters, and G is the number of potential clusters over I’ In
contrast, the simulation-based approach only requires O((BG + C)n-*>p* log n) since we only need single B simulations
for the approximate critical value. An approximate critical value for the test statistic SW;(z) can be computed as in the
following steps:

(i) Generate {ué’i }i, independently from the uniform distribution on [0, 1] for each b =1, ... , B, where B is a large
positive integer.
(i) Set Wi(z,y1,1,) =n"2X L {r — T(ud < 1)}z (r,.7,) foreachb=1, ... ,B.

b —~
(iii) Foreachb =1, ... ,B, compute SW,(7) = Max, . e W2(z,y,,7,), where

/W,}f(r, Y1.Y2)
= Wo(2, 71, 75) Qu(7, 71, V) 'R {(Vaa(7, 71, ¥2) ) ' RQ (7, 11, 72) WA, 71, 12).

(iv) For the significance level « € (0,1), take the empirical (1 —a)-quantile of the simulated sample

{§I/I\/ i(r), ,S/I/\V 5(1)} as the approximate critical value é‘f_a.

In practice, we can take the maximum of WS(T, 71,7,) in step (iii) over the discretized I'2. That is, we first discretize
the unit interval [0, 1] into {yo,71, ... 71}, Where yo = 0, y; = 1, and yx < yp for k < k’. Then, we can get the discretized
I?, where I' = {(yz,y0)"| 7. vu € {¥o.71. --. .71}, 71 < yu }. Thus, the number of potential clusters over the discretized
I’ will be G = [T?| = 4 12(1 + 1), where | - | denotes the cardinality of a set. And then, we reject Hy if SWy(z) > é‘f_a. If
the test rejects Hy, then it suggests the presence of threshold effects, and thus we can estimate the spatial cluster together
with the threshold parameter. It is reasonable to choose the cluster that gives the largest test statistic among all candidate
clusters as the spatial cluster estimator. Furthermore, its corresponding (y,, y,) is considered as the threshold parameter

ok oAk

estimator (77, 75):

(#1 JA’;) =arg Ssup , nﬁ(z)(fa Y1 Yz)T{V22(T, Y1 }'2)}_13(2)(1', Y1, Y2) (8)
(r1r,)er

where ] X 7 is the spatial cluster estimator.
This implementation is based on the fact that \/ﬁ{ B(t,71.7,) — B*(r)} admits the Bahadur representation under
the regularity conditions and Hy (see the proof of Theorem 1 in the Supplementary Material). The first term of its
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Bahadur representation is n‘l/zzinzl[r —I{ys < xsT,ﬂa)(T)}]Zsi(Ylv Y2)-Since I{ys, < xsTiﬂz})(T)}’ i=1, ...,n,areindepen-
dent Bernoulli trials with the success probability =, we could replace them with {Z(usi < r)}
are generated from iid U°(0, 1).

Letg, = (B(x)".y],7]) T € R® xI"*and B,(r) € R denote the unique solution to E[(z — I {ys < zs(y},73)"B.(1)}) -
X;] = 0. And then, we make the following assumption C6 to establish the consistency of ¢, = ( ICR 2N 2 NN 2 ?;T) T
under H;.

C6: Let A(Zs. ¢,) = 2s(r1,72) " B(z) — 25(y}. ¥3) " B.(7). Then, there exists ¢* > 0 such that P(|A(zs, ¢,)| > c*) > 0 for all
¢, € R x T such that ¢, # ¢}, where ¢ = (B.(0)",y;T.v3") .

i"zl,where us,i=1, ... ,n,

Theorem 2. For a given t € T, and under the regularity conditions C1-C6, we have ¢, = ¢* + op(1).

3.3 | Identification and estimation of multiple clusters

We have introduced the procedure for detecting and estimating the existence of a spatial cluster. However, all of these are
based on the single cluster assumption when H;j is true, while in practice, more than one cluster may exist in the study
area. Thus, we propose a sequential procedure to identify multiple clusters, where the non-cluster and the single cluster
are also covered in the procedure as special cases. The detailed procedure for a given quantile = is as follows.

(i) Fit the model in (1) under Ho, Qy,(z|ws) = X' B;)(7), and update the response J; = ys, — X, Boy(@).

(ii) Obtain the test statistic SW,(r) in (3) based on the data {@si’WsT,.)T L, If SWy(7) is not significant, do not reject Hp
and stop. If rejecting Hy, move to the next step.

(iii) Identify the spatial cluster and obtain the threshold parameter estimator (77, #5) as in (8), and calculate the residual
&, = Vs, — 25 (71 72T B@. 71, 75)-

(iv) Replace the response with the residual y, = &, to remove the effect of (77, 75) from the data. Update I'” with I'* \
{(r1,72) | (ry X)) N(F1 X 73) # @} to remove all the cluster candidates, which overlap the previously identified
cluster 7] x 75, where # is the empty set. And then, go to step (ii) to detect and identify a new cluster.

Let (775, ?;k) and B(z, 7%, ?;k) be the kth obtained threshold parameter estimator and the corresponding coefficient
estimates, respectively. If we identify a total of M clusters and there is an index set £ C {1,2, ... ,M}, where (V{k X ?;‘k)s
are adjacent each other and B(z, 73*, f';k) = pB(z, f'i‘k’, f/;k,) fork,k’ € K, then Ugee(57% x ?;k ) can be seen an approximation

of an irregular shaped cluster.

4 | SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate our proposed method. Our simulation studies mainly consist
of four parts: model set up for the data simulation, false positive and power analysis for the hypothesis testing of the
threshold effect, and cluster identification. For the comparison, we apply the mean regression approach (Lee, Gangnon,
& Zhu, 2017) as well.

41 | Simulation design

We generate data based on the following model:

Vs, =X, +61-L(si €y Xy3) X, +{1+62- I (Si €y XV})  Xs, } - &5, 9)

where x, s are generated from iid (0, 1), and &5 are iid random errors with zero mean and the cumulative distribution
function (CDF) F¢(-). We predefine two spatial clusters to be y] X y3 and y; X y; with the corresponding threshold effects
61 and 6,, respectively. Thus, under this model (9), we have

sti(lesi) =X + o1-1 (si € YT X 7;) * Xs;
+{1+6 I (si€y;XV}) X} F (o), (10)

EQs|wg) =xs +61-I(si €y} X7¥5) - X,

an
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TABLE 1 False positive rates in Case 0 at the nominal significance level a = 0.05

Quantile 7
Errors Sample size Grid size 0.5 0.7 0.9 Mean
N(0,1) n = 30% 10x 10 0.051 0.041 0.071 0.047
20 x 20 0.060 0.057 0.063 0.053
n = 502 10 x 10 0.044 0.053 0.055 0.052
20 x 20 0.049 0.054 0.055 0.063
n = 70? 10x 10 0.048 0.039 0.039 0.043
20 % 20 0.056 0.044 0.044 0.043
o - 1(2) n = 30? 10 x 10 0.098 0.108 0.277 0.178
20 x 20 0.089 0.140 0.341 0.149
n = 502 10 X 10 0.054 0.057 0.167 0.148
20 x 20 0.059 0.066 0.187 0.131
n = 702 10 x 10 0.047 0.046 0.115 0.142
20 x 20 0.066 0.048 0.126 0.147
n = 100? 10 x 10 0.054 0.052 0.064 0.149
20 x 20 0.057 0.055 0.087 0.146
n = 150? 10 x 10 0.041 0.046 0.050 0.121
20 X 20 0.048 0.046 0.055 0.119

We consider four cases. In Case 0, the threshold effects are set to be 6; = §, = 0 for the false positive analysis. Cases 1
and 2 are for the power evaluation. In Case 1, the threshold effects are set tobe §; = § # 0and §, = 0 for the homoscedastic
errors. That is, the threshold effect is uniformly over the all quantile level = € T C [0, 1]. However, in Case 2, 6; =0
and 8, = 6 # 0 for the heteroscedastic errors. Thus, the threshold effect does not exist at the median (z = 0.5) while it
gets larger as the quantile level is further away from the median. Threshold vectors for the spatial clusters are set to
bey;=y;=r;=v,=rv=(03, 0.7)". That is, a cluster is predefined to be y x y = [0.3,0.7]? both in the homoscedastic
errors (Case 1) and heteroscedastic errors (Case 2). Lastly, in Case 3, we set 61 = 6, = 6 # 0 and y] X y; # y; X v, for the
dual-cluster identification. Further, for the random errors, we consider the normal errors from A'(0, 1) or the heavy-tailed
errors from o X t(2), where #(2) is the Student’s ¢-distribution with 2 degrees of freedom. We set o = 1/1.21054 so that
the normal errors and the heavy-tailed errors would have the same median absolute deviation (MAD) as 0.6745. We
consider sample sizes n = 302, 502, or 70, corresponding to a 30 x 30, a 50 x 50, or a 70 X 70 square grid in the unit square
[0, 1] x [0, 1], respectively.

From now, we simplify the notations Ys,» Xs,» Ws,, and g5, by yi, X;, w;, and g;, respectively, at the location s;,i =1, ... , n.
Each simulation case is conducted with 1000 repetitions. Furthermore, we use the empirical critical value élf_a defined in
Section 3.1 with B = 5000 at the nominal significance level @ = 0.05.

4.2 | False positive

To evaluate the false positive rate of the threshold effect test, we generate data from the model (9) when 6; =6, =0
with the normal errors and the heavy-tailed errors, respectively. And then, we perform the hypothesis testing for the
threshold effect in the quantile regression at quantile levels r € {0.5,0.7,0.9} as well as in the mean regression. The grid
size for the discretized I'? is set to be 10 x 10 or 20 x 20. That is, I' = {(yL, yo)'10<y <yu < 1} c {0.0,0.1, ... ,1.0}?
or {0.00,0.05, ... ,1.00}2. The false positive rate is defined as the proportion of the simulations in which the test statistic
SW,(7) is greater than the critical value éf_a.

We consider more sample sizes, n = 100> and 1507, for the study with heavy-tailed errors. Table 1 summarizes the
empirical false positive rates at the significance level « = 0.05. The standard error of the estimated false positive rate is
about \/ (0.05)(0.95)/1000 ~ 0.007 with 1000 simulations. Thus, with normal errors, N'(0, 1), the false positives are within
or lie slightly more than one standard error away from the nominal level 0.05 both in the quantile regression and the
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n = 302 n = 502 n =702

— Mean --- =05 - 1=0.7 == 1=0.9

FIGURE 1 Power curves of the mean regression and the quantile regression at r = 0.5,0.7, and 0.9. The nominal significance level and
the sample size are set to be & = 0.05 and n = 302, 502, or 70, respectively. (a) Homoscedastic normal errors. (b) Homoscedastic heavy-tailed
errors, ¢ - t(2). (c) Heteroscedastic normal errors

mean regression. However, with heavy-tailed errors, o - #(2), the mean regression always produces inflated false positives
comparing to the quantile regression at = = 0.5 and 0.7. The mean regression even shows the higher false positive rates
than the higher quantile (¢ = 0.9) for relatively large sample sizes (n = 100? or 1502). In the meanwhile, the quantile
method produces the false positive rates close to the nominal @ at 7 = 0.9 when the sample sizes are large enough as
n = 100% or 1507,

4.3 | Power evaluation

To evaluate the power of the threshold effect test, we consider three settings for generating data: homoscedastic normal
errors, homoscedastic heavy-tailed errors, and heteroscedastic normal errors. We simulate the data from each setting,
and perform the hypothesis testing at quantile levels = € {0.5,0.7,0.9} as well as at the mean. The grid size for the dis-
cretized I'? is set to be 10 x 10. That is, T’ = {(yL, o)1 0<y, <yu < 1} C {0.0,0.1, ... ,1.0}%. We define the power as the
proportion of the simulations in which the test statistic SW),(z) is greater than éf_a.

Figure 1 illustrates the power curves for each setting and the sample size. In Figure 1(a,b), where the data are
generated with homoscedastic errors, median has the largest power and power at = = 0.9 is the smallest among the three
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FIGURE 2 Maps of mean regression slopes 7; mean and quantile regression slopes #;(z), where = 0.5,0.7, or 0.9. (a) Normal error. (b)
Heavy-tailed error. The first row shows the truth, the second shows the estimated coefficients, and the third row presents the mean squared
errors of the estimators

quantile levels. Considered enough sample size (n > 50?), both the quantile regression and mean regression approaches
provide S-shaped power curves. However, Figure 1(b) shows that mean regression cannot produce enough power with
heavy-tailed errors comparing to the results at z = 0.5 and 0.7.

In Figure 1(c), where the data are generated with the heteroscedastic normal errors, power is largest at = 0.9 and
smallest at median. This is what we expect since the threshold effect is getting stronger as 7 is getting away from the
median.

4.4 | Clusteridentification

In this study, we evaluate how well our method identifies the true thresholds or clusters which are predefined in the
simulation. We generate data from Case 3 (6 = 6, = 6 # 0 and y} X v} # v3 X v}, ). The size of the threshold effect is set
to be § = 1 based on the power analysis results, and two clusters are predefined to be y} X y3 = [0.15, 0.45]% and Y3XY, =
[0.55,0.85]2, respectively. We also consider both heteroscedastic normal and heavy-tailed errors.

Fori=1, ... ,n, Equations (10)-(11) can be re-expressed as:

Qy,(t|wy) = &i(t) + mi(z) - x; + F ' (7),
E(yilwi) = Ci,mean ~+ i mean * Xi,

where (i(7) = {imean =0, (7)) =1+ 61 - I(s; € y; X ¥3) + 62 - L(si € ¥ X ¥3) - F71(7), and flimean = 1+ 61 - I(s; € ¥ ¥
v5)- Thus, at 7 = 0.5 and mean, the truth is one cluster. For each simulated dataset, we estimate threshold parameters
(71,75, 75, and 7}) at quantile levels = € {0.5,0.7,0.9} as well as at the mean, and estimate the corresponding regres-
sion coefficients at each location: &;(z)s, ¢ imeans 1i(7)S, and #; pean for i =1, ... ,n. And then, we map these regression
coefficient estimates.

Figure 2 illustrates the maps of slope estimates #; e, and #;(z)s, where n = 50* and the grid size for the discretized

I'” is set to be 20 X 20. Thatis, I' = {(yz,7v)"| 0 <y, < yuy <1} C {0.00,0.05, ... ,1.00}2. The first two rows are the maps
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of the true value of the slopes and of the mean of slope estimates across 1000 simulations, respectively. The last row is
the maps of the corresponding mean-squared error (MSE). As shown in the figure, true clusters are on the lower left
(r; x v =[0.15,0.45]%) and on the upper right (y} x y; = [0.55,0.85]%), respectively. While the lower left cluster affects
uniformly over the quantile level with the same effect size 6;, the upper-right cluster has steeper slopes at higher quantiles
with the quantile-specific effects as §, - F-1(r). The results for the other sample sizes, n = 30? or 702, are omitted because
findings are similar to those shown in Figure 2.

In Figure 2(a) with heteroscedastic normal errors, we see that only the lower left cluster is identified at z = 0.5 and
mean, while the quantile method could correctly identify both clusters well at = = 0.7 and 0.9. That is, the quantile
method can help identify spatial clusters at tails of the distribution, which are caused by heteroscedasticity, while the
mean method may overlook those. In Figure 2(b) with heteroscedastic heavy-tailed errors, we see similar results as in
Figure 2(a). However, mean regression cannot identify the lower left cluster clearly with the higher MSE comparing to
the median. Thus, there are less chances to detect the cluster at the mean.

5 | DATA APPLICATION

We apply the proposed quantile regression approach to study the impact of AOD on PM, 5 for the summer (June-August)
2012. AOD is a proxy measurement of particle air pollution data since it measures light extinction due to particles in the
atmospheric column. We consider the regression model with PM, 5 as the response variable and AOD as the covariate
since AOD was shown in previous studies to have positive impacts on PM, 5 (Chu et al., 2016; Grantham et al., 2018; Ma
et al., 2016; Yu et al., 2017). The study domain covers the Northeastern United States (Connecticut, Delaware, Maine,
Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and District
of Columbia), which is defined by the National Climatic Data Center (Karl & Koss, 1984).

We obtain the daily PM, 5 values and satellite-measured AOD data from the Environmental Protection Agency (EPA,
https://www.epa.gov/cmaq) and the Moderate Resolution Imaging Spectroradiometer (MODIS, https://modis.gsfc.nasa.
gov/data), respectively. Since a 12 x 12 km? grid is the common resolution available when we consider the data from these
different sources (EPA and MODIS), we organize the data on a 12 x 12 km? grid up to match the EPA grid cell with a total
of 3186 observations. Furthermore, we prepare the data for summer 2012 by averaging each daily variables (PM, s and
AOD) over June-August, 2012.

Figure 3(a,b) shows the maps of PM, s and AOD data averaged over the summer season in 2012. The scatterplot is
provided in Figure 3(c), and it shows the positive association between AOD and PM, s. However, it looks there are at least
three chunks of observations, which we circle by navy plus (+) signs on the scatterplot. They look like having different
features to one another with respect to the intercepts and slopes. Furthermore, heteroscedasticity is also shown with
the funnel-shaped variation within each group. Thus, we suspect the stronger contribution of AOD at the upper tail of
the PM, 5 distribution. Our goal is to identify spatial clusters geographically where the spatial observations show similar
associations between the response and the covariate. Thus, if those observations are close to each other geographically
within some subregions, it is important to find such subregions and model a clustered varying coefficient regression with
them. Furthermore, if the association between two variables does not follow a mean rate of change, it is also crucial to
take the heteroscedasticity into account. Thus, these PM; 5 and AOD data let us have the scientific motivation to develop
statistical models with spatially and quantile level-wise varying AOD effects when estimating PM, 5 by identifying spatial
clusters and considering a flexible regression model to capture the heteroscedasticity.

Thus, we apply the proposed quantile regression approach to the PM; 5 and AOD data. The mean regression approach
(Lee, Gangnon, & Zhu, 2017) is applied to the same data as well for comparisons. In the simulation studies, we compare
two methods when the sample size is at least n = 50% with the searching grid size 20 x 20. We use the ratio between these
two sizes as a reference to define the searching grid in the real data analysis. Thus, we consider 30 x 30 km? grid resolution
(12 km x %) for the searching grid in the PM, 5 and AOD dataset. The covariate (AOD) is centered to have a zero mean
in the application.

Figure 4 illustrates maps of regression coefficient estimates at the mean and quantile levels = = 0.5,0.7, and 0.9. The
scatterplots between PM, s and AOD, with the fitted regression lines for each cluster, are provided below the slope estimate
maps. Further, the colors in each scatterplot and the corresponding slope estimate map match each other. In each map
and scatterplot, observations are colored based on the coefficient estimates: red colors for high values and blue colors
for low values. Mean and median detect four clusters, while three clusters are found at ¢ = 0.7 and 0.9. At = = 0.5, the
central cluster, beige color in the intercept map, is not found in the slope map. It means that this cluster has the effect in
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FIGURE 4 Row 1: Maps of the intercept estimates. Row 2: Maps of the slope estimates. Row 3: Scatterplots between PM, 5 and aerosol
optical depth (AOD) with the fitted regression lines. The colors in each scatterplot match the colors in the corresponding slope estimates
map. Observations are colored based on the coefficient estimates: Red colors for high values and blue colors for low values
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PM,5 = 6.58+13.23-AOD (at Mean)
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FIGURE 5
7 =0.5,0.7, and 0.9. Each subregion is indicated in different colors: Purple for the west, gray for the north-east, brown for the upper-central,

Row 1: Common subregions covered by both mean and median. Row 2: Common subregions covered by all quantile levels

and orange for the central. Scatterplots are provided next to the maps in the same color of each subregion with fitted regression lines. Fitted
line and equation are in black at the mean, in red at = = 0.5, in green at = = 0.7, and in blue at = = 0.9, respectively

the intercept only. On the other hand, at = = 0.7, the upper-central cluster has the effect in the slope only. The identified
clusters are not identical across quantile levels, but they agree with what we observed in Figure 3. We see that there are
several areas commonly covered by spatial clusters at the mean and different quantiles. Thus, for further comparisons,
we investigate these common areas by looking at the corresponding distributions and fitted regression lines. We call these
common areas as subregions to distinguish from the clusters which are separately detected at each quantile.

Figure 5 shows the maps of the subregions commonly covered by the clusters at the mean and median in Row 1, and

%] j

at different quantiles in Row 2, respectively. That is, Figure 5 illustrates the locations {s | s € nfuj;i(yl X ?;’ )}, where J,
is the number of detected spatial clusters at r and ﬁj X ?;j is the jth spatial cluster estimator. Each subregion is indicated
in different colors: purple for the west, gray for the north-east, brown for the upper-central, and orange for the central.
Scatterplots are provided next to the maps in the same color of each subregion with fitted regression lines. A total of four
subregions are shared by the clusters at the mean and median. In the purple and orange subregions, the fitted equations are
very close each other between the mean and median. However, the mean provides the steeper slope estimates in the gray
and brown subregions. That is, PM, 5 is skewed to the right given AOD value in the north-east area and the upper-central
area. In the meanwhile, clusters of the quantile regression method at r € {0.5,0.7,0.9} share two subregions in the west
and the north-east. If the homoscedastic assumption holds, observations should show the pipeline-shaped variation, and
fitted regression models should provide the uniform slope for all quantiles. However, we see that observations within
each scatterplot have the funnel-shaped variation, and that fitted regression models have the steeper slopes for the higher
quantiles. That is, the heteroscedasticity exists in the west area and the north-east area. In these two subregions, there is
the stronger contribution of AOD at the upper tail of the PM, 5 distribution, as indicated in Figure 3.

Our analysis shows geographical heterogeneity in the AOD-PM, 5 relationship for each given quantile level. The
geographical heterogeneity for different quantiles can further facilitate developing statistical models with spatially and
quantile level-wise varying AOD effects when estimating PM, 5. Identified clusters at median are qualitatively the same
to those from the mean regression. However, median shows robust regression estimates when the distribution of PM; s
is skewed for given AOD value.

6 | CONCLUSION AND DISCUSSION

In this article, we have proposed a new methodology to identify spatial clusters of regression coefficients on the quantile
of the response. The novelty of this article is that we have addressed both issues of the heteroscedasticity and geographical
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heterogeneity in spatial regression models. Our proposed model addresses spatial heterogeneity through spatial cluster
detection and accommodates heteroscedasticity via the quantile regression approaches. In the presence of heteroscedas-
ticity, the quantile regression coefficients f(r) and the spatial cluster will vary across = as shown in the upper-right cluster
of Figure 2 and Row 2 of Figure 5. Both simulation studies and data application demonstrate that the proposed quantile
approach provides better performance than the mean approach (Lee, Gangnon, & Zhu, 2017), especially for distributions
with heavy-tails or heteroscedasticity. By conducting analysis at multiple quantiles, the quantile regression framework
provides a natural and automatic way to capture the heteroscedasticity. Thus, our proposed method could be an answer
in practice with spatial data that do not show the homogeneous features across the study area and that the tail of the
distribution is of more interest than mean.

The formal testing for heteroscedasticity is a separate topic from spatial cluster detection. To test for heteroscedasticity,
one sufficient way is to test whether f(r) is constant over = or not. To construct this testing procedure, the key assumption
in the spatial cluster detection (coefficients are constant within the cluster for any given z) should hold. If not (e.g., con-
tinuous coefficients in ), it will be more complicated due to the confounding effect of spatial homogeneity, heterogeneity,
and heteroscedasticity. Thus, we do not consider a separate formal testing procedure for checking the heteroscedasticity
in this article and leave the formal study of heteroscedasticity testing for future research.

Spatial cluster detection approaches, including our proposed method, aim to identify specific clusters with features dif-
ferent from the background. Our model’s key advantage over the varying coefficient model with smooth { 8| s € [0, 1]*}
is the explicit identification of specific, contiguous, and compact geographic regions (clusters) associated with different
sets of regression coefficients. The associated regression equation applies to a well-identified subset of space in our model.
Further, the key assumption of spatial cluster detection approaches is that the number of clusters components is rela-
tively small compared with the number of observations. However, when this assumption is strongly violated, a spatially
varying coefficient model, which allows for continuous variation in the regression coefficients (e.g., Gaussian processes,
generalized additive models, geographically weighted regression), would be more appropriate. Neither approach is uni-
versally optimal or parsimonious. However, in the case of finding spatial hot spots, which aims to identify distinct features
comparing to the background, our proposed method seems more suitable than a varying coefficient model with smooth
(Bl s € [0,12).

The proposed method is for a given quantile level and assumes rectangular spatial clusters. And, here are several ideas
that can extend this method. The method can be further extended to handle multiple quantile levels simultaneously (e.g.,
Galvao et al., 2014; Su & Xu, 2019). Further, although we consider the rectangular window for the spatial cluster because
we have the regular grid data, it can be modified with other shapes, such as circles, ellipses, squares, and even arbitrary
shapes (Assuncao et al., 2006; Kulldorff, 1997; Kulldorff et al., 2006; Lee, Gangnon, & Zhu, 2017; Lee et al., 2020, 2021;
Tango & Takahashi, 2005). However, in practice, especially with the irregular grid data (e.g., county-level data), consid-
ering simple windows (circular or rectangular) is common in cluster detection or scan statistic approaches. Recently, Lee
et al. (2021) showed that true clusters in arbitrary shapes are identified effectively, albeit not parsimoniously, by using
circular windows. Thus, we believe that the rectangular window will act as well in practice with the irregular grid data.

We can also develop statistical inference for threshold parameters or spatial clusters. Statistical inference for threshold
parameters is a challenging problem since the limiting distribution of the estimator is nonstandard due to the nonsmooth-
ness of the indicator function in thresholding. Seo and Linton (2007) proposed a smoothed estimator for mean threshold
regression by smoothing the indicator function to achieve asymptotic normality. Lee, Gangnon, Zhu, and Liang (2017)
developed statistical inference on the estimated cluster instead of on threshold parameters by defining a confidence set
for the true cluster in the one-dimensional space. It is possible to adopt these ideas mentioned above in our setup, and we
leave this topic for future research.
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