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Abstract

The deferred acceptance algorithm is an elegant so-
lution to the stable matching problem that guar-
antees optimality and truthfulness for one side of
the market. Despite these desirable guarantees, it
is susceptible to strategic misreporting of prefer-
ences by the agents on the other side. We study
a novel model of strategic behavior under the de-
ferred acceptance algorithm: manipulation through
an accomplice. Here, an agent on the proposed-
to side (say, a woman) partners with an agent on
the proposing side—an accomplice—to manipulate
on her behalf (possibly at the expense of wors-
ening his match). We show that the optimal ma-
nipulation strategy for an accomplice comprises of
promoting exactly one woman in his true list (i.e.,
an inconspicuous manipulation). This structural
result immediately gives a polynomial-time algo-
rithm for computing an optimal accomplice manip-
ulation. We also study the conditions under which
the manipulated matching is stable with respect to
the true preferences. Our experimental results show
that accomplice manipulation outperforms self ma-
nipulation both in terms of the frequency of occur-
rence as well as the quality of matched partners.

1 Introduction
The deferred acceptance (DA) algorithm [Gale and Shap-
ley, 1962] is a crowning achievement of the theory of two-
sided matching [Manlove, 2013], and forms the backbone
of a wide array of real-world matching markets such as
entry-level labor markets [Roth, 1984; Roth and Peranson,
1999] and school choice [Abdulkadiroğlu et al., 2005b;
Abdulkadiroğlu et al., 2005a]. Under this algorithm, one
side of the market (colloquially, the men) makes proposals
to the other side (the women) subject to either immediate re-
jection or tentative acceptance. A key property of the DA
algorithm is stability which says that no pair of unmatched
agents should prefer each other over their assigned partners.
This property has played a significant role in the long-term
success of several real-world matching markets [Roth, 1991;
Roth, 2002].

The attractive stability guarantee of the DA algorithm, how-
ever, comes at the cost of incentives, as any stable matching
procedure is known to be vulnerable to strategic misreporting
of preferences [Roth, 1982]. The special proposal-rejection
structure of the DA algorithm makes truth-telling a dominant
strategy for the proposing side, i.e., the men [Dubins and
Freedman, 1981; Roth, 1982], implying that any strategic be-
havior must occur on the proposed-to side, i.e., the women.
This model of strategic behavior by a woman—which we call
self manipulation—has been the subject of extensive study
in economics and computer science [Dubins and Freedman,
1981; Gale and Sotomayor, 1985b; Demange et al., 1987;
Teo et al., 2001; Kobayashi and Matsui, 2009; Kobayashi and
Matsui, 2010; Vaish and Garg, 2017; Deng et al., 2018].

Our interest in this work is in studying a different model
of strategic behavior under the DA algorithm called manipu-
lation through an accomplice [Bendlin and Hosseini, 2019].
Under this model, a woman reports her preferences truthfully,
but asks an agent on the proposing side (a.k.a. an accomplice)
to manipulate the outcome on her behalf, possibly worsening
his match in the process.

Such a strategic alliance can naturally arise in the assign-
ment of students to schools under a school-proposing setup,
where a “well-connected” student could have a school ad-
ministrator manipulate on his/her behalf, possibly at a small
loss to the school. Similarly, in a student-proposing setting,
schools can strategize by making themselves appear less at-
tractive to students from low-income backgrounds, thus forc-
ing a change in the students’ preferences [Hatfield et al.,
2016]. Accomplice manipulation can also be seen as a con-
trol problem, wherein a woman can bribe a man to lie on
her behalf. Bribery has been extensively studied in compu-
tational social choice in the context of voting, and our work
can be seen as investigating this phenomenon in the two-sided
matching framework.

At first glance, manipulation through an accomplice might
not seem any more powerful than self manipulation, as the
latter provides direct control over the preferences of the ma-
nipulator. Interestingly, there exist instances where this intu-
ition turns out to be wrong.

Example 1 (Accomplice vs. self). Consider the following
preference profile where the DA outcome is underlined. The
notation “m1 : w3 w2 w1 w4” denotes that for man m1, the
first choice woman is w3, the second choice is w2, and so on.



m1: w∗3 w2 w1 w4 w1: m4 m∗3 m1 m2

m2: w1 w∗4 w2 w3 w2: m∗4 m3 m2 m1

m3: w2 w4 w∗1 w3 w3: m3 m∗1 m2 m4

m4: w∗2 w1 w3 w4 w4: m∗2 m1 m3 m4

Figure 1: Comparing no-regret accomplice and self manipulation
against truthful reporting (left) and against each other (right).

Suppose w1 seeks to improve her match via manipulation.
The optimal self manipulation strategy for w1 is truth-telling,
as m2 is the only man who proposes to her under the DA al-
gorithm. On the other hand, w1 can improve her outcome
by asking m1 to misreport on her behalf. Indeed, if m1 mis-
reports by declaring �′m1

:= w1 � w3 � w2 � w4, then
w1’s match improves from m2 to m3 (the new DA matching
is marked by ∗). Notice that the accomplice m1 preserves his
initial match, meaning he does not incur any ‘regret’.

The above example highlights that accomplice manipula-
tion could, in principle, have an advantage over self manipu-
lation. However, it is not apriori clear how frequent such an
advantage might be in a typical matching scenario. To inves-
tigate the latter question, we take a quick experimental detour.

Accomplice manipulation is a viable strategic behavior.
We simulate a two-sided matching scenario for an increas-
ingly larger set of agents (specifically, n ∈ {3, . . . , 40},
where n is the number of men/women) and for each setting,
generate 1000 preference profiles uniformly at random. For
each profile, we compute the optimal self manipulation under
the DA algorithm for a fixed woman [Teo et al., 2001], and
the optimal accomplice manipulation by any man (we allow
any man to be chosen as an accomplice as long as he is not
worse off, i.e., a no-regret accomplice manipulation). Fig-
ure 1 illustrates the fraction of instances where accomplice
and self manipulation are strictly more beneficial than truth-
ful reporting, and how they compare against each other. Ex-
ample 1 and Figure 1 suggest that the incentive for manipu-
lation through an accomplice is not only present but actually
more prevalent than self manipulation. Additionally, as we
discuss later in our experimental results, women are expected
to receive better matches when manipulating through an ac-
complice (Figure 2). These promising observations call for a
systematic study of the structural and computational aspects
of the accomplice manipulation problem, which is the focus
of our work.

Our contributions. We consider two models of strategic
behavior— no-regret manipulation (wherein the accomplice’s
own match doesn’t worsen upon misreporting) and with-
regret manipulation (where the accomplice could get a worse
match)—and make the following contributions:

• No-regret manipulation: Our main theoretical result
(Theorem 2) is that any optimal no-regret accomplice ma-
nipulation can be simulated by promoting exactly one

woman in the true preference list of the accomplice; in
other words, the manipulation is inconspicuous [Vaish and
Garg, 2017]. This structural finding immediately gives a
polynomial-time algorithm for computing an optimal ma-
nipulation (Corollary 2). We also show that the inconspic-
uous no-regret strategy results in a matching that is stable
with respect to the true preferences (Corollary 3).

• With-regret manipulation: For the more permissible
strategy space that allows the accomplice to incur regret,
the optimal manipulation strategy once again turns out be
inconspicuous (Theorem 3). However, in contrast to the
no-regret case, the inconspicuous with-regret strategy is no
longer guaranteed to be stability-preserving (Example 3).
Nevertheless, any blocking pair can be shown to necessar-
ily involve the accomplice (Proposition 2). This property
justifies the use of an accomplice who can be encouraged
to tolerate some regret to benefit a woman.

• Experiments: On the experimental front, we work with
preferences generated uniformly at random, and find that
accomplice manipulation outperforms self manipulation
with respect to the frequency of occurrence, the quality of
matched partners, and the fraction of women who can im-
prove their matches (Section 6).

2 Related Work
Much of the early work on strategic aspects of stable
matchings focused on truncation manipulation [Gale and
Sotomayor, 1985a; Roth and Rothblum, 1999; Coles and
Shorrer, 2014; Jaramillo et al., 2014], where the misreported
preference list is required to be a prefix of the true list.

The literature on self manipulation via permutation is more
recent and has focused on computational aspects. Teo et
al. [2001] provided a polynomial-time algorithm for comput-
ing the optimal permutation manipulation by a woman under
the men-proposing DA algorithm. Deng et al. [2018] studied
stability-preserving permutation manipulation by a coalition
of women and showed that such manipulations are inconspic-
uous. Vaish and Garg [2017] showed that an optimal permu-
tation manipulation by a single agent is inconspicuous even
without the stability-preserving requirement. They also stud-
ied conditions under which the manipulated outcome is sta-
ble with respect to the true preferences. Huang [2006] stud-
ied (weakly) Pareto improving permutation manipulation by
a coalition of men, revisiting the result of Dubins and Freed-
man [1981] on the impossibility of manipulations that are
strictly improving for every member of the coalition.

The accomplice manipulation model was proposed by
Bendlin and Hosseini [2019], who noted that manipulation
through an accomplice can be strictly more preferable for the
woman than optimal self manipulation. However, they left
the structural and computational questions open.

Balinski and Sönmez [1999] studied a closely related prob-
lem in school choice wherein the students have an incen-
tive to make themselves appear less preferable to colleges
(by performing badly on tests) under the college-optimal al-
gorithm. Hatfield et al. [2016] similarly showed that in a
student-optimal mechanism, schools have the incentive to de-
liberately make themselves look less attractive to “undesir-



able” students. For example, a private school that is legally
required to cap its tuition fee for low-income students could
make itself less attractive by increasing the rent in dormitories
or requiring the students to purchase expensive uniforms.

3 Preliminaries
3.1 Stable Matching Problem
Problem setup. An instance of the stable marriage prob-
lem [Gale and Shapley, 1962] is specified by the tuple
〈M,W,�〉, where M is a set of n men, W is a set of n
women, and � is a preference profile which consists of the
preference lists of all agents. The preference list of any man
m ∈ M , denoted by �m, is a strict total order over all
women in W (for any w ∈ W , the list �w is defined anal-
ogously). We use w1 �m w2 to denote ‘either w1 �m w2

or w1 =m w2’ (the latter denotes that man m is indif-
ferent between w1 and w2), and write �−m to denote the
preference lists of all men and women except man m; thus,
�= {�−m,�m}.
Stable matchings. A matching is a function µ :M ∪W →
M ∪W such that µ(m) ∈ W for all m ∈ M , µ(w) ∈ M
for all w ∈ W , and µ(m) = w if and only if µ(w) = m. A
matching µ admits a blocking pair with respect to the pref-
erence profile � if there is a man-woman pair (m,w) who
prefer each other over their assigned partners under µ, i.e.,
w �m µ(m) and m �w µ(w). A stable matching is one
that does not admit any blocking pair. We will write S� to
denote the set of all matchings that are stable with respect to
�. In addition, for any pair of matchings µ, µ′, we will write
µ �M µ′ to denote µ(m) �m µ′(m) for all m ∈ M (and
µ �W µ′ for the women).
Deferred acceptance algorithm. Given a preference pro-
file �, the Deferred Acceptance (DA) algorithm of Gale and
Shapley [1962] proceeds in rounds. In each round, it consists
of a proposal phase, where each man who is currently un-
matched proposes to his favorite woman from among those
who have not rejected him yet, followed by a rejection phase
where each woman tentatively accepts her favorite proposal
and rejects the rest. The algorithm terminates when no fur-
ther proposals can be made. Gale and Shapley [1962] showed
that given any profile � as input, the DA algorithm always re-
turns a stable matching as output; we denote this matching
by DA(�). They observed that this matching is men-optimal,
i.e., it assigns each man his favorite stable partner among all
stable matchings in S�. McVitie and Wilson [1971] subse-
quently showed that this matching is also women-pessimal.
Proposition 1 ([Gale and Shapley, 1962; McVitie and
Wilson, 1971]). Let � be a preference profile and let
µ := DA(�). Then, µ ∈ S�. Furthermore, for any µ′ ∈ S�,
µ �M µ′ and µ′ �W µ.
Accomplice manipulation. Under this model of strategic
behavior, a woman w, instead of misreporting herself, has
a man m provide a manipulated preference list, say �′m,
in order to improve her match. Given a preference profile
�, we say that w can manipulate through accomplice m if
µ′(w) �w µ(w), where µ := DA(�), �′:= {�−m,�′m},
and µ′ := DA(�′). We will often refer to (m,w) as the

manipulating pair (not to be confused with a blocking pair).
Throughout this paper, any manipulation will be assumed to
be optimal unless stated otherwise. That is, there exists no
other list �′′m for the accomplice m such that µ′′(w) �w

µ′(w), where �′′:= {�−m,�′′m}, and µ′′ := DA(�′′). Note
that we assume that the manipulator has full information
about the preferences of other agents. Extending our results
to incomplete or uncertain information settings is an interest-
ing direction for future research.
No-regret and with-regret manipulation. We say that the
accomplice m incurs regret if his match worsens upon mis-
reporting, i.e., µ(m) �m µ′(m). It is known that the DA
algorithm is strategyproof for the proposing side [Dubins and
Freedman, 1981], which means that no man can improve his
match by unilaterally misreporting his preferences. There-
fore, for any man m ∈ M and for any misreport �′m, we
have that µ(m) �m µ′(m). Thus, equivalently, we say that
man m incurs regret if µ(m) 6= µ′(m). We will consider two
models of accomplice manipulation in this paper: no-regret
manipulation wherein only those misreports �′m are allowed
under which µ(m) = µ′(m), and with-regret manipulation,
where the accomplice is allowed (but not required) to incur
regret. Thus, any no-regret strategy is also a with-regret strat-
egy. Recall that the misreport in Example 1 was a no-regret
manipulation.
Stability relaxations. For any preference profile � and
a fixed man m ∈ M , we say that a matching µ is m-
stable [Bendlin and Hosseini, 2019] with respect to � if any
blocking pair (if one exists) in µ involves the man m. That is,
for any pair (m′, w′) that blocks µ under�, we havem′ = m.
Clearly, a stable matching is also m-stable. Under accom-
plice manipulation, it can be shown that any matching µ′ that
is stable with respect to the manipulated profile (in particular,
when µ′ = DA(�′)) is m-stable with respect to the true pro-
file� (Proposition 2). We note that Proposition 2 strengthens
a result of Bendlin and Hosseini [2019] who proved a similar
statement only for a DA matching. The proof of this result,
along with all other omitted proofs, can be found in the full
version of the paper [Hosseini et al., 2020].
Proposition 2. Let � denote the true preference profile. For
any man m, let �′:= {�−m,�′m}, and let µ′ ∈ S�′ be any
matching that is stable with respect to �′. Then, µ′ is m-
stable with respect to �.

3.2 Structural Observations
Push up/push down operations. Note that given a pro-
file �, the preference list of any man m can be written as
�m= (�L

m, µ(m),�R
m), where µ = DA(�) and �L

m (respec-
tively, �R

m) is the set of women that m prefers to (respec-
tively, finds less preferable than) µ(m). Interestingly, the DA
outcome does not change even if each man m arbitrarily per-
mutes the parts of his list above and below his DA-partner
µ(m). This result, due to Huang [2006], is recalled below.
Proposition 3 ([Huang, 2006]). Let � be a preference pro-
file and let µ := DA(�). For any man m ∈ M , let
�′m:= (πL(�L

m), µ(m), πR(�R
m)), where πL and πR are ar-

bitrary permutations of �L
m and �R

m, respectively. Let �′:=
{�−m,�′m}, and let µ′ := DA(�′). Then, µ′ = µ.



Proposition 3 considerably simplifies the structure of ac-
complice manipulations that we need to consider. Indeed, we
can assume that any manipulated list �′m is such that the rel-
ative ordering of agents in the parts above and below µ′(m)
is the same as under the true list �m, where µ′ := DA(�′)
and �′:= {�−m,�′m} are the post-manipulation DA out-
come and preference profile, respectively.

This observation implies that, without loss of general-
ity, any manipulated list �′m can be obtained from the
true list �m by only push up and push down opera-
tions, wherein a set of women is pushed up above the
true match µ(m), and another disjoint set is pushed below
µ(m). Importantly, no permutation or shuffling operation
is required as part of the manipulation. Formally, start-
ing with the true list �m= (�L

m, µ(m),�R
m), we say that

man m performs a push up operation for a set X ⊆ W
if the new list is �X↑

m := (�L
m ∪X,µ(m),�R

m \X). Like-
wise, a push down operation of a set Y ⊆ W results in
�Y ↓

m := (�L
m \Y, µ(m),�R

m ∪Y ).
For manipulation via push down operations only,

Huang [2006] has shown that the resulting matching is
weakly improving for all men. Together, with the fact that
the DA algorithm is strategyproof for the proposing side (in
our case the men) [Dubins and Freedman, 1981], we get that
the DA partner of the accomplice remains unchanged after a
push down operation.

Proposition 4 ([Dubins and Freedman, 1981; Huang, 2006]).
Let � be the true preference profile and let µ := DA(�).
For any subset of women X ⊆ W and any fixed accomplice
m ∈ M , let �′:= {�−m,�X↓

m } and µ′ := DA(�′). Then,
µ′ �M µ and µ′(m) = µ(m).

The effect of push down operations for the proposed-to
side is the exact opposite, as the resulting matching makes
all women weakly worse off.

Lemma 1. Let � be the true preference profile and let
µ := DA(�). For any subset of women X ⊆ W , let
�′:= {�−m,�X↓

m } and µ′ := DA(�′). Then, µ �W µ′.

Lemma 1 shows that in order to improve the partner of
the woman w, the use of push up operations (by the ac-
complice) is necessary. However, it is not obvious upfront
whether push up alone suffices; indeed, it is possible that the
optimal strategy involves some combination of push up and
push down operations. To this end, our theoretical results
will show that, somewhat surprisingly, pushing up at most
one woman achieves the desired optimal manipulation (The-
orems 2 and 3). This strategy is known in the literature as
inconspicuous manipulation, which we define next.

Inconspicuous manipulation. Given a profile � of true
preferences and any fixed accomplice m, the manipulated list
�′m is said to be an inconspicuous manipulation if the list�′m
can be derived from the true preference list�m by promoting
exactly one woman and making no other changes. The notion
of inconspicuous manipulation has been previously studied in
the context of self manipulation (wherew misreports herself),
where it was shown that an optimal self manipulation is, with-
out loss of generality, inconspicuous [Vaish and Garg, 2017;
Deng et al., 2018].

4 No-Regret Accomplice Manipulation
Let us start by observing that the DA matching after an ar-
bitrary (i.e., not necessarily push up) no-regret accomplice
manipulation may not be stable with respect to the true pref-
erences.

Example 2. Consider the following preference profile where
the DA outcome is underlined.

m1 : w
∗
2 w†1 w3 w4 w5 w1 : m†1 m3 m∗2 m4 m5

m2 : w
∗
1 w†2 w3 w4 w5 w2 : m†2 m∗1 m3 m4 m5

m3 :w1 w∗,†3 w4 w2 w5 w3 : m∗,†3 m1 m2 m4 m5

m4 : w4 w∗,†5 w1 w2 w3 w4 : m
∗,†
5 m3 m1 m2 m4

m5 : w5 w∗,†4 w1 w2 w3 w5 : m∗,†4 m1 m2 m3 m5

Suppose the manipulating pair is (m3, w4). The DA
matches after the accomplicem3 submits the manipulated list
�′m3

:= w4 � w3 � w1 � w2 � w5 are marked by ∗. The
manipulation results in w4 being matched with her top choice
m5 (i.e., �′m3

is an optimal manipulation), an improvement
over her true match m4. Although m3 does not incur regret,
the manipulated matching admits a blocking pair (m3, w1)
with respect to the true preferences.

Notice that if instead m3 were to submit �′′m3
:= w4 �

w1 � w3 � w2 � w5 as his preference list in Example 2,
then the resulting DA matching (indicated by †) would be sta-
ble with respect to the true preferences while still allowing
w4 to match with m5 (i.e., �′′m3

is also optimal). The ma-
nipulated list �′′m3

is derived from the true list �m3 through
a no-regret push up operation. Our first main result of this
section (Theorem 1) shows that this is not a coincidence: The
set of all stable matchings with respect to a profile after a no-
regret push up operation is always contained within the stable
set of the true preference profile.

Theorem 1 (No-regret push up is stability preserving). Let�
be a preference profile, and let µ := DA(�). For any subset of
womenX ⊆W and any manm, let�′:= {�−m,�X↑

m }, and
µ′ := DA(�′). If m does not incur regret, then S�′ ⊆ S�.

A primary consequence of Theorem 1 is that the DAmatch-
ing after a no-regret accomplice manipulation is weakly pre-
ferred over the true DA outcome by all women, while the op-
posite is true for the men.

Corollary 1. Let � be a preference profile and let
µ := DA(�). For any man m, let �′:= {�−m,�X↑

m } and
µ′ := DA(�′). If m does not incur regret, then µ′ �W µ and
µ �M µ′.

As observed in Section 3.2, any manipulation by the ac-
complice can be, without loss of generality, assumed to com-
prise only of push up and push down operations. We will now
show that combining these operations is not necessary. That
is, any manipulation that is achieved by a combination of push
up and push down operations can be weakly improved by a
push up operation alone (Lemma 2). We note that this result
does not require the no-regret assumption, and applies to the
with-regret setting as well.

Lemma 2. Let (m,w) be a manipulating pair and let � be
a preference profile. For any subsets of women X ⊆ W and



Y ⊆ W , let �′:= {�−m,�X↑
m } denote the preference pro-

file after pushing up the set X , and �′′:= {�−m,�X↑,Y ↓
m }

denote the profile after pushing up X and pushing down Y
in the true preference list �m of man m. Let µ := DA(�),
µ′ := DA(�′), and µ′′ := DA(�′′). Then, µ′(w) �w µ′′(w).

Having narrowed down the strategy space to push up op-
erations alone, we will now turn our attention to inconspic-
uous manipulations (recall that such a manipulation involves
promoting exactly one woman in the accomplice’s true pref-
erence list to a higher position). We will show that any match
for the manipulating woman w that can be obtained by push-
ing up a set of women can also be achieved by promoting
exactly one woman in that set (Lemma 3). In other words,
any no-regret push up operation is, without loss of general-
ity, inconspicuous. We note that although Lemma 3 assumes
no regret for the accomplice, the corresponding implication
actually holds even in the with-regret setting (see Lemma 4).
Lemma 3. Let (m,w) be a manipulating pair, and let
X ⊆W be an arbitrary set of women that m can push up
without incurring regret. Then, the match for w that is ob-
tained by pushing up all women inX can also be obtained by
pushing up exactly one woman in X .

We will now use the foregoing observations to prove our
main result (Theorem 2).
Theorem 2. If there is an optimal no-regret accomplice ma-
nipulation, then there is an optimal inconspicuous no-regret
accomplice manipulation.

Proof. From Proposition 3 (and subsequent remarks), we
know that any accomplice manipulation can be simulated via
push up and push down operations. Lemma 2 shows that
any beneficial manipulation that is achieved by some com-
bination of pushing up a set X ⊆ W and pushing down
Y ⊆ W can be weakly improved by only pushing up X .
Finally, from Lemma 3, we know that any match for the ma-
nipulating woman w that is achieved by pushing up X ⊆ W
is also achieved by pushing up exactly one woman in X , thus
establishing the desired inconspicuousness property.

Theorem 2 has some interesting computational and struc-
tural implications. First, the inconspicuousness property im-
plies a straightforward polynomial-time algorithm for com-
puting an optimal no-regret accomplice manipulation (Corol-
lary 2). Second, the DA matching resulting from an incon-
spicuous no-regret manipulation is stable with respect to the
true preferences (Corollary 3). Together, these results rec-
oncile the seemingly conflicting interests of the manipulator
(who wants to compute optimal manipulation efficiently) and
the central planner (who wants the resulting matching to be
stable with respect to the true preferences).
Corollary 2. An optimal no-regret accomplice manipulation
strategy can be computed in O(n3) time.

Corollary 3. The DA outcome from an inconspicuous no-
regret accomplice manipulation is stable with respect to the
true preferences.

In summary, recall from Example 2 that an arbitrary opti-
mal no-regret strategy may not be stability-preserving. Nev-
ertheless, any optimal no-regret strategy admits an equivalent

inconspicuous strategy (Theorem 2) which indeed preserves
stability (Corollary 3).

5 With-Regret Accomplice Manipulation
No-regret manipulations come at no cost for the accomplice
and thus are a viable strategic behavior (as shown in Figure 1).
Yet, a more permissive strategy space may allow for the ac-
complice to incur some regret. Such with-regret manipula-
tions may be justifiable in practice: An accomplice’s idiosyn-
cratic preference may be tolerant to a small loss in exchange
of gain for the partnering woman, or a woman may persuade
a man to withstand some regret by providing side-payments.

We will start by illustrating that a with-regret accomplice
manipulation can be strictly more beneficial compared to its
no-regret and self manipulation counterparts.
Example 3 (With-regret vs. no-regret). Consider the follow-
ing preference profile where the DA outcome is underlined.

m1 :w
∗
4 w†1 w2 w5 w3 w1 : m

†
1 m∗2 m3 m4 m5

m2 : w2 w4 w∗1 w†5 w3 w2 : m∗,†3 m5 m1 m2 m4

m3 : w1 w∗,†2 w4 w3 w5 w3 : m2 m∗5 m1 m†4 m3

m4 : w1 w†3 w∗5 w2 w4 w4 : m4 m3 m∗1 m†5 m2

m5 : w1 w†4 w∗3 w5 w2 w5 : m∗4 m†2 m5 m1 m3

Suppose the manipulating pair is (m1, w1). The DAmatch-
ing after m1 submits the optimal no-regret1 manipulated list
�′m1

:= w2 � w4 � w1 � w5 � w3 and the optimal with-
regret manipulated list �′′m1

:= w1 � w4 � w2 � w5 � w3

are marked by ∗ and †, respectively. Both manipulation
strategies improve w1’s matching compared to truthful re-
porting, but w1 strictly prefers the with-regret outcome.

Example 3 highlights two key differences between optimal
no-regret and with-regret manipulations. First, the matching
after the inconspicuous with-regret manipulation (marked by
†) admits a blocking pair (m1, w4) with respect to the true
profile�. This is in contrast to the no-regret case which is sta-
bility preserving (Theorem 1). Second, in contrast to Corol-
lary 1, an optimal with-regret manipulation is not guaranteed
to weakly improve or worsen the matching for all agents on
one side; indeed the women w3 and w5 are strictly worse off
whilew1 is strictly better off. Similarly, the manm1 is strictly
worse off while m4 and m5 strictly improve.

The primary distinction between no-regret and with-regret
manipulation lies in the push up operations. If pushing up a
set of women does not cause regret for the accomplice, then
pushing up any subset thereof does not either. By contrast, if
by pushing up a set of women the accomplice incurs regret,
then there exists exactly one woman in that set who causes
the same level of regret when pushed up individually. As
previously mentioned, with-regret push up operations do not
uniformly affect all men and all women (in contrast to Corol-
lary 1). Moreover, the set of attained matchings after a with-
regret manipulation are no longer stable with respect to true

1To see why �′m1
is an optimal no-regret manipulation, note that

the woman-optimal stable matching (with respect to �) matches w1

with m2. From Theorem 2 and Corollary 3, an optimal no-regret
manipulation is, without loss of generality, stability preserving, and
from Proposition 1, m2 is the best stable partner for w2.



preferences (in contrast to Theorem 1), which makes the anal-
ysis challenging.

Despite these structural differences, we are able to prove
an analogue of Lemma 3 for with-regret push up operations
(Lemma 4). Our proof of this result relies on the fact that all
proposals that occur when the accomplice pushes up a set of
women are contained in the union of sets of proposals that
occur when pushing up individual women in that set. This is
relatively easy to prove for the no-regret case, since the DA
matchings after these push up operations are all stable with
respect to true preferences (Theorem 1). Although we cannot
rely on the same stability result for the with-regret case, we
circumvent the issue by reasoning about the sets of proposals
in greater detail.

Lemma 4. Let (m,w) be a manipulating pair, and let
X ⊆W be an arbitrary set of women that m can push up
(while incurring regret). Then, the match for w that is ob-
tained by pushing up all women inX can also be obtained by
pushing up exactly one woman in X .

Subsequently, an optimal with-regret manipulation is,
without loss of generality, inconspicuous. The proof is sim-
ilar to that of the no-regret case (Theorem 2) with the only
difference being the use of Lemma 4 in place of Lemma 3.

Theorem 3. If there is an optimal with-regret accomplice ma-
nipulation, then there is an optimal inconspicuous with-regret
accomplice manipulation.

Theorem 3 immediately implies a polynomial-time algo-
rithm for computing an optimal with-regret accomplice ma-
nipulation. Moreover, the DA outcome from any inconspic-
uous with-regret accomplice manipulation is m-stable with
respect to the true preferences (Proposition 2).

Corollary 4. An optimal with-regret accomplice manipula-
tion strategy can be computed in O(n3) time.

6 Experimental Results
In addition to the experiments described in Section 1, we per-
formed a series of simulations to analyze the performance of
accomplice manipulation. As for the previous experimental
setup, we generated 1000 profiles uniformly at random for
each value of n ∈ {3, . . . , 40} (where n is the number of
men/women) and allowed any man to be chosen as an ac-
complice for each experiment unless stated otherwise.

Comparing the Quality of Partners. We first compare the
quality of partners that a fixed strategic woman w is matched
with through no-regret accomplice and self manipulation.
Figure 2 illustrates the distributions of improvement (in terms
of rank difference) out of only those instances where w is
strictly better off through the two strategies individually. In
other words, the self (respectively, accomplice) manipulation
boxplots only reflect the data for when self (respectively, ac-
complice) manipulation is successful. It is evident that, in ex-
pectation,w is matched with better partners through no-regret
accomplice manipulation.

The Fraction of Women Who Improve. We additionally
compare the fraction of women who are able to improve

Figure 2: Comparing no-regret accomplice and self manipulation
in terms of the improvement in the rank of the matched partner of
w. The solid bars, whiskers, and dots denote the interquartile range,
range excluding outliers, and outliers, respectively.

Figure 3: Comparing no-regret accomplice and self manipulation in
terms of the fraction of women who benefit.

through no-regret accomplice and self manipulation individ-
ually. Teo et al. [2001] reported that 5.06% of women were
able to improve using self manipulation when n = 8. In our
experiment, this value is similarly 4.18%. However, 9.99% of
women are able to improve through no-regret accomplice ma-
nipulation. As illustrated in Figure 3, the fraction of women
who benefit from no-regret accomplice manipulation is con-
sistently more than double that of self manipulation.

7 Concluding Remarks

We showed that accomplice manipulation is a viable strate-
gic behavior that only requires inconspicuous misreporting of
preferences and is frequently more beneficial than the classi-
cal self-manipulation strategy. A natural avenue for future
research is to investigate a setting with multiple accomplices
working together to manipulate the outcome for the strate-
gic woman, or one where the accomplice and the manipu-
lating woman can misreport their preference lists simultane-
ously. Analyzing the benefits of such coalitional manipula-
tion strategies—with or without regret—on one or both sides,
and studying their structural and algorithmic properties are
intriguing directions for future work.
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