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ABSTRACT: Recent experiments indicate that the C-Jun amino-
terminal kinase-interacting protein 1 (JIP1) binds to and activates
the c-Jun N-terminal kinase (JNK) protein. JNK is an integral part
of cell apoptosis, and misregulation of this process is a causative
factor in diseases such as Alzheimer’s disease (AD), obesity, and
cancer. It has also been shown that JIP1 may increase the
phosphorylation of tau by facilitating the interaction between the
tau protein and JNK, which could also be a causative factor in AD.
Very little is known about the structure and dynamics of JIP1;
however, the amino acid composition of the first 350 residues
suggests that it contains an intrinsically disordered region.
Molecular dynamics (MD) simulations using AMBER 14 were
used to study the structure and dynamics of a functionally active
JIP1 10mer fragment to better understand the solution behavior of the fragment. Two microseconds of unbiased MD was performed
on the JIP1 10mer fragment in 10 different seeds for a total of 20 μs of simulation time, and from this, seven structurally stable
conformations of the 10mer fragment were identified via classical clustering. The 10mer ensemble was also used to build a Markov
state model (MSM) that identified four metastable states that encompassed six of the seven conformational families identified by
classical dimensional reduction. Based on this MSM, conformational interconversions between the four states occur via two
dominant pathways with probability fluxes of 55 and 44% for each individual pathway. Transitions between the initial and final states
occur with mean first passage times of 31 (forward) and 16 (reverse) μs.

■ INTRODUCTION

The c-Jun Amino-terminal kinase-interacting protein 1 (JIP1)
is a scaffold protein that facilitates the activation of the c-Jun
N-terminal kinase proteins (JNK) and enhances JNK signaling
by creating a proximity effect between JNK and upstream
kinases.1,2 The JNK proteins are serine/threonine protein
kinases that are members of the MAPK family and they play an
important role in cell apoptosis.3−5 There are three different
JNK genes: JNK1, JNK2, and JNK3.6 Stress-inducing stimuli
such as heat shock, UV irradiation, hyperosmolarity, and
ischemic injury activate the JNK proteins, which leads to the
phosphorylation of transcription factors and substrates
involved in cell survival and proliferation, insulin receptor
signaling, and mRNA stabilization. These are related to the
pathogenesis of several diseases, such as diabetes, cancer, and
Alzheimer’s disease (AD).7−11 Because of this relationship,
JNK is an important target for drug therapeutics.12 JNK is
thought to initiate cell death by activating c-Jun.13

JIP1 is necessary for JNK activation in response to stress and
its deficiency causes reduced apoptosis.14 Vaishnav et al. found
that during the initiation of apoptosis, maximal JNK activation
is observed when JIP1 is intact, whereas cleavage of JIP1

correlates with JNK inactivation and stops the progression of
cell death.15 It has been shown that the JNK protein is
atypically stimulated in AD patients.16−19 This may be due to
the fact that JIP1 interacts directly with phosphorylated tau,20

and phosphorylated tau proteins are present in the brains of
AD patients and believed to be a factor in the proliferation of
the disease.21 It has been proposed that JNK phosphorylates
tau, and these interactions suggest that JIP1 could increase tau
phosphorylation by facilitating the interaction between tau and
JNK.22−24

The 711-residue JIP1 protein is localized in the neuronal
region of the brain, which suggests that it is critical in cell
communication.25 Barr et al. has shown an 11-residue JIP1
peptide fragment (residues 157−167) is the functionally active
region within the protein.26 The 11mer peptide activates the
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JNK protein through competition with substrates and
upstream kinases.27,28 Currently, there are two experimental
structures containing 10 of the 11 residues (PDB IDs 2H96
and 1UKH). A root mean square comparison of the
experimental structures shows that they are very similar
structures (RMSD = 0.513 Å). The missing residue in both of
these structures is Arg157.29,30 Arg160, Pro161, Leu164, and
Leu166 have been shown to be the most critical residues in the
retention of function, and removing either the C-terminus or
the N-terminus of the 11-residue peptide has had no impact on
function.26

The sequence of the full JIP1 protein suggests that the first
350 residues are an intrinsically disordered region (IDR).31

IDRs lack a well-ordered, three-dimensional structure; i.e., they
are disordered and conformationally dynamic yet biologically
functional.32 They are characterized by sequences of low
complexity and are typically enriched in charged and
hydrophilic amino acids while lacking bulky hydrophobic
residues.33

Although there is a considerable amount of previous
research that establishes the role of JIP1 in regulating JNK
signaling, less is known about the structure or dynamics of apo-
JIP1 or the functionally active apo-JIP1 10mer fragment.30 The
binding between JNK and JIP1 is imperative to many
important cellular processes, most notably cell apoptosis, so
understanding the solvent-accessible, atomistic behavior of the
apo-JIP1 fragment will help guide future experimental and
computational studies of binding. In this study, we focused on
characterizing the structure and conformational flexibility of
the apo-JIP1 10mer fragment using molecular dynamics (MD)
simulations. A variety of classical clustering methods were used
to analyze the resulting ensembles, and this allowed us to
better understand the conformational flexibility of the JIP1
fragment as well as to compare the dependence of the results
on the clustering methodology. In addition, a Markov state
model was used to yield experimentally relevant timescales and
atomistic representations that provide conformational in-
sight.34−38

■ METHODS

Structure Retrieval and Preparation. The initial
structure of JIP1 was obtained from PDB 2H96 from the
Protein Data Bank.29,39 This experimental structure contained
a dimer of mitogen-activated protein kinase 8 complexed to
two 10 residue fragments of JIP1. Both kinases were removed,
along with one of the two JIP1 protein fragments (chain G).
The sequence of the 10mer fragment is shown in Figure 1.
Because Arg157 is at the N-terminus of the 11mer and its
absence showed no major impact on function, it was not added

to the experimental 10mer structure we used to initiate this
study.26 The sequence was not ACE/NME-capped in the
experimental structure29 and, therefore, we did not add the end
caps in silico. The sequence of the full JIP1 protein can be
found in Figure S1.

Molecular Dynamics Analysis of 10mer and Full Apo-
JIP1. Unrestrained MD was used to investigate the structure
and dynamics of the apo-JIP1 10mer. All simulations were
performed using AMBER f f14SB force fields40,41 using tleap in
AmberTools42 to neutralize the system with Na+ and Cl− ions
and solvate it using a truncated octahedron periodic box with
TIP3P water molecules.43 The box had a minimum 8.0 Å of
solvent between the solute and the edge of the unit cell. The
AMBER series of force fields has long been used for the
accurate modeling of protein secondary structure and
dynamics.44 AMBER f f14SB provides improved secondary
structure prediction and reproduces NMR Χ1 scalar coupling
constants for proteins in solution.45 The GPU-accelerated
pmemd code of AMBER 14 was used to perform minimization,
heating, equilibration, and MD steps for all simulations.41 ,46 ,47

Minimization was performed in seven stages with 1000 steps of
the steepest descent minimization followed by 4000 steps of
conjugate gradient minimization for a total of 5000 steps. In
the first stage, a restraint of 10.0 kcal/mol/Å2 was applied to all
nonhydrogen atoms, and this restraint was systematically
lowered to 0.0 kcal/mol/Å2 by stage seven. The protein was
then restrained using a 2.0 kcal/mol/Å2 force during heating
from 10 to 300 K. Equilibration was also performed over seven
steps in which the restraint on all 10 residues was lowered from
10.0 to 0.0 kcal/mol/Å2 by stage seven. Following this
equilibration, MD was performed at constant pressure,
temperature, and pH. The SHAKE algorithm was used to
restrain all bonds to hydrogen atoms and a 2.0 fs time step was
used in these simulations.48 For the 10mer, 10 different
random seeds, initiated from the 2H96 experimental structure
and subjected to minimization and equilibration as described
above, were run for 2 μs each to ensure that the potential
energy surface was sufficiently sampled; energies and
coordinates were saved every 0.1 ns (100 ps).

MD Analysis. For each trajectory, AmberTools 14 cpptraj42

was used to calculate root-mean-square deviations (RMSD),
RMS residue fluctuations (RMSF), the occurrence of
secondary structure, cluster analysis, and hydrogen bond
formation.41,42 Structures and trajectories were visualized
using VMD, UCSF Chimera, and PyMOL.49−51 For cpptraj
clustering, we analyzed every 10th structure in the ensemble
reducing our 20 μs dataset to 20,000 structures. Using the
default threshold value of 3.0 Å, cpptraj clustered 18,988 (out
of 20,000) of the structures into the same family (Table S1).
Because default cpptraj clustering did not identify statistically
significant families, we initially analyzed the ensembles using
RMSD analysis and trajectory visualization. We calculated
RMSD values relative to the solvated and equilibrated initial
structure every 0.1 ns.52 Trajectory visualization indicated that
regions of unchanging or slowly changing RMSD values
corresponded to similar structures. We calculated average
structures over trajectory regions corresponding to flat or
unchanging RMSD and used these structures to identify the
most prevalent families within the ensemble. Following this
manual clustering, we analyzed the ensemble using the
Multiscale Modeling Tools for Structural Biology (MMTSB)
clustering toolkit.53 We also revisited cpptraj clustering and
determined that clustering using pairwise distances resulted in

Figure 1. Representation of the 10mer fragment as it appears in the
experimentally determined JNK-bound structure (PDB ID 2H96).
The FASTA sequence of the full JIP1 protein can be found in Figure
S1.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01008
J. Chem. Inf. Model. 2021, 61, 324−334

325

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01008/suppl_file/ci0c01008_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01008/suppl_file/ci0c01008_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01008?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01008?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01008?fig=fig1&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01008/suppl_file/ci0c01008_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01008/suppl_file/ci0c01008_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01008?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01008?ref=pdf


reasonably good clustering (vide inf ra). MMTSB is a cluster
analysis program that clusters using RMSD mutual similarity,
meaning that it compares the RMSD of each structure, and
clusters those that are similar according to an RMSD cutoff.42

The MMTSB tool set has K-means54 and hierarchical
clustering algorithms; we used the K-means algorithm to
cluster based on atomic RMSD with a cut-off value of 2 Å. We
performed this analysis using the enscluster.pl script provided
in the MMTSB toolset.53 We utilized 49,990 structures
corresponding to every fourth frame of the full 20 μs ensemble.
Clustering by manual RMSD with visualization, cpptraj

pairwise RMSD, and MMTSB K-means clustering grouped the
ensemble into seven conformational families.
(In what follows below, we are using an upper case

“Conformer” to refer to these seven families.) The average
structures used for this analysis were obtained either from
MMTSB53 (Conformers 1, 2, 4, and 5), RMSD analysis
(Conformers 1−6), or cpptraj (Conformers 1−7). Each
structure in the overall ensemble was associated with a
Conformer if the RMSD with the average structure
representing that Conformer was within 2.0 Å. This allowed
us to report fraction occurrence and a persistence lifetime for
each Conformer family. In this fashion, the fraction occurrence
is simply the number of structures assigned to each Conformer
divided by the total number of structures. Average lifetime
analysis was performed on all trajectories to quantify the
persistence of a specific Conformer within the entire
simulation. Using RMSD-based binned structures, we calcu-
lated the persistence length of consecutive occurrences of each
Conformer over each trajectory and summed those values to
obtain an average lifetime for each of the seven Conformers.
For example, if we measure a particular conformation
occurring with a persistence length of f over N consecutive
frames (Nframes) in our simulation, then the lifetime τ is defined
as

τ =
∑ ×

∑
×

N f
f

( ) 0.1 ns
frame

frames

(1)

where Nframes is the number of consecutive frames for which
the Conformer occurred, Σf is the total number of frames that
contain one of the seven Conformers, and f is the persistence
length of such consecutive occurrences. Using this metric, a
conformation that persists for many consecutive frames will
have a longer lifetime value.
Markov State Model Construction. Markov state

modeling (MSM) provides an alternative method for under-
standing conformational behavior from molecular dynamics
time series data.34−38,55−59 Rather than relying on geometri-
cally based clustering methods to group ensemble members
into structurally similar families, Markov state models group
ensembles into long-lived (metastable) states with rapid
interconversion within states and slow conversion between
states.34,35 To build the MSM model, we transformed the MD
ensemble into a series of microstates. The dimensionality of
the ensemble was reduced by the featurization method55,60 and
the dimensional reduction algorithm.55,56,61,62 Transition
probabilities were defined by counting how many transitions
happen between each state at a specific time (lag time). The
resulting transition probability matrix P(τ) = [pij(τ)]

55 was
used to describe the probability of transitioning from state i at
time t to state j at time t + τ. From this matrix, we can

determine pathways between states and the probabilities of
transitions between them.55

The MSM model developed in this work was carried out
using the open-source python package PyEMMA 2.455,63 using
the following steps:

(1) Load the coordinates and select appropriate features.
The VAMP-260 score was used to select the best features
for discretizing the data.

(2) Apply dimensional reduction and clustering algorithms
to discretize the data.

(3) Confirm the Markovianity of the system by computing
implied timescales and performing the Chapman−
Kolmogorov (CK) test.38,55,64

(4) Compute the free energy landscape and the probability
fluxes35,65 from the Markov state model as a function of
the two slowest internal coordinates (ICs) to visualize
the number of metastable states and the conformational
transitions between them.

■ RESULTS AND DISCUSSION
The purpose of this study was to understand the time
evolution and dynamical behavior of the functionally active
fragment of the JIP1 protein. Toward this end, we performed a
collective 20 μs of unbiased molecular dynamics on the apo-
JIP1 10mer, characterized the conformations of this fragment
using classical dimensional reduction tools (RMSD, K-means,
and pairwise distance clustering), and utilized the ensemble to
develop a Markov state model to describe the dynamics of the
10mer fragment.
To generate an ensemble for characterizing the dynamics of

the 10mer fragment, 2 μs simulations were performed, initiated
from 10 different random seeds each initiated from the
experimental structure (2H96; Figure 2). Time series data

using secondary structure characterization for each of these
simulations can be found in the Supporting Information
(Figure S2). Over the course of each trajectory, the 10mer
fragment adopts a wide variety of secondary structures: turns,
bends, and partial helices. These secondary structures were
identified using cpptraj, which uses the DSSP algorithm.42

Using classical clustering methods, we identified seven

Figure 2. Solvated and equilibrated JIP1 10mer experimental
structure used as the reference for RMSD calculations for each
trajectory. The sequence of this fragment is Pro1-Lys2-Arg3-Pro4-
Thr5-Thr6-Leu7-Asn8-Leu9-Phe10.
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structurally stable conformations of the apo-JIP1 10mer.
Throughout each simulation, hundreds of different conforma-
tions were sampled, but we searched for conformations that
were persistent and stable over a period of time, suggesting
that they will be significantly populated in experimental
ensembles because they are located in broad and deep energy
minima. A Markov state model applied to the ensemble
suggests that six of the seven conformations are part of four
important and long-lived metastable states. With 20 μs of
simulation data and multiple methods of conformational
analysis, we are confident that we are describing the
conformational flexibility of the JIP1 10mer fragment.
These seven conformations (described in more detail below)

were obtained from the 20 μs ensemble via three different
clustering methods. We used different clustering methods so as
to avoid a methodological dependence in our results and to
provide a comparison of the various methods. For instance,
manual clustering of the 200,000 structure ensemble by RMSD
relative to the initial structure identified six Conformers.
However, because multiple structures may give the same
RMSD to a single structure,66 we also utilized MMTSB53 K-
means and cpptraj42 pairwise distance clustering, which found
10 and 19 Conformers, respectively (details below).
For our manual analysis, if the RMSD relative to the solvated

and equilibrated structure shown in Figure 2 was within 1 Å,
then we considered the molecule conformationally stable.
Using this semiquantitative criterion, we then visualized and
overlaid the structures in every flat region that extended more
than 250 ns in the RMSD plots (Figure 1, black rectangle). We
performed an RMSD analysis of these structures within VMD
to confirm that the same structure was found throughout the
region of structural stability. A typical trajectory is shown in
Figure 3 and a complete set of trajectories can be found in

Figure S3. Using this approach, we identified six of the seven
conformationally unique, persistent Conformers reported in
this study.
K-Means and Pairwise Distance Clustering. To further

understand the conformational behavior and to compare
clustering methods, we also subjected every fourth structure in
the apo 10mer ensemble (∼50,000 structures) to K-means
clustering using the MMTSB toolkit.53 This clustering
produced 115 structural families. The 10 most populated

families contained more than 1000 structures within each
family. Of those 10 families, 8 families corresponded to
Conformers 1, 2, 4, and 5 identified via RMSD analysis.
Conformers 3 and 6 were not identified by K-means clustering.
We also utilized clustering methods available in cpptraj to
group every fifth structure in the 10mer ensemble (∼40,000
structures).41 ,42 We analyzed a variety of cpptraj clustering
criteria and found that using pairwise distances resulted in
clusters with a good distribution of structures within
conformational families. Pairwise distance clustering using all
atoms grouped the ensemble into 19 conformational families
with fractional occurrences ranging from 1 to 17% (Table S1).
The six Conformers identified via RMSD analysis were
identified in cpptraj clustering, and a seventh cluster was
identified (details below).
We performed an unequal variance (Welch’s) two-sample t

test67 to ascertain the significance of the clustering of ensemble
structures into each of seven Conformers. In this test, we used
the RMSD values relative to each Conformer to compare the
deviation of all structures to the deviation of those structures
binned into each Conformer (Table S2). In all cases, the p
values suggest that the clustering is significant. We also
compared the RMSD values between all Conformers, which
ranged from 0.8 Å (Conformers 1 and 5) to 7.8 Å
(Conformers 1 and 4; Table S3). We describe below the
structural features of the Conformers found via classical
clustering before constructing a Markov state model using the
200,000 JIP1 10mer dataset.

Conformer 1. Based on our classical clustering (non-
Markovian), Conformer 1 was present for the longest period.
This conformation persisted for 1760 ns of 2000 ns of the first
trajectory, representing a 78% occurrence in trajectory #1
(Figure 3) and an overall 1.2−17.4% occurrence in the 20 μs
ensemble (Table 1). Conformer 1 is stabilized throughout the
simulation by a pair of hydrogen bonds between residues Arg3-
Asn8 and Pro4-Thr6, as well as, less frequently, by interactions
between Pro1-Phe10 and Arg3-Leu7. Figure 4 depicts
Conformer 1 in two different orientations, highlighting the
two different hydrogen bonding networks. For Conformer 1,
the individual H-bonds shown in Figure 4A,B were present for
76.2% (Asn8-Arg3), 73.4% (Pro4-Thr6), 27.1% (Arg3-Leu7),
and 23.4% (Pro1-Phe10) of the 20 μs ensemble. A visual-
ization of the ensemble reveals that hydrogen bonding
interactions shown in Figure 4A,B are driving the loop
structure that we see throughout the 20 μs simulation.

Conformers 2−7. Average structures from the other six
Conformers found by classical clustering are shown in Figure
5. Conformers 2, 3, and 7 were the only Conformers that
contained a persistent secondary structure with alpha helical
content in their middle and outer residues (residues 5−7 and
7−9). All of the Conformers adopt a similar loop structure in
the middle of the 10mer, except for Conformer 4, which has a
loop structure at the C-terminal end of the fragment, due to
different patterns of hydrogen bonding. Conformer 2 and 7
adopt a 3−10 helical motif formed between residues Thr5-
Thr6-Leu7, while Conformer 3 adopts a helical motif between
residues Leu7-Asn8-Leu9, respectively.
To further gauge Conformer importance, we evaluated the

percent occurrence and the persistence, or lifetime, of each
Conformer (Table 1). To calculate percent occurrence and
lifetimes, we binned each structure in each trajectory of the
ensemble into one or more Conformer by calculating the
RMSD of each structure relative to the representative average

Figure 3. Trajectory initiated from Seed 1 where Conformer 1 was
identified. RMSD trajectory values indicate that the simulation was
stable, and visualization of the ensemble after 250 ns reveals a
persistent conformation (Conformer 1). This Conformer persisted for
1750 of 2000 ns. This period of simulation stability is highlighted with
a black box.
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structure of each Conformer. If the RMSD values fell within a
user-defined cut-off window, then that structure was assigned
to that Conformer family.
We evaluated a range of RMSD cut-off windows (Table S4)

to find the optimal RMSD tolerance that would minimize

structures being assigned to multiple Conformers while
binning as many structures into families as was physically
meaningful. In other words, we wanted RMSD tolerance that
was flexible enough to account for the bond and angle
movements that are possible within one conformation without
including dihedral angle changes that interconverted different
conformations. Based on the number of duplicate groupings
versus the number of structures binned, we selected a cut-off
window of 2.0 Å. This binned 83% of the structures into at
least one conformational family while only binning 17 and
0.07% into more than one or two families, respectively. From
this analysis (Table 1), we see that based on our classical
clustering, Conformers 1, 5, and 6 have the longest lifetimes
and so are the most persistent Conformers in the overall
ensemble. Conformers 1, 3, 5, and 7 display the largest percent
occurrence and therefore dominate the ensemble. Conformer 1
forms often and, once formed, is quite persistent, whereas apo-
JIP1 10mer does not adopt Conformer 6 very often, but once
formed, it persists for, on average, 1.51 ns. Conformer 7 has a
relatively high occurrence (12.5−22.6%) along with a relatively
short lifetime (0.74 ns), suggesting that this Conformer forms
often but does not persist for long. A graphical representation
of the persistence frequencies for all Conformers is shown in
Figures S4−S9.
To estimate the error associated with the percent

occurrences reported in Table 1, we performed a random
sampling with replacement (bootstrapping) analysis; i.e., we

Table 1. Ensemble Analysis Using Classical Clusteringa

conformer 1 2 3 4 5 6 7

RMSD % occurrence 17.4 6.7 15.7 1.4 17.1 2.5 22.6
K-means % occurrence 10.2 2.2 4.5 4.9
pairwise (cpptraj) % occurrence 1.24 4.89 15.60 2.94 16.86 2.24 12.53
bootstrapped pairwise % occurrence 1.23 4.90 15.44 2.97 16.89 2.23 12.56
% error in % occurrence 0.645 0.051 1.016 1.106 0.215 0.446 0.271
lifetime (ns) 4.48 0.86 0.83 0.34 6.41 1.51 0.74

aFor each Conformer identified by MMTSB (Conformers 1, 2, 4, and 5), RMSD (Conformers 1−6), or cpptraj (Conformers 1−7), we report the
percent occurrence and lifetime based on RMSD comparison to average structures (vide inf ra). Lifetimes are based on cpptraj clustering as that
method identified all seven families.

Figure 4. Hydrogen bonding in Conformer 1. (A) The hydrogen
bonds highlighted in the left image occurred for 76.2% (Asn8-Arg3)
and 73.4% (Pro4-Thr6) of the simulation. (B) Hydrogen bonds
shown in the right image occurred for 27.1% (Arg3-Leu7) and 23.4%
(Pro1-Phe10) of the simulation. The image in (B) is generated by
rotating the image in (A) 180° from front to back. Percentages refer
to the presence of each hydrogen bonding interaction throughout the
entire 20 μs ensemble.

Figure 5. Representative structures of the seven Conformers found for the apo-JIP1 10mer. For each Conformer, hydrogen bonds and their
associated residues are highlighted. Residues Thr5-Thr6-Leu7 of Conformer 2 contain 3−10 helical character. (a) and (b) denote different
orientations of the same structural snapshot and illustrate different hydrogen bonding patterns.
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randomly sampled our ensemble structure-to-Conformer
assignments.68,69 In both cases, the randomly generated sample
size was constrained by the original sample size. The
population averages from our resampled percent occurrences
are in good agreement with our original data (Table 1) with
percent occurrence errors less than 2%.
To ascertain the occurrence of various Conformers in the

overall ensemble, as well as within each of the 10 2 μs
trajectories, we used cpptraj to perform pairwise distance
clustering to bin structures into Conformers 1−7 (Table S5
and Figure S10). From this analysis, we can see that 78% of the
structures align with one of the seven Conformers, and all
trajectories, except those initiated from Seeds 7 and 8, sample
at least two Conformers with percentages greater than 10%.
There is some interconversion between various conformations
within a trajectory (especially for trajectories originating from
Seeds 1−6); however, particular Conformers are more likely to
be found in some trajectories; i.e., of all frames sampling
Conformer 1, ∼50% of those frames are found in the trajectory
originating from Seed 1 (Table S6, bottom). A graphical
analysis of the Conformer sampling throughout the entire
ensemble, organized by trajectory, can be seen in Figure S10.
This analysis also suggests that our manual clustering based on
RMSD visualization was qualitatively useful, at least for this
particular ensemble of a relatively small, disordered protein
fragment.
We also performed a percent occurrence and error analysis

using the cpptraj clustering results on each trajectory initiated
using a different random seed (Table S5a). From this, we can
see that sampling within a trajectory is not sufficient to find all
seven Conformers; however, within the pooled ensemble, we
do find all Conformers except for Conformer 1. Given the
structural similarity between Conformers 1 and 5 (RMSD =
0.86 Å), it is not surprising that the cpptraj pairwise clustering
method cannot distinguish these Conformers.
The representative structures for each Conformer (Figure 5)

reveal that the JIP1 10mer spends a considerable amount of
time in a folded loop conformation with some amount of
helical character and that this conformational dynamic is likely
driven by hydrogen bonding. To quantify this and identify
residues involved in these stabilizing interactions, we analyzed
the 20 μs ensemble for the occurrence of hydrogen bonding
associated with each Conformer (Table 2) as well as the full
ensemble (Table S6).
For those structures that are identified as belonging to

Conformer 1, hydrogen bonding occurs between Asn8 and
Arg3, Pro4 and Thr6, and Asn8 and Arg3 for 76.22, 73.45, and
52.77% of the ensemble, respectively. In addition to these most
prevalent H-bonding patterns, the hydrogen bond between
Pro1 and Phe10 occurred in three Conformer families, while
H-bonds between Arg3 and Asp8, Pro4 and Leu7, and Thr6
and Leu9 all occurred in three Conformer families. These
interactions contributed to the stability of each of the
conformations in which they were involved and therefore are
highly important in understanding the overall stability. It is
notable that there are no pairwise hydrogen bonds that occur
in all conformations. JIP1 takes on a similar shape in each of
the conformations but reaches those shapes due to different
hydrogen bonding patterns. Examining the hydrogen bonding
behavior for the full ensemble (Table S6) suggests that
interactions between Asn8 and Arg3, Phe10 and Arg3, and
Pro4 and Leu7 dominate with 13.06, 10.06, and 10.06% of the
ensemble, respectively.

Taken together, the data suggests that JIP1 is capable of
adopting structurally diverse conformations. The presence of
seven different conformations suggests that the functionally
active 10mer is conformationally quite flexible. RMSD
comparison to the JNK-bound 10mer structure (Table 2)
suggests that the fragment is not likely to be preorganized for
binding to JNK, but the enthalpies of each Conformer do not
bias the ensemble into adopting or avoiding particular
conformations.

Comparing Classical Methods of Conformational
Analysis. Clustering by RMSD comparison to the solvated
and equilibrated structure (Figure 2) identified six Con-
formers. Three of the MMTSB families adopted a structure
similar to Conformer 1 (MMTSB family 1 RMSD = 0.748 Å;
MMTSB family 2 RMSD = 0.776 Å; MMTSB family 3 RMSD
= 0.880 Å), suggesting that Conformer 1-like structures were
present for 10.2% of the full ensemble (5107 structures). The
fourth most populated MMTSB family corresponded to
Conformer 2 (MMTSB family 4 RMSD = 0.418 Å) with a
2.2% occurrence (1094 structures). There were two families
with structures similar to Conformer 4 (MMTSB family 5
RMSD = 2.781 Å; MMTSB family 6 RMSD = 1.291 Å), with a
4.5% occurrence (2267 structures). These families were
identified as having the same structure as Conformer 2
because they took on the same hydrogen bonds; the larger
RMSD is a result of the tails not being aligned. Conformer 5
was present in two families (MMTSB family 7 RMSD = 0.813
Å; MMTSB family 8 RMSD = 0.725 Å) or 4.9% of the
ensemble and was represented by 2439 structures. Conformers
3 and 6 were not found within the 10 largest families. A
representative structure of each MMTSB cluster is shown in
Figures S11−S16 where RMSD superpositions with Con-
formers 1, 2, 4, and 5 are also shown. Clustering by pairwise
distances using cpptraj resulted in 19 relatively well-populated

Table 2. Hydrogen Bond Analysis for Each Conformer
Identified in the JIP1 10mer Ensemblea

conformer hydrogen bond
percent

occurrence
average

RMSD (Å)
helical

character?

1 Arg3-H:Asn8 76.22 7.58 no
Thr6-H:Pro4 73.45
Leu7-H:Arg3 22.71
Phe10-H:Pro1 21.91

2 Asn8-H:Thr5 20.64 5.57 yes
(aa 5−7)Leu7-H:Pro4 14.19

Pro1-H:Phe10 13.38
3 Leu7-H:Thr5 21.90 5.91 yes

(aa 7−9)Asn8-H:Pro4 16.20
Leu7-H:Pro4 10.08

4 Leu9-H:Thr6 9.49 6.31 no
Thr6-H:Phe10 7.99

5 Arg3-H:Asn8 52.77 7.74 no
Phe10-H:Pro1 29.67

6 Leu9-H:Thr6 11.68 5.78 no
Arg3-H:Leu9 11.09

7 Leu7-H:Pro4 59.68 8.58 yes
(aa 5−7)Arg3-H:Phe10 0.85

aBinding interactions within 3.0 Å and 135° between specific residues
are indicated along with their percent occurrence in the 20 μs
ensemble. Also highlighted are the average RMSD values for each
average structure relative to the solvated and equilibrated initial
structure and whether each conformation contained helical character.
The helical character was determined using cpptraj default angles.42
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conformational families (Table S7) that confirmed Conformers
1−6 and identified a seventh cluster. Structural agreement
between Conformers identified with different clustering
methods was assessed using RMSD comparison (Tables S1
and S7) and structural visualization. A total of 78% of the
200,000 frames in the 20 μs ensemble superimposed within 2
Å to at least one of the seven Conformers (Table S5).
Markov State Modeling. To complement the clustering

described above, we also used time-based Markov state
modeling to locate long-lived (metastable) states within the
20 μs ensemble and to identify discrete transitions between
those states.36−38,70−72 We began the process by selecting
molecular features that maximized the total kinetic var-
iance.55,63 We analyzed features such as backbone torsions,
backbone atom distances, side-chain torsion angles (χ1), XYZ
coordinates, and backbone atom coordinates (Figure S17).55

While the VAMP-260,73 score is slightly lower for backbone
torsions relative to backbone atom distances, backbone
torsions reduce the dimensions most significantly relative to
other features (Table S8). Figure S18 shows the VAMP-260,73

score as a function of the number of clusters for the different
clustering algorithms. This suggests that using the K-means
algorithm, the number of clusters becomes constant after k =
100 (Figure S18). Therefore, we choose a k value larger than
100. We also performed a comparison between the clustering
algorithms and the number of microstates (Figures S19−S21)

and these results suggest that both uniform time63 and K-
means clustering are well distributed in the first two TICA and
that the k = 250 clustering level is sufficient to discretize the 20
μs JIP1 dynamics. In this paper, we are presenting only the
results from the K-means clustering algorithm.
Time- lagged independent component ana lys i s

(TICA)56,61,62,74 with a lag time of 10 ns was used to reduce
the dimensions of our molecular simulation data to the 11
dimensions that preserve 95% of the kinetic variance and to
capture the slowest transition in the system. TICA is one of the
best approaches for reducing system dimensions into the
slowest subspace by keeping the highest kinetic variance.60

During TICA, our kinetic_map variable was set to “FALSE”.
Finally, the K-means54 algorithm was applied to cluster the
MD trajectory and assigned the clusters to separate metastable
states.

Model Validation. For building the MSM, we need to
identify a lag time that is long enough to capture the dynamics
within each metastable state while also being short enough to
properly characterize interstate pathways.55 The implied
timescale ti can be used to determine the appropriate lag
time τ. Equation 2 shows the relationship between the implied
timescale and lag time

τ τ
λ τ

= −
| |

t ( )
ln ( )i

i (2)

Figure 6. (a) Free energy as a function of the two slowest ICs. The minima in the free energy plot represent the metastable states in our system. (b)
TPT analysis for the four metastable-state MSM model with a lag time of 10 ns. Only the dominant coarse-grained fluxes are shown. A cut-off of
0.95 was used to generate the MSM probability flux plots as this preserved 95% of the kinetic variance. The visual size of each state is proportional
to its free energy and the arrow size is proportional to the main flux. The red, yellow, and green colors indicate the initial, intermediate, and final
states of TPT analysis, respectively. The numbers associated with the arrows are the transition fluxes.
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where τ is the lag time and ti(τ) is the ith slowest implied
timescale determined from the ith largest eigenvalue λi(τ) of
the transition probability matrix.55 If the implied timescale
becomes constant with lag time, then the Markov assumption
is satisfied.63 Figure S22a shows that the implied timescale
curves reach a constant value when the lag time increases
beyond 10 ns. Therefore, the MSM estimation of the JIP1
10mer ensemble becomes Markovian at a lag time of 10 ns.
Error estimates are computed using Bayesian sampling and are
shown in Figure S22a with colored shading.55,75

Performing the Chapman−Kolmogorov (CK) test allows us
to validate our MSM.38,55,64 For this CK analysis, we reduced
the ensemble to four metastable states. This number of
metastable states was defined based on the large differences
between the implied timescales of the fourth and fifth
timescales as shown in Figure S22b.35 We used PCCA76−78

to define the membership distribution and choose the state
with the highest and lowest memberships as the initial and final
states, respectively. We choose these endpoints as our goal was
to build an MSM that identified pathways between all states
and best described the conformational diversity of the
ensemble.
Figure S22c shows that there is good agreement between the

CK analysis of the change in probability as a function of time
for the chosen metastable states predicted from the MSM
(blue dashed lines) and the probability of MSMs estimated for
the same metastable states with longer lag times (black solid
lines). This suggests that our model is indeed Markovian. The
CK38,55,64 analysis also confirms that our system contains four
metastable states. In Figure S22c, the Bayesian method was
used to determine the 95% confidence intervals (the blue
shaded area).55,75 Both the CK test and implied timescale
analysis show that our system is Markovian. Because the MSM
is Markovian and the transition matrix has one large eigenvalue
λ = 1,55,79 it will allow transitions from one state to all other
states and should provide a good description of the equilibrium
dynamics of the apo-JIP1 protein fragment. This is a feature
benefit of performing an MSM analysis.
We have plotted the free energy of the system over the two

independent coordinates (ICs) that resolves our ensemble into
four metastable states. These states are shown as minima in the
free energy plot (Figure 6a). In Figure S23, the time series of
the first three slowest ICs illustrates the transition between the
minima.
To relate our MSM to the classical clustering described

above, we also built an MSM using the cpptraj-assigned
clusters (RMSD of each cluster) as an input to a new MSM
analysis. We observed that the implied timescales and the
number of metastable states of this MSM model are in good
agreement with the MSM results that used the 20 μs MD
trajectory (Figures S24 and S25).
We used a coarse-grained transition path theory (TPT)

method57,64,80,81 to illustrate the network of transition
pathways obtained from our MSM results (Figure 6b). TPT
computes the fluxes between states and extracts information
about the kinetics of transitions between initial and final states.
As can be seen in Figure 6b, there are two pathways emanating
from S1 with transition probabilities of 1 × 10−6 and 9 × 10−7.
These pathways lead to S2 and S3. S3 transitions to S2 as an
intermediate state before reaching the final state S4. The
percentages of flux for pathways [S1→S3→S2→S4], [S1→
S2→S4], and [S1→S3→S4] from S1 to S4 are 55, 44, and
0.01%, respectively. This suggests that two pathways [S1→

S3→S2→S4] and [S1→S2→S4] dominate the flux between S1
and S4. The mean first passage time (MFPT)75 from S1 to S4
is 31 μs, while the MFPT to return from S4 to S1 is 16 μs.
An RMSD comparison between the average structures of

each of the seven Conformers, with 2000 sample structures
from each of the four metastable states, allows us to relate the
results from classical clustering to the results from the MSM.
Using the sample by state method,55,63 we find that
Conformers identified by classical clustering are also found
in the MSM, except for Conformer 6 (Table S9). There is
relatively good agreement between the methods used in this
study as Conformer 6 is one of the least populated structures
in the classical clustering analysis and not found via MMTSB
K-means clustering (Table 1). This suggests that Conformer 6
is more likely a rare-event state. Our MSM-based percent
occurrence results (Table S9), and RMSD values relative to
the representative structure of the seven Conformers (Table
S10), show that S1 contains mostly Conformers 3 and 7, S2
contains Conformer 7, S3 is dominated by Conformers 1 and
5, and S4 contains Conformer 2. This is in good agreement
with our results from classical clustering.
In addition, Conformers 1 and 5 in S3 are the conformers

that have the highest population in our MSM results, which is
again in agreement with our classical clustering. It is also
notable that Conformers 1 and 5 have the same occurrence in
state S3, which is in good agreement with our previous findings
(Table 1) showing that Conformers 1 and 5 have similar
structures and percent occurrences in both models. Both
classical clustering and MSM analysis indicate that Conformers
1, 3, 5, and 7 are highly populated and dominate the ensemble,
existing in S1−S3.

■ CONCLUSIONS
Understanding the apo dynamics of the JIP1 protein is
important because of the crucial role that this protein plays in a
variety of disease states ranging from obesity, cancer, and AD.
Conformations in which JIP1 are stable can have important
implications for binding to other proteins. Past studies have
indicated that JIP1 activates cell apoptosis via the JNK protein.
JIP1 also may enable the binding between JNK and
phosphorylated tau. Our studies suggest that the functionally
active JIP1 10mer adopts six or seven energetically and
structurally stable conformations. The fragment takes on a
similar shape in all the Conformers, and the Conformers are
stabilized by different hydrogen bonding patterns. The
ensemble is dominated by structures that adopt a folded
loop conformation with some amount of helical character in
the middle and outer residues (residues 5−7 and 7−9).
Clustering via RMSD, pairwise distance comparison, and K-
means clustering resulted in differing numbers of conformers,
but seven Conformers produced by at least two of the methods
were unique and persistent. A Markov state model built using
the ensemble indicates that the JIP1 10mer exists in four long-
lived, metastable states that encompass six of the seven
Conformers identified via classical clustering.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
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(20) Ittner, L. M.; Ke, Y. D.; Götz, J. Phosphorylated Tau interacts
with C-Jun N-terminal kinase-interacting protein 1 (JIP1) in
Alzheimer disease. J. Biol. Chem. 2009, 284, 20909−20916.
(21) Ballatore, C.; Lee, V. M.-Y.; Trojanowski, J. Q. Tau-mediated
neurodegeneration in Alzheimer’s disease and related disorders. Nat.
Rev. Neurosci. 2007, 8, 663−672.
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