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ABSTRACT

Threshold regression models are useful for identifying subgroups with heterogeneous parameters. The
conventional threshold regression models split the sample based on a single and observed threshold
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variable, which enforces the threshold point to be equal for all subgroups of the population. In this

article, we consider a more flexible single-index threshold model in the quantile regression setup, in
which the sample is split based on a linear combination of predictors. We propose a new estimator by
smoothing the indicator function in thresholding, which enables Gaussian approximation for statistical
inference and allows characterizing the limiting distribution when the quantile process is interested. We
further construct a mixed-bootstrap inference method with faster computation and a procedure for testing
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the constancy of the threshold parameters across quantiles. Finally, we demonstrate the value of the
proposed methods via simulation studies, as well as through the application to an executive compensation

data.

1. Introduction

Threshold regression is useful for identifying subgroups with
heterogeneous effects determined by some threshold variables.
Heterogenous effects are commonly seen in many applications
from economics, biomedicine and marketing. For example,
research showed that countries may have different growth pat-
terns according to large and small initial endowment or exports
(Hansen 2000; Durlauf, Johnson, and Temple 2005; Christopou-
los, McAdam, and Tzavalis 2021). The effect of body mass index
on blood pressure was found to be different for subgroups with
high and low BMI (Kaufman et al. 1997; Kerry et al. 2005; Tes-
faye et al. 2007; Zhang, Wang, and Zhu 2014). In personalized
medicine, the efficacy of treatment was shown to vary according
to patients’ various characteristics such as demographic infor-
mation and pretreatment covariates (Rothwell 1995; Wang et al.
2007; VanderWeele et al. 2019). The estimation of heteroge-
neous effects and the identification of subgroups are important
in these applications.

This article focuses on threshold quantile regression, which
was first introduced by Cai and Stander (2008), Cai (2010),
and Galvao, Montes-Rojas, and Olmo (2011) in the context of
autoregression, and further studied by Lee, Seo and Shin (2011),
Li et al. (2011), Yu (2013), and Su and Xu (2019) in other
settings. Different from the mean regression, threshold quantile
regression allows researchers to study the effect heterogeneity
in different tails of the outcome distribution, which may be of
more interest in applications such as medical cost, birth weight,
income, and so on.

One limitation in the existing threshold quantile regression
models is that the threshold splits the sample based on a single

and observed variable. Numerous studies have shown that sub-
groups may be characterized by several variables together. For
example, Yu and Fan (2020) argued that the effect of expe-
rience on salary tends to vary with both education and gen-
der. Furthermore, Shen and He (2015) and Fan, Song and Lu
(2017) showed that a risk score, defined to be some function
of multiple predictors, is helpful for identifying the subgroup
of AIDS patients who benefit more from the treatment. Jiang
etal. (2014) demonstrated that multiple SNPs (single-nucleotide
polymorphism), rather than any individual SNP, tend to alter
the risk for developing a particular disease. The importance
of using numerous covariates to identify optimal subgroup
for treatment was also discussed in He, Lin, and Tu (2018),
and VanderWeele et al. (2019). These applications suggest that
it would be more desirable to make use of multiple covari-
ates to determine the subgroup and heterogeneous effects in
applications.

Motivated by the above insights, we consider the following
single-index threshold quantile regression model:

Qi (tlzin Zi %) = 2] B(0)+2 §()I{x]y (1) > 0}i=1,...,n,

(1)
where y; is the response from the ith subject, Q,(z|-) denotes
the rth conditional quantile of the response given covariates,
7 € (0,1) is the quantile level of interest, z; is the vector of
design variables, z; is a subset of z;, and x; includes the thresh-
old variables. The parameters B(r) and &(t) are regression
coeflicients: B(t) measures the baseline effect of z; on the tth
quantile of y;, and §(t) are the threshold effect, depicting the
heterogeneous effect of z; in the subgroup. The parameters y ()
are threshold coeflicients, which determine the single-index
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threshold, an unknown linear combination of variables. In this
article, we focus on the fixed-threshold-effect framework by
assuming §(t) # 0.

The threshold parameters y (t) play a central role for deter-
mining the single index and therefore the subgroup with het-
erogeneous effects. Inference on y(t) could help to identify
important threshold variables and determine the character-
istics of the subgroup. However, the estimation and uncer-
tainty quantification for y (t) are complicated by the indicator
function involved in Model (1). Existing work on threshold
regression under the fixed-threshold-effect framework showed
that direct estimators of threshold parameters have nonstan-
dard limiting distributions, which are too complicated to be
practically useful for statistical inference; see Chan (1993), Bai
(1995), Yu (2013), and Yu and Fan (2020), to name a few.
Some other researchers developed inference methods based on
the asymptotic theory under the shrinking-effect framework,
but the methods are limited to the cases with small threshold
effects; see Hansen (2000), Caner (2002), Kuan, Michalopoulos
and Xiao (2017), and Su and Xu (2019). The problem is even
technically more challenging for Model (1) due to the nondif-
ferentiability of the loss function involved in quantile regression
(Koenker 2005) and the additional nonconstant covariates in
thresholding.

To overcome the challenges, we propose a smoothed estima-
tor by smoothing the indicator function in the thresholding.
We show that the resulting estimators of both regression and
threshold coeflicients are asymptotically normal and they are
asymptotically independent of each other. In addition, we show
that the smoothed estimator of y (7) has the convergence rate
of \/h,/n, where h, — 0 is the bandwidth involved in the
smoothing of the indicator function. While the unsmoothed
estimator of y(r) could have a higher convergence rate, the
proposed smoothing leads to three big advantages. First, the
asymptotic normality of the threshold coefficient estimator
facilitates the statistical inference based on the direct variance
estimation. Second, the asymptotic normality theory also allows
us to develop a computationally efficient mixed-bootstrap algo-
rithm, which is convenient and less sensitive to the choice of
bandwidth than the direct variance estimation. Third, under
this framework, we are able to establish the asymptotic prop-
erties for the quantile process, which are useful for charac-
terizing and comparing subgroups across quantiles. Particu-
larly, we develop new procedures for testing the constancy of
y () across T in a region of quantiles. Such tests can help
researchers to identify commonalities across quantiles, which
can be subsequently used to improve the efficiency of subgroup
analysis.

To our best knowledge, this article is the first that formally
studies the estimation and inference for single-index threshold
quantile regression models. Among the limited literature, Seo
and Linton (2007) and Yu and Fan (2020) are the two that
also studied single-index threshold but in the mean regres-
sion setup. Yu and Fan (2020) considered the direct estimator
without smoothing, and proposed a nonparametric posterior
interval method for inference on the threshold parameters.
Seo and Linton (2007) considered smoothed estimation and
suggested Wald-type, likelihood-type and bootstrap methods
for inference. However, these inference methods either do not

apply to models with heteroscedastic errors, for which quantile
regression has more appeals, or are computationally intensive
and even more so for quantile regression. In this article, we
develop new inference procedures to address the unique chal-
lenges rising from quantile regression, which require different
techniques both computationally and theoretically.

The rest of the article is organized as follows. In the next
section, we discuss the identification problem, present the pro-
posed smoothed estimator and the profiled estimation pro-
cedure, and establish the large sample properties of the esti-
mator. In Section 3, we propose a Wald-type method and a
mixed-bootstrap method for inference. Section 4 is devoted
to testing the constancy of threshold parameters across quan-
tiles. Simulation studies are reported in Section 5, followed
by an application to an executive compensation data in Sec-
tion 6. Some concluding remarks are provided in Section 7.
Technical proofs are relegated to the Appendix and the online
supplement.

2. Smoothed Estimator and Asymptotic Properties

We will first address the identifiability issue of Model (1). Note
that the same model continues to hold if y () is divided by
some positive constant. Although the normalization constraint
ly(®)ll2 = 1 is often used in the literature to ensure the
identifiability, we consider a different method for easier inter-
pretation. The identification of y (7) requires that there exists a
variable x; whose coefficient is nonzero, and that the probability
distribution of x; conditional on x, = x/x; is absolutely
continuous with respect to Lebesgue measure (Horowitz 1992).
The notation x/x; denotes variables in x excluding x;. Let the
first element in x, be the intercept. Model (1) can be rewritten as

Qi (tlzin 21, xi) = 2! B() + 2 (D) {x1; + x5 (1) > 0}, (2)

where ¥ (t) = y_(tr)/y1(r) with yi(r) and y_,(7) corre-
sponding to x; and x;, respectively. If y;(7) is positive, the
normalization does not alter B(t) and §(7). If y1 (7) is negative,
B(t) and 8(t) can be redefined to make Model (2) consistent
with Model (1).

Remark 1. The identifiability constraint in model (2) requires
the specification of one threshold variable x; whose coeflicient
is nonzero. In practice, this variable can be determined by
domain knowledge, for example, in the executive compensation
study considered in Section 6. When the prior knowledge is
not available, we can conduct a preliminary analysis to select
this variable as follows. For a candidate x;, we can test the
hypothesis Hy : () = 0 in the model Qy(z|w) = 2TB(1) +
T8 ()I{x) + szllf(t) > 0}. The rejection of Hy would suggest
that there exists a subgroup whose structure is influenced by
x1, so that x; should be included in the threshold function,
and not otherwise. We can test the hypothesis by extending the
score-type specification testing method in Zhang, Wang, and
Zhu (2014) or Yu (2013), which were designed for threshold
regression with a single threshold variable. The critical values
can be calculated by using similar resampling methods as in
Fan, Song and Lu (2017) and Yu (2013). The score-type test is
constructed under the null hypothesis and thus is computational



more convenient than the likelihood-ratio-type test in Lee, Seo
and Shin (2011) and the Wald-type test in Galvao et al. (2014).

2.1. The Smoothed Estimator

For notational convenience, thereafter we let #(r) =
BT, 8(t)1HT denote the regression coeficients, and let
1) = @@, ¥ @)DHT be the collection of all unknown
parameters. Note that we can view the quantile function in
Model (2) as a nonlinear function of (7). Therefore, a natural
and direct estimator of 7(7) can be obtained as follows:

n

argmin Z p{yi — 2] B — 2! 81(xy; + x19 > 0}
n=B".8T .y DT i=1

() =

where p; (1) = {t — I(u < 0)}u is the quantile “check” loss
function (Koenker 2005).

Under the fixed-threshold-effect framework of threshold
regression, it was known that the direct estimator of the thresh-
old parameter often has a higher convergence rate than that
of the regression parameter, but the former has a nonstandard
limiting distribution that is too complicated to be useful for
statistical inference. This challenge was observed in both least-
squares estimation (Chan 1993; Yu and Fan 2020) and quan-
tile regression (Bai 1995; Yu 2013). To overcome this chal-
lenge, some researchers established asymptotic distributions
for the direct estimator under the shrinking-threshold-effect
framework, which assumes that the threshold effect decays to
zero as n increases; see for instance Hansen (2000), Caner
(2002), and Kuan, Michalopoulos and Xiao (2017). While these
asymptotic distributions can be approximated through simu-
lation, they may be limited to the small effect case and could
lead to conservative confidence intervals when the threshold
effect size is fixed. In a recent article, Su and Xu (2019) thor-
oughly studied the conventional threshold quantile regression
under the shrinking-threshold-effect framework, and proposed
a likelihood-ratio-based test procedure. Unfortunately, the
method cannot be applied to the single-index threshold quantile
regression model, since the limiting distribution of fh(r) will
no longer be a two-sided Brownian motion, but rather become
a two-sided Brownian field due to the additional nonconstant
covariates in thresholding; see Yu and Fan (2020) for related dis-
cussions in mean regression. Consequently, it will be difficult to
simulate the asymptotic distribution of the likelihood-ratio-type
statistics.

For convenient statistical inference, we propose a smoothed
estimator obtained by smoothing the indicator function in
thresholding. Let G(-) be a bounded continuous function sat-
isfying that lim G(s) = 0O and lim G(s) = 1. Note that G

§—>—00 $——+00

is analogous to a cumulative distribution function rather than
a density function traditionally used in kernel estimation. The
proposed smoothed estimator of 5(7) is defined as

1(7) = argmin S, {n(7); hy}, (3)
n(7)

with

1< - xi+xTi¢
Sn(";hn)zzzpr [yi_ziTﬂ_ziTSG< 1 h : )}
i=1 n
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wherenp = (BT,87, )T, and h, — Oisa positive sequence of
bandwidth parameters.

The idea of smoothing was also used in various contexts
to ease the computational or theoretical challenges. Horowitz
(1992) and Seo and Linton (2007) proposed to smooth the
indicator link and threshold function in binary regression and
the threshold mean regression to obtain asymptotic normality.
Brown and Wang (2005), Fu, Wang and Bai (2010), and Pang,
Lu and Wang (2012) considered induced smoothing to avoid
direct estimation of the error density involved in the asymptotic
covariance matrices for rank and quantile regression. The quan-
tile score function was smoothed in Whang (2006) and Wang
and Zhu (2011) to achieve higher-order accuracy of inference,
and in Wang, Stefanski and Zhu (2012) to provide appropriate
correction for covariate measurement errors. Our setup involves
two different sources of unsmoothness, one in the quantile loss
function and the other in the thresholding. We propose to only
smooth the indicator function involved in the thresholding to
obtain asymptotic normality to facilitate statistical inference, so
the smoothing has the similar purpose as in Horowitz (1992)
and Seo and Linton (2007). The nondifferentiable quantile loss
function, on the other hand, brings more challenges to both
computation and theory. We address the computational chal-
lenge below, and discuss the challenges on statistical inference
in Section 3.

The minimization in Equation (3) is challenging because the
objective function is not differentiable everywhere and it is not
convex in ¥ (t). However, for every given ¥ (7), minimizing
Sn(n; hy) is equivalent to solving a linear quantile regression
problem. Based on this observation, we consider the following
profiled estimation method. First, for a given ¥ (7), define

B (1)), 8{¥ (1)) = argmin S, {(v); 1y} .
B(1),8(1)

Then we can estimate ¥ (7) by

~

¥(0) = argmin, (B (). 30/ @) ¥ @k},
T
The profiled estimator for the regression coeflicients is thus
defined as 9(1) = (ﬁ(t)T,S(t)T)T, where B(r) = ﬁ{l/}(r)}
and §(t) = S{Iﬁ(t)}. For practical implementation, we rec-
ommend to use the Nelder-Mead algorithm (in the R function
“optim”) when good initialization is available, and otherwise
use the genetic algorithm for optimizing nonsmooth objective
functions as used in Zhang et al. (2012) and Wang et al. (2018).

2.2. Asymptotics for a Single Quantile

For convenience, we define ej(tr) = y — ziTﬂo(r) —
2?50(1’)1()61,' + sziwo(r) > 0) and let Zi(zr) =

T
[ziT, {Eil(xu + szilﬁO(r) > 0)}T] denote the design vector
when threshold parameters are known. Let w; denote all the
variables including z;, x;, and f(z)(-|w) denote the conditional
density function of e(r). We begin by imposing a set of
regularity conditions to obtain the asymptotic consistency.

Assumption 1. (a) {(yi,w;)}!, is an independent and identi-
cally distributed (iid) sequence.
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(b) The true coefficients 8o (7) = (Bo(r) T, 80(t)") T and ¥y (1)
are in the interior of compact subspaces ® and W, respec-
tively. Moreover, 8o(t) # 0.

(c) E|lw||” < oo for somey > 1.

(d) The probability distribution of x; conditional on x, has
everywhere positive density with respect to Lebesgue mea-
sure for almost every x;.

(e) Theminimum eigenvalue of E{fe(r) (0|w)ZZT |x} is bounded
away from zero uniformly over x.

Our article is under the fixed-threshold-effect framework
indicated by Assumption 1(b), that is, §(t) # 0. Assumptions
1(c) and 1(d) are needed to establish the asymptotic equivalence
between the smoothed and unsmoothed objective functions
as h, — 0. Assumption 1(e) ensures the identification of
regression coeflicients. The following theorem presents the con-
sistency of the smoothed estimator.

Theorem 1. Suppose that Model (2) at T € (0,1) and conditions
in Assumption 1 hold. If h, — 0, then () — 6y(r) and

~

¥ (1) = ¥o(7) almost surely as n — oo.

Given the established consistency, the next step is to derive
the asymptotic distribution. We first make some linear trans-
formation of variables. Let ¢;(t) = x1; + szillfO(r) and w, =
w/x1. Since there is a one-to-one relation between (jg(r), w))
and w, there must exist (310(7), 820(0) 1T such that 21 8 (7) =
q(t)Slo(r) + szSzo(t). Denote fy(r)jw,(qIw2) as the density
of q(r) conditional on w; and f(x) = 8'f(x)/0x’ where
the derivative exists. We are now ready to define the following
quantities involved in the asymptotic covariances of l/AI(‘L') and
0(7):

V(@) = ar (1 = B[ (wl8a0(0)} 525 fycen s O1w) |
Ql/f(‘l,') = G’(O)E I:fE(T)(O|W2) {WZTSZO(T)}Zxegfq(erz (0|W2):| ,
E T E ~TI 0
Vi) = t(1-1)x [=="] zzT {q(z) >0}
E[z"1{q(x) > 0)] E|2z"I{q(x) > 0)
QH(‘E)
_ E [fe(r) 0lw2)zzT] E[fore) 0lw2)22 I{g(z) > 0}
B[ 0wz Hq(m) > 0} E|fuw) Olwa)22" Ig(r) > 0}| ]

where a = [ G/(s)?ds. To establish the asymptotic normality, we
make the following additional assumptions. We let M denote a
constant whose value may vary in different contexts.

Assumption 2. (a) sup;~ |will <M (a.s.).

®) £, @lw2)  is  a
[f;(kf))lwz(q|wz)| < M uniformly over (g,w;) for each
integer 0 < k < k' (K’ will be specified later).

(c) e(r) is independent with x; and [);((11)
formly over (u, wy).

(d) The matrices V¥ (1), Q¥ (z), V?(2), Q% () are positive
definite.

(e) G is twice differentiable and G(s) + G(—s) = 1; G is
symmetric around zero; |G/ (s)| and |G”(s)| are uniformly

continuous  function and

)(u|wz)| < M uni-

bounded over s; [ |G/(s)|ds < oo and [ |G (s)|ds < co. In
addition, [ s{G(s) — I(s > 0)}ds < oco.

(f) For an integer K > 1 and each integer k(1 < k < k),
[ HG(s) — I(s > 0)}G'(s) = 0and [s¥{G(s) — I(s >
0)}G'(s) #0.

(g) nhd — 0ifk =
nh? — oo.

1and nhi — 0if K > 1. Moreover,

The boundedness condition in 2(a) is assumed for theoretical
convenience, but it can be relaxed at the expense of lengthier
proofs. Assumption 2(b) imposes restrictions on the conditional
density of thresholding. In Assumption 2(c), e(7) is assumed to
be independent with x1 so that for)w(UlW) = for)iw, (ulw2) to
facilitate the proof. Assumptions 2(e) and 2(f) impose condi-
tions on the smoothing function. One candidate kernel satisfy-
ing the conditions is G(x) = ®(x) + x¢ (x), where ® and ¢ are
distribution and density functions of standard normal.

Theorem 2. Suppose that Model (2) at T € (0, 1), and Assump-
tions 1 and 2 hold. Then we have:

Vilb@ =0 S NO. OV O D)7,
\/hz [P -v@} S N0 @V @t @™,
and the two are asymptotically independent.

Remark 2. As also observed in the threshold regression liter-
ature (Seo and Linton 2007; Yu 2013; Su and Xu 2019), the
regression coefficient estimator 6 (7) is not affected asymptot-
ically by the threshold parameter estimator ¥ (1), and the latter
converges at a faster rate. Consequently, statistical inference for
regression coeflicients @ (t) can be conducted as if ¥ (r) were
known, and existing inference methods such as the Wald and
rank score methods for quantile regression (Koenker 2005) can
be directly applied. The asymptotic independence is not sur-
prising as it may appear. One intuitive explanation is as follows.
As also argued in Yu (2012) and Yu (2015) for mean threshold
regression, only local information around the neighborhood of
¥o(7) is relevant to the estimation of the threshold parameter
¥o(7). On the other hand, the estimation of the regression
coefficients 6 () depends on global information or information
related to moments of the data. Theoretically the asymptotic
independence between the estimator for regression coeflicients
and that for threshold parameters depends on the bandwidth
parameter h,, used to smooth the threshold indicator function.
The proof of Lemma 1 shows that the asymptotic covariance
of the two estimators converges to zero at a rate of hy/?. That
is, a larger bandwidth means that the information in a wider
neighborhood of the boundary is used and this consequently
leads to larger dependence between the two estimators. Similar
asymptotic independence property was also observed in the
boundary literature, for instance in Chernozhukov and Hong
(2004), where the boundary is defined by the jump in the condi-
tional density of the regression error, analogous to the jump in
the conditional quantile function in our framework.

Remark 3. The convergence rate of l/AI(‘L') is +/hy/n, which
means that a faster convergence rate of the bandwidth will



escalate the convergence of 1}(1). By Yu and Fan (2020) and Su
and Xu (2019), we would conjecture that the convergence rate of
the unsmoothed estimator of threshold parameters is n~! under
the fixed-threshold-effect framework, and #?*~! under the
shrinking-threshold-effect framework with [|§o(7)|| = O(n™%).
Therefore, we obtain the asymptotic normality at the expense
of the convergence rate. Note that in an attempt to solve these
theoretical challenges, Su and Xu (2019) has also sacrificed
the convergence rate. The convergence rate of our proposed
smoothed estimator satisfies n3/4 <« /h,/n <« n~%/3 for
K = 1and n=%* « /h,/n < n=>/8 for K > 1. Therefore,

the convergence rate is not faster than n~3/4, but is faster than
-5/8
n=>°.

2.3. Asymptotics for the Quantile Process

In practice, it is valuable to study the quantile process to obtain
a complete analysis of the stochastic relationship between vari-
ables. The theoretical analysis can also help us develop testing
tools to test whether the threshold parameters ¥ (t) vary with
quantiles or not. If ¥ (t) is found to be constant across t (or
across a region of quantiles), composite quantile estimation can
be used to provide a more efficient estimator for ¥ (7). As a
result of smoothing, when ¥ (7) is treated as a stochastic process,
the limiting process is Gaussian and can be characterized by its
mean and covariance kernel.

Theorem 3. Suppose that Model (2), and Assumptions 1 and
2 hold for all t € .7, where .7 is a compact set in (0, 1). In
addition, assume that the parameter space in Assumption 1 and
constant M in Assumption 2 are independent of 7, ||5y(7) —
No(x)l < Clt — 7/|* and |G'(s) — G'(#)| < C|s — ¢|* for some
C > 0,a > 0. Then we have

1. ﬁ{é(.)—oo(.)} =  GY(-), where G’() is a mean

zero Gaussian process with the covariance function

E(G’ ()G (x')} = Q& (1) VI (x, 7)) {Q (x)) 1,

Vl(r, 7)) = {min(z,7") — 77}

< Ezz Ezz'I(q(z) > 0) )
Ezz"I(q(z) > 0) Ezz'I(q(r) > 0,9(¢) > 0)

2. \/nhﬁlill}(~)—1ﬁ0(')} =  GY() where G¥() is a
mean zero Gaussian process with the covariance func-
tion E{(GY ()G ()} = Q") 'VV (r, ) {Q' )7},
where when ¥ () = ¥, (7/),

VWi(r,7)=a {min(z,7") — 77’}
x E [{w2b20(0)} {w2d20(t))} %2%] fyo) my (O1w2)]

and when ¥ (1) # ¥o(t), V¥ (z,7') =0,

and the two processes are asymptotically independent. Here, the
independence between two stochastic processes is defined by
that all finite-dimensional marginals of the two processes are
independent of each other.
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3. Inference on Threshold Parameters

Asmentioned in Remark 1, the inference on regression parame-
ters can be done as if ¥, (t) were known. Thus, we focus on the
inference for threshold parameters. The threshold parameters
¥ (7) play a central role for determining the single index and
therefore the subgroup with heterogeneous effects. Inference
on ¥ (t) could help to identify important threshold variables
and determine the characteristics of the subgroup. We propose
two procedures, including a Wald-type method and a mixed-
bootstrap method, together with a step for finite sample bias
correction to improve finite sample performance.

3.1. Wald-type Method

Based on the asymptotic normality in Theorem 2, a Wald-type
method can be constructed for inference on ¥ (t) by directly
estimating the asymptotic covariance matrix, denoted as

Q') V()Y (1)L

From the proof for Lemmas 1 and 4(c) in the supplement, we
obtain the following asymptotic representations of V¥ () and

Q¥ (v):

V¥ (2) = hyE [{r — 1(%(x) < 0))’

A(r) =

q(r))} x %

~T /
{ Ul B

:| + Op(l)

T
Q¥ (1) =E[f6mm<r>){ T%(r)G/(q}(f))} xzxz}

100

_E[{f—Fe(,)(A(r»}zTao(r)G”( )

+op(1),
where eG(7) = y — ZTﬂO(‘L') - ~Tﬁo(t)G(%Z)) and A(t) =
2T60(t) {G(%) —I(q(7) > O)}. Thus, we can consistently

estimate both V¥ (1) and QY (t) by their sample version:

n

VV(r) = h_:; [t —IGF(r) < 0)}2
ST} , qi(T) xz:’x_zTi
{ 6()G(hn )} a
Q' (0) = 2i(0)| <l>{ (e >G/(q’h( ))} xz,;xz’

_% ; {1: - ﬁe(f)(Ai(TﬂW)}

gi(7) ) XX,

TS /"
2 8(1)G
xz; 8(7)G( n )T

where I, is an appropriately chosen bandwidth, Fu)(t|w) =
nm I3 I@i(T) < B), éiG(r), ¢i(t) and A;(7) are calculated by
plugging in the parameter estimation. Following Powell (1986),
when I, — 0, and nlﬁ — 00, we can verify that f\(r) =
QY ()WY (){QY (r)} ! is consistent with A (7).
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The asymptotic covariance matrix depends on a number of
quantities, including the conditional density of e(t), the kernel
function G(-), as well as the bandwidth k,,. Our numerical study
and previous research on quantile regression showed that the
Wald-type method could be unstable in finite samples and it
is sensitive to the choice of bandwidth used in estimating the
conditional density function; see Kocherginsky et al. (2005) and
Wang and Zhu (2011). Based on the theoretical properties of the
smoothed estimator, we propose a new bootstrap procedure as
an alternative inference method in the next subsection.

3.2. Mixed-bootstrap Method

Thanks to the asymptotic normality of the smoothed estima-
tor, we can construct an alternative and consistent inference
approach based on the bootstrap, which avoids direct estima-
tion of the asymptotic covariance matrix of ¥ (7). However,
the standard bootstrap method is computationally demanding,
and even more so in our setup, as we need to perform profile
estimation and solve quantile minimization multiple times for
each resampling. To reduce the computational burden, we pro-
pose a new mixed-bootstrap procedure by using the theoretical
properties of the smoothed estimator. Specifically, based on the
Bahadur representation of the smoothed estimator, given in
Equation (A.6) in the appendix, we first perturb the score func-
tions to estimate the regression coefficients, which requires no
optimization but only a summation calculation, and then update
the threshold parameters. This procedure avoids optimizing
the profiled objective function and thus is computationally
efficient.
The detailed mixed-bootstrap procedure is as follows:

o Step 1: Obtain the resampled counterpart of 0(7) as follows:
o B\ , 1y A0\ —1
0 (r)=1|% + - i—1Q’(7)
(66 -2
{r = 1@ (r) < )}z
(r —1GS (D) < 0GR )

where {g;}_, are iid nonnegative random weights with mean
and variance both equal to one. Multiplying the score func-
tions by (g; — 1) guarantees that the mean of @*(t) condi-
tional on the data is 9(1). The consistent estimation of Q7 (1)
can be obtained by

Q) =

1 n
I(|e; I,
Mﬂ; (1&:(v)] < L)

ziz! ziZ 1(gi(1) > 0)
227 1@Gi(1) > 0) 22 1@Gi(r) > 0))

where [, — 0and /nl, — o0o. The estimation Q‘Q (t) can be
obtained by the function “summary.rq” from the R package
quantreg; see page 81 of Koenker (2005) for the detailed
implementation.

o Step 2: Given é*(r) = (ii*(t)T, 3*(I)T)T, calculate

R 1< R
¥ (1) = argmin — Zgipr {yi - Z,-Tﬂ*(f)
¥(v) n i=1

. T
_ 2?3*(1)G(M)}.

hy

The 1}*(1) is obtained by minimizing the weighted quantile
loss function with 8" (7) plugged in. Since the optimization is
only with respect to ¥ (1), it is simpler than that in the pro-
filed estimation in Equation (4). Any existing optimization
algorithms including those designed for nonlinear quantile
regression in Koenker and Park (1996), Hunter and Lange
(2000) can be used in Step 2.

o Step 3: Repeat Steps 1 and 2 for B times and calculate

E® () = \/I’lh,;l{l?/*(‘[) — &(r)} forb = 1,...,B.
The sample covariance of {E(l’)(f)}f:1 can then be used

to approximate the covariance of v/nh, ' {@ﬁ(r) — 1//0(t)].
Based on the asymptotic normality, we can construct the
100(1 — )% confidence interval (CI) for v;(t), the jth
component of ¥ (7), by

- hy .
vi(t) £ ~, OiA—a/2

where z1_q/ is the (1 — «/2)th quantile of standard normal
distribution and 6; is the bootstrap standard deviation of

Vnhy 'i(o).

The following theorem justifies that the asymptotic covari-
ance of the mixed-bootstrap estimator is the same as that of the
smoothed estimator. We need to note that the mixed-bootstrap
procedure relies on the asymptotic normality and the Bahadur
representation of the smoothed estimator, and thus cannot be
applied to the unsmoothed estimator.

Theorem 4. Suppose that Model (2) at 7 € (0, 1), and Assump-
tions 1 and 2 hold. In addition, {g;}_ ; are iid weights with mean
and variance both equal to one and sup;., Igil < M almost
surely. Then conditional on {(y;, w;)}};, we have

\/hz{wﬁ*m —¥@} 5 NO.Q' @V Q)7

3.3. Bias-corrected Confidence Interval

Both the Wald-type and mixed-bootstrap methods rely on the
asymptotic normality of the smoothed estimator ¥ (7). As dis-
cussed in Remark 2, the smoothing facilitates the convenient
inference at the expense of slower convergence rate and bias. A
smaller bandwidth &, leads to smaller bias but further deviation
from the normality. Although the bias is asymptotically ignor-
able, in finite samples this may affect the coverage of confidence
intervals. To further improve the finite sample performance, we
propose a bias correction method for confidence intervals of

V(7).



By the Bahadur representation of the smoothed estimator
given in Equation (A.7) in the appendix, the bias of ¥ (7) —
Yo(r)is

d(v) = h, QY ((0); b)) 'E{f¥ (oo (x)s ) }

where fV(w,no(t)shy) = [r —I{e(r) < A(r)}]Z"8(r)
G (q(r)h; Hxht. The matrix QY (yy(t);hy) ™!, defined
explicitly in Equation (A.5) in the appendix and abbreviated as
(Q¥)™1, can be estimated by the relationship

h2
Ar) = ﬁ(ow)—lcOv{f‘/’ (w, 0o(T)s ) HQV) T,

where A(t) = var Iwﬁ(r) — 1#0(1:)} can be estimated by
the mixed-bootstrap procedure, which is more stable than the
Wald-type method. Replacing the mean and covariance of f¥
by their sample counterparts, we can obtain the estimated bias,
denoted as a(r).

Then the bias-corrected 100(1 — )% confidence interval of
¥j(t) can be constructed as follows:

. n hy . . Al hy
|:1ﬂj(f) - d;r(f) - \/;sza/z, Yi(t) —d; (v) + \/;sza/z}

where cAljJr(r) = max {Zij(r),o}, cAlj_(r) = min {le(r),o} and 6;

is the estimated standard deviation of @(t), computed either by
the Wald-type method or the mixed-bootstrap method. Here,
we replace (Aij(t) by (;l;r(t) and ¢Aij7 (1), since when the bias is
small, treating the estimated bias as the true value can cause the
confidence interval to have substantial undercoverage. The idea
here, which is also employed by Qu and Yoon (2015), is to allow
for, but not to enforce, a bias adjustment. By the proof of Lem-
mas 1 and 4 in the supplement, we can show that aj(r) converges
to zero at the rate of h’;,ur2 (K > 1 is defined in Assumption
2(f)), while the term associated with the standard deviation in

the confidence interval converges to zero at the rate of ,/ %”

Therefore, when nh2K*3 — 0, the bias term diminishes faster
than the standard deviation term. So the bias correction will not
affect the asymptotic coverage of the confidence interval.

4. Testing for the Constancy of ¢ () Across t

The Model (2) allows both regression coefhicients and the sub-
group structure to vary with the quantile level 7. In many
applications, however, it is not unusual that the subgroup struc-
ture, determined by the threshold parameters ¥ (), varies little
across quantiles in a certain region. It will then be interesting
to test the constancy of ¥ () across 7. If the test suggests that
¥ (7) is constant, this not only can simplify the interpretation of
the model, but also can help construct more efficient estimation
of the common parameters by combining information across
quantiles, for instance, then by adopting the composite quantile
estimation idea as in Zhang, Wang, and Zhu (2017) and Su and
Xu (2019). Based on the asymptotic properties in Theorem 3,
we propose methods for testing the constancy of ¥ (t) across t
for two cases when the common parameter ¥, is known or left
unspecified.
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4.1. Constancy of Y (t)—Known ¥
We first consider testing the following hypotheses:

Hy:¢¥(t) =9, forall 7€.7, vs
Hy:3t" € T st ¥ (T) # ¥y

where the null value ¥ is assumed to be known.

We focus on the process v,(-) = v/ nhy, ! {1/}(') — 1,00], and

construct the Kolmogorov-Smirnov (KS) type statistic as

Su = sup [vu(®l3r),
e

where A (7) can be any consistent estimation of var{v,(7)} and

v (T) ”i\(r) = v,(t1)TA(x)vu(7). The following theorem states

the limiting distribution of the KS statistic under the null and the

alternative hypotheses.

Theorem 5. Under the assumptions in Theorem 3, (i) if Hp is

true, we have S, i sup,c 7 |1Bp(7)l, where By (-) is a stan-
dard p-dimensional Brownian bridge with E{B,(t)B,(t")’} =
(min(z, ') — 77/)I, and p is the dimension of ¥ (7); (ii) if H is

d
true, we have S, — oo.

In our implementation, we also perform a bias correction
and modify v,(-) as v,(-) = +/ nhy, ! {1[)(-) — 3(~) — 1#0}. As
before we calculate the test statistic and critical value by adapt-

ing the mixed-bootstrap method to avoid direct estimation of
A(7). Specifically, in each resampling, we calculate E®)(7) =

N {fb*(r) - fh(r)} for all T € .7 with the same set of

random weights. Then A (7) is estimated by the sample variance
of {E(l’)(r)}f:1 for all T € 7. The critical value is then

calculated by the sample percentile of bootstrap statistics S;b) =
SUp,c o ||E(b)(r)||[\(r), b = 1,...,B. No bias correction is

needed in the mixed-bootstrap statistic since the bias of E® (1)
conditional on the data is zero by the construction. It is practical
to use a grid of equally spaced quantiles {zy,...,7n} € 7 to
approximate the entire process. Our numerical results show that
the test is insensitive to the choice of m as long as the mesh of
the quantile grid is not too large.

4.2. Constancy of ¥ (t)—Unknown g

In general, ¥, is unknown. In this case, we consider the
hypotheses

Hy : there exists ¥ s.t. ¥ () = ¥ forallt € T vs.

Hj : thereisno ¥ s.t. ¥(v) = ¢y forallt € 7.

Note that in this setup, ¥ (7) is a function of 7, and ¥, represents
the unknown nuisance parameter; both have to be estimated.
The unknown parameters always jeopardize the distribution-
free character of classical tests, which is called the “Durbin
problem”. This problem was first posed in Durbin (1973) for
parametric empirical process. There are two ways to overcome
the problem in the literature. One solution is to use the Khmal-
adze martingale transformation, exemplified by Koenker and
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Xiao (2002). Another solution is to use a resampling procedure,
like that used by Chernozhukov and Hansen (2006). The sim-
ulation studies in Chernozhukov and Hansen (2006) suggested
that resampling leads to an accurate size and better power than
Khmaladzation.

We propose a different solution. As commented in Remark 2,
the unsmoothed estimator for threshold parameters would con-
verge at a faster rate than the smoothed estimator. Motivated by
this, we could replace the unknown ¥ in v,(-) by a consistent
unsmoothed estimator llvf, and define

V() =\l P () —d() — ¥}, Sy = sup 71Ol

TE.

The estimator 1/Vl can be taken as the unsmoothed estimator
obtained at any quantile level 7 € 7. In practice, to achieve
more estimation stability, we propose to estimate ¥ by the
unsmoothed composite quantile estimator obtained under Hy,
defined as

¥ = argminz Z Py {yi — z{ B(z)

i=1 j=1
—Z] 8(t)I(x1i + X390 > 0)} . (5)

Since ¥ converges at a faster rate than the smoothed estimator
¥ (-), we can show that v,(-) and S, converge to the same
asymptotic distributions as v,(-) = +/nh, 1(1/AI(~) — vy arld
Sy = sup,cq ||Vn(T)||[\(T) under Hy. The critical value of S,
can then be calculated by following the same procedure as in
Section 4.1.

5. Simulation Study

We consider the following data-generating process:
y=2"B +Z'8I{x; + x ¢ + dO~1(U) > 0} + ®~1(U), (6)

where U ~ Uniform(0,1) and d > 0. When Z§ > 0, the
generating function for y is strictly increasing in U. Thus, the
tth conditional quantile of y is

Q(tIw) = 2" B +Z8I{x1 +xL ¥ +dP (1) > 0} + (7).
7)

We consider the following cases:

Case 1: z = (1,z1,2)T,Z = (z1,22)T with z; ~ exp(1) and

2, ~ Uniform(0,1). x; ~ N(0,1) and x, = (1,x2)7, where

xs ~N@LD.B=1,1,D08 =1, DI, ¢ = (—1,1)7 and

d=0.

Case 2: the same with Case 1 except that d = 0.1.

Under Model (6), the threshold parameters are constant
across quantiles when d = 0, while they are more complicated
and quantile-specific when d > 0. For Case 2, the true condi-
tional mean function is:

E(ylw) =z'B +Z78{1 — ®(10 — 10x; — 10x3)}.

Therefore, for Case 2, the covariates (z1,2z;) have threshold
effects on the rth quantile of Y but not on the mean. For such
scenarios, the proposed single-index threshold quantile regres-
sion can capture the heterogeneous effects of covariates that may

be overlooked by mean regression. Throughout our numerical
studies, we let G(x) = ®(x) + x¢(x) be the kernel function
used in the smoothed estimator. We consider four sample sizes
n = 200,500, 1000, and 2000, and repeat the simulation 1000
times for each scenario.

5.1. Estimation With Different Bandwidths

The proposed smoothed estimator depends on the bandwidth
h,. Based on the theoretical conditions on h, in Assump-
tions 2(g), We consider the following rule of thumb h, =
cslog(n)/+/n, where c is a constant and s is the standard devi-
ation of x,¥ () + x1. In practice, s can be estimated by the
sample standard deviation of xﬂ}(l’) + x1 with 1/VI(r) as the
unsmoothed estimator. We assess the sensitivity of V(1) against
the bandwidth by varying c.

Figure 1 shows the bias and standard deviation of 1&0(1’)
(the intercept in the thresholding) and 1@1(r) (the threshold
parameter for x;) at T = 0.5. As we expect, smaller bandwidth
produces smaller bias and standard deviation, which is consis-
tent with the discussion in Remark 3. Furthermore, Figure 2
presents the Normal Q-Q plots of tﬁo(r) and lﬂl(t) att = 0.5
for n = 1000. Results confirm that the empirical distribution
of threshold parameter estimation may deviate from normal
distribution when the bandwidth approaches zero. The devia-
tion is more obvious for Case 1. As a result, if we are interested
in statistical inference based on the Gaussian approximation, a
larger bandwidth is preferred, such as ¢ € [0.5, 2].

5.2. Inference for v (t) at a Given Quantile Level

We first compare the Wald-type and mixed-bootstrap methods
for estimating the standard deviation (SD) of 1/}0(1) and @1 (7).
As suggested in Section 5.1, we focus on the bandwidth h, =
cs log(n)/ﬁ with ¢ = 0.5,1, and 2 as such choices lead to
decent Gaussian approximation. For the Wald-type method, we
choose I, = 1.8436n1/°, where & is the sample deviation of
{€;}_,. For the mixed-bootstrap method, the random weights
{gi}’_, are generated from the Rademacher distribution, which
takes values 0 and 2, each with probability 0.5, and 1000 boot-
strap replicates are then generated. We conduct simulations for
T =0.5and 7 =0.7.

Table 1 report the means of estimated standard deviations
(SD) of 1}0(1) and l/A/l(‘L'). The Monte Carlo SD can serve as a
gold standard. We observe that the estimated SD by the mixed-
bootstrap is very close to the Monte Carlo SD, while the Wald-
type method shows unstable performance for Case 2.

Table 2 report the coverage probabilities of the 95% confi-
dence intervals for ¥((7) and v;(t) obtained from different
methods. The coverage probability of the Wald-type CI is gen-
erally low, especially for Case 2, partly due to the unstable SD
estimation. The mixed-bootstrap method performs better, while
in some cases the CIs have slight undercoverage because of the
bias due to smoothing. This undercoverage is more visible for
¢ = 2, since the larger bandwidth produces larger bias. Over-
all, the bias correction leads to improvement to both mixed-
bootstrap and Wald-type confidence intervals. We suggest to use
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Vg, Case 1 Yo, Case 1 Yo, Case 2 Yo, Case 2

vy, Case 1 vy, Case 2

Figure 1. Bias and standard deviation (SD) of the smoothed estimator of the threshold parameters in Cases 1-2 at = 0.5 with bandwidth h, = cslog(n)/+/n, where
¢ = 0 represents the unsmoothed estimation. Solid: n = 200; dashed: n = 500; dotted: n = 1000; dash-dot: n = 2000.

Table 1. Mean of estimated standard deviations for IZI()(T) and \/71 (t) in Cases 1-2 by the Wald-type (Wald) and mixed-bootstrap (MB) methods h, = cslog(n)/+/n. The
MC denotes the Monte Carlo standard deviation and serves as the gold standard. All quantities in the table are multiplied by 10.

=05

n =200 n =500 n = 1000 n = 2000
Case 4 MC MB Wald MC MB Wald MC MB Wald MC MB Wald
1 2 Yo 31 3.02 3.15 1.55 1.49 1.47 0.90 0.92 0.85 0.55 0.55 0.50
v 2.50 2.61 2.76 1.24 1.26 1.27 0.73 0.77 0.72 0.45 0.46 0.41
1 Yo 2.04 2.06 3.12 1.06 1.11 1.1 0.63 0.67 0.63 0.39 0.41 0.36
v 1.69 1.78 2.86 0.85 0.94 0.97 0.52 0.57 0.53 0.32 0.34 0.30
0.5 Yo 143 1.48 277 0.75 0.83 1.49 0.46 0.52 0.54 0.29 0.32 0.29
¥ 1.26 1.29 2.32 0.63 0.72 1.26 0.39 0.45 0.48 0.24 0.27 0.25
2 2 Yo 342 34 3.45 1.77 1.69 1.55 1.04 1.07 091 0.67 0.68 0.53
v 2.78 2.99 3.02 1.41 143 133 0.86 0.90 0.77 0.55 0.56 0.44
1 Yo 234 2.36 4.22 1.37 135 1.20 0.85 0.90 0.70 0.56 0.59 0.40
v 2.03 2.05 397 1.09 1.14 1.04 0.70 0.76 0.59 0.46 0.49 0.34
0.5 Yo 1.82 1.75 7.15 1.17 1.10 133 0.79 0.79 0.69 0.54 0.56 0.38
v 1.54 1.52 4.67 0.95 0.94 1.26 0.64 0.66 0.61 0.45 0.47 0.37

T =07

n =200 n =500 n = 1000 n = 2000
Case 4 MC MB Wald MC MB Wald MC MB Wald MC MB Wald
1 2 Yo 3.24 31 3.69 1.52 1.52 1.54 091 0.95 0.90 0.58 0.58 0.52
v 2.69 2.79 3.35 1.27 132 135 0.75 0.80 0.77 0.47 0.49 0.44
1 Yo 2.10 2.13 2.98 1.10 1.14 1.19 0.65 0.70 0.66 0.40 0.43 0.39
v 1.79 1.85 2.58 091 0.99 1.04 0.55 0.61 0.57 0.34 0.36 0.33
0.5 Yo 1.54 1.54 2.71 0.82 0.86 1.1 0.48 0.54 0.55 0.30 0.33 0.31
¥ 1.36 133 2.54 0.67 0.75 1.01 0.40 0.47 0.48 0.25 0.28 0.27
2 2 Yo 3.44 343 3.78 1.74 1.71 1.62 1.07 1.10 0.94 0.69 0.70 0.54
A 2.95 3.15 3.49 1.46 1.50 143 0.87 0.95 0.81 0.57 0.60 0.46
1 Yo 2.40 2.41 3.43 1.37 137 1.31 0.87 0.92 0.74 0.59 0.62 0.42
v 2.10 2.14 3.01 1.13 1.19 1.14 0.75 0.79 0.65 0.49 0.53 0.36
0.5 Yo 1.96 1.79 7.70 1.17 1.12 1.44 0.80 0.80 0.63 0.55 0.56 0.38

Y 1.69 1.58 9.45 0.96 0.97 1.42 0.68 0.69 0.58 0.46 0.48 0.34
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Figure 2. Normal Q-Q plots for the smoothed estimator of the threshold parameters in Cases 1-2 at T = 0.5 against the bandwidth, where h, = cslog(n)//nwithc = 0
representing the unsmoothed estimator. The upper two rows are for Case 1, and the bottom two rows are for Case 2.

the bias-corrected mixed-bootstrap CI, since its coverage prob-
ability results are more stable and less sensitive to the bandwidth
choice across different scenarios. Please refer to the Supplemen-
tary Material for additional simulation results, including cases
with more threshold variables, and the comparison with the
likelihood-ratio-based inference method in Su and Xu (2019),
and with the mean inference method in Seo and Linton (2007).

5.3. Testing the Constancy of ¥ (t) Across ©

In this subsection, we focus on testing whether ¥ (7) is constant
across 7. We generate data as in Case 1 and increase d from 0 to
0.7. When d = 0, the threshold parameters ¥(t) = (-1, DT
are constant across T € (0, 1), corresponding to the null model.
Whend > 0, ¥y(1) = (=1 + dd~ (1), 1) varies with 7, and
the larger value of d is associated with more deviation from the
null hypothesis.

We assess the Type I error and power of the two proposed
KS-type tests: KS; and KS;, which assume known and unknown
¥, respectively. We calculate test statistics based on two sets
of quantile grids: m = 17 and m = 33 quantiles equally

spaced between [0.1, 0.9]. For both methods, the critical values
are obtained by using the mixed-bootstrap with 1000 bootstrap
samples. When still using h, = cslog(n)/+/n withc = 0.5,1,2,
we found that ¢ = 1, 0.5 tend to be somewhat conservative. The
rejection percentages at the 5% significance level with ¢ = 2 are
summarized in Table 3. The two tests give similar performance:
the sizes are well controlled under the null hypothesis, and the
power increases gradually to one as d increases. In addition,
the two tests seem to be insensitive to the number of quantile
levels m used to calculate the statistics; our experience suggests
that it is often sufficient to use quantile grids with the mesh less
than 0.05.

6. An Application to the Executive Compensation

The rapid rise in executive compensation from the mid-1980s
until 2005 has sparked an intense debate and investigation
regarding the nature of the pay-setting process; see Bertrand and
Mullainathan (2000), Garvey and Milbourn (2006), Frydman
and Jenter (2010), and Edmans et al. (2017). Compensation is
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Table 2. Coverage percentages of the 95% confidence intervals for /o (7) and 1 (7) in Cases 1-2 by the Wald-type (Wald), Wald-type with bias correction (WBC), mixed-
bootstrap (MB) and mixed-Bootstrap with bias correction (BBC), where hp = cslog(n)//n.

T =05

n =200 n =500 n = 1000 n = 2000
Case 4 Wald  WBC MB BBC Wald WBC MB BBC Wald WBC MB BBC Wald WBC MB BBC
1 2 Yo 93.6 96.4 924 949 91.0 94.7 90.5 942 91.0 95.5 916 956 90.8 95.6 910 953
¥ 95.5 97.2 940 96.1 92.6 96.1 924 957 92.5 96.1 929 972 90.1 95.3 90.3 965
1 Yo 93.5 95.1 934 946 93.6 94.5 95.1 96.3 93.5 94.8 944 956 90.9 93.5 939 957
¥ 94.1 953 943 952 94.2 95.9 96.0 96.8 93.8 95.5 95.7 965 91.2 94.6 950 96.2
05 Yo 91.7 929 934 938 93.2 94.9 96.5 96.8 92.2 94.5 9.5 972 90.5 92.6 952  96.1
¥ 91.4 92.5 934 943 94.4 95.7 973 975 92.9 94.5 976 979 91.3 93.1 956 96.8
2 2 Yo 93.1 95.7 92.7 949 89.7 94.6 90.7 939 90.0 94.8 918 950 86.1 93.0 922 955
¥ 93.7 96.2 945 96.6 91.8 94.9 91.6 949 90.3 95.6 929 96.8 85.7 92.6 914 955
1 Yo 93.1 94.4 929 944 90.6 92.7 93.3 949 88.2 91.3 946  96.2 83.7 88.1 942  96.2
¥ 93.2 94.2 933 947 91.6 93.7 947 957 89.0 91.4 949  96.1 84.1 89.6 949 957
05 Yo 87.0 87.9 90.3 91.1 84.0 86.3 929 942 81.9 85.2 940 950 75.0 81.1 94.1 95.2
¥ 88.9 89.9 915 921 86.7 89.3 93.5 94.0 85.2 87.2 938 948 75.8 82.0 956  96.3

=07

n =200 n =500 n = 1000 n = 2000
Case C Wald  WBC MB BBC Wald WBC MB BBC Wald WBC MB BBC Wald WBC MB BBC
1 2 Yo 90.7 93.6 90.6  93.2 924 94.6 923 951 93.7 96.7 938 963 90.1 94.4 923 956
¥ 92.8 95.9 926  95.1 93.7 97.1 91.8  96.9 923 96.0 93.0 972 90.8 96.3 924 965
1 Yo 92.2 93.9 922 934 90.8 92.9 946 959 92.5 95.1 954 96.8 90.9 94.9 933 958
v 91.7 93.4 93.7 950 92.6 94.1 953 970 93.6 95.9 954  96.5 91.9 93.9 948  96.5
05 Yo 90.8 92.0 922 931 90.9 92.9 955 963 91.6 93.7 955 964 90.7 93.9 948 965
Y 90.5 92.0 93.8 944 92.0 93.2 96.3  96.5 92.6 94.2 9.4 97.0 92.2 94.1 9.4 972
2 2 Yo 89.8 92.6 928 944 91.5 94.2 923 949 90.0 94.9 928 954 88.9 93.3 928 957
2 92.1 95.5 93.6  95.1 924 964 928 964 89.6 95.3 935 96.1 87.8 93.8 924 965
1 Yo 89.5 913 91.2 930 90.0 92.6 934 946 89.7 92.6 950 96.1 83.5 88.9 940 953
¥ 91.2 92.7 93.3 947 90.9 92.7 948 958 88.6 92.2 936 952 84.8 89.0 948 958
05 Yo 85.0 86.7 89.2  90.7 86.6 894 918 933 83.7 88.2 93.1 94.0 79.0 84.5 936 946
¥ 86.5 88.3 91.7 926 88.2 90.1 93.5 950 83.2 86.6 946 956 79.9 84.7 949 957

Table 3. Rejection percentages of two proposed tests for testing the constancy of ¥ (z) across T € [0.1,0.9] with h, = 2slog(n)/+/n. KS1 and KS; are tests assuming
known and unknown ¥, respectively. m is the number of equally spaced quantiles in [0.1,0.9]. The nominal level is 5%.

d=0 d =0.05 d=0.1
m=17 m =33 m=17 m =33 m=17 m =33
n KSq KS; KSq KS; KSq KS; KSq KS; KS, KS; KSq KS;
1000 43 4.6 39 35 8.6 7.3 7.6 5.8 154 13.6 144 13.3
2000 5.2 5.1 4.5 46 14.1 13.5 13.1 124 39.9 37.7 36.5 35.1
d=02 d=03 d=04
m=17 m =33 m=17 m =33 m=17 m =33
n KSq KS; KSq KS; KSq KS; KSq KS; KS, KS; KSq KS;
1000 40.7 375 37.7 36.0 63.2 63.0 60.6 584 773 774 74.2 75.4
2000 82.1 80.1 79.6 783 94.6 95.4 95.1 94.7 98.9 98.6 98.4 98.0
d=105 d=106 d=07
m=17 m =33 m=17 m =33 m=17 m =33
n KSq KS; KSq KS; KSq KS; KSq KS; KS; KS; KSq KS;
1000 85.7 85.5 83.6 83.3 90.7 89.4 88.0 86.9 92.0 91.6 88.8 89.4
2000 99.7 99.4 99.4 99.1 99.9 99.5 99.7 99.5 99.9 99.6 99.7 99.6

generally decided at the end of each fiscal year by the compen-
sation committee of the board of directors, at which time they
already know whether market performance is beneficial or not
for the firm (Garvey and Milbourn 2006).

Some researchers such as Bertrand and Mullainathan (2001)
found that executives can benefit from luck. Luck represents the

market performance, that is, changes in the firm performance
that are beyond the chief executive officer’s control. Further,
Garvey and Milbourn (2006) found that the effect of luck on
compensation is significantly larger when luck is up (luck>0)
than when luck is down (luck<0). They refer to this phenomenon
as “the asymmetry in pay for luck”
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We will apply the proposed methods to an executive com-
pensation data to study the heterogeneous effects of predic-
tors on compensation. The executive’s compensation data used
in this article were drawn from Standard and Poor’s Execu-
Comp, and the firm’s return data were drawn from the Cen-
ter for Research in Security Prices (CRSP), available from
https://wrds-www.wharton.upenn.edu/users/tou/. Our sample
period covers the years 1993-2005, when the data was available.
In total there are in total 15837 observations for 2508 firms and
3709 executives. The response y is defined as the change in the
logarithm of total compensation. We consider two predictors,
luck and skill, which are determined as follows. First, the firm
performance (measured by the firm’s one-year stock return)
is regressed on equal-weighted and value-weighted industry
returns. Then the predicting value (centered at zero) is taken
to represent luck (i.e., market performance), and the residual is
used to represent skill (i.e., firm-specific performance).

As an exploratory data analysis, we plot in Figure 3 the
estimation results from quantile regression of y on luck or skill
for the subgroups luck > 0 and luck < 0 separately at three
quantiles T = 0.2,0.5, and 0.8. At all three quantiles, the effects
of luck and skill appear to differ in two subgroups, indicating
the “asymmetry in pay for luck” phenomenon. In addition, the
asymmetry patterns tend to vary across quantiles. As pointed
out in Garvey and Milbourn (2006), the asymmetry may not
necessarily occur around the zero value of luck. In addition, as
suggested in Yu and Fan (2020), the threshold may depend on
both luck and the firm size. These motivate us to consider the
following model:

Qy(IL, S, F) = Bo(t) + B1(x)L + B2(7)S (8)
+{81(x)L + 82(x)SHI{L > Yo(T) + Y1 (T)F},

where L is luck, S is skill and F is the standardized firm size,
measured by the market value of the firm in millions of dol-
lars. The model allows us to analyze the heterogeneous effect
of predictors at different quantiles. In addition, the response
distribution appears to be heavy-tailed (Figure 4), so median
regression may be more desirable than mean regression for
analyzing this data.

We fit the model in Equation (9) at 33 equally spaced
quantile levels in [0.1,0.9] by using the smoothed estimation

< -

3

2

0]

Compensation
1

-1

-2

Luck

method. The bandwidth is chosen as h, = $§(1)log(n)/+/n,
where $(t) is the interquantile range of lelvf(t), and w}(t)
is the unsmoothed estimator. Since the firm size is heavily
skewed, we use the interquantile range to get a robust estimate
of the standard deviation. Figure 5 presents the estimates of
81(7),82(7), Yo(t),¥1(7) across T € [0.1,0.9] along with the
95% pointwise confidence bands. The confidence intervals for
81(1), 82(7) are constructed by inverting the rank score test in
Koenker (2005) with estimated threshold parameters plugged
in. The confidence intervals for ¥o(7), ¥1(7) are constructed by
the mixed-bootstrap method with bias correction.

Some interesting findings emerge from Figure 5. First, results
suggest that executives in the upper quantiles (r > 0.65) enjoy
the enhanced “pay for luck;” while those at the lower quantiles
suffer from reduced “pay for luck” One possible explanation is
that executives at the right tail of the compensation distribution
may have more influence over their pay. As a result, they can
insulate from bad luck and enjoy more rewards from good luck.
On the other hand, executives at lower quantiles are likely to be
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Figure 4. Kernel density estimation of the marginal response distribution in the
compensation data.
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Figure 3. The estimated quantile regression lines by regressing the compensation on luck (left) or skill (right) for the two subgroups with luck>0 (blue) and /uck<0 (red)

separately, at the quantile levels t=0.2, 0.5, and 0.8.
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Figure 5. The estimation for the regression coefficients of luck and skill, (51(t), §2()), and the intercept and slope coefficient of firm size in the thresholding, (o (7),
Y1 (1)), across © € [0.1,0.9]. The shared areas are the corresponding 95% pointwise confidence bands.

more risk-averse and have lower incentive contracts, exempli-
fied by Becker (2006). Thus, these executives cannot enjoy more
when the market is bull.

Second, Figure 5 suggests the threshold parameters tend
to be common in three quantile regions. Thus, we apply the
proposed KS-type test to test the constancy of ¥ (7) across T €
[0.1,0.6], [0.65,0.75], [0.8,0.85] separately. Following the sug-
gestion from the simulation study, we calculate the KS statistic
based on equally distanced grids from the quantile region with
meth equals 0.025, and let h,, = 25log(n)//n, where s = 0.32
is the interquantile range of xTY (1) calculated at T = 0.5.
The resulting p-values are 0.61, 0.55, 0.41, suggesting that the
thresholds do not vary significantly within each of the three
quantile regions. On the other hand, testing the constancy of
¥ (t) across T € [0.1,0.9] gives the p-value of zero, indicating
that the thresholds vary significantly across this wider region.

We now use the piecewise constancy information and obtain
the composite quantile estimators for ¥ (t) within each quantile
region, using the same idea as in Equation (5). The result-
ing composite estimations are (0.07,0.08), (0.49, —1.28), and
(—0.51, —4.79) within [0.1,0.6], [0.65,0.75], and [0.8,0.85],
respectively. The result implies that a larger firm size would
reduce the threshold of enhanced “pay for luck” when 7 >

0.65, while it has a minimal effect on the threshold for lower
quantiles, which is consistent with the observations from Fig-
ure 5. Bertrand and Mullainathan (2001) argued that larger
firms typically have fewer large shareholders due to the more
expensive shares. Thus, executives in larger firms can have more
influence over their pay. This point was also noted in Garvey and
Milbourn (2006).

7. Discussion

In this article, we consider single-index thresholding in quantile
regression. This model completes the subgroup literature by
characterizing subgroups with thresholding. Technically, the
additional nonconstant variables in thresholding pose more
challenges to the statistical inference of threshold parameters.
We propose a smoothed estimator for convenient statistical
inference both for a single quantile and for the quantile process.
The proposed profile estimation algorithm works well with
a modest number of threshold variables. However, when the
number of candidate threshold variables is large, more efficient
algorithms are needed to conduct estimation and variable selec-
tion. We develop tests to assess the constancy of the vector
of threshold parameters ¥ (7) across t. The proposed method
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can be directly extended to test the constancy of a subset of
¥ (7) across 7. If the test fails to reject the null hypothesis, a
more efficient composite quantile estimation can be used to
estimate the common parameter by pooling information across
quantiles. We leave the study of theoretical properties of the
composite quantile estimator and related inference to the future
work.

For the inference of threshold parameters, an interesting
question is whether a bootstrap method can be constructed
directly for the nonsmoothed estimator. The standard bootstrap
method was proven to be inconsistent for the threshold mean
regression (Yu 2014). Common solutions to remedy the lim-
itation of standard bootstrap include the smoothed bootstrap
and the subsampling. We leave it as a future topic to investigate
the possibility of constructing valid bootstrap methods for the
nonsmoothed estimator in the single-index threshold quantile
regression framework.

While the proposed methods work for models with multiple
threshold variables, the computation could be challenging when
the dimension of threshold variables is high. To accommo-
date high-dimensional covariates, one possible solution is to
adapt the path-following algorithm in the recent article Feng,
Ning and Zhao (2019) that is developed for binary threshold
regression. The computational and statistical guarantees of this
algorithm are largely unknown and require more careful inves-
tigation.

Appendix

The appendix includes the proof of Theorem 2. We relegate other tech-
nical proofs in the online supplement. Hereafter, every convergence is
as n — oo and the integral [ is taken over the whole space unless
specified otherwise. Denote P,,f = & >, fi and Guf = /n(Pyf —
Ef). Throughout the proof of Theorem 2, we omit the argument (7)
in notation n(t), (1), §(7), ¥ (), q(r) = x1 + szqIfO(r) when no
confusion is caused.

A.1. Proof of Theorem 2

First define A(n; hn) = 27 (B — Bo(1)) + 278G [hn (x1 + x1 w)]

ETSO(I)I(q > 0). Then denote fg(w,n;hn) =
T

{fﬂ(‘%ﬂ;hn)T,fa(W,ﬂ;hn)T} where

fPw,nshn) = [t — I{e(r) < A hn))] z and

Powhy = [r—Te = Awsh)NE6 {hr' @ +xTw).
Denote

fronmhn) = [t = He@ = AG: )N Z86 [y + 2T
xzh,_ll. By the computational properties of the quantile regression

estimator, see Theorem 3.3 in Koenker and Bassett (1978), we have
that with Assumption 2(a)

Puf® (w,(2)s hn) = Op(n™ ),
Puf (0, (0)s hn) = Op(n™ ', ).
Thus, we have
12 f? w0 ()i ) + B0 i) | + 15 = 0p(n7),
(A1)
n Y 2Guf ¥ (w,mo(2)s hn) + E {f‘”(w,ﬁ;hn)} 1Y = 0p(n~"hy Yy,
(A2)

where we denote ]IZ =n1/2 [an9 (w, s hy) — an9 (w, o (7); hn)]
1=V Gaf ¥ wais ) = Guf ¥ (w,m0(@)s )
Expanding E {f19 (w, f);hn)} in (A.1) around 5((r) and applying

and similarly ]Inv/ =

Lemma 4(d), we have

Paf? w19 (D) = Q (no(2)s ) {8 — B0(0)}
v - '/fo(f)

(A3)

HG

n

fEpeor,

+hn QY (o ()3 hn)} 2
1 N
+0p(— v [16 —00(D)|* v

Expanding E {f'/f (w, f;;hn)} in Equation (A.2) around ny(r) and
applying Lemma 4(d), we have

Puf? o (@) = Q@Y (o) {8 — 00(0) (a4)

Q@ (o) ) TP ‘”"(” .4

+Op( v I8 = 80D v HWH%
where

Q (no()shy) =

E{f s}

3(0) n=ny(x)’
o .
QY (ny()sha) = w) Effonmh}
el
v .
Qo = 5 s B o} (49)

With  Puffw.mo(0)shy) = Op(n™/2) (Lemma 3),
Q@ (mg(v); hn) = O(1) (Lemma 4), Q7Y (g (v); hn) = O(1) (Lemma
4), ]Ifl = op(nfl/z) (Lemma 6) and hn_l {VA/ — 1//0(r)} — 0 (Lemma
5), we have from Equation (A.4) that

~ 1 . U (t) — 2
b~ 80(t) =0y <ﬁ VIF @ —po(ol v | LR D] ) :

Plugging this result into Equation (A.5) together with
PufV (w,09(2)s hn) = Op((nhp)~Y/2) (Lemma 2), Q%Y (ng(v); hn) =
0(1) (Lemma 4), h,QV (o(t);hy) = O(1) (Lemma 4) and
I[f = op((nhn)_l/z) (Lemma 6), we have

(Jt)

(n_l/z V (tn/m)~V2 () ~1). Because

nh% — 00, we get ||é — 00| = Op(n_l/z). Then we can get the
expansions

‘ V- 'ﬁo(r) H _

Thus, § —8o(7) = Op

Vi {b =600} = @ 1o ()s ) T P w,ng (23 )

+ 0p(1), (A.6)
\/hz [¥ = o = Q7 Go@yshn) ™ huPuf (w10 () )

The asymptotic normality then follows from Lemmas 2 and 3.
The asymptotic independence result follows from Lemma 1, where
we prove that the covariance between /nP,f? (w,(t); hy) and
N v (w, 0o (7); hy) are asymptotically negligible.



Supplementary Material

The online supplement contains additional simulation results, and the
proofs for the theorems in the article.
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