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Abstract

The tumor microenvironment is a complex milieu that dictates the growth, invasion,
and metastasis of cancer cells. Both cancer and stromal cells in the tumor tissue encoun-
ter and adapt to a variety of extracellular factors, and subsequently contribute and drive
the progression of the disease to more advanced stages. As the disease progresses, a
small population of cancer cells becomes more invasive through a complex process
known as epithelial-mesenchymal transition, and nearby stromal cells assume a carci-
noma associated fibroblast phenotype characterized by enhanced migration, cell con-
tractility, and matrix secretion with the ability to reorganize extracellular matrices. As
cells transition into more malignant phenotypes their biophysical properties, controlled
by the organization of cytoskeletal proteins, are altered. Actin and its associated proteins
are essential modulators and facilitators of these changes. As the cells respond to the
cues in the microenvironment, actin driven mechanical forces inside and outside the
cells also evolve. Recent advances in biophysical techniques have enabled us to probe
these actin driven changes in cancer and stromal cells and demarcate their role in driv-
ing changes in the microenvironment. Understanding the underlying biophysical
mechanisms that drive cancer progression could provide critical insight on novel ther-
apeutic approaches in the fight against cancer.

1. Overview

The dynamic progression of the tumor microenvironment (TME)
requires the participation of a wide variety of cell types, facilitating a complex
network of chemical and physical crosstalk (Balkwill et al., 2012; Fukumura
and Jain, 2007; Quail and Joyce, 2013; Stroka and Konstantopoulos, 2014;
Whiteside, 2008). A multitude of cell types are recruited to the tumor under
the influence of tumor secreted growth factors and chemokines; this includes
immune cells, endothelial cells, mesenchymal stem cells (MSCs), and fibro-
blasts that play important roles in tumor growth by modulating the immune
response, promoting angiogenesis, and forming the stroma. These cells
crosstalk with cancer cells through direct cell contacts and paracrine signaling,
in order to restructure the TME to one that is permissible for tumor growth
and metastasis. Increased understanding of the molecules in the TME and their
interactions with cancer cells may be critical in identifying novel targets for
therapeutic intervention.

Along with selective influences within the TME, such as extracellular
matrix (ECM) remodeling and abnormal vascularization, cancer cells within
the tumor develop transcriptionally and phenotypically heterogeneous sub-
clones with different levels of malignancy (Marusyk et al., 2012; Meacham
and Morrison, 2013). Although recent technological advancements in
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deep-sequencing at the single-cell level have allowed researchers to obtain
preliminary insights into cancer heterogeneity (Patel et al., 2014; Tirosh
et al., 2016), more studies are needed to probe how this intratumor hetero-
geneity affects the development of chemoresistant subpopulations, cancer
recurrence after therapy, and cancer metastasis (Meacham and Morrison,
2013; Sharma et al., 2010). Heterogeneity in cancer cell phenotypes is
thought to rely on the inherent variation in the rate of stochastic mutations
(Lawson et al., 2018). As genomic instability increases, the cell cycle
becomes more abnormal and cancer cells with diverse malignant character-
istics begin to form, including cells with high metastatic potential (Burrell
et al., 2013; Cifone and Fidler, 1981; Joung et al., 2017). However, cancer
therapy also contributes to intratumor heterogeneity. Single-cell sequencing
analysis demonstrated that there were distinct subpopulations of cancer cells
with different genomic and transcriptomic profiles in Paclitaxel treated cells/
tumors compared to control (D’Alterio et al., 2020; Lee et al., 2014). TME
itself could also confer selective pressures to cancer cells. For instance,
stromal cell-secreted growth factors and cytokines have been found to pro-
foundly influence phenotypic developments in cancer cells by promoting
epithelial to mesenchymal transition (EMT) (Polyak and Weinberg,
2009). In conjunction with ECM remodeling (changes in matrix rigidity),
environmental pressures could largely alter transcriptomic and proteomic
properties, and subsequently, the phenotypic and biophysical properties
of cancer cells (Emon et al., 2018; Hanahan et al., 2011; Lu et al., 2012;
Spill et al., 2016). Lastly, histology studies have consistently reported spatial
heterogeneity in the tumor architecture, which could have profound
implications on cancer biophysics (Ramon y Cajal et al., 2020). This hetero-
geneity includes regional differences in the collagen architecture, level of
vascularization, stromal cell incorporation, and cancer cell phenotype
(Malandrino et al., 2018; Yamauchi et al., 2020). For instance, some regions
of the tumor may have collagen-rich basement membrane; whereas, other
regions have very little collagen (Case et al., 2017; Conklin et al., 2011).
Also, some regions of the tumor are highly vascularized; whereas, other
regions are hypoxic (Fukumura et al., 2010; Petrova et al., 2018). Cells near
the collagen-rich basement membrane may be more migratory; whereas,
cells at the tumor core may be under solid stress, which drives the collective
migration of surrounding cells (Tse et al., 2012). Taken together, cancer is
a highly heterogeneous disease that requires additional characterization,
particularly through the lens of cancer biophysics, to better elucidate drivers
of phenotypic heterogeneity in the tumor.
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This review will highlight recent work from our lab and other labs dem-
onstrating the importance of biophysical properties in identifying aggressive
cell populations. Additionally, we will show how chemical and physical cues
from the TME alter cell shape and cytoskeletal organization to dynamically
affect cell function and cell-cell interactions. The complexity of the TME is
a major barrier in understanding the molecular and mechanical interactions
of cells in the tumor. Quantitative biophysical analysis allows us to probe the
biomechanical properties of cells with an unprecedented level of detail to
enhance our understanding of cancer.

2. Actin cytoskeleton

Cytoskeletal proteins mechanically support the cell structure and spa-
tially organize the contents of the cell (Fletcher and Mullins, 2010). This
group of filamentous proteins is categorized into three main families: actin
microfilaments, microtubules, and intermediate filaments. While microtu-
bules and intermediate filaments contribute significantly to the organiza-
tional integrity of cells, actin and its associated proteins enable cells to
respond and adapt to dynamic changes in the microenvironment. The hier-
archical structure of the actin network is controlled by small Rho GTPases,
myosin motor proteins, and a large group of cytoplasmic mediators known
as actin binding proteins (ABPs) (illustrated in Fig. 1) (Hall, 1998; Parsons
etal., 2010; Winder and Ayscough, 2005). Dynamic changes in the organi-
zation of the cytoskeleton transform cell shape and generate mechanical
forces required for numerous cellular processes, including adhesion, migra-
tion, division, molecular transport, and differentiation (DuFort et al., 2011;
Eyckmans et al., 2011; Humphrey et al., 2014; Iskratsch et al., 2014). The
cytoskeletal network responds dynamically to soluble or mechanical cues
from the tumor ECM and is connected directly to canonical signal transduc-
tion pathways important in cancer (Chin et al., 2016; Huang and Ingber,
2005; Shieh, 2011; Stroka and Konstantopoulos, 2014). The family of
RhoGTPases and ABPs have been strongly implicated in multiple stages
of cancer progression to metastasis (Sahai and Marshall, 2002; Stevenson
et al.,, 2012; SUN et al.,, 2015; Vega and Ridley, 2008). For example,
Arp2/3—a protein facilitating actin branch formation, is overexpressed in
malignant tumors, such as breast carcinomas (Molinie and Gautreau,
2018). Another actin binding protein Filamin that crosslinks actin bundles
and provide mechanical strength has been detected in the blood from met-
astatic breast cancer patients (Yue et al., 2013).
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Fig. 1 (A) Globular actin (G-actin) subunits polymerize to form filamentous actin struc-
ture (F-Actin), which can be organized into multitude of networks to support location
specific function in cells. Actin binding proteins (ABPs) facilitate the assembly of F-Actin
into various forms including bundling, crosslinking, and branching examples shown
here. Additionally, myosin motor proteins can bind between two adjacent bundles of
crosslinked actin structures to generate contractile actin stress fibers. (B) The family
of small Rho-GTPases such as RhoA is converted from a GDP-bound inactive form to
GTP-bound active form by guanine nucleotide exchange factors (GEFs) and the reverse
process of inactivation is mediated by GTPase-activating proteins (GAPs). Activation of
Rho GTPases leads to activation of ROCK which can trigger multitude of downstream
cytoskeletal reorganization processes including blocking myosin light chain (MLC)
phosphatase activity and facilitate MLC phosphorylation leading to increased actomy-
osin contractility.

3. Measuring intracellular and extracellular forces

A growing body of evidence has emerged highlighting the importance
of mechanical cues in both normal tissue development and cancer (DuFort
et al., 2011; Kumar and Weaver, 2009). Despite highly divergent chemical
signaling cascades, a highly conserved feature of mechanical signaling is that
it requires transmission of force from the ECM to the internal cytoskeleton,
which forms the structure of the cell. Forces from the external environment
activate Rho/Rho associated protein kinases (ROCK) signaling pathways
that regulate the actin cytoskeleton and cytoskeletal tension. Upregulation
of ROCK, which increases actomyosin contractility, results in tissue stiffening
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and malignant transformation. Actin bundling (e.g., a-actinin, fascin) and
crosslinking (e.g., filamin) proteins give rise to actin stress fibers that link
the cytoskeleton to focal adhesions and actin networks that modulate intracel-
lular stiffness (Hall, 1998; Winder and Ayscough, 2005). Since cytoskeletal
alterations depend on the mechanical environments and vice versa, it is nec-
essary to use biophysical tools to probe essential forces at both the intracellular
and extracellular levels.

3.1 Intracellular particle tracking microrheology

Cytoskeletal actin forms a mesh-like structure in the cell cytoplasm that reg-
ulates the intracellular tension (Fletcher and Mullins, 2010; Hale et al.,
2009). Parallel actin bundles provide tensile strength and strong contractile
activity, whereas crosslinked bundles of actin filaments increase intracellular
elasticity. Depending on the location in the cell, actin architecture can vary
drastically and manifest heterogeneous local mechanical properties (Tseng
et al., 2002). To measure cell mechanical properties, multiple techniques
have been developed over the years, including, atomic force microscopy
(AFM), magnetic bead twist, optical tweezers, micropipette aspiration, hydro-
dynamic stretching and particle-tracking microrheology (Kollmannsberger
and Fabry, 2011; Moeendarbary and Harris, 2014). Intracellular particle track-
ing microrheology (IPTM) allows direct and rapid measurement of the local
microrheological properties throughout the cell (Crocker and Hoffman,
2007; Dawson et al., 2014; Li et al., 2009; Wirtz, 2009). Briefly, fluorescent
particles are ballistically injected into the cell and their thermal energy driven
movements captured at a high magnification with a high-speed camera to
obtain information about the local polymeric network. The 2D Brownian
motion of these submicron probe particles is then used to calculate particle
mean square displacements (MSDs). MSDs of particles moving in a viscous
liquid vary linearly (slope~1) with time scale. However, for viscoelastic
fluids, the motion of the embedded particles becomes more restricted due
to the presence of mesh-like structures. Because of the sub-diftusive restricted
motion of particles, the time-dependent MSD curves flatten (slope <1). In a
viscous liquid, diffusivity due to thermal energy driven motion can be
described using the Stokes-Einstein Eq. (1), where D is the diffusion coeffi-
cient, kg is Boltzmann’s constant, T'is temperature, a is particle radius, and 7 is
the fluid viscosity.
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To describe viscoelastic properties of complex fluids, Mason et al. derived
complex shear modulus of the viscoelastic fluid using a modified Stokes-
Einstein equation in the frequency domain (Eq. 2), where G* is the
frequency-dependent complex shear modulus and I' is the gamma function.
The in-phase component of the complex shear modulus (G*) is known as
the elastic modulus (G'), and out-of-phase component is known as the vis-
cous modulus (G”) (Eq. 3).
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The IPTM approach is illustrated for analyzing MDA-MB-231 breast cancer
cells in Fig. 2. At lower time scales, particle transport in the cytosol remains
restricted and MSD varies almost independent of time scale (<< 1); whereas
at longer time scales, as the structures around the particles begin to relax,
particles are able to move longer distances, and MSDs vary more linearly
(a~1). For the more restricted transport regime of embedded particles, cells
typically resemble a viscoelastic fluid with comparable magnitudes of both
viscous and elastic moduli. At linear regime of particle motion, cells properties
are very similar to a viscous liquid with a highly dominant viscous modulus.
Individual location specific particle MSDs can be used to calculate local visco-
elastic properties; whereas, all MSDs from a cell can be ensemble-averaged to
evaluate overall viscoelastic behavior. Particle tracking microrheology (PTM)
has been successfully adapted to characterize a great range of complex biological
fluids, including mucus, reconstituted actin solutions, and the cell cytoplasm
(Dawson et al., 2014; Mason et al., 1997; Wirtz, 2009).

Although IPTM is primarily conducted on 2-D cultures, the application
of this method in 3D and in vivo has been investigated (Baker et al., 2010;
Daniels et al., 2006; Panorchan et al., 2006; Zhou et al., 2008). IPTM does
not require an external probe unlike other techniques like AFM, thus pro-
vides an advantage in tracking cell mechanics in 3D. Panorchan et al.
embedded human umbilical vein endothelial cells ballistically injected with
100 nm fluorescent particles in 3D peptide hydrogels and monitored changes
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Fig. 2 lllustration of intracellular particle tracking microrheology (IPTM). (A) Fluorescent
submicron (200 nm) probe particles were injected into MDA-MB-231 breast cancer cells
using PDS-100 ballistic particle injection system. The representative trace of a single par-
ticle undergoing Brownian motion in the cell cytoplasm is shown in the inset. (B) The x-y
displacements of particles are used to calculate ensemble average MSDs. (C) Frequency-
dependent viscous (G') and elastic (G”) moduli are then calculated from the MSDs as
described by Mason et al. (1997). Adapted from Dawson, M.R.,, Tseng, Y., Lee, JS.H.,
McAndrews, KM., 2014. Intracellular particle tracking microrheology, In: Handbook
of Imaging in Biological Mechanics. CRC Press, pp. 381-388. https:/doi.org/10.1201/
b17566-40.

in cell mechanics after stimulation with vascular endothelial growth factor
(VEGF). Exposure to VEGF led to softening of the cytoplasm highlighted
by significant reduction in the elastic modulus (Panorchan et al., 2000).
Other studies in 3D have used microbeads and nanotubes or endogenous
organelles to track changes in cell mechanics in more physiologically rele-
vant microenvironment. Wu et al. recently demonstrated the combination
of IPTM and intravital imaging to measure biophysical parameters of live
cells in mice (Wu et al., 2020). In short, 200 nm fluorescent particles were
ballistically injected into EGFP-labeled MDA-MB-231 breast cancer cells.
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The cells were then implanted in mice using the dorsal skinfold chamber
window and examined using intravital fluorescent microscopy. Similar to
2-D IPTM, the thermal motion of particles that were embedded in the
GFP-labeled cells were captured and used to determine cell microrheology.
Using this method, in vivo cell biophysical properties can be more accu-
rately captured along with eftects of the surrounding tissue microenviron-
ment. However, there were several limitations to this method. First, a
stringent correction was needed for animal movement, as the rhythmic
breathing motion was several magnitudes higher than the tracked particle
motion. Secondly, in vivo imaging requires increased working distances
to see deep into the tissue, limiting spatial and temporal resolution, which
are critical in IPTM. Similar resolution limits may apply when using
[PTM to determine cell microrheology in 3-D gels.

3.2 Traction force microscopy

Physical interactions between cells and the surrounding ECM regulate the
reciprocal forces via adhesion molecules linking the cell cytoskeleton to the
ECM. The magnitude of traction forces generated at these adhesion sites,
along with the strength of adhesions, are critical in regulating cell processes.
Traction forces have been quantified in both 2D and 3D environments
(Koch et al., 2012; Kraning-Rush et al., 2011; McGrail et al., 2015b;
Munevar et al., 2001; Sabass et al., 2008). Studies on 2D elastic substrates
formed from synthetic materials, including silicon, polyacrylamide, and pol-
ydimethylsiloxane allow for cell-generated force measurements on a wide
range of stiffnesses. Traction force microscopy (TFM) has been combined
with other techniques for simultaneous characterization of cell adhesion
machinery using total internal reflection microscopy (TIRF) or intracellular
rheology using IPTM (Gutierrez et al., 2011; McAndrews et al., 2014). To
mimic more physiologically relevant microenvironments, TFM has been
performed in 3D hydrogels and collagen matrices (Legant et al., 2010,
2013; Steinwachs et al.,, 2016). Due to non-linear elastic properties of
collagen quantitative analysis of traction forces is limited/not possible, but
particle displacements are still useful in understanding collagen matrix defor-
mations. In elastic hydrogels, the algorithm to derive cell-generated forces is
extremely complex, limiting the usefulness of this approach (Legant et al.,
2013). A more detailed review on the current 2D and 3D TFM techniques
and their limitations can be found here (Cho et al., 2016; Hur et al., 2020).
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2D traction forces are characterized for cells cultured on polyacrylamide
substrates with rigidities tuned to mimic specific biological tissues (Kim
et al.,, 2009; Nerger et al.,, 2017; Plotnikov et al., 2014). Fluorescent
nanoparticles embedded in the substrates are displaced under cell-exerted
stress. When cells are removed, the particles revert to their unstressed
locations. Thus, cell-induced displacements from stressed and unstressed
particle images can be used in traction force calculations (illustrated in

Fig. 3). In Boussinesq theory, the displacement field (H) of an elastic

substrate is correlated to the traction field (T) (Eq. 4), where G is the
Green’s function (Munevar et al., 2001; Sabass et al., 2008).

u(x)=G(x-x")oT (x') 4

The estimation of the Green’s function is critical for inverse calculation of
the traction field (Eq. 5). The Green’s function includes displacement vector
r=x —x' components (ry, ,), the Young’s modulus E, and the Poisson
ratio v

0 [Pa]=N/m2 1800
O = Cell Centroid A = Force-Weighted Centroid d = polarization

Fig. 3 Traction force microscopy (TFM). (A—B) Fluorescently labeled cells (SKOV-3 epi-
thelial ovarian cancer cells shown in green) were cultured on collagen-coated polyacryl-
amide substrates embedded with fluorescent red particles (200nm). Images of the
embedded nanoparticles were taken before (A) and after (B) detaching the cells. Red
arrows point to the zones with high displacements. (C—D) Previous images were used
to calculate displacement vectors for each particle and followed by the estimation of
traction force field and polarization. (D) Heatmap of traction forces is overlaid with sym-
bols indicating the cell's center of mass (o) and force-weighted center of mass (A).
Adapted from Mcgrail, D.J.,, 2015. Mechanics & Malignancy: Physical Cues And Changes
That Drive Tumor Progression.
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Furthermore, polarization is calculated as the difference in un-weighted
center of mass of the cell and the traction force-weighted center of mass
of the cell (Eq. 6), where M is the un-weighted center of mass and
M;" is the weighted center of mass.

2

Polarization (d) = \/ (v — apr) + (g — ay) (6)

The aforementioned techniques are two of the most commonly used
methods to measure forces inside and outside of living cells. However, other
techniques exist and could be useful in collecting similar measurements. Our
chapter focuses on how our lab has combined the two methods we previ-
ously described with cell fate analysis to understand cell behavior in tumor
and tissue microenvironments.

4, Utilizing force measurements to distinguish
non-invasive and invasive cancer cells

The transformation of cancer cells to highly invasive phenotypes
allows cells to distort their shape and generate forces to navigate through
dense stroma. Epithelial cancer cells undergoing EMT lose some epithelial
characteristics, including reduced expression of cadherins responsible for
cell-cell junctions and increased expression of ECM binding integrins
important in cell.-ECM adhesion (Kalluri and Weinberg, 2009). Invasive
and migratory properties acquired through EMT are prerequisites for metas-
tasis; thus, it is imperative to identify or even predict which cancer cells
undergo EMT. Using biophysical approaches to interrogate actin cytoskel-
etal modifications in cancer cells, we previously examined the phenotype of
cancer cells undergoing EMT.

4.1 Genetically induced EMT makes cancer cells more
deformable

The breast cancer cell line MCF7 was modified to constitutively express Snail,

a zinc-finger transcription factor that triggers EMT by suppressing E-Cadherin

expression. While cells transformed with an empty vector (MCF7-NEO)
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Fig. 4 SNAIL-induced EMT alters cytoskeletal and mechanical properties of MCF-7 cells.
(A—C) Immunostaining for actin, showed change in cytoskeletal organization of MCF7-
SNAIL cells compared control (Scale bar=50pm). Analysis of actin intensity revealed
that overexpression of SNAIL reduced actin polymerization (B). Gray intensity distribu-
tion along the line (A) across the images were quantified in image J to look at differences
in actin (C). (D—E) MSDs of 200 nm particles injected into the cytoplasm were increased
for MCF7-SNAIL cells across all time lags suggesting relatively softer cytosol. Elastic mod-
ulus of MCF7-SNAIL cells was reduced significantly at @ =1Hz. To calculate statistical
significance student’s t-test was used and P-values of less than 0.05 was considered sig-
nificant (*P < 0.05, **P < 0.01, ***P <0.001) (McGrail et al., 2015b).

were more epithelial with mostly round morphology, cells transformed with
Snail (MCF7-SNAIL) exhibited a more mesenchymal phenotype. MCF7-
SNAIL cells displayed an elongated morphology, downregulation of
E-Cadherin, and upregulation of N-Cadherin and Vimentin, characteristics
of a mesenchymal phenotype (McGrail et al., 2015b). To understand the
underlying changes in the cytoskeletal organization, we analyzed the actin
structure using immunostaining (Fig. 4A). The integrated fluorescence
intensity of actin in MCF7-SNAIL was 3-fold lower in comparison to
MCF7-NEO cells (Fig. 4B). Analysis of actin distribution across individual
MCEF7-NEO cells showed high intensity in cortical regions indicating
presence of polymerized actin stress fibers. In contrast, MCF7-SNAIL cells
displayed significantly lower actin intensity suggesting dissolution of poly-
merized actin structure (Fig. 4C). Using IPTM, we confirmed that the
intracellular mechanical properties were markedly altered. Embedded
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nanoparticles in MCF7-SNAIL cell cytosol displayed higher MSDs at all
timescales and subsequently revealed a significant reduction in elastic mod-
ulus (Fig. 4D—E). Together, these results confirmed that MCF7-SNAIL cells
possess a2 more deformable cytosol in comparison to MCF7-NEO. Results
from our study corroborated with the results reported by Craene et al. in
colon cancer cells (De Craene et al., 2005). Expression of Snail in these cells
led to significant loss in cytoskeletal proteins, including ABPs. Additionally,
highly invasive cancer cells from different tissues including breast and ovar-
ian cancer have been shown to display less actin stress fibers compared to the
normal cells (Alibert et al., 2017). However, other EMT studies with cancer
and normal epithelial cells treated with transforming growth factor f (TGF-
B)—a known inducer of EMT, have shown increased actin stress fiber for-
mation (Haynes et al., 2011; Nalluri et al., 2015; Sousa-Squiavinato et al.,
2019; Zhitnyak et al., 2020). This EMT response may vary in different cell
types, perhaps due to intrinsic differences in the cells undergoing EMT or
differences in the surrounding environment. Similarly, while most studies
have reported that more invasive cancer cells are often softer than less inva-
sive cells, a few studies have reported stiffening of invasive cancer cells
(Alibert et al., 2017). Difterent probing techniques can contribute to the
reported difterences in cancer cell mechanics. Measurement with techniques
that use external probe at local regions of the cell can be influenced by cor-
tical actin structure, which is more polymerized in invasive cells that exhibit
high traction forces. For example, studies using AFM can be measuring a
specific region of the cell, not the intracellular mechanics (Alibert et al.,
2017). Together these results highlight the need for a more comprehensive
biophysical analysis of cancer cells undergoing malignant transformation.

In addition to the intracellular changes, MCF7-SNAIL also displayed
significantly different traction force profile on a polyacrylamide substrate
(Fig. 5A-B). As the cells assumed a more elongated phenotype, it generated
higher traction forces localized at cell periphery. MCF7-SNAIL-generated
peak traction forces were threefold higher than those exerted by NEO cells.
Consequently, MCF7-SNAIL demonstrated significantly higher migratory
behavior with more than 2-fold increase in cell velocity (Fig. 5C).
Coetlicient of variation, calculated by dividing the standard deviation with
the mean, provides a measure of heterogeneity in the population and was
significantly increased in SNAIL cells for both traction force and migration
(Fig. 5D).



14 Michelle R. Dawson et al.

>
w

800 800
*%
700
600 600
500
400+

400

300
200+

Traction stress (Pa)

- 200

NEO

100

NEO SNAIL

30

-
o
]

1.59
ek

**
20+

-
o
1

1.0

10

&
@
1

0.5

Velocity (um/hr)
Coeffi. of var. (Traction) g

Coeffi. of var. (Velocity) m

0-

=
°
I

0.0-
T
NEO SNAIL NEO SNAIL NEO SNAIL

Fig. 5 (A) Traction heat maps of MCF7-NEO and MCF7-SNAIL cells are overlaid with
matrix displacements with force range is specified in Pascals (Scale bars = 10pum).
(B) Peak traction stresses in SNAIL cells were significantly higher than NEO cells.
(C) Mean velocity of MCF7-SNAIL cells was significantly increased. (D—E) Coefficient
of variation calculated for both traction force (D) and cell velocity (E) was significantly
higher in MCF7-SNAIL cells. To calculate statistical significance student'’s t-test was used
and P-values of less than 0.05 was considered significant (*P < 0.05, **P <0.01,
***p <0.001) (McGrail et al., 2015b).

4.2 Invasive cancer cells exert increased and polarized traction
forces in a context dependent manner
In addition to the biochemical signals, the biomechanical properties of the
ECM can also dictate the traction force profile of the cancer cells. Solid
tumors are generally stiffer compared to their surrounding tissues (Chang
et al., 2011; Egeblad et al., 2010; Youk et al., 2014). This increased rigidity
has been shown to promote an invasive behavior in cancer cells from mul-
tiple tissues, including breast, liver, and prostate (Acerbi et al., 2015; Kostic
et al., 2009; Leight et al., 2017; Pickup et al., 2014; Tilghman et al., 2010;
Ulrich et al., 2009). Inversely, invasive tumor cells often exhibit some form
of durotaxis or response to increased substrate rigidity (Acerbi et al., 2015;
Lachowski et al., 2017; Samuel et al., 2011). This observation is certainly
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true in highly metastatic MDA-MB-231 breast cancer cells. We have shown
that when MDA-MB-231 cells were cultured on hard polyacrylamide-
collagen-coated substrates (~35kPa), they exhibited characteristic of malig-
nancy including, significantly increased proliferation rate and resistance to
the chemotherapeutic, compared to those of soft (~3kPa) substrates
(Fig. 6A—B) (McGrail et al., 2015a). Other characteristic properties of inva-
siveness also followed the same trend. MDA-MB-231 cells showed a signif-
icantly higher migration velocity (Fig. 6C) and increased cell spreading
when cultured on hard substrates relative to soft substrates. However, met-
astatic SKOV-3 ovarian cancer cells displayed an opposite mechanical
response to substrate stiffness. When SKOV-3 cells were cultured on soft
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Fig.6 Context dependent response of cancer cells. MDA-MB-231 and SKOV-3 cells were
cultured on soft (~3 kPa) and hard (~35 kPa) collagen-coated polyacrylamide substrates
or collagen-coated glass. (A) Percent proliferation was determined by BrdU incorpora-
tion. (B) Viability was determined by MTT assay after 2uM (MDA-MB-231) or 0.1puM
(SKOV3) Doxorubicin—treatment. (C) The average cell velocity was determined by
tracking cell nuclei at 5-min intervals over an 8-h period. (D) Average traction force
was quantified from displacement of fluorescent nanoparticles embedded in substrates
showed Increased traction forces were correlated with increased migration velocity,
increased proliferation, and treatment resistance for SKOV-3 cells on soft substrates
and MDA-MB-231 cells cultured on hard substrates or glass. To calculate statistical sig-
nificance student’s t-test was used and P-values of less than 0.05 was considered signif-
icant (*P <0.05, **P <0.01, ***P <0.001) (McGrail et al., 2015a).
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matrices, they exhibited greater proliferation rates, migration velocity, and
cell spreading compared to those cultured on hard matrices (Fig. 6A—C). This
discrepant behavior between MDA-MB-231 and SKOV-3 cells demon-
strated that mechanical responses to substrate stiffness are cell specific, most
likely due to differences in their physiological environment in the primary
tumor or metastatic niche (Kostic et al., 2009; Kraning-Rush et al., 2012).
Moreover, MDA-MB-231 and SKOV-3 cells became highly polarized
and exerted greater traction force on hard and soft substrates, respectively
(Fig. 6). The mechanism of this progression has been well-studied in breast
cancer, where increased ECM stiffness leads to integrin activation followed
by focal adhesion formation and increased actomyosin contractility
(Levental et al., 2009). However, the increased forces exerted by SKOV-3
on soft matrices had not been characterized before our studies. Rigidity
dependent behavior of cancer cells has been correlated to their ability to
metastasize to specific locations in vivo (Kostic et al., 2009). Indeed, studies
in murine models found that MDA-MB-231 cells yielded significantly more
bone (stiff ) metastases compared to lung (soft) metastases (Kang et al., 2003;
Kostic et al., 2009). Though the idea of different cancer cell types invading
sites with contrasting mechanical properties may seem counterintuitive, our
studies demonstrated that cells adapted their response using Rho-ROCK
mediated actomyosin contractility and intracellular cytoskeletal tension
(McGrail et al., 2014, 2015a,b).

4.3 Rho-ROCK signaling regulates distinct mechanical
response of differing cancer cell types

Mechanotransduction signaling pathways can create a mechanically-
induced positive feedback loop, whereby increased ECM deposition and
rigidity enhances malignant properties in cancer cells (Chin et al., 2016;
Lu et al., 2012). For cancer cells to find balance between intracellular cyto-
skeletal tension and extracellular adhesion, optimal levels of Rho-ROCK
pathway activation must be maintained (McGrail et al., 2015a). We demon-
strated the salience of optimal Rho-ROCK signaling activation in MDA-
MB-231 and SKOV-3 cells cultured on matrices of different rigidities by
measuring traction forces before and after introducing Rho-ROCK path-
way inhibitor (Y27632). Using TEM, we first found that both MDA-
MB-231 and SKOV-3 cells exerted significantly larger (23-fold increase)
cell-substrate traction forces when cultured on their respective preferential
substrates, hard and soft (Fig. 7). In this paper preferred substrate referred to the
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substrate rigidity that elicited more malignant properties in mechanosensitive
cancer cells. SKOV-3 ovarian cancer cells were more proliferative, migrated
more rapidly, and exhibited reduced sensitivity to chemotherapeutic drugs
on soft substrates, which were considered their preferred rigidity. Generally,
increased Rho-ROCK signaling correlates with increased traction force, so
we sought to further understand how this pathway was linked to contrac-
tility in the context of ECM rigidity. When the cells were treated with
ROCK inhibitor Y27632 on their preferred substrates, we saw no increase
in traction force for both MDA-MB-231 and SKOV-3 lines. Interestingly,
when MDA-MB-231 tumor cells were cultured on their nonpreferred soft
substrates, we observed a gain-of-function (slightly increased traction force),
compared to those without Y27632 treatment. This phenomenon can be
largely explained by the idea that cancer cells’ inherent contractility needs
to be matched with substrates of optimal rigidity to generate maximum trac-
tion forces — larger cell-intrinsic contractility matched with a stiffer ECM
or lower cell-intrinsic contractility matched with a softer ECM results
in optimal celllECM traction. Since our past studies have shown that
MDA-MB-231 cells are inherently more contractile than SKOV-3 cells,
a reduction in MDA-MB-231 cells’ inherent contractility with Y27632
rescued its function on its nonpreferred, soft substrates. Therefore, it is
evident that optimal Rho-ROCK signaling inherent in individual cancer
cell types governs their actomyosin contractility, which in effect defines
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their predisposed matrix compliances. Taken together, these findings high-
light the complexity of cancer progression, and drive the need to take a
nuanced approach in examining the biophysical landscapes of difterent
tumors.

4.4 Utilizing force profiles to characterize chemoresistant
subpopulations

Often, a small subpopulation of cells can survive initial treatment, through
efficient drug efflux or quiescence. Polyploidal giant cancer cells (PGCCs)
are thought to be able to survive chemotherapy via quiescence (Zhang et al.,
2014). Despite their apparent dormancy and morphological similarities,
PGCCs are distinct from senescent cells, as they can give rise to daughter
cells trough amitotic budding (Lv et al., 2014; White-Gilbertson et al.,
2020). These morphologically enlarged and often multinucleated cells are
often seen in tumors that have undergone treatment, or in late stage and
aggressive disease (Fei et al., 2015; Lopez-Sanchez et al., 2014; Zhang
et al.,, 2014). Furthermore, injection of PGCCs into mouse xenograft
models have led to the growth of new tumors, highlighting the tumorigenic
potential of this unique subpopulation (Niu et al., 2017). Previous studies
conducted in our lab have shown that MDA-MB-231 PGCCs have
increased migratory persistence and migrate more readily into the scratch
wound (Xuan et al., 2018). In order to understand exactly how PGCCs
maintain their enlarged morphology and sustain high migratory persistence
despite their increased size, we performed single cell IPTM and TFM
(Fig. 8). We found that PGCCs on average had increased cytoplasmic stift-
ness, and a stiffer but more deformable nuclei. This is evidenced in the MSD
plots of particle motion embedded within the cytoplasm of the cell and het-
erochromatic foci within the nucleus, where PGCCs had a lower MSD,
indicating higher levels of constraint. Furthermore, we examined the
MSD traces of individual cells and noticed a higher spread in PGCC
populations. This indicates that PGCCs are more heterogeneous than
non-PGCCs; this increased heterogeneity has been observed in
chemoresistant and highly invasive cancer cells. When we stained for and
quantified the actin cytoskeleton of our PGCCs, we found that PGCCs
expressed both thicker and longer actin stress bundles (Fig. 8A—B), which
is associated with higher traction forces and increased migration. Indeed,
when we performed TFM on our MDA-MB-231 cells, we found that
PGCCs on average had over twice the exerted traction force compared
to our non-PGCCs (Fig. 8C). In order to see if the unique organization
of their actin structure was responsible for PGCCs cytoplasmic stiftness,
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Fig. 8 (A) Fluorescent images of non-PGCCs and PGCCs stained for microtubule (green),
actin (red), and DNA (blue) (Scale bar=50pum). (B) Quantification of average stress fiber
width and length. (C) Mean traction forces exerted by non-PGCC and PGCC cancer cells on
a 10kPa stiffness polyacrylamide substrate. (D—E) Ensemble averaged MSDs of tracked
particles of Non-PGCCs (D) and PGCCs (E) in control and inhibitor treated conditions.
To calculate statistical significance student’s t-test was used and P-values of less than
0.05 was considered significant (*P < 0.05, **P < 0.01, ***P <0.001) (Xuan et al., 2018).

we inhibited parts of the RhoA/ROCK pathway, which is responsible for
controlling actin cytoskeletal organization. Using inhibitors ML7 (MLCK
inhibitor), H1152 (ROCK inhibitor), and latrunculin A (actin polymeriza-
tion inhibitor), we observed consistent reductions in cytoplasmic stiffnesses
in our polyploid cells (Fig. 8D—E). Taken together, these results demonstrate
the biophysical characterization of a unique and highly chemoresistant sub-
population, which is more invasive as well as highly tumorigenic.

5. Utilizing force measurements to study tumor
and stromal cell crosstalk

Interactions between cancer and stromal cells and the surrounding
TME, with its diversity in cell types and matrix mechanics, play a critical role
in directing cancer progression. Carcinoma associated fibroblasts (CAFs) are
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one major stromal contributor to TME malignancy (Karagiannis et al., 2012;
Luo etal., 2015; Tao et al., 2017). They mediate hallmark cancer cell behav-
iors by secreting paracrine factors that alter tumor growth and cell survival,
ECM proteins for matrix stiffening, and pro-inflammatory signals important
in cancer progression. A CAF-like phenotype is characterized by changes in
cytoskeletal architecture, motility, and adhesion, along with increased expres-
sion of a-smooth muscle actin (0®SMA) and fibroblast activated protein (FAP)
(Mishra et al., 2008). These myofibroblast-like cells arise from normal fibro-
blasts and MSC:s that have been activated by tumor-secreted factors to form
CAFs. MSCs that spontaneously home to tumors from the bone marrow may
persist as stem cells in the tumor or differentiate into stromal cells (Bergfeld and
DeClerck, 2010; Spaeth et al., 2009; Torsvik and Bjerkvig, 2013). Thus,
MSC:s serve as important tools in the study of the stroma-cancer crosstalk
and are utilized extensively in our studies.

5.1 Cancer cell invasiveness determine direct intercellular
interaction with stromal cells

Recruitment and engraftment of stromal cells, including fibroblasts and
MSCs in TME are critical for cancer progression to malignancy and are asso-
clated with poor prognosis (Oudin and Weaver, 2016). As the disease
become more invasive, the cell adhesion molecules on tumor cell surface
are significantly altered and these altered interactions can subsequently mod-
ify both initial engraftment and long-term fate of stromal cells (Janiszewska
etal., 2020). We elucidated the role of altered adhesion molecule repertoire
on stromal cell engraftment with monolayers of cancer cells with varying
levels of aggressiveness (McAndrews et al., 2015). Stromal cells were more
adherent and spread more readily on more aggressive breast, ovarian, pros-
tate, and taxol resistant cell lines. The aggressive cell lines expressed EMT
associated cell-cell adhesion markers cadherin 2 (N-cadherin) and/or
cadherin 11 (OB-cadherin) to a different degree. Both of these proteins
and especially the OB-cadherin were also expressed by stromal cells.
Subsequently blocking cadherin 11 on stromal cells reversed the enhanced
adhesion to invasive cancer cells even with the cancer cells with low level of
OB-cadherin expression. This suggests that OB-cadherin on stromal cells
enabled them to bind to the cancer cells via homotypic (OB-cadherin) or
heterotypic (N-cadherin) interaction and can be used as a therapeutic target
to abrogate cancer cell-stromal cell interaction. Through the extensive bidi-
rectional crosstalk between cancer cells and stromal cells, there is a feedback
loop wherein stromal cell recruitment increases cancer cell invasion and
malignancy, which in turn increases stromal cell recruitment.
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When stromal cells are initially recruited to the TME, they undergo a
multitude of changes due to the close interaction with tumor cells. These
cells serve to prime the TME and create a supportive environment for cancer
cells, which in turn enhances their invasive and metastatic potential.
To understand how tumor cells can modulate MSC behavior in order to
induce a CAF phenotype, we must first examine the multitude of factors
that they are exposed to upon initial exposure to the TME. MSCs recruited
to the tumor are exposed to a wide variety of soluble factors (SFs), including
platelet derived growth factor (PDGF), TGF-p1, and the cocktail of
pro-migratory molecules released by tumor cells (Fig. 9). To study the
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Fig. 9 Tumor-secreted soluble factors (SFs) Alter MSC Mechanics. (A) Time-dependent
ensemble average MSDs for MSCs in control media (CM), tumor conditioned media
(TCM), or media supplemented with PDGF and/or 5ng/mL TGF-f1. MSCs stiffen in
response to TCM, TGFB1, and the combination of PDGF and TGF-f1, but not PDGF.
(B) SF treatment was then combined with small molecule inhibitors of PDGF (JNJ-
10198409) and TGF-f1 (SB-505124). Inhibition of these signaling pathways reversed this
stiffening response. (C) The mean traction stresses were determined for MSCs pre-
treated with CM or CM supplemented with 5ng/mL TGF-p1 (Scale bar=10pm).
Treatment with TGF-B1 resulted in higher traction stresses. To calculate statistical
significance student’s t-test was used and P-values of less than 0.05 was considered sig-
nificant (*P <0.05, **P <0.01, ***P <0.001) (Dawson et al,, 2014; Ghosh et al., 2014;
McGrail et al., 2012).
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biophysical changes that occur when MSCs are exposed to the tumor-
secreted factors, we exposed MSCs to tumor conditioned media in order
to simulate the tumor stromal cell paracrine signaling occurring in vivo.
We combined biophysical characterization to elucidate the changes in actin
structure and mechanical response of MSCs (Ghosh et al., 2014; McGrail
et al., 2012).

5.2 MSCs and cancer cells undergo dramatic changes in cell
mechanics in response to SF crosstalk

IPTM revealed that MSC treatment with soluble factors in tumor condi-
tioned media (TCM) results in sudden cytoskeletal stiffening (characterized
by a change in the slope of the MSD), which completely changed the intra-
cellular mechanical phenotype of MSCs. TCM treatment resulted in
increased expression of all Rho GTPases, with dramatic effects on the
expression of Cdc42, indicating that this molecule was largely responsible
for the altered mechanical response. Based on previous studies, TGF-1
has been shown to be an important pleiotropic factor that contributes to
cytoskeletal stiffening (Nalluri et al., 2015). In addition, it is also an impor-
tant part of the paracrine signaling molecules within TCM. Indeed, when
treating MSCs, TGF-p1 alone was sufficient to induce the biophysical
changes observed with TCM. Furthermore, when treated in conjunction
with PDGF, TGF-f1 can enhance cell stiffening in MSCs. Like TCM,
TGF-P1 alone and in combination with PDGF profoundly increased con-
densed and elongated microtubules and actin filaments. Although PDGF
alone did not result in any significant biophysical changes, the addition of
PDGF to TGF-f1 amplified this cellular response, indicating possible inter-
action between these two signaling pathways. Subsequently, blocking
PDGF signaling in TGF-P1 treated cells was enough to abrogate the stiffen-
ing, similar to the expected effect of TGF-B receptor inhibitor. This result
demonstrates the integral role of PDGF signaling in regulating TGF-p1-
mediated cell stiffening and further highlights the complexity of SF interac-
tions in mediating cell mechanics responses. This suggested that TGF-1
was working in conjunction with various other factors in order to induce
the changes. TGF-B1 treated MSCs were also able to generate significantly
larger traction force but were unable to polarize them.

Opwerall, as cancer cells become more aggressive, they become more
deformable, while paracrine factors from these aggressive cancer cells make
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Fig. 10 Actin binding protein profile of genetically induced EMT in cancer cells and sol-
uble factor (TGF-p1) treated MSCs (Ghosh et al., 2014; McGrail et al., 2015b).

MSC:s less deformable. Whole genome microarrays used to probe for tran-
scriptional differences in for genetically induced EMT in cancer cells and SF
treated MSCs showed that the number of differentially expressed ABP genes
were significantly altered (Fig. 10). For cancer cells undergoing EMT, actin
cross-linking and stabilizing protein genes were down-regulated corroborat-
ing with our observation of depolymerized actin and softening of the cyto-
plasm. Conversely, SF treated MSCs that underwent cytosolic stiffening
displayed significant upregulation in crosslinking and stabilizing proteins,
along with downregulation of capping and severing proteins. This highlights
the incredibly complex crosstalk that occurs within the TME, that collec-
tively enhance the CAF phenotype and promote a microenvironment that
favors cancer invasion and metastasis.

6. Conclusions

We have combined quantitative analysis of intracellular mechanics
and surface traction forces with analysis of cell fate processes to study the
malignant transformation of cancer cells and their interaction with stromal
cells. Multivariable analysis is critical in determining the role of mechanical
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forces in cancer progression and in analyzing heterogeneity in cancer cell
populations. This heterogeneity makes it difficult to target and kill all cancer
cells. In 3D microenvironments that are non-uniform in structure, such as
human tumors and 3D tissue culture models, the ability for invasive cancer
cells to respond to gradients in soluble factor and matrix mechanics may fur-
ther contribute to the heterogeneity in cancer cells. Metastasis is a highly
selective process with less than 0.1% of tumor cells capable of forming met-
astatic tumors. Thus, it is critical to understand how heterogeneity in the
primary tumor gives rise to metastatic disease.

7. Experimental challenges and future research efforts

Despite advances in the field of cancer biophysics, such as single-cell
biophysical characterization in 3D models and patient samples, additional
developments are needed to reproducibly characterize cancer cells in these
more complex conditions. More importantly, novel studies and methodol-
ogies are needed to characterize and isolate malignant subpopulations of can-
cer cells. This will allow for a better understanding of cancer cell heterogeneity
from biophysical measurements. Finally, developing high-throughput ways of
quantifying cancer biophysical properties, while maintaining high spatial and
temporal resolution, would increase the accuracy of these measurements.
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