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ABSTRACT

Friction surfacing is a solid-state metal deposition
technique suitable for a wide range of metallic materials. This
technique results in coatings on surfaces for joining purposes or
surface modification applications such as wear and corrosion
performance improvements. In this study, a novel approach in
friction surfacing is utilized in which the consumable tool
deposits material from its side instead of the end of the tool,
which has been employed in conventional friction surfacing.
Frictional heat enables plastic deformation, which results in the
depositing of the consumable material on the substrate surface.
The process is carried out at temperatures below the melting
point of the consumable material, resulting in a solid-state
deposition process. In the current study, scanning electron
microscopy and energy dispersive spectroscopy have been
employed for the characterization of the interfaces and coatings.
The results of this study exhibited that there is no elemental
diffusion between the tool and substrate materials at the
interface, showing that the process temperature was low enough
to prevent plasticizing of the substrate surface.
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1. INTRODUCTION

The friction surfacing (FS) technique is a friction-based
approach, suitable for fabricating solid-state deposits using a
rotating consumable rod. The tool is forged onto the surface of a
substrate along its axis, and due to the frictional heat generated
at the tool/substrate interface, the consumable material
plasticizes and sheared on the substrate surface [1]. Several
important process factors such as pressing force, table traverse
speed, spindle speed, and tool/substrate materials significantly
impact on the quality of resulting deposits. Therefore, these
parameters can be utilized as the controlling process factors to
achieve the desired quality. Moreover, several studies exhibited
that by adding reinforcing particles into the holes drilled through

the consumable rod, the FS can be utilized for other purposes
such as surface hardening, and improving the wear and corrosion
performance of the surfaces [2-8]. The influences of process
factors on the deposit width and thickness have been investigated
in several studies [9-14].

FS technique can develop metallic deposits at temperatures
less than melting points of tool/substrate materials, followed by
a rapid cooling process, which makes this method an excellent
approach for fabricating fine-grained deposits [15]. There is a
need to investigate the microstructural development and material
properties after a high rate of deformation experienced by
consumable material during the FS process. Several different
kinds of analyses such as optical microscopy [16], scanning
electron microscopy (SEM) [16], X-ray diffraction [9, 16],
energy dispersive spectroscopy (EDS) [17, 18], hardness testing
[19-22], surface roughness testing [23-25], tensile testing [22]
have been performed to study the coating quality.

Lateral friction surfacing (LFS), a novel technique derived
from the conventional FS approach, can be employed to fabricate
deposit layers. In this approach, instead of the consumable rod
end face, the side of the rod is forced onto the substrate surface,
resulting in material deposition from the radial surface of the
tool, as presented in Fig. 1. LFS approach can provide ultra-
smooth and thin deposits compared to the conventional FS
technique. Moreover, the coating fabricated in this technique is
more consistent since there is no advancing or retreating side on
the deposits, and all points on the fabricated deposits at the
tool/substrate interface experience the same constant rotational
speed. Unlike the conventional FS technique, the LFS approach
creates no flash; therefore, it is capable of saving a significant
amount of consumable materials and increase economic
efficiency. Furthermore, this technique generates lower process
temperatures compared to the conventional approach, which
helps to reduce the thermal impacts on the metallurgical and
mechanical properties of the coatings.
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The LFS of AA6063 consumable tool onto A36 carbon steel
was investigated in [26]. Several combinations of process factors
and also single and double-pass deposition approaches were
employed to evaluate their impacts on the quality, thickness,
coverage, and surface roughness of the deposits. This study is an
attempt to characterize the lateral friction surfaced AA6063
coatings fabricated in [27], which were previously subjected to
different analyses such as surface roughness measurement,
material deposition rate measurement, force measurement,
infrared thermography, and optical microscopy.

2. MATERIALS AND METHODS

In this study, the material composition of the coatings
fabricated through the LFS process was characterized. To
provide the required samples, LFS of AA6063 onto AISI 1018
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FIGURE 1: SCHEMATIC OF (LEFT) CONVENTIONAL FS (RIGHT) THE NOVEL APPROACH OF LFS [27]
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carbon steel was performed using a JET JMD-18 milling
machine. AA6063 consumable rods with a length of 100 mm and
a diameter of 12.7 mm, and AISI 1018 substrates with
dimensions of 127 mm X 63.5 mm x 3.175 mm were utilized.
The chemical composition of consumable rod and substrate
materials are presented in Tables 1 and 2, respectively [28]. The
various process parameters such as applied forces of 150 and 250
N, spindle speeds of 2300 and 3000 rpm, and a constant traverse
speed of 76.2 mm/min were employed, as summarized in Table
3. The applied forces were controlled manually during the
process using a dynamometer and LabVIEW programming. As
shown in Fig. 2, 1 cm of the deposited coatings were cut and
mounted in epoxy, and then the specimens were polished using
1 and 0.3 um alpha-alumina for cross-sectional SEM and EDS
analyses.

TABLE 1. CHEMICAL COMPOSITION OF AA6063-T5 ALUMINUM ALLOY

Materials Mg Si Cr Cu Mn Ti Zn Fe Al
% of composition 0.45-0.9 0.2-0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.35 Balance
Physical Property Melting Point UTS Elongation at Break Thermal Conductivity
Values 616°C 186 MPa 22% @ 24.0°C 209 W/m.K
TABLE 2. CHEMICAL COMPOSITION OF AISI 1018
Materials Mn P S C Fe
% of composition 0.60-0.90 <0.040 <0.050 0.14-0.20 98.81-99.26
Physical Property Melting Point UTS Elongation at Break Thermal Conductivity
Values 1480°C 440 MPa 15 % @ 24.0°C 51.9 W/mK

TABLE 3. PROCESS PARAMETERS EMPLOYED IN THE LFS PROCESSES

Sample Number Tool Rotational Speed (rpm) Force (N) Traverse Speed (mm/min)
1 2300 150 76.2
2 2300 250 76.2
3 3000 150 76.2
4 3000 250 76.2
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FIGURE 2: CROSS-SECTIONING OF THE DEPOSITS

The deposits and their interfaces with the substrate were
investigated by a FEI Helios NanoLab 660 Dual-Beam SEM-
FIB equipped with an Oxford Instruments X-Max EDS detector.
The SEM analysis was done to qualify the coating in terms of
cracks in the coatings, and intermixing and diffusion of
consumable rod and substrate materials. The EDS maps of the
cross-sections were provided to illustrate the Al, Si, O, C, Fe,
and Mn elemental distributions in the coating and substrate.

3. Results

The fabricated deposits using LFS were subjected to SEM
and EDS analyses. Two different magnifications for the SEM
imaging were employed. The lower magnification shows the
consistency of the coatings, and higher magnification provides a

detailed visual assessment of the substrate/coating interface
including cracks and porosity in the deposits, as shown in Figs.
(3-6). Process parameter values of pressing force and spindle
speeds have an effect on the number of cracks and pores, coating
thickness, and coating surface roughness.

The SEM and EDS analyses of the deposited coating using
the pressing force of 150 N and spindle speed of 2300 rpm are
presented in Fig. 3. The SEM imaging using lower magnification
shows a consistent and smooth coating; however, the higher
magnifications revealed the presence of several cracks inside the
coating layer. It was shown there are unbonded regions at the
substrate/coating interface, as well as several cracks close to the
interface, which could weaken the bonding between the coating
and substrate.
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FIGURE 3: SAMPLE #1: 2300 RPM, 150 N

The SEM images and EDS maps of the coating deposited by
spindle speed of 2300 rpm and normal force of 250 N are shown
in Fig. 4. The SEM analysis using lower magnification shows
that increasing the normal force from 150 N to 250 N,
significantly increases the coating thickness and results in a
rough deposit compared to sample 1. It appears that the
aluminum was sheared onto the substrate in ~100 um layers

repeating every ~600 um of tool travel. Small voids can be seen
at the end where the layers did not fully adhere together at the
top micrograph in Fig. 4. The higher magnifications employed
in the SEM analysis revealed the absence of cracks inside the
coating and a good bonding at the substrate/coating interface;
however, few small pores were observed within the deposit.
Moreover, there was less Fe detected with these settings.

4 ©2021 by ASME



HFW mag © Wb
1.06 mm 120 x 4.1 mm

CKal_2

250pum

Al Kal Mn Kal

M 250um ' f ! f !

250um

HRW  mag B WD
127pm  1000x  4.1mm

O Kal

250pm

Fe Kal

250um

FIGURE 4: SAMPLE #2: 2300 RPM, 250 N

Fig. 5 exhibits a uniform coating thickness fabricated by
spindle speed of 3000 rpm and normal force of 150 N. A coating
free of cracks with a complete bonding at the substrate/coating
interface were observed. The EDS maps show that excess Si in
the plasticized consumable material results in large Si-rich

particles forming in the coating. The formation of these kinds of
particles negatively impacts the formability of the deposits and
can result in cracking and reduced bonding and corrosion
performance.
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FIGURE 5: SAMPLE #3: 3000 RPM, 150 N

The SEM images and EDS maps presented in Fig. 6 present normal force of 250 N and spindle speed of 3000 rpm. It was
detailed cross-sectional viewing of the coating, interface, and the revealed that employing these values for process parameters
elemental distribution in the coating layer deposited by the results in significantly more cracks and porosities inside the
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deposit. Moreover, few Si-rich regions were observed in the
coatings, which are smaller than those in sample 2.
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FIGURE 6: SAMPLE #4: 3000 RPM, 250 N
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In all the specimens, oxidation was observed in the substrate
material and more severely in the aluminum coatings. This
phenomenon was revealed by the EDS maps, showing the
presence of oxygen everywhere, especially on the cross-
sectioned aluminum coatings. Moreover, the presence of a large
amount of Fe in most samples shows that the substrate material
was rubbed off due to the high spindle speeds and applied forces
during the LFS process, resulting in transferring the substrate
material’s elements to the deposits.

4. Conclusion

In this investigation, AA6063 coatings fabricated by
different process factors through LFS process were
characterized. For this purpose, cross-sectional SEM and EDS
analyses were employed for a detailed assessment of the coatings
and the interfaces. The SEM analysis exhibited the presence of
more cracks and porosities in the coatings fabricated by higher
values of spindle speed and applied force. The coating deposited
by 2300 rpm and 250 N exhibits lower cracks and porosities;
however, it has an inconsistent coating thickness. The EDS maps
show that excess Si in the plasticized consumable material
results in large Si-rich particles forming in at least one sample.
The formation of these kinds of particles negatively impacts the
formability of the deposits and can result in cracking and reduced
corrosion performance. Moreover, the EDS analysis revealed the
presence of a large amount of Fe in most of the samples,
indicating that the substrate material was rubbed off during the
LFS process, and the substrate material was transferred to the
deposits.
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