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Abstract

Mark and Paupert devised a general method for obtaining presentations for arithmetic non-cocompact
lattices, I', in isometry groups of negatively curved symmetric spaces. The method involves a classical
theorem of Macbeath applied to a I'-invariant covering by horoballs of the negatively curved symmetric
space upon which I acts. In this paper, we will discuss the application of their method to the Picard
modular groups, PU(2,1;Oy), when d = 2,11, and obtain presentations for these groups, which com-
pletes the list of presentations for Picard modular groups whose entries lie in Euclidean domains, namely
those with d =1,2,3,7,11.

1 Introduction

[There has been a great deal of study devoted to discrete subgroups and lattices in semisimple Lie
groups. In particular, the study of arithmetic lattices, which can be roughly described as lattices obtained
by taking matrices with entries lying in the integer ring of some number field. Some examples of arithmetic
lattices are the Picard modular groups, PU(2,1; Oy), where Oq4 represents the ring of integers in the number
field Q(iv/d), where d is a positive, square-free integer. It is well known that if d = 1,2 mod (4), then
O4 = Z[iv/d], and if d = 3 mod (4), then Oy = Z[l%ﬁ]. It is also known that Oy is a Euclidean
domain exactly when d = 1,2,3,7,11. Falbel and Parker derived a presentation for PU(2,1;O3) in [3],
and Falbel, Francsics, and Parker obtained a presentation for PU(2,1; O;) in [2]. These presentations were
obtained by constructing explicit fundamental domains for the action of PU(2,1;O3) and PU(2,1;0;)
respectively on the complex hyperbolic plane and appealing to the Poincaré polyhedron theorem. Complex
hyperbolic space does not have totally geodesic real hypersurfaces like in real hyperbolic space, which makes
constructing these fundamental domains rather challenging. For d = 1, 3, there are additional rotational
symmetries making fundamental domain constructions more feasible, whereas these additional symmetries
are not present for the remaining values of d. Mark and Paupert developed a different method to obtain
a presentation for PU(2,1; O7), and also applied their method to the cases d = 1,3 [8]. Zhao obtained
generators for the Euclidean Picard modular groups in [12], but did not derive sets of relations for these
groups. The covering argument (Section used in [8] and this paper is closely related to the argument
Zhao used to obtain generators for the Euclidean Picard modular groups. The Picard modular groups are
generalizations of another class of arithmetic lattices known as the Bianchi groups, PGL(2,O,), where Oy
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is the ring of integers previously defined. The Bianchi groups are lattices in the isometry group of real
hyperbolic 3-space, and Swan was able to derive presentations in [I1] by constructing fundamental domains
for the action of these groups and applying a generalization of Macbeath’s theorem.

The main tool for obtaining the presentation for PU(2, 1; O7), and the presentations in this paper, comes
from a theorem of Macbeath which gives a presentation for a group, I', acting on a topological space, X,
given an open subset V' C X such that the I'-translates of V' cover X. Obtaining generators and relations
for I' roughly amounts to tracking pairwise and triple intersections of the set V' and its translates. In
our setting, X is complex hyperbolic 2-space, H%, and I' is a cusped arithmetic lattice in Isom(H%). The
fundamental set, V', used in our application of Macbeath’s theorem is a particular type of convex open set
in H% known as a horoball (Definition . These horoballs are anchored at points on the boundary at oo
of X, 00X, and we will take V to be based at the point at oo to yield some favorable conditions. Since
the complex hyperbolic plane is a four-dimensional space with a three-dimensional boundary, we are able
to construct explicit pictures for phenomena occuring on Jx X. We will construct such pictures to aid in
our argument that the I-translates of V cover X (Figures 1-4). It is too difficult to prove directly that
our collection of horoball translates cover X. Instead, we argue that it is sufficient to cover 9V in order to
get a covering of all of X (Lemma . We also reduce the difficulty of the covering argument by showing
that a covering of OV by open balls for a particular distance function known as the extended Cygan metric
(Section implies a covering of OV by horoball translates.

These explicit pictures, however, give us no information about pairwise and triple intersections of the
I’-translates of V' in the space X. In order to track pairwise intersections of translates of V', we use an
algebraic property, the notion of level (Definition [3) between two FE-rational points in 0. X, and some
desirable properties of basing V' at co. The ability to use levels between rational boundary points comes
from the fact that I" is an integral lattice, that is, I' is contained in PGL(n + 1, OF) for the ring of integers,
Op, in some number field, . Tracking triple intersections of translates of the set V' C X is much more
difficult in practice. When searching for pairwise intersections of I'-translates of V', the notion of level and
the consequences of having V' based at oo, allow us to obtain an explicit description of the generating set of
I'. Unfortunately, we do not have an analagous algebraic criterion to track triple intersections of translates
of V because now we are dealing with three horoballs, two of which do not have the optimal position based
at co. Instead, we will show that if a triple intersection occurs, the anchors of the three horoballs of interest
cannot be too far apart with respect to the Cygan metric (Lemma @ In practice, this necessary condition
may generate some additional relations, but these redundancies will later be eliminated.

We will derive presentations for PU(2,1; Oy), d = 2,11, which completes the list of presentations for
Picard modular groups where Oy is a Euclidean domain. In addition to the values of d where Oy is a
Euclidean domain, Oy is a principal ideal domain, but not Euclidean, for the values d = 19,43,67,163.
Mark and Paupert’s method can be applied to these cases as well, but as d grows, so does the complexity
and computational cost of applying their method, making these presentations seem unattainable for the
moment. In the case d = 2, the method produces a presentation with a generating set of 54 matrices
and 5,837 relations. With the aid of MAGMA [7], we are able to obtain a presentation with 3 generating
matrices and 29 relations (Theorem . In the case d = 11, we get a presentation with 263 generating
matrices and 23,673 relations and MAGMA [7] reduces the generating set to 5 matrices and the size of the
relation set to 26 (Theorem . I would like to thank Alice Mark and my advisor, Julien Paupert, for their
aid throughout my derivation of these presentations. I am truly grateful for Dr. Mark and Dr. Paupert
teaching me their method and their continuous assistance in its implementation.

Before we explain the method in practice, we summarize some relevant background information about
complex hyperbolic space. More details on complex hyperbolic space can be found in [1], [4].



2 Complex hyperbolic space

2.1 Basic definitions

Let C™! denote the vector space C"*! equipped with a Hermitian form (-,-) of signature (n,1). Denote
Vo={ZeC":(Z,Z) <0}, VO ={ZecC"!'.(Z Z) =0}, and let 7 : C! — {0} — CP" denote
projectivization. We define Hg to be w(V~) C CP". We say a matrix A € GL(n + 1,C) is unitary for the
form (-, ), if (A(Z), A(W)) = (Z,W) for all Z,W € C"*1. We denote the subgroup of unitary matrices by
U(n,1). HE comes equipped with a distance function, the Bergman metric, given by

dm(2).=W)), _ _I(ZW)I*
2 (Z,Z) (W, W)

Note that the Bergman metric is independent of the choice of lifts for Z and W. Unitary matrices clearly
preserve the Bergman metric, and it is well known that Isom"(HZ) = PU(n, 1), where Isom®(HZ) denotes
the identity component of Isom(Hg), and PU(n,1) = U(n,1)/ U(1) denotes the projective unitary group
associated to the form (-,-). We also identify the boundary at infinity, d-HZ, with 7(VY). We will be
dealing with the case when n = 2. While there are multiple models for complex hyperbolic space, the
Siegel model of complex hyperbolic space is most useful for our calculations.

cosh?( for ZW eV~

2.2 The Siegel model for H2 and the Heisenberg group

The Siegel model of complex hyperbolic 2-space is defined as the projective model explained in Section
associated to the Hermitian form on C? given by (Z, W) = W*.JZ, where * denotes conjugate transpose
and

0 0 1
J=10 1 0
100
The complex hyperbolic plane can then be parameterized by C x R x RT in the following way:
HZ = {n((2z,v,u)) : 2 € C,v € R,u € RT}

Above, 7 is the projectivization map of Section and ¥(z,v,u) is given by:

—|2|2—utiv
2
¢(37U7U) - z (1)
1

When we parameterize H(% in this way, 80011-]1(% becomes the one-point compactification:
{m(¥(z,v,0)) : 2 € C,v € R} U {oo}

We will denote oo = m((1,0,0)7), and call (z,v,u) € C x R x Rt horospherical coordinates of the point
m(Y(z,v,u)) € HZ.

Definition 1. For a fized ug € R, the level set Hy, = {m(¥(z,v,u0)) : 2 € C,v € R} is called the
horosphere at height ug based at co. We call By, = {m(¢(z,v,u)) : z € C,v € R,u > ug} the open horoball
at height ug based at co.



We can identify the punctured boundary, 8OOH(% — {0}, with the Heisenberg group, H. The Heisenberg
group has C x R as its underlying set and obeys the group law given by:

(21,v1)(22,v2) = (21 + 22,01 + v2 + 2Im(z - 23)) (2)

In the line above, “Im” denotes the imaginary component of a complex number and “” denotes the
ordinary multiplication on C. We can identify GOOH?C — {00} with H since H acts simply-transitively on
DsoHZ — {o0}. The action of (z1,v1) € H on an element (z2,v2,0) € d-HZ — {oc} is given by multiplying
the vector (22, v2,0) on the left by the following matrix in U(2,1):

1 -z —|z1 |22+iv1
Ty = [0 1 21 (3)
0 0 1

Matrices of the form above are known as Heisenberg translation matrices. It is an easy exercise to show
that Heisenberg translations preserve a distance function on H known as the Cygan metric. The expression
for the Cygan metric for (z1,v1), (22,v2) € H is given by:

(SIS

de((z1,01), (22,02)) = ||z — 22f* + o1 — v + 2Im(z1 - )P = [2(t(21,v1,0), (22, v2, 0)))| (4)

The Cygan metric is the restriction to the punctured boundary of the complex hyperbolic plane of
an incomplete distance function on HZ — {co} called the exztended Cygan metric. The expression for the

extended Cygan metric for (z1,v1,u1), (22, v2,u2) € H?C — {00} is given by:
1
dxc((z1,v1,u1), (22,v2,u2)) = [(|21 — 22/® + [u1 — ua|)® + |v1 — v2 + 2Im(21 - 272)[?]4
1
= |2(¢(21,v1,u1), ¥ (22, V2, u2)) |2

(Extended) Cygan balls and spheres are defined in the obvious way. We refer the reader to [5] for more
information on the extended Cygan metric. In addition to Heisenberg translations, matrices of the form

()

1 0 0
A=10 €% 0 (6)

0 0 1
preserve the Cygan metric as well. Matrices of this type are called Heisenberg rotation matrices. Indeed,
one can easily check that A((z,v)) = (e?z,v) and the claim follows since || = 1. There is also a

connection between extended Cygan spheres and Ford isometric spheres, which we define below.

Definition 2. The Ford isometric sphere, 14, of an isometry g € U(2,1) is the set:

Iy = {w = (z,v,u) € HE : [((w),¥(00))] = [((w), g™ 1(c0))[}

By Proposition 4.3 of [5] we have:
Lemma 1 ([5]). Let g € U(2,1) satisfy g(oo) # oo. Letting S denote the extended Cygan sphere with
center g~ (00) and radius \/2/|g3.1|, we have S = I,.

When we apply Macbeath’s theorem later, we will argue that the images under PU(2,1;O4) of a
particular horoball of certain height based at oo cover ]HI(%. We will also make use of the following fact in
our covering argument, which is Lemma 1 of [2].

Lemma 2 ([2]). Eztended Cygan balls are affinely convex in horospherical coordinates.



2.3 Lattices and isometries of H2

We say a subgroup I' < Isom(HZ) is a lattice if T' is a discrete subgroup of Isom(H2) and HZ/I" has
finite volume. We distinguish between the cases where ]HI(QC /T is compact and non-compact, and call the
corresponding lattices cocompact and non-cocompact respectively. The distinction comes down to whether
or not I' contains isometries of a certain type.

Elements of Isom(H%) can be roughly characterized into three categories:

1. Elliptic Isometries - isometries that have a fixed point in H(%.

2.Parabolic Isometries - isometries that do not have a fixed point in H(Qc, but fix exactly one point of 8OOH%.
3.Lozodromic Isometries - isometries that do not have a fixed point in HZ, but fix exactly 2 points of 6001[-]1(%.

The well-known Godement compactness criterion states that a lattice in a semisimple Lie group defined
over Q contains parabolic elements if and only if it is non-cocompact. We define a cusp point of a lattice,
I' < Isom(H(%), to be a point of 3OOH% fixed by a parabolic element of I', and a cusp group of I' to be a
subgroup of the form Stabr(p) where p € 8OOH% is a cusp point of I'. A well-known result of Zink tells us
that since Q(iv/2) and Q(iv/11) have class number one, the Picard modular groups for d = 2,11 both have
a single cusp [13].

3 Primitive integral lifts and levels

3.1 Primitive integral lifts

The Picard modular groups, PU(2,1,0,), are examples of integral lattices, since the entries of these
matrices come from the ring of integers, O4. We define a unitary integral lattice to be a lattice that is
contained in U(H, Of) for some number field E, with ring of integers O, and Hermitian form H = (-, )
defined over E. We say that an integral vector, Py = (p1,p2, p3)! € (’)2 is primitive if it has no non-trivial
integral submultiples, that is, if \™1 Py € (93 for some A € Oy, then A is a unit in Oy4. If p is an O4-rational
point in CP?, that is, the image under projectivization of a vector P = (p1, p2,p3)?, a primitive integral lift
of p is any lift Py of p to (’)3 which is a primitive integral vector. The following “uniqueness” of primitive
integral lifts is stated without proof in [8] as Lemma 1. We provide a proof below for completeness.

Lemma 3. If O, is a principal ideal domain, then primitive integral lifts are unique up to multiplication
by a unit.

Proof. Let p be an Og}—rational point of CP?, and let Py, P, be two primitive integral lifts of p. As P; and
P, represent two lifts of p, we have
P =)\P

for some A € C — {0}. Denote P = (p11,p12,p13)" and Py = (pa1, p22,p23)’ where each pij € Oq, and
1<i<2,1<j<3. As P; and P, are lifts of an element of CP2, P; and P, have at least one pair of
corresponding non-zero entries. This implies A € Q(iv/d)—{0}, and since Oy is a principal ideal domain, we
can write A = i—; for some A1, Ay € Oy with ged(A1, A2) = 1. Now, since Oy is a principal ideal domain, it is
also a unique factorization domain. This implies we can write p;; = WijPijl---Dijni; and Ay, = UmAmi---Amn,,
where n;;, Ny € N, pijk, Amn € Og are primes, and w;j, vy, are units for 1 <i,m <2,1 <5 < 3,1 <k < nyy,
and 1 < h < nyy,.

From the equation P, = AP,, and the decompositions above, we can write

V2214 A2, U5 D151+ Pljng; = VIAIL-+-Alng U2iP2j1-+-P2jny;



Consider any Agp,, where 1 < hg < ng. Agp, is a prime that divides the right side of the equation above.
A2n, cannot divide vy or wgj, as these are units, and Aop, cannot divide any A1y, 1 < hy < ny since
ged(A1, A2) = 1. These statements imply that Agp, must divide pajk for some 1 < k < mg;. Since this holds
for 1 < j < 3, and P, is a primitive integral lift, we have that Ayp, is a unit. Since this holds for each
1 < hs < ng, Ao is a unit, and X is a member of O4. By the definition of primitive integral lifts, A must be
a unit as well. O

It turns out that any column-vector of a unitary matrix with entries from Oy is a primitive integral
vector. Moreover, under certain criteria, unitary matrices send isotropic primitive integral vectors to
primitive integral vectors. Lemma 2 from []] tells us the following:

Lemma 4 ([8]). Any column-vector of a matrizc A € U(2,1;04) is a primitive integral vector. Moreover,
if Og is a principal ideal domain and one of the basis vectors, e;, is (-, -)-isotropic, then for any primitive
integral (-, -)-isotropic vector, P, and any A € U(2,1;Oy), AP is a primitive integral vector.

3.2 Levels and depths

Next, we define the level of Og4-rational points on the boundary at infinity.

Definition 3. Given two Og-rational points, p,q € 80011-]1(%, the level between p and q, denoted lev(p,q),
is [{Py, Qo)|? for any two primitive integral lifts Py, Qo of p, q respectively. When we are given a preferred
Og-rational point oo € BOOH%, the depth of an Og4-rational p € 8OOH% is the level between p and oco.

By Lemmal 3], we see that the level between two Og-rational points is well defined when O, is a principal
ideal domain. Moreover, unitary matrices preserve levels since levels are determined by the form (-, ).
Levels will allow us to find the maximal height, u, of a horosphere H, = 0B, based at co € 8OOH%, such
that the I-translates of B, cover HZ. This relies on the following result, which is Proposition 1 of [8].

Lemma 5 ([8]). Let g € U(2,1) satisfy g(oo) # oo, S = I,-1 (Definition @), and H,, the horosphere based
at oo of height ug > 0. Then H,, NgH,, = Hy, NS.

Lemma [5| gives us the following corollary, which is listed as Corollary 1 in [§]. A proof is provided in [§],
and we will flesh out some additional details below.

Corollary 1 ([8]). For any Og-rational point p € O HZ with depth n > 1, and any integral matriz

A, € PU(2,1;Oq) satisfying Ap(co) = p, the set H, N Ap(H,y,) is empty if and only if u > %

Proof. As Ap(o<) = p, and e; = (1,0,0)7 is a lift of co, the first column of the unitary matrix associated
to A, is a primitive integral lift, Py, of p, by Lemma 4| This implies that the depth, n, of p is |(Fy, e1)]? =
|Aps 1|2 Since dep(p) > 1, necessarily Ap(c0) = p # oo (oo has depth zero). Letting S = Iy, by Lemma
we have that the radius of S equals (%)i By Lemma H,N Agl(Hu) = H, NS, which implies

H,NA,H,) #0 <= HuﬂAgl(Hu)#Q) — H,NS#0

4
< 3I(z,v,u) € Hy s.t. dxc(w,p) = (ﬁ)

NI

4
< J(z,v,u) € Hy s.t. |(|z —pz|2 + |u— O|)2 + v —py + 2Im(z ;07)\2| =

2 4
= |ul* < -
n

— u<

2
NG



Above, we used the equation for the extendend Cygan distance, the fact that u > 0, and the horospherical

coordinates (p., py,0) for p. O
Definition 4. The covering height of I' = PU(2,1;OQy), denoted u", is the mazimal height such that
I'Bycov covers H%. The covering depth of I is the unique n € N such that \/%ﬁ <u < %

4 Macbeath’s Theorem

The main tool for applying this method comes from a classical result of Macbeath which we now state.

Theorem 1 (Macbeath’s Theorem [6]). Let I' be a group acting by homeomorphisms on a topological space
X. Let V be an open subset of X whose I'-translates cover X.

1. If X is connected, then the set E(V) ={y €T :V N~V # 0} generates T.

2. If X is also simply-connected and V is path-connected, then I' admits a presentation with generating set
E(V) and relations v -~ = ~v' for all v,7' € E(V) such that VN~V Nyy'V #£ (.

We state the result above as written in [6]. Macbeath’s theorem tells us that I' admits a presentation,
(S: R), where S = {ey:v € E(V)} and R = {e, - ey = €y}, where “” is the word product and ~,~’, v’
are elements of E (V') satisfying the triple intersection property. In our context, I' = PU(2,1; Oy), X = H%,
and V = Bycov. For the relevant calculations, we will use the basepoint co € 80011-11% for our cusp point
representative, and use oo = 7((1,0,0)7) in the Siegel model of complex hyperbolic 2-space (Section .
Below, we collect the relevant objects and notation used in our derivations throughout Section 4.

Notation
e I': The lattice, PU(2,1; Oy)
e B: The fundamental open horoball based at oo, V = Bycov
e oco: A fixed cusp representative, 7((1,0,0)7)
e I'.: The cusp stabilizer, Stabr(co), with presentation (Ses : Roo)
e n: The covering depth of '
e u": The covering height corresponding to covering depth of I' (Definition

e D.: A compact fundamental domain for action of I's, on Hycov =~ OOOH?C —{o0}

p;: A representative of the I'yo-orbit of an Og4-rational point of at most depth n in Dy,
e A;: An element of I" satisfying A;(c0) = p;
° fyg;: an element of I's, (j is a superscript, not an exponent)

Note, since I' has a single cusp in the cases d = 2,11, each p; is in the ['-orbit of co, and it is possible, in
theory, to find such a matrix satisfying A4;(c0) = p;.

4.1 Covering H2

Proposition 1. Let B, denote the open horoball of height uw > 0 based at oo. If the I'-translates of B,
cover H, = 0B, then the I'-translates of B, cover H?C.



Proof. Denote C = |J B, is nonempty. We will show C is both open and closed in H%, hence C' = IHI(%.
~yel'

By construction, C' is nonempty. Since C'is a union of open sets, C' is open. To show C' is closed, let z € C.
There exist sequences () in I' and (x,,) in B, such that v,z, — . Since we have a compact fundamental
domain, D, for the action of I'yx on H, = 0B,, we need only finitely many horoball translates to cover
Do, and we can choose a uniform ¢ > 0 so that the e-neighborhood of D, is covered by translates of
B,. As T acts on H(% by isometries, and every open horoball intersecting H,, is a I'-translate of one of the
horoballs covering D+, we can extend the e-neighborhood of Dy, to all of H,,. Using the original horoball,
B, along with the e-neighborhood of H,, we get an e-neighborhood of B,. Again, since I" acts on H% by
isometries, it follows that the e-neighborhood of any translate of B, is also covered by translates of B,,.
Since vz, — x, we have d(y, oy, z) < € for sufficiently large n, so that = is contained in an e-neighborhood
of vz, and x € C. Thus, C is closed and C' = H%. L]

Proposition (1| tells us we need only cover H,, = dB,, by I'-translates of B, to cover ]HI(%. By Lemma we

know H, N A;I(Hu) = H,N S, where S is the extended Cygan sphere with center p; and radius (#(pi))i.

This implies we can determine that translates by I' of B,, cover ]HI(QC by obtaining a cover of H,, by extended
Cygan balls centered on d-H?Z. Since we have a compact fundamental domain, Do, C Hyeov, for the action
of I'oo on Hyeov ~ 8OO]HI% — {00}, we need only cover D, by extended Cygan balls centered on Oy-rational
points in 0OOH(2C. We will obtain this covering of D, by decomposing D, into affine pieces, each given
as a convex hull of a finite number of points in D,,. We will argue that these pieces cover the entirety of
Do, and that the vertices defining each convex hull piece is contained in an extended Cygan ball centered
on an Oy-rational point in d,H%. By Lemma 2] since extended Cygan balls are affinely convex, the entire
convex hull defined by the set of vertices must be in the same extended Cygan ball. Thus D, is covered
by extended Cygan balls centered on 8OOH(2C, and we get a cover of H% by the I'-translates of B,,.

4.2 Generators

Proposition 2. Suppose the I'-translates of B cover H(%. Then T is generated by Sso U A, where Sy is
the generating set for I's, and A is a finite collection of matrices sending oo to points of depth at most n
M Dy

Proof. By Macbeath’s theorem, « is a generator for I' if B N~B # (). Corollary [1] tells us that BN~yB # ()
if and only if yoo is either oo, or an Oy-rational point of depth at most n. The proof of Proposition [I]
tells us that we need only cover Do, by finitely many horoballs in order to obtain our covering of H(QC. The
bases of these horoballs give us a finite list, {p1,...,px}, of Og4-rational points in D,. Assume the first r
of the points form a system of representatives for {pi, ..., px} under the action of I'o,. Since I" has a single
cusp, we can find a matrix, A;, sending oo to p;. If A; is such a matrix, then A; sends B to the horoball
based at p; as well. We also know that any Os-rational point of depth at most n is a I'w-translate of one
of the points {p1, ..., pr}. This implies:

E(B)={y €T : BNYB # 0} = {75045 : Yoos Voo € Toori = 1,...,7}

The previous statement accounts for multiplying A; on the left by an element of I'y,, and the right-
multiplication of A; by elements of I'y, comes from the fact that precomposing a matrix with an element
of the cusp stabilizer does not change the image of co under the map A;. Denoting A = {41,..., A}, we
conclude T is generated by Sy, U A. O



4.3 Relations

It is not straightforward to check if a triple intersection of horoballs is nonempty. Instead, we settle for
some necessary conditions for a triple intersection to occur. Relaxing the criteria for a possible relation
may generate additional relations, but these redundancies will later be eliminated. Recall our generating
set is B(B) = {vL A2 : 74,75 € Tooyi = 1,...,7}. Macbeath’s theorem tells us that I' admits a relation,
v+ =79, whenever v, € E(B) satisfy BNyBN~y'B # (). Suppose both yoo # 0o and y7/00 # 0o. As
elements of ', stabilize B, and left and right multiplication by elements of I's, permute the set E(B), we
may assume v = Aq, v =L A2, and vy = 73, Ak for some 1 < a,b,c <rand 7., €, 1 <i < 4.

oo

The corresponding relation «y - 4/ = v/ becomes Ayl A2, = 3 AL, If 4, 7/, or v/ fix oo, we take
the corresponding A matrix to be the identity. When we evaluate both sides of the relation at co we get
AavLope = ¥3 pe, and we will use this equation to detect potential relations. We obtain a relation, Ry pc, by
identifying the element AZ1(v3)"1 4,71 Ay = 7% € s as a word composed of elements of the generating
set Soo. The equation A,y py = 72, p. provides us some useful information regarding the Cygan distance
of our points of interest that will aid in our search for possible relations.

Lemma 6. If Aa'yéopb = vgopc for A, €T, Wéo,yg’o € I'eo, and py,pe € Do, then

4ddep(p.) i
2| >

de(Aa ™ (00), v ) = <d€p(pa)deﬂ

where pg = Ag(00).

Proof. Suppose Avipy = v3.pe. As Agylpy and 43 p. represent the same point of GOOH(ZC, and unitary
matrices preserve depths and levels, we have

AaViopy = V3pe = dep(Aaviopy) = dep(vape) = lev(oco, Aqvips) = dep(pe)
= lev(Ay " (00), vaops) = dep(pe)
From Definition [3] we can also write

lev(Aa_l(OO);’Y;opb) = |(P, Q>|2

where P and @ are primitive integral lifts of the points A;!(00) and . py respectively. We can write

lev(Aa ™ (00), Yaopp) = dep(Ag " (00))dep(vaepn) [{$(A7 " (00), ¥ (0p))

where 9(-) represents the standard lift of a point in the Siegel model (eq. [I). By the remarks earlier, we
have dep(y..py) = dep(pp), and since unitary matrices preserve depths and levels,

dep(py) = lev(oco, pg) = lev(oco, Ag(00)) = lev(Agl(oo), o0) = dep(Agl(oo))
The statements above imply

dep(pe) = lev(Aa ™ (00), Yaupp) = dep(pa)dep(py) | (¥(Ag " (00), ¥ (aupp))

The expression for the Cygan metric (eq. [4) and the equation above imply

4ddep(p.) i
2| >

do (A~ H(00), viems) = <d€p(pa)deﬂ



Lemma [6] and the following lemma will show that if we have a triple intersection of I'-translates of B,
the corresponding parabolic fixed points cannot be too far apart in the Cygan distance, and their distances
are restrained by the covering depth of I'. These facts will allow us to reduce our search for relations to a
finite number of verifications. Note, pg = (0,0,0) € OOOH?C is an Og-rational point of depth 1 for all values
of d.

Lemma 7. Let n be the covering depth of I'. If the elements v = Aa, v =L AZ, Y = 2 A of
' satisfy BNyYB N~y B # 0, and we obtain the relation A7 (73) P Aay Ay = 72, then do(vipo,po),
do(V3.p0,p0), and dc(Yi po, po) are bounded as follows:

1. If pa, py, pe # 00 ,
de(vApo, po) < max de(po, Ai 1 (00)) + (4n)7 + max de(pi, po)
1<i<r 1<i<r
1
de(v3,p0; o) < (4n)7 + 2 max de(ps, po)
1<i<r
de(Viepo, po) < (4n)T + 2 max do (A7 (00), po)
1<i<r

2. praapb 7é O, Pe = O

1 —_
dc(Y5eP0s Do) < max dc(po, Ai ™1 (00)) + max dc(pi, po)
-

dc(Vipo,po) < max de(po L(o0)) + max de(pi, po)

3. If pp =00, Ag = Ac
de (v po, po) < 2 max de(pi, po)
1<ir

dc(vi.po,po) < 2 Tax de(A; 1 (00), po)

Proof. Suppose BNyB N~y B # () and n € N is the covering depth of I'. Recall, the triple intersection
property gives us a relation of the form AZ!(v3) "t AvL Ay =

Case 1 (pa, Py, pe # 00). Evaluating both sides of AZ1(73,)~ Aa%oAb vk at oo yields Agvipy = V3 pe.
Lemma [6] implies

do(Aa~ 1 (00), viops) = <Cm)4 "

By the triangle inequality, (eq. , and the fact that elements of I'o, preserve the Cygan metric, we have

de(Po, YaoPo) <dc(po, Ao~ 1 (00)) + do(Aa ™ (00), YaePb) + de(VaePbs YaoPo)

=dc(po, Aa 1 (0)) + (W) ' + dc(py, Po)

As 1 < dep(p,),dep(py),dep(p:) < n, and there are finitely many A; and p;, we have
_ 1
de(po; YaoPo) < max dc(po, At (00)) + (4n)1 + max dc(pi, o)

Using the relation A71(v3) 'A% A4y = 7%, and performmg an identical procedure with the derived
equations A, 173 pe = vhopy and (73) " 'pa = Avi A, H(00), we obtain

1
de(v3,po, po) < (4n)4 + 2 max dC’(pz;pO) and dc(v5po,po) < (4n)s + 2{3% de (A7 (00), po)

Case 2 (pa,py # 00, pe = 00). In this case, our relation is A,y. Ay = v%. Note, we need not produce a
43, in this case. As p. = 0o, we have dep(p.) = 0. This fact, and the work form Case 1 implies

de(po, Yaepo) <dc(po, Aa~(00)) + <<m> ! + dc(py, po)

=de(po, Aa 1 (00)) + de (py, o)
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so that
1 —1
< ) )
dc(po, YooPo) < max do(po, Ai " (00)) + max de(pis po)

From our relation, we can derive A,vL = 7% A, . Evaluating at co yields p, = 72 A4, ' (c0). This implies
de (V3P0 o) <dc(V2epo: Pa) + dc(Pas Po)

=dc(VaoPo, Vi Ay 1 (00)) + de(Pa, o)
=dc(po, Ay ' (00)) + dc(pa, o)

so that
* < —1 .
dc(Viepo, po) < max de(po, Ai ™" (00)) + fnax de(pi, po)

Case 3 (pp = o0, Aq = A.). In this case, our relation can be written A,y A, = ~% . Note, we need not
produce a 3, in this case either. Evaluating at oo gives 7. p, = ps. We have

de(Yaepo, po) <dc(vipo,pa) + do(Pa,s po)
=dc (VaoP0, YaoPa) + dc(pas po)

:2dC(paap0)
so that
dc(YaoPos Po) < 2 max de (i, po)
1<i<r
From our relation, we can derive 4,75 A;! = <L, so that evaluating at infinity gives v} A;!(c0) =

A 1(00). Following an identical procedure, replacing v. and p, with 7% and A;!(co) respectively, we
obtain

dc(Vip0spo) < 21121?<XTCZC(AZI(OO)7PO)

The remaining possible combinations of p, = 0o, pp = 00, and p. = oo reduce to the cases already
considered via appropriate left /right multiplication of matrices. ]

4.4 Outline of method in practice

Before moving on to the presentations for the Euclidean Picard modular groups in the cases d = 2,11, we
will give a brief outline of the steps in applying Macbeath’s theorem.

1. Obtain an affine fundamental domain, Dy, C OsHZ =~ Hycov for the action of I's, = Stabr(co).

2. Obtain a presentation I'ny = (Soo : Roo)-

3. Determine the covering depth, n, of I'.

4. Find all O4-rational points of depth at most n in Dy.

5. Of the Og4-rational points of depth at most n in D, find a system of representatives of these points
under the action of I'o,. Denote this system of representatives {p1, ..., pr}.

6. For each p;, 1 < i <r, obtain a matrix, A;, such that 4;(co0) = p;. Denote this set of matrices A.

7. For every 1 < a,b,c < r, for which there exists 71,73, € I's, such that Ayl py = 73 pe, record the
relation Ry p. = (75) TAZ(3) 7L Aayk Ap for some %, € T'oo. Denote this set relations R.

oo

8. Obtain the presentation I' = (Soc U A : Roo UR).
9. Simplify the presentation obtained in Step 8.

Now that we have summarized the method, we move on to the presentations for PU(2,1; Oy), d = 2, 11.

11



5 A presentation for PU(2,1; O,)

Theorem 2. I'(2) = PU(2,1; O2) admits the following presentation:

0Q2)=(T,I,A:I* A3 (T7'A Y (T?ITITI)?, T A" TATA ' TA, TA3TA™'TA™!,

IT YA TAT ' ITA’ITA, TATITIATATIT ' TA, (T7*A2T'TA™?)2 (T7'1)3,

(AT TTATY TP AT T )2 TAP ITATIA ' T YA IT A A 2PTA T TAT ' TIT L AITI,
T A YT YA T Y AITIA Y TIAT A, TA 2T ' ITATIT Y AITA Y IT Y,
TATITIT ' IT YA YT A?TAI A2 TA2TIT *ATA ' TATIT !,

T YA TA N ITIT YA TATIA 2 TA Y, TA Y TAT ' TA ' T ' TA 2 TATA™'TIA Y,

T 2AITATIT? IT *A YT TA™2 ATATATATITAIA 2T TA™'T,

AT YAIT Y ITIATA TITA Y TA2IT Y T Y TA 2 ITIA 2 TAT Y IT ' ITITIA™ Y,
ATIT YA TAPT YA YT Y A2 TIAIA YT, TATITITIT *IT Y IT Y AT' T YAIT ' ITIA™Y,
ITIA YT Y TA Y TTATAT ' TATAIT2A= T 11A727 73,

IT ' T Y T YAIA ' TIA 2 TAT Y IT A\ TIT Y ATA Y IT Y AT,

TATIT?)ITA ' TIT YA T A Y2 T 1T IT Y TA T IT ITTATA'T A2,

T UTATAIT ' IT 2ITA  TA? IT ' ITAIT ' ITITIATAT ' TITA ' T 1A=?T~1)

The unitary matrices corresponding to the generators of I'(2) are given by:

1 0 V2 0 0 1 —14ivV2  2ivV2  2—iV2
T=T,s=101 0|, I=I=0 -1 0|, A=A433=|2—-iv2 1-2iv2 -2
00 1 1 0 0 1—ivV2 —iV2 -1

Corollary 2. The abelianization of I'(2) is Z/27 x Z]AZ.

5.1 Finding D, (2) and I'.(2)

More information on the cusp stabilizer, I's(2), can be found in Section 5.3 of [9].

Lemma 8 ([9]). 1. The cusp stabilizer, I's(2), admits the following presentation:

Too(2) = <Tz, Tiva Toys R Ty 5 (12, Ty sl (T2, To ) [T 5 Tl B2 IR, Ty 5], (RT2)?, (RTM)2>

2. Let Doo(2) C OscHZ be the affine convex hull of the points with horospherical coordinates (0,0), (2,0), (iv/2,0),
(0,2v/2), (2,2v/2), (iv/2,2v/2). Then Doo(2) is a fundamental domain for T'ao(2) acting on OsHZ — {oc}.

We use the following generators for I's(2):

1 -2 -2 1 W2 -1 1 0 V2 1 0 0
=10 1 2|, T,5=10 1 V2|, T,5=1|01 0]|,R=1]0 -1 0
0 0 1 0 0 1 00 1 0 0 1

where T, is a Heisenberg translation matriz (eq. @ and R a Heisenberg rotation matriz (eq. @

The following lemma establishes a “normal form” for elements of I';(2). This normal form is crucial in
our process for making our relation set finite.
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Lemma 9. For any v € I'(2), v can be written as:

v = RpTQﬁ"Tngi\/ﬁl for some m,n,l € Z and p=10,1

Proof. One can easily verify that the relations of I's(2) imply the following:
1. T, 5 is central in ' (2).
7

2. Commuting R with Th, T~ !, T 5, OT Tiﬁ_l changes T3 and T s to its inverse and visa-versa.

3. Commuting To*! with T, ﬁil introduces a factor of T, ﬁi4 in the word decomposition of an element
of ' (2).

4. R=R"!
Hence, given an element v € I'o(2), we can:

1. Collect all R letters in the word decomposition of v to the leftmost position and simplify. Along the
way, we either elminate a factors of R, leave factors of T zi\/li unchanged, or flip Tzﬂ, le\t/li factors to
their inverses.

2. Collect all T;El2 letters to the second leftmost position in the word decomposition of v using centrality
of T, 3 and simplify.

3. Collect all T. Qil letters in the third leftmost position in the word decomposition of v and simplify.
Along the way, we potentially introduce factors of T2i42, we move these to the second leftmost position
using centrality again.

4. Simplify remaining collected letters of T;‘\r/li

The algorithm above gives us our desired normal form. O

Now that we have established a normal form for cusp stabilizer elements, we argue we need only check

finitely many possible relations.

Lemma 10. If'(2) admits the relation A7 (73) " Ay Ay = 7%, for a,b,c € {1,...,r} and
i3 Ak, € Too(2), then, using the normal form as in Lemma@ the exponents of v, 7., and Y%, satisfy

| <19, |m]| < 3, i] < 4

Proof. Recall the horospherical coordinates of the depth 1 point, py = (0,0). Lemma |7] tells us

1
do(Yiepo, po) < max de(po, Ai 1 (00)) + (4n) 1 + max de(pi, po)

We will see later, that the covering depth of I'(2) is at most 16 (Section . Using the Os-rational points
listed in Appendix [A] the bounds from Lemma [7] for the d = 2 case satisfy

< 4dep(pc)

1
4
deplodepn) ) = 2V2d 1.7048, de(po, Ay~ 1 7684
dep(pa)dep(pb)> < 22, de(p,po) < , do(pos (00)) <

Recall that the Cygan metric is given by (eq.
1
do((z1,v1), (22,02)) = [|21 — 22| + |v1 — v2 + 2Im(21 - )[4

Using Lelfnnrla|§|7 and the Heisenberg multiplication law (eq. , we have

. 1
de(po, Yopo) = de(po, RPTy 5" Ty T, s5'po) = de(po. Ty 5" 12" T, s5'p0) = ||2m+1iv2| +|(2n—4ml)V2[*| 3
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The equations above imply

l12m + V2% + |(2n — 4ml)V2[2)7 < 2v/2 + 1.7048 + 1.7684

Since I, m,n are integers, there are only finitely many value combinations that satisfy the inequality. A
simple calculation yields
Il <19, m| <3, I <4

The derivations for the remaining cusp stabilizer elements follow the same procedure above. O

5.2 Covering depth of I'(2)

Let B((z,v),r) be the open extended Cygan ball centered at p = (2,v) € d-oHZ with radius r. Recall that
balls of depth n appear at height u(n) = %

Lemma 11. Let u = u(17) + € = 0.4852, and H, be the horosphere of height u based at co. Then the
prism, Doo(2) x {u}, is covered by the intersections with H, of the following extended Cygan balls (eq. [5):

Depth 1: B((0,0),\/ELB((Q,O),\/?),B((i\/i, 0)?\/5)73((0?2\/5)7[) B((2, 2\/>) \/>) B((iv2 2\[) \[)
Depth 3: B((3 + 3iv2), 3v2), (5)1), B((5 + 3iv2,2v2), (5)%)

Corollary 3. The covering depth of T'(2) is at most 16.

Although we only used Cygan balls of depth up to 3, it appears that we still need to pass to depth 16. We
generated pictures (Figure 1) of coverings of Dy (2) by Cygan balls. For heights corresponding to depths
n < 15, it appeared that balls of depth at most n did not cover the prism. The proof below makes rigorous
the fact that passing to depth 16 is sufficient in covering ]I-]I(%.

Proof. Figure 1 below shows the covering of Dy (2) by the relevant extended Cygan balls. We will de-
compose Dy (2) into affine polyhedra, each of which lies in a single extended Cygan ball. Consider the
following points of (’J?OOI[-]I(ZC in horospherical coordinates:

11 = (0,0),¢12 = (0,2v2),¢13 = (2,0), c14 = (2,2v2),e15 = (iv2,0), e16 = (iV2,2V2),q1 = (1,0),
o= (2+1iv/2,0), 05 = (1+ Liv/2,0), qa = (£ + 2iv/2,0), g5 = (1.15 + 1iv/2,0), g6 = (Liv/2,0),

gr = (§1v2,0),48 = (1,2v2),q9 = (1 + §iv2,2V2), q10 = (3 + §iv2,2v2),q11 = (1 + 3iv2,2V2),

g2 = (5 + 31v2,2v2), q13 = (31v2,2V2), qua = (5 + 50V2,2v2), 15 = (5 + 31v2,2v2), q16 = (1, 17 V2),
qir = (1.1,v2),q18 = (2,V2),q19 = (0.94, §V2), q20 = (0, 3v/2), g21 = (0, §v2), 422 = (§iV2, §v2),

g3 = (2iv2, V), qos = (iV2,V3), g5 = (3 + 3iv/2, 1v/2), qa = (1.15 + 0.425i1/3, 14/3),

arr = (3 + £riv2,v2) gas = (1+ 3iv2, 3V, g0 = (LOT+ V2, 3V2)

Denoting C(9) the affine convex hull of a subset S C H, ~ 0HZ x {u}, each of the following pieces of
D+ (2) x {u} are contained in the corresponding open extended Cygan ball:

Ry =C(c1.1,q1, 95,93, 47, Q19+ G215 G29) C B((0,0),/2)
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2 = C(c1,2, G5, 99, Q15: 14, Q135 420, Q165 422, G23, 427, G28) C B((0,2v/2),/2)

5 =C(c1,3,q1,5, 92, 19, 17, Q18: 420) C B((2,0),V2)

4 = C(c1,4, 2,3, 45+ 485 49, Q10, Q185 17, Q16 426, 28 429) C B((2,2v2),V2)

5 = C(c1,5, Q4,6 411, D12+ 14, Q155 422 G23, 424, @25, G27) C B((iv/2,0),V2)

6 = C(
C(
O

€16, q12, Q13: Q14 G24, @23) C B((2,2v/2),/2)
43,41, 06, 07, 916, 17, €19, G20, 21, G2, 25, 426, G2, 27, G29) C B((5 + 3iv2), 2V/2)
Rs = C(qo, q10, 11, q15, 425, 426, 27, G28) C B((% + %i\/ﬁﬂ\/ﬁ), (%)Z)

Figure 1: Covering of Dy (2) x {u} with Cygan balls up to depth 16

To verify the set containments above, we check each ¢ in each region, R;, has an extended Cygan
distance less than the radius of the corresponding extended Cygan ball. Using the fact that extended
Cygan balls are affinely convex, we can then conclude the entire convex hull is contained in R;. We will do
the calcuations for Ry here. The calculations for the remaining regions follow the same process. We have:

dc((0,0),¢11) < 0.6967 < v/2, de((0
dc((0,0),¢3) < 1.4091 < /2, de((0,
dc((0,0),ga1) < 1.0042 < /2, de((0,

,0),q1) < 1.2188 < v/2, dc((0,0),¢5) < 1.3903 < /2,
), q7) < 0.7813 < v/2, d((0,0), q19) < 1.3160 < /2,
0), q29) < 1.3966 < /2

The result then follows as each face of the regions, R;, are either on the boundary of the prism, or entirely
contained in neighboring regions (see Figure 2). Note, there is some overlap between some of the regions,
but the entirety of the prism is still covered. O

Figure 2: An affine decomposition of Dy, (2) x {u}

. ’ 4
z
- 05
0 1
a

5.3 (s-rational points of depth at most n = 16
We aim to find all the points of depth at most 16 in Dy (2). Recall that the depth of an Os-rational

point, p, is defined as the level between p and oo = 7((1,0,0)7). We can take P,, = (1,0,0)7 as a primitive
integral lift for co. The standard lift an Os-rational point on the boundary is given by:
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—|z|2+iv
2
P= z

1

where z and v come from the horospherical coordinates of the point 7(¢(z,v,0)). The standard lift may
not be integral, but we can multiply by some ¢ € Os so that ¢P is then a primitive integral lift. To calulate
the level of p, we compute

(P gP)|? = [(qP)*J Poo|? = |g|?
In order to find the Os-rational points of depth k for 1 < k < 16, we need to find ¢ € Oy such that |¢|> = k
for 1 < k < 16. We also need only find values of ¢ up to multiplication by a unit. Each value of g is of the

form q = a + biv/2 for a,b € Z. |q|*> = a® + 2b%, so we need to find values a,b € Z such that a® + 2b> = k
for 1 < k < 16. After some simple calculations, we have the following:

Depth Possible ¢’s
1 1
2 iv2
3 14+iv2,1—iV2
4 2
6 2+1iv2,2 —iV/2
8 2iv/2
9 3,1+ 2iv2,1—2iv/2
11 34+iv2,3 —iv2
12 2+ 2iv/2,2 — 2iV/2
16 4

Next, we determine which horospherical points, (z,v) have standard lifts P, such that ¢P is a primitive
integral lift. In order to accomplish this task, we find all (z,v) € Dy (2) such that for a fixed ¢, gz € O2
and qP; € Oy where P; is the first entry of the standard lift of P. We only list depths that contain
Os-rational points. Moreover, we need only consider one representative from each I's(2)-orbit. We list
the set of I'o(2)-orbit representatives up to depth 16 in Appendix

Now for each representative, p, we need to find a matrix A, € I'(2) such that A,(c0) = p.

5.4 Matrices and primitive integral lifts for O,-rational representatives

For each Os-rational point p, there exists a ¢ € Oy such that when we scale the standard lift of p by ¢,
we get a primitive integral lift of p. This practice takes care of finding primitive integral lifts for all of our
Oy-rational points of interest. We look for a matrix that sends oo = 7(1,0,0) to p. In other words, we
need to find a unitary matrix that has the primitive integral lift of p as its first column. (First column is
image of basis vector (1,0,0)”) There does not seem to be a general procedure for finding these matrices
sending oo to our points of interest. A couple “tricks” one can use are:

1. Use stabilizers of the vertical complex line in the Heisenberg group. We use this trick to find matrices
sending oo to points with horospherical coordinate z = 0.

2. Hit all relevant integral points by group elements we have already found, and see if we land in the
I's(2)-orbit of the point we are trying to reach.

3. From a previously found matrix, use elementary row/column operations, transposition, complex conju-
gation, inversion, to see if we can get a matrix whose first column is the primitive integral lift of interest.

We denote p; j the jth Os-rational point of depth i, and A;; a matrix sending oo We denote py = (0,0)
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and [y a matrix sending oo to (0,0). We list the matrices sending oo to p; ; in Appendix [B| and we only
list matrices, as the primitive integral lifts corresponding to p; ; are simply the first column of A; ;.

By Proposition [2| we have that I'(2) is generated by:
S(2) ={12,T; 3, Ty, 5 R} U A

where 15, T} 5, T, 5, R are the generators of I'o(2) and A is the set of matrices listed in Appendix Using

Lemma and the aid of MATLAB for computations [10], we can cycle through all possible elements of
I'o(2) that could appear in a relation for I'(2). Using the MAGMA function “Simplify(-)” [7] for simplifying
the set of generators and the set of relations, we obtain the presentation in Theorem 2. The MAGMA
computation reduces our original generating set of 54 matrices to a generating set of 3 matrices and our
original set of 5,837 relations to a set of 29 relations. The abelianization in Corollary [2| of I'(2) is obtained
using the MAGMA function “AbelianQuotient(-)” [7].

6 A presentation for PU(2,1;0q;)

For the entirety of this section, we denote 7 = 1‘”27& We omit some details in this case, as the proofs
follow identical procedures to that of d = 2.

Theorem 3. I'(11) = PU(2, 1; O11) admits the following presentation:

I(11) = (R, T, Ty, I, A : R? I*, A* [R, T,), [T}, T,), (IR)? RT, Ty *RT; *, Ty M IT T A1,
IT P AT AIT Y (RATA™ Y2 A I I T P A T A=V T, RT I T, IRAT T,
AT RT,IA2RT\IAT,, A~ T, RIA 2 RT\ T AT, (T IT, " A= RA)? (T, Y ATV IT P A2,
IRT, M IT, ' Ty RAT IT, P ATV TAT T IT P AT TRT, TV T, RTEIT, P ATRT, R,
T, A IT " AT T, IA 2 RATA TV T, 'RV T2,

ATVIT P AP T ATV T ATV TA T T, RTT T TATAT  RIT VAT IT A,

TAP T AT I TV AT T, P A RAT Y IT P AT T, P TV ATAT TV T RA,

AT T AP T AP IT P AP T I T P AP IT P AP TV T A,

ATAT'RT A T AIRT, " A~ YW AT IT, RIT, T, I AT, P ARAT2IT,

ATZIT P AT T P A P RAT AT I T P A2 T IT P AT P AR

AT T P AP T P AT Y RIAT T P AP T T P A I T, Ty RAT T

Ty AT T P AT, RIAT T IAT RIT, AT P A T AT IT P ARAT TAT T, R)

The unitary matrices corresponding to the generators of I'(11) are given by:

1 0 O 1 -1 —-1+7 1 0 —-1427 0 0 1
R=|0 -1 o|,n=10 1 1 JT,= (0 1 0 JI=I,=|0 -1 0},
0 0 1 0 0 1 0 0 1 1 0 O
—1—-7 -2 147
A:Ag),l: —1 —1+7’ 1
—247 T 1

Corollary 4. The abelianization of I'(11) is Z/27 X Z./]27 x 7./ 27..
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6.1 Finding D, (11) and T'(11)

Once again, we let B((z,v),r) be the open extended Cygan ball centered at p = (z,v) € OsH% with radius
7. Recall that balls of depth n appear at height u(n) = 2. The covering argument for d = 11 follows the

N
same line of reasoning as d = 2. More information on the cusp stabilizer, I's,(11) can be found in Section
5.3 of [9].
Lemma 12 ([9]). 1. The cusp stabilizer, I'no(11), admits the following presentation:

Too(11) = (1), T, Ty, R : T,[T, T+, [Ty, T), [T7, To], R, [R, T,), [Tv, RITy °T,, [Tr, RIT2T,)
2. Let Doo(11) C 9ocHZ be the affine convex hull of the points with horospherical coordinates (0,0), (1,0), (7, 0),
(0,2v/11), (1,2v11), (1,2V/11). Then Dso(11) is a fundamental domain for T'ao(11) acting on OoHZ —{o0}.

We use the following generators for I'so(11):

1 -1 -14r71 1 —-1+7 247 1 0 1-27 1 0 O
=10 1 1 , =10 1 T ,Ty=10 1 0 , R=10 -1 0
0 0 1 0 0 1 0 0 1 0 0 1

where T, is a Heisenberg translation matriz (eq. @ and R a Heisenberg rotation matriz (eq. @)

Following a similar line of reasoning as in the d = 2 case, we have:
Lemma 13. For any v € I'x(11), v can be written as:
v = RPT,"Ty"™T,! for some m,n,l € Z and p = 0,1

Lemma 14. IfT'(11) admits the relation A1 (73) Y Agyl Ay = ~% for a,b,c € {1,...,r} and
viov3 Ak, € Too(11), then, using the normal form as in Lemma the exponents of vi, v3., and v,
satisfy

In| <21, m| <9, [l] <5

In order to obtain the bound above, one can easily check the bounds from Lemma [7] for the d = 11 case
satisfy:

( 4dep(pc)

1

1

— ) < 3.4880, de(pp, po) < 2.5661, de(po, A (0)) < 2.6901
dep(m)dep@b)) ow: ) o(po, Aa™(c0))

6.2 Covering depth of I'(11)

Lemma 15. Let u = u(44) + € = 0.3015114, and H, be the horosphere of height u based at co. Then the
prism, Doo(11) x {u}, is covered by the intersections with H,, of the following extended Cygan balls:

Depth 1: B((0,0),v2), B((0,2v/11),v2), B((1,v11),v2), B((1, v11),v/2), B((—=1+7,V11),v2), B((1+7,v/11),1/2)
Depth 3: B((57, 3V11), (3)%), B(5 + 37 3VI1), (5)4), B(G + 57, V1D, (5)%)

Depth 4: B((0,+/11),1), B((1,2V/11),1)

Depth 5: B((§ + 27, §V11), (3)7) Depth 28: B((£ + 47, 3LV/11), (£4)7)
Depth 9: B((0, 5V/11), (§)7), B((L, 5v11), (5)7) Depth 25: B((3% + 37, 32V/11), (35)7)
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Figure 3: Covering of Dy (11) x {u} with Cygan balls up to depth 43

Corollary 5. The covering depth of T'(11) is at most 43.

Although we only used Cygan balls of depth up to 25, it appears that we still need to pass to depth 43.
We generated pictures (Figure 3) of coverings of Do (11) by Cygan balls. For heights corresponding to
depths n < 42, it appeared that balls of depth at most n did not cover the prism. A proof similar to the
d = 2 case makes rigorous the fact that passing to depth 43 is sufficient in covering H%.

Figure 4: An affine decomposition of D (11) X {u}

6.3 (i;-rational points of depth at most n = 43

To find all the points of depth at most 43 in Dy (11), we perform the same type of calculations as the
d = 2 case. Below are the possible values of “q”, where ¢ is the scale factor from Section 5.4. We list only
the depths where a ¢ factor is possible.

Depth Possible ¢’s
1 1
3 1477
4 2
5 247,147
9 3,-3+71,24T1
11 —1+27
12 —2 427,27
15 —A4+7,-3+27,1+27,3+71
16 4
20 —4 427,24 27
23 —5+T1,4+T
25 5 —2+37,—1+4+ 37
27 -5+ 27, -3+ 37,3+ 27,37
31 —44 37,1+ 37
33 —64+T7,5+7T
36 6,—6+ 27,4+ 271
37 —5+31,2+ 37
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We obtain a large number of I'o;(11)-orbit representatives in the d = 11 case. For this reason, we list the
points in a separate document, “rational_points_matrices_.d11.pdf”, which can be found in [I0].

6.4 Matrices and primitive integral lifts for O;;-rational representatives

Due to the large number of T'w-orbit representatives of (Ojj-rational points in Dy (11), our gen-
erating set for I'(11) is substantial, 259 matrices to be exact. We list these generators in ““ratio-
nal_points_matrices_d11.pdf”, [I0]. Once again, we do not list primitive integral lifts of the relevant points,
as one can recover the primitive integral lifts of these points from the first column of each matrix respec-
tively. By Proposition 2| we have that I'(11) is generated by:

S(11) = {Ty,T,, Ty, R} U A

where T1,T:, T, R are the generators of I's,(11) and A is the set of matrices listed in [10]. Using Lemma
and the aid of MATLAB for computations [10], we can cycle through all possible elements of I's,(11) that
could appear in a relation for I'(11). Using the MAGMA function “Simplify(-)” [7] for simplifying the set of
generators and the set of relations, we obtain the presentation in Theorem 3. The MAGMA computation
reduces our original generating set of 263 matrices to a generating set of 5 matrices and our original set
of 23,673 relations to a set of 26 relations. Note, I'(11) has a presentation involving only 3 generators,
but the number of relations and length of some relations is much larger using this generating set. When
using MAGMA, a user has some control over the simplification of a particular presentation. One can
retain particular generators using the parameter “Preserve:=[|” in the MAGMA function “Simplify(-)”,
and control the elmination of relations in ”Simplify(-)” using the parameter “EliminationLimit:=" [7].
Once again, we use the function “AbelianQuotient(-)” in MAGMA to obtain the abelianization of I'(11)
in Corollary 4] [7].
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Appendix A: Os-rat

ional point representatives

Depth O5-Rational Points
1 (0,0)
2 (0,v2)
3 (G+52.3v2), G+ 22 3v2), (3 + 52.0)
4 (1,0),(1,v?2)
6 G+ 5v2). (3 + %2 v2). (3 + 2. §V2)
9 (0,2v2),(0,3v2), (3 + 22,0), (3 + 22, V9), (2 + 22 0),
| G+ EA A (34 HE 25 (F4 12 1), |
(252 4v0). 3+ 504V, (5 2 V. (3 % VD). (0 4 242 400), (3 4 52 V)
2 3iv2 8 4 6iv/2 10 8 V2 2 10 4iv/2 4 16 2iv/2 8
S R A = A e = A B N A W N R R A
(i1 o ’ﬁﬁ)’(\}ﬁ+ T 7ﬁﬁ\%(ﬁ+ T vﬁ@v(ﬁ+ T ’ﬁf\/i)’(T*ln \’[ﬁﬁ)
21V 2 21vV2 21V 2 49+/2 V2 V2
12 5+ 3f70,(%+fgf,ﬁ),f(%+ 5V (5 + “}’Zﬂ)’(%f }’%ﬁ’(§+ 2.3v2)
V2 V2 2 V2 V2 V2 V2 2 V2
16 270)3(2a7)>(27\/§)>(27%\/§a(1+ 270)3(1 277)3(1+ 27\5)7
W2 3
(1+ 2 75\/5)
Appendix B: Matrices sending oo to Os-rational points
0 0 1 -1 0 iv2 —1 0 0 iv2 0 1
In=10 -1 0|,A2;1=(0 1 0 |,A31= 2 -1 0],A32= 2 -1 —iv2|,
1 0 0 iv2 0 1 1+4iv2 V2 -1 1—iv2 W2 -1
—1+iV2 2iv/2 2 —iV/2 -1 -2 2 —14+iV/2 —24iV2 3
Azz=|2—-iv2 1-2iV/2 -2 |,A41=]2 3 =2|[,A40= 2 3 -2 —iV2],
1—4v2 —iVv2 -1 2 2 -1 2 2 —1—-iV2
—3+ivV2  2—ivV2  3+3iV2 -3 —242iV2 2+42iV2
As1=| 2iv2 —1-2ivV2 4—ivV2|,A62= |2+2iV2 3 2 —2iv2]|,
2+1iv2 -2 1—2iv2 24+ iv2 2 1—2iv2
142ivV2 242iV2  2-2iV2 -1 0 W2 -3 0 W2
Ag3 = 2 3 —2-2iv2|,A81=| O 1 0 |,482=] 0 1 0|,
2—-iV2  2-—2V/2 -3 2iv/2 0 3 2iv2 0 1
—1-iv2 —2—-iv2 1+iV2 —3—iV2 —4—iV/2 3
Ass=| 2iV2 14+2iv2 —iv2 | ,Asa= | 2iV2 1+2iv2  —2—iv2|,
2iv2 2ivV2 1—2iv2 2iv2 2iv/2 —1—4V2
W2 0 1 2iv2 0 -1 -1 0 0
A971 = 0 1 0 7Ag,g = 0 1 0 ,Ag,g =12 +z\/§ 1 01,
3 0 —iV2 3 0 V2 3 2—4v/2 -1
—14+2ivV2  2iV2 —iV2 -2 —242iv2  3-—2iv2
Aga=| 24iV2 3 -2 yAgs = |24 2iV2 5 —6 ,
3 2—iV/2 —14+iV2 3 2-2ivV2  —2+43iV2
—242ivV2 —2—-2ivV2 —1-—2iV/2 —34+ivV2 2-2iV2 2
Age = | 24 2iv2 -3 -2 JAgr = | 4+iV2 -5 -2 —2iV2],
3 —242ivV2  —2+iV2 3 —44+iV/2 —3—-iV2
—34+2iV2 —44+4ivV2 4-3iV2 -3 —2-iV2 1+4iV2
Agg=| 4+iv2 7 —6 ,Age = | —2+ivV2 -3 2 ,
3 4—iv2 =3+4+iV2 1+ 2iv2 2iv2 —iV2
-1 0 iv2 —4 —2ivV2 14 2iv2
Ag 10 = V2 -1 2 JAg i1 = | 2iv2 _1 2 7
1+2ivV2 V2 3—iv2 1+ 2iv2 —2 2—iv2
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—4 —2ivV/2  1+42iV2 24ivV2 -2 1-—2/2
Ag 11 = [ 2iv/2 -1 2 } ,Ag 12 = { 2 -1 —2iy/2 } ,
1+ 2iv2 -2 2—iv2 1—2v2 2V2 —4
24 2ivV2  —2+2iV2 -3 14+3ivV2 —2iV2 —4
Ag 13 = [22z‘\/§ 3 2+2iﬁ} ,Ag 14 = [231‘\/5 —142iv2 4+2i\/§} ,
1—2iv2 iv2 3+iv2

—14+iv2 —iv2 1 —2+iV2 2 1
A1 = iv2 ! 0 [,A112=

1—2iv2 2 2+iVv2

2iv2 1-2ivV2 2—iv2],
3+iv2 -2 —iV2 34+ivV2  —2—4V2 -1

2+ 2iv2 5 —4—iv2|,
34+ivV2 —24iv2

-1 0 0 -2 —242ivV/2 3—iV2
A= [2+iV2 -1 0],A11,4=
1 3+iv2 4—4y/2

-3
—4 —2iv/2 1—4v2 3iv2 2-2iv2  —1—1iV2
Ans = |4+2ivV2 —142iv2 —2+iV2|,Ane = )

242ivV2  —1—2iV2 -2
3+14v2 iV2 —1+iV2 3—iV2 -2 2
1+3ivV2 —4+43iv2 1-3iv2 iv2 0 1
Anr=|2+4ivV/2 —-14+2ivV2 —2iv2 |, A118= 2 1 2 |,
3—iV2 4422 —4 3—iVv2 V2 —1—iV2
—24iv2 —2iv2 1—4v2 —143ivV2 —2—-iV/2 —3—4V2
Ai1,9 = 4 -3+ 2iv2 -2 | ,An0=| 4—ivV2 —14+2iV2 2ivV2 |,
3—iV2 —24 212 -2 3— V2 2iv/2 2iv2
—1—iV2 iv2 1 -3 242ivV2  244iV2
A2 = |—242iV2 3 —iv2 | ,A122 = |—-2+2iV2 3 2 ,
242ivV2  2-2ivV2 —1-iV2 242vV2  2-2ivV2 1-2iV2
1+4ivV2  —iv2 -1 3+2ivV2 —4+4+iV2 -3
A2z = 2 -1 V2 |, A124 = 2 —14+2ivV2 —24iV2],
2-2ivV2 -2 1+4iV2 2-2ivV2  242ivV2 142iV2

2iv2 1—-2ivV2  —4—4V2
4 2iv2 -1 4 —4-2ivV/2 —-3+3ivV2

-1 —iv2 1 —14iV/2  2—iv2  —1—2V/2
A1 = |2ivV2 =3 —iV2|, A2 = ;
—1+42iv2 2 —2—iV2 —14+3ivV2 4-3iv2 —1-3iV2
Asg3 = 2iv/2 1 -2 ,A164 = ,

2iV/2 1—-2iv2  —2—4V2
4 —2ivV2 —1+42ivV2 4 —4-2ivV2  —3+4+iV2

4422 1-2ivV2 —-4+3iv2],

-3 44iv2 3—iv2
At = |4+2ivV/2 —3—4ivV2 —4—iV2|,A166
4 —4—2iV2 -3 4 —2iv2  —143iV2

[—3+z‘\/§ 2+iv2 —1_3ix/§]

—3+2iV2 3iv/2 —1—3iV2 —3+3ivV2 44ivV2  —1—2iV/2
A7 = | 4+ 2ivV2 5 —4+ivV2 | A6 = | 4+2ivV2  1-2ivV2 —2+iV2
4 4—-2ivV2 —3+2iV2

4 —2iV2 —14iV2
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