

Non-arithmetic hybrid lattices in $\mathrm{PU}(2, 1)$

Joseph Wells
Arizona State University

May 30, 2019

Abstract

We explore hybrid subgroups of certain non-arithmetic lattices in $\mathrm{PU}(2, 1)$. We show that all of Mostow’s lattices are virtually hybrids; moreover, we show that some of these non-arithmetic lattices are hybrids of two non-commensurable arithmetic lattices in $\mathrm{PU}(1, 1)$.

1 Introduction

One key notion in the study of lattices in a semisimple Lie group G is that of *arithmeticity* (which we will not define here; see [Mor15] for a standard reference). When G arises as the isometry group of a symmetric space X of non-compact type, the combined work of Margulis [Mar84], Gromov–Schoen [GS92], and Corlette [Cor92] imply that non-arithmetic lattices only exist when $X = \mathbf{H}_{\mathbb{R}}^n$ or $\mathbf{H}_{\mathbb{C}}^n$ (real and complex hyperbolic space, respectively); equivalently, up to finite index, when $G = \mathrm{PO}(n, 1)$ or $\mathrm{PU}(n, 1)$. Due to their exceptional nature, it has been a major challenge to find and understand non-arithmetic lattices in these Lie groups.

Given two arithmetic lattices Γ_1, Γ_2 in $\mathrm{PO}(n, 1)$ with common sublattice $\Gamma_{1,2} \leq \mathrm{PO}(n-1, 1)$, Gromov and Piatetskii-Shapiro showed in [GPS87] that one can produce a new “hybrid” lattice Γ in $\mathrm{PO}(n, 1)$ by way of a technique

that they call “interbreeding” or “hybridization”. In particular, when Γ_1 and Γ_2 are not commensurable, Γ is shown to be non-arithmetic. It has been asked whether an analogous technique can exist for lattices in $\mathrm{PU}(n, 1)$.

Hunt proposed one possible analog (see the references contained in [Pau12]) where one starts with two arithmetic lattices Γ_1, Γ_2 in $\mathrm{PU}(n, 1)$ and embeddings $\iota_i : \mathrm{PU}(n, 1) \hookrightarrow \mathrm{PU}(n+1, 1)$ such that (1) $\iota_1(\Gamma_1)$ and $\iota_2(\Gamma_2)$ stabilize totally geodesic complex hypersurfaces in $\mathbf{H}_{\mathbb{C}}^{n+1}$, (2) these hypersurfaces are orthogonal to one another, and (3) $\iota_1(\Gamma_1) \cap \iota_2(\Gamma_2)$ is a lattice in $\mathrm{PU}(n-1, 1)$. The hybrid subgroup is then $H(\Gamma_1, \Gamma_2) := \langle \iota_1(\Gamma_1), \iota_2(\Gamma_2) \rangle$.

In [Pau12] Paupert produces an infinite family of hybrids that are non-discrete. In [PW] Paupert and the author used the same hybridization technique to produce both arithmetic lattices and thin subgroups in the Picard modular groups. In this note, we explore a more general hybrid construction in the context of the lattices $\Gamma(p, t) \subset \mathrm{PU}(2, 1)$ originally produced by Mostow in [Mos80] (see Section 3 for explanation of notation). We obtain the following results:

Theorem. *1. All of Mostow’s lattices $\Gamma(p, t)$ are virtually hybrids.*
2. The non-arithmetic lattices $\Gamma(4, 1/12)$, $\Gamma(5, 1/5)$, and $\Gamma(5, 11/30)$ are virtually hybrids of two non-commensurable arithmetic lattices in $\mathrm{PU}(1, 1)$.

The second part of this theorem highlights the similarity of these hybrids and those hybrids of Gromov–Piatetski-Shapiro, specifically in that the hybridization procedure can produce a non-arithmetic lattice from two non-commensurable arithmetic lattices. The author would like to thank Julien Paupert for many insightful discussions and suggested edits.

2 Complex hyperbolic geometry and hybrids

We give a brief overview of relevant definitions in complex hyperbolic geometry; the reader can see [Gol99] for a standard source.

Let H be a Hermitian matrix of signature $(n, 1)$ and let $\mathbb{C}^{n,1}$ denote \mathbb{C}^{n+1} endowed with the Hermitian form $\langle \cdot, \cdot \rangle$ coming from H . Let V_- denote the set

of points $z \in \mathbb{C}^{n,1}$ for which $\langle z, z \rangle < 0$, and let V_0 denote the set of points for which $\langle z, z \rangle = 0$. Given the usual projectivization map $\mathbb{P} : \mathbb{C}^{n,1} - \{0\} \rightarrow \mathbb{CP}^n$, *complex hyperbolic n -space* is $\mathbf{H}_{\mathbb{C}}^n = \mathbb{P}(V_-)$ with distance d coming from the Bergman metric

$$\cosh^2 \frac{1}{2} d(\mathbb{P}(x), \mathbb{P}(y)) = \frac{|\langle x, y \rangle|^2}{\langle x, x \rangle \langle y, y \rangle}$$

The ideal boundary $\partial_{\infty} \mathbf{H}_{\mathbb{C}}^n$ is then identified with $\mathbb{P}(V_0)$.

2.1 Complex hyperbolic isometries

Let $U(n, 1)$ denote the group of unitary matrices preserving H . The holomorphic isometry group of $\mathbf{H}_{\mathbb{C}}^n$ is $\mathrm{PU}(n, 1) = \mathrm{U}(n, 1)/\mathrm{U}(1)$, and the full isometry group is generated by $\mathrm{PU}(n, 1)$ and the antiholomorphic involution $z \mapsto \bar{z}$. Any holomorphic isometry of $\mathbf{H}_{\mathbb{C}}^n$ is one of the following three types:

- *elliptic* if it has a fixed point in $\mathbf{H}_{\mathbb{C}}^n$.
- *parabolic* if it has exactly one fixed point in the boundary (and no fixed points in $\mathbf{H}_{\mathbb{C}}^n$).
- *loxodromic* if it has exactly two fixed points in the boundary (and no fixed points in $\mathbf{H}_{\mathbb{C}}^n$).

Given a vector $v \in \mathbb{C}^{n,1}$ with $\langle v, v \rangle > 0$ and complex number ζ with unit modulus, the map

$$R_{v, \zeta}(x) : x \mapsto x + (\zeta - 1) \frac{\langle x, v \rangle}{\langle v, v \rangle} v$$

is an isometry of $\mathbf{H}_{\mathbb{C}}^n$ called a *complex reflection*, and its fixed point set $v^{\perp} \subset \mathbf{H}_{\mathbb{C}}^n$ is a totally geodesic subspace called a \mathbb{C}^{n-1} -plane (or a *complex line* when $n = 2$). We refer to v as a *polar vector* for the subspace $\mathbb{P}(v^{\perp}) \cap \mathbf{H}_{\mathbb{C}}^n$; abusing notation slightly we will denote such a projective subspace simply by v^{\perp} .

2.2 Complex hyperbolic hybrid construction

The lack of totally geodesic real hypersurfaces in $\mathbf{H}_{\mathbb{C}}^n$ presents an issue in finding a suitable complex-hyperbolic analog of the Gromov–Piatetski-Shapiro hybrid groups. Below we present a slightly more general notion of a hybrid group than that originally introduced by Hunt (see [Pau12] and the references therein).

Definition. Let $\Gamma_1, \Gamma_2 < \mathrm{PU}(n, 1)$ be lattices. We define a *hybrid of Γ_1, Γ_2* to be any group $H(\Gamma_1, \Gamma_2)$ generated by discrete subgroups $\Lambda_1, \Lambda_2 < \mathrm{PU}(n+1, 1)$ stabilizing totally geodesic hypersurfaces Σ_1, Σ_2 (respectively) such that

1. Σ_1 and Σ_2 are orthogonal,
2. $\Gamma_i = \Lambda_i|_{\Sigma_i}$, and
3. $\Lambda_1 \cap \Lambda_2$ is a lattice in $\mathrm{PU}(n-1, 1)$.

Remark. The groups explored by Paupert and the author in [Pau12] and [PW] are still hybrids in this new sense as well.

3 Mostow's lattices

In [Mos80], Mostow constructed the first known non-arithmetic lattices in $\mathrm{PU}(2, 1)$ among a family of groups generated by complex reflections. These groups, denoted $\Gamma(p, t)$, are defined as follows: Let $p = 3, 4, 5$, t be a real number satisfying $|t| < 3\left(\frac{1}{2} - \frac{1}{p}\right)$, $\alpha = \frac{1}{2\sin(\pi/p)}$, $\varphi = e^{\pi it/3}$, and $\eta = e^{\pi i/p}$. Define a Hermitian form $\langle x, y \rangle = x^T H \bar{y}$ where

$$H = \begin{pmatrix} 1 & -\alpha\varphi & -\alpha\bar{\varphi} \\ -\alpha\bar{\varphi} & 1 & -\alpha\varphi \\ -\alpha\varphi & -\alpha\bar{\varphi} & 1 \end{pmatrix}.$$

For any pair (p, t) as above, the group $\Gamma(p, t)$ is generated by the three complex reflections of order p ,

$$R_1 = \begin{pmatrix} \eta^2 & -i\eta\bar{\varphi} & -i\eta\varphi \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 1 & 0 & 0 \\ -i\eta\varphi & \eta^2 & -i\eta\bar{\varphi} \\ 0 & 0 & 1 \end{pmatrix}, \quad R_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -i\eta\bar{\varphi} & -i\eta\varphi & \eta^2 \end{pmatrix},$$

and these reflections satisfy the braid relations $R_i R_j R_i = R_j R_i R_j$. The mirror for the reflection R_i is given by e_i^\perp where e_i is the standard i^{th} basis vector. When $|t| < \frac{1}{2} - \frac{1}{p}$, Mostow refers to these groups as having *small phase shift*. We'll similarly refer to $|t| = \frac{1}{2} - \frac{1}{p}$ as having *critical phase shift* and $|t| > \frac{1}{2} - \frac{1}{p}$ as having *large phase shift*. Since the groups $\Gamma(p, t)$ and $\Gamma(p, -t)$ are isomorphic, we restrict our focus to the cases where $t \geq 0$.

Remark (Tables 1 and 2 in [Mos80]). For $p = 3, 4, 5$, there are only finitely-many values of t for which $\Gamma(p, t)$ is discrete, and they are given in Table II. If $\Gamma(p, t)$ is discrete, we'll refer to the pair (p, t) as *admissible*.

p	$t < 1/2 - 1/p$	$t = 1/2 - 1/p$	$t > 1/2 - 1/p$
3	0, $1/30, 1/18, 1/12, 5/42$	$1/6$	$7/30, 1/3$
4	0, $1/12, 3/20$	$1/4$	$5/12$
5	$1/10, 1/5$		$11/30, 7/10$

Table 1: Values of p and t for which $\Gamma(p, t)$ is discrete.

Theorem 1 (Theorem 17.3 in [Mos80]). *For each admissible pair (p, t) , the group $\Gamma(p, t)$ is a lattice in $\text{PU}(2, 1)$, and the following are non-arithmetic: $\Gamma(3, 5/42), \Gamma(3, 1/12), \Gamma(3, 1/30), \Gamma(4, 3/20), \Gamma(4, 1/12), \Gamma(5, 1/5), \Gamma(5, 11/30)$.*

Following the notation in [DFP05], we examine closely related groups $\tilde{\Gamma}(p, t) = \langle R_1, J \rangle$ where

$$J = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

J has order 3 and $R_{i+1} = JR_iJ^{-1}$ (where $i = 1, 2, 3$ and indices are taken modulo 3). It is sufficient to study these groups $\tilde{\Gamma}(p, t)$ due to the following result:

Proposition 2 (Lemma 16.1 in [Mos80]). *For each admissible pair (p, t) , the group $\Gamma(p, t)$ has index dividing 3 in $\tilde{\Gamma}(p, t)$. The two groups are equal precisely when $k = \frac{1}{2} - \frac{1}{p} - \frac{1}{t}$ and $\ell = \frac{1}{2} - \frac{1}{p} + \frac{1}{t}$ are both integers and 3 does not divide both k and ℓ .*

4 Hybrids in Mostow's lattices

As Deraux–Falbel–Paupert show in [DFP05], when $\tilde{\Gamma}(p, t)$ has small phase shift, a fundamental domain for this group can be constructed by coning over two polytopes that intersect in a right-angled hexagon (see Figure 1) whose walls are determined by the polar vectors v_{ijk} . Taking lifts to $\mathbb{C}^{2,1}$ these vectors are given explicitly below:

$$v_{123} = \begin{pmatrix} -i\eta\bar{\varphi} \\ 1 \\ i\bar{\eta}\varphi \end{pmatrix}, \quad v_{231} = \begin{pmatrix} i\bar{\eta}\varphi \\ -i\eta\bar{\varphi} \\ 1 \end{pmatrix}, \quad v_{312} = \begin{pmatrix} 1 \\ i\bar{\eta}\varphi \\ -i\eta\bar{\varphi} \end{pmatrix},$$

$$v_{321} = \begin{pmatrix} i\bar{\eta}\varphi \\ 1 \\ -i\eta\bar{\varphi} \end{pmatrix}, \quad v_{132} = \begin{pmatrix} -i\eta\bar{\varphi} \\ i\bar{\eta}\varphi \\ 1 \end{pmatrix}, \quad v_{213} = \begin{pmatrix} 1 \\ -i\eta\bar{\varphi} \\ i\bar{\eta}\varphi \end{pmatrix}.$$

Geometrically, v_{ijk}^\perp is the mirror for the complex reflection $J^{\pm 1}R_jR_k$ for $k = i \pm 1 \pmod{3}$. When $\tilde{\Gamma}(p, t)$ has critical phase shift, the hexagon degenerates into an ideal triangle (see Figure 2) and JR_jR_k is parabolic (hence $\tilde{\Gamma}(p, t)$ is non-cocompact). When $\tilde{\Gamma}(p, t)$ has large phase shift, the ideal vertices sit inside $\mathbf{H}_{\mathbb{C}}^2$ (see Figure 3) and JR_jR_k is elliptic.

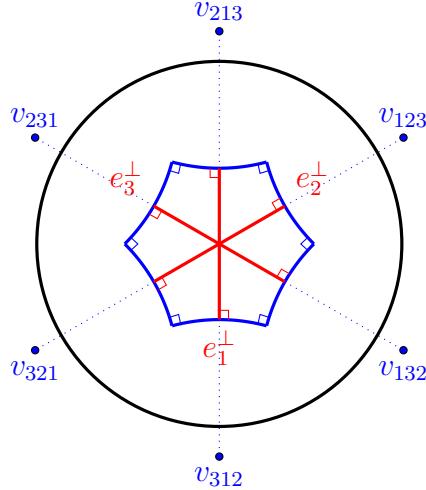
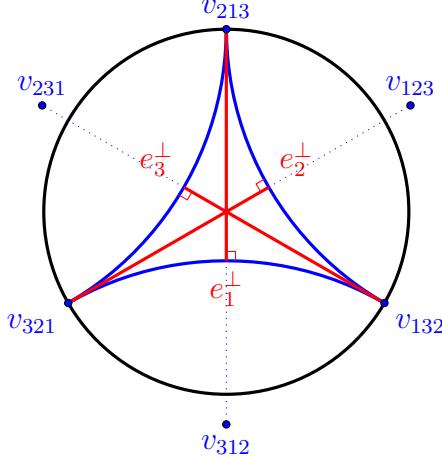
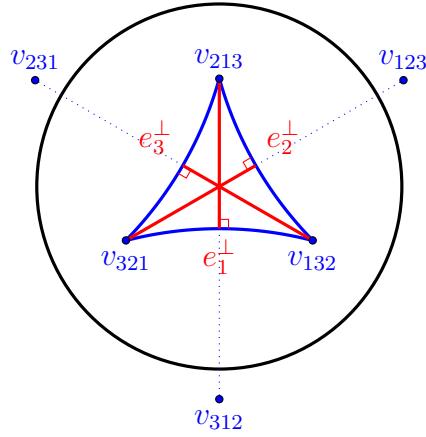


Figure 1: Core polygon when $0 \leq t < \frac{1}{2} - \frac{1}{p}$

The following are readily checked:

Figure 2: Core polygon when $t = \frac{1}{2} - \frac{1}{p}$ Figure 3: Core polygon when $t > \frac{1}{2} - \frac{1}{p}$

Proposition 3 (Proposition 2.13(3) in [DFP05]). $v_{ijk} \perp v_{jik}$ and $v_{ijk} \perp v_{ikj}$.

Proposition 4. $e_i \perp v_{jik}$ and $e_i \perp v_{kij}$.

For the hybrid construction, we use the projective subspaces (considered as projective subspaces of $\mathbf{H}_{\mathbb{C}}^2$) corresponding to e_1^\perp and v_{312}^\perp ; this is sufficient as the remaining subspaces are obtained by successive applications of J . In

homogeneous coordinates, one sees that

$$e_1^\perp = \{[z, \varphi z/\alpha - \varphi^2, 1]^T : z \in \mathbb{C}\} \quad \text{and}$$

$$v_{312}^\perp = \{[z, i\bar{\eta}\varphi, 1]^T : z \in \mathbb{C}\}.$$

Let $\Lambda_{ijk} \leq \tilde{\Gamma}(p, t)$ be the subgroup stabilizing v_{ijk}^\perp and let Λ_i the subgroup stabilizing e_i^\perp . These groups are naturally identified with subgroups of $\text{PU}(1, 1)$, and so we let Γ_{ijk} and Γ_i be lifts of these groups (respectively) into $\text{SU}(1, 1)$.

Proposition 5. Γ_{312} is a lattice in $\text{SU}(1, 1)$. It is cocompact for all non-critical phase shift values.

Proof. v_{312} is a positive eigenvector for both R_1 and R_3J , hence they both stabilize v_{312}^\perp . The action of these elements on v_{312}^\perp can be seen below:

$$R_1 : \begin{bmatrix} z \\ i\bar{\eta}\varphi \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} \eta^2 z + \bar{\varphi}^2 - i\eta\varphi \\ i\bar{\eta}\varphi \\ 1 \end{bmatrix}$$

$$R_3J : \begin{bmatrix} z \\ i\bar{\eta}\varphi \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} i\bar{\eta}\varphi \\ \frac{z}{i\bar{\eta}\varphi} \\ 1 \end{bmatrix}$$

Let A and B be the following elements in $\text{SU}(1, 1)$ corresponding to the actions of R_1 and R_3J on v_{312}^\perp , respectively,

$$A = \frac{1}{\eta} \begin{pmatrix} \eta^2 & \bar{\varphi}^2 - i\eta\varphi \\ 0 & 1 \end{pmatrix}, \quad B = \frac{1}{\sqrt{-i\bar{\eta}\varphi}} \begin{pmatrix} 0 & i\bar{\eta}\varphi \\ 1 & 0 \end{pmatrix}.$$

One then sees that

$$|\text{Tr}(A)| = |1 + e^{i2\pi/p}|,$$

$$|\text{Tr}(B)| = 0,$$

$$|\text{Tr}(A^{-1}B)| = |1 + e^{i\pi(t-1/2+1/p)}|.$$

All of these values are less than or equal to 2 for all admissible p and t , so neither A nor B is loxodromic and thus they generate the orientation-preserving subgroup of a Fuchsian triangle group of finite covolume. It follows

that Γ_{312} is a lattice in $\mathrm{PU}(1, 1)$. By computing orders of these elements for admissible (p, t) , one obtains Table 2 showing the corresponding triangle groups, and arithmeticity/non-arithmeticity (A/NA) of each can be checked by comparing with the main theorem of [Tak77]. \square

(p, t)	$\Delta(x, y, z)$	A/NA	(p, t)	$\Delta(x, y, z)$	A/NA
(3, 0)	$\Delta(2, 3, 12)$	A	(4, 0)	$\Delta(2, 4, 8)$	A
(3, 1/30)	$\Delta(2, 3, 15)$	NA	(4, 1/12)	$\Delta(2, 4, 12)$	A
(3, 1/18)	$\Delta(2, 3, 18)$	A	(4, 3/20)	$\Delta(2, 4, 20)$	NA
(3, 1/12)	$\Delta(2, 3, 24)$	A	(4, 1/4)	$\Delta(2, 4, \infty)$	A
(3, 5/42)	$\Delta(2, 3, 42)$	NA	(4, 5/12)	$\Delta(2, 4, 12)$	A
(3, 1/6)	$\Delta(2, 3, \infty)$	A	(5, 1/10)	$\Delta(2, 5, 10)$	A
(3, 7/30)	$\Delta(2, 3, 30)$	A	(5, 1/5)	$\Delta(2, 5, 20)$	A
(3, 1/3)	$\Delta(2, 3, 12)$	A	(5, 11/30)	$\Delta(2, 5, 30)$	A
			(5, 7/10)	$\Delta(2, 5, 5)$	A

Table 2: Properties of Γ_{312}

Proposition 6. Γ_1 is a lattice in $\mathrm{SU}(1, 1)$. It is cocompact for all non-critical phase shift values.

Proof. $J^{-1}R_1R_2$ and JR_1R_3 both stabilize e_1^\perp :

$$J^{-1}R_1R_2 : \begin{bmatrix} z \\ \frac{\varphi}{\alpha}(z) - \varphi^2 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} \frac{\alpha\eta^2\varphi^3z + \alpha\varphi - i\alpha\eta\varphi^4}{\eta^2\varphi^2z - i\alpha\eta - i\eta\varphi^3} \\ \frac{\varphi \left(\frac{\alpha\eta^2\varphi^3z + \alpha\varphi - i\alpha\eta\varphi^4}{\eta^2\varphi^2z - i\alpha\eta - i\eta\varphi^3} \right) - \varphi^2}{1} \\ 1 \end{bmatrix}$$

$$JR_1R_3 : \begin{bmatrix} z \\ \frac{\varphi}{\alpha}(z) - \varphi^2 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} \frac{(i\eta\varphi^3 + i\alpha\eta)z - i\eta\alpha\varphi^4 - \alpha\eta^2\varphi}{-\varphi^2z + \alpha\varphi^3} \\ \frac{\varphi \left(\frac{(i\eta\varphi^3 + i\alpha\eta)z - i\eta\alpha\varphi^4 - \alpha\eta^2\varphi}{-\varphi^2z + \alpha\varphi^3} \right)}{1} \\ 1 \end{bmatrix}$$

Let A and B be the following elements in $\mathrm{SU}(1, 1)$ corresponding to the

actions of $J^{-1}R_1R_2$ and JR_1R_3 on e_1^\perp , respectively.

$$A = \frac{1}{\alpha\sqrt{-i\eta\varphi^3}} \begin{pmatrix} \alpha\eta^2\varphi^3 & \alpha\varphi - i\alpha\eta\varphi^4 \\ \eta^2\varphi^2 & -i\alpha\eta - i\eta\varphi^3 \end{pmatrix}, \quad B = \frac{1}{\alpha\sqrt{i\eta^3\varphi^3}} \begin{pmatrix} i\eta\varphi^3 + i\alpha\eta & -i\eta\alpha\varphi^4 - \alpha\eta^2\varphi \\ -\varphi^2 & \alpha\varphi^3 \end{pmatrix}.$$

One then sees that

$$\begin{aligned} |\mathrm{Tr}(A)| &= |1 + e^{\pi i(t+1/2-1/p)}|, \\ |\mathrm{Tr}(B)| &= |1 + e^{\pi i(t-1/2+1/p)}|, \\ |\mathrm{Tr}(AB)| &= |-1 + e^{6\pi i/p}|. \end{aligned}$$

All of these values are less than or equal to 2 for admissible values of p and t , so neither A nor B is loxodromic and thus they generate the orientation-preserving subgroup of a Fuchsian triangle group of finite covolume. It follows that Γ_{312} is a lattice in $\mathrm{PU}(1, 1)$. By computing orders of these elements for admissible (p, t) , one obtains Table 2 showing the corresponding triangle groups, and arithmeticity/non-arithmeticity (A/NA) of each can be checked by comparing with the main theorem of [Tak77]. \square

(p, t)	$\Delta(x, y, z)$	A/NA	(p, t)	$\Delta(x, y, z)$	A/NA
(3, 0)	$\Delta(2, 12, 12)$	A	(4, 0)	$\Delta(4, 8, 8)$	A
(3, 1/30)	$\Delta(2, 10, 15)$	NA	(4, 1/12)	$\Delta(4, 6, 12)$	NA
(3, 1/18)	$\Delta(2, 6, 18)$	A	(4, 3/20)	$\Delta(4, 5, 20)$	NA
(3, 1/12)	$\Delta(2, 8, 24)$	NA	(4, 1/4)	$\Delta(4, 4, \infty)$	A
(3, 5/42)	$\Delta(2, 7, 42)$	NA	(4, 5/12)	$\Delta(3, 4, 12)$	A
(3, 1/6)	$\Delta(2, 6, \infty)$	A	(5, 1/10)	$\Delta(5, 10, 10)$	A
(3, 7/30)	$\Delta(2, 5, 30)$	A	(5, 1/5)	$\Delta(4, 10, 20)$	NA
(3, 1/3)	$\Delta(2, 4, 12)$	A	(5, 11/30)	$\Delta(3, 10, 30)$	A
			(5, 7/10)	$\Delta(2, 5, 10)$	A

Table 3: Properties of Γ_1

Lemma 7. *Let $K = \langle JR_1R_3, JR_2R_1, JR_3R_2 \rangle$. For all admissible p, t , K is normal in $\tilde{\Gamma}(p, t)$.*

Proof. For indices i, j, k with $k = i + 1 \pmod{3}$ and $j = i - 1 \pmod{3}$, the following equations are readily checked:

$$\begin{aligned} R_i(JR_iR_j)R_i^{-1} &= JR_iR_j, & R_k(JR_iR_j)R_k^{-1} &= (JR_iR_j)(JR_jR_k)(JR_iR_j)^{-1}, \\ R_j(JR_iR_j)R_j^{-1} &= JR_kR_i, & J(JR_iR_j)J^{-1} &= JR_kR_i. \end{aligned}$$

□

Lemma 8. *For each admissible pair (p, t) , the group K (as in the previous lemma) has finite index in $\tilde{\Gamma}(p, t)$.*

Proof. $\tilde{\Gamma}(p, t)$ is a quotient of the finitely-presented group

$$\langle J, R_1, R_2, R_3 \mid J^3 = R_i^p = \text{Id}, R_iR_{i+1}R_i = R_{i+1}R_iR_{i+1}, R_{i+1} = JR_iJ^{-1} \rangle$$

where $i = 1, 2, 3$ (and indices are taken modulo 3). Let \mathcal{X}_Γ be some set of additional relations so that $\tilde{\Gamma}(p, t)$ has the presentation

$$\langle J, R_1, R_2, R_3 \mid \mathcal{X}_\Gamma, J^3 = R_i^p = \text{Id}, R_iR_{i+1}R_i = R_{i+1}R_iR_{i+1}, R_{i+1} = JR_iJ^{-1} \rangle.$$

As K is normal, we examine the quotient $\tilde{\Gamma}(p, t)/K$ with presentation

$$\langle J, R_1, R_2, R_3 \mid \mathcal{X}_\Gamma, J^3 = R_i^p = JR_{i+1}R_i = \text{Id}, R_iR_{i+1}R_i = R_{i+1}R_iR_{i+1}, R_{i+1} = JR_iJ^{-1} \rangle.$$

where, again, $i = 1, 2, 3$ and the indices are taken modulo 3. Because $\tilde{\Gamma}(p, t)$ is generated by R_1 and J , many of the relations are superfluous, so the presentation for $\tilde{\Gamma}(p, t)/K$ simplifies a bit to

$$\langle J, R_1, R_2 \mid \mathcal{X}_\Gamma, J^3 = R_1^p = JR_2R_1 = \text{Id}, R_2 = JR_1J^{-1}, R_1R_2R_1 = R_2R_1R_2 \rangle.$$

The relation $JR_2R_1 = \text{Id}$ also makes the braid relation $R_1R_2R_1 = R_2R_1R_2$ superfluous, and so the presentation simplifies more to

$$\tilde{\Gamma}(p, t)/K = \langle J, R_1 \mid \mathcal{X}_\Gamma, R_1^p = J^3 = (J^{-1}R_1)^2 = \text{Id} \rangle.$$

In this way, one sees that $\tilde{\Gamma}(p, t)/K$ is a quotient of the (orientation-preserving) $(2, 3, p)$ -triangle group. These triangle groups are finite when $p = 3, 4, 5$, thus K has finite index in $\tilde{\Gamma}(p, t)$. □

Theorem 9. *For each admissible pair (p, t) , the hybrid $H(\Gamma_1, \Gamma_{312})$ has finite index in $\tilde{\Gamma}(p, t)$.*

Proof. From the previous lemma, it suffices to show that the hybrid

$$H := H(\Gamma_1, \Gamma_{312}) = \langle \Lambda_1, \Lambda_{312} \rangle$$

contains K . Indeed, H contains the subgroup $\langle J^{-1}R_1R_2, JR_1R_3, R_1, R_3J \rangle$ by Propositions 5 and 6, from which it immediately follows that $JR_1R_3 \in H$. That H contains the other two generators for K is again a straightforward matrix computation.

$$\begin{aligned} JR_2R_1 &= J(J^{-1}R_3J)R_1 = (R_3J)(R_1), & \text{and} \\ JR_3R_2 &= JR_3(J^{-1}J)R_2(J^{-1}J) = (R_1)(R_3J). \end{aligned}$$

□

By comparing with the table on Page 418 of [MR03], one sees that Γ_1 and Γ_{312} are both arithmetic and non-commensurable in the case that $(p, t) = (5, 11/30)$. Since $H(\Gamma_1, \Gamma_{312})$ has finite index in $\tilde{\Gamma}(5, 11/30)$, it is non-arithmetic and thus

Corollary 10. *For $(p, t) = (5, 11/30)$, $H(\Gamma_1, \Gamma_{312})$ is a non-arithmetic lattice obtained by hybridizing two noncommensurable arithmetic lattices.*

5 Small phase shift hybrids

In that $\tilde{\Gamma}(p, t)$ has small phase shift, we can instead consider the hybrid with subspaces v_{312}^\perp and v_{321}^\perp . In homogeneous coordinates, one sees that

$$v_{321}^\perp = \{[i\bar{\eta}\varphi, z, 1]^T : z \in \mathbb{C}\}.$$

Proposition 11. Γ_{321} is an arithmetic cocompact lattice in $\mathrm{SU}(1, 1)$ for all small phase shift values.

(p, t)	$\Delta(x, y, z)$	A/NA	(p, t)	$\Delta(x, y, z)$	A/NA
(3, 0)	$\Delta(2, 3, 12)$	A	(4, 0)	$\Delta(2, 4, 8)$	A
(3, 1/30)	$\Delta(2, 3, 10)$	A	(4, 1/12)	$\Delta(2, 4, 6)$	A
(3, 1/18)	$\Delta(2, 3, 9)$	A	(4, 3/20)	$\Delta(2, 4, 5)$	A
(3, 1/12)	$\Delta(2, 3, 8)$	A	(5, 1/10)	$\Delta(2, 5, 5)$	A
(3, 5/42)	$\Delta(2, 3, 7)$	A	(5, 1/5)	$\Delta(2, 4, 5)$	A

Table 4: Properties of Γ_{321}

Proof. R_2 and JR_3^{-1} both stabilize v_{321}^\perp :

$$R_2 : \begin{bmatrix} i\bar{\eta}\varphi \\ z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} i\bar{\eta}\varphi \\ \eta^2 z + \varphi^2 - i\eta\bar{\varphi} \\ 1 \end{bmatrix}$$

$$JR_3^{-1} : \begin{bmatrix} i\bar{\eta}\varphi \\ z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} i\bar{\eta}\varphi \\ i\bar{\eta}\varphi \\ \frac{z}{1} \end{bmatrix}$$

Let A and B be the following elements in $SU(1, 1)$ corresponding to the actions of R_2 and JR_3^{-1} on v_{321}^\perp , respectively.

$$A = \frac{1}{\eta} \begin{pmatrix} \eta^2 & \varphi^2 - i\eta\bar{\varphi} \\ 0 & 1 \end{pmatrix}, \quad B = \frac{1}{\sqrt{-i\bar{\eta}\varphi}} \begin{pmatrix} 0 & i\bar{\eta}\varphi \\ 1 & 0 \end{pmatrix}.$$

One can check that

$$|\text{Tr}(A)| = |e^{i\pi/p} + e^{-i\pi/p}|,$$

$$|\text{Tr}(B)| = 0,$$

$$|\text{Tr}(A^{-1}B)| = |e^{i\pi(1/2+1/p-t/3)} - e^{2\pi it/3}|.$$

All of these values are less than 2 when $p \geq 3$ and $|t| \neq \frac{1}{2} - \frac{1}{p}$ and so the elements are elliptic. Thus $\langle A, B \rangle$ is a cocompact triangle group (and therefore Γ_{321} is a cocompact lattice). By computing orders of these elements for (p, t) values in Table 1, one obtains Table 4 showing the corresponding triangle groups, and arithmeticity/non-arithmeticity (A/NA) of each can be checked by comparing with the main theorem of [Tak77]. \square

Theorem 12. For $|t| < \frac{1}{2} - \frac{1}{p}$, the hybrid $H(\Gamma_{312}, \Gamma_{321})$ is the full lattice $\tilde{\Gamma}(p, t)$.

Proof. The group $K = \langle R_1, R_3J, R_2, JR_3^{-1} \rangle$ is a subgroup of $H(\Gamma_{312}, \Gamma_{321})$. Since $J = (R_3J)^{-1}(JR_3^{-1})^{-1}$, $K = \langle R_1, J \rangle = \tilde{\Gamma}(p, t)$. \square

By comparing with the table on Page 418 of [MR03], one sees that Γ_{312} and Γ_{321} are both arithmetic and noncommensurable in the cases where $(p, t) = (4, 1/12)$ and $(5, 1/5)$. Thus

Corollary 13. $\tilde{\Gamma}(4, 1/12)$ and $\tilde{\Gamma}(5, 1/5)$ are non-arithmetic lattices obtained by interbreeding two noncommensurable arithmetic lattices.

References

- [Cor92] K. Corlette. Archimedean superrigidity and hyperbolic geometry. *Annals of Mathematics*, 135(1):165–182, 1992.
- [DFP05] M. Deraux, E. Falbel, and J. Paupert. New constructions of fundamental polyhedra in complex hyperbolic space. *Acta Math.*, 194(2):155–201, 2005.
- [Gol99] W. M. Goldman. *Complex hyperbolic geometry*. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications.
- [GPS87] M. Gromov and I. Piatetski-Shapiro. Non-arithmetic groups in lobachevsky spaces. *Publications Mathématiques de l’Institut des Hautes Études Scientifiques*, 66(1):93–103, 1987.
- [GS92] M. Gromov and R. Schoen. Harmonic maps into singular spaces and p -adic superrigidity for lattices in groups of rank one. *Publications Mathématiques de l’IHÉS*, 76:165–246, 1992.
- [Mar84] G. A. Margulis. Arithmeticity of the irreducible lattices in the semi-simple groups of rank greater than 1. *Inventiones mathematicae*, 76(1):93–120, 1984.

- [Mor15] D. W. Morris. *Introduction to arithmetic groups*. Deductive Press, 2015.
- [Mos80] G. D. Mostow. On a remarkable class of polyhedra in complex hyperbolic space. *Pacific J. Math.*, 86(1):171–276, 1980.
- [MR03] C. Maclachlan and A. W. Reid. *The arithmetic of hyperbolic 3-manifolds*, volume 219 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2003.
- [Pau12] J. Paupert. Non-discrete hybrids in $SU(2, 1)$. *Geom. Dedicata*, 157:259–268, 2012.
- [PW] J. Paupert and J. Wells. Hybrid lattices and thin subgroups of Picard modular groups. arXiv: 1806.01438.
- [Tak77] K. Takeuchi. Arithmetic triangle groups. *J. Math. Soc. Japan*, 29(1):91–106, 1977.