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1 Introduction

The representation theory of Lie algebras is of fundamental importance, and
hence combinatorial models for representations, especially those amenable to
computation, are of great use. In the 1990s, Kashiwara [1] showed that integrable
highest weight representations of the Drinfeld–Jimbo quantum groupsUq(g), where
g is a symmetrizable Kac–Moody Lie algebra, in the q → 0 limit result in
a combinatorial skeleton of the integrable representation. He coined the term
crystal bases, reflecting the fact that q corresponds to the temperature of the
underlying physical system. Since then, crystal bases have appeared in many
areas of mathematics, including algebraic geometry, combinatorics, mathematical
physics, representation theory, and number theory. One of the major advances in the
theory of crystals for simply-laced Lie algebras was the discovery by Stembridge [2]
of local axioms that uniquely characterize the crystal graphs corresponding to Lie
algebra representations. These local axioms provide a completely combinatorial
approach to the theory of crystals; this viewpoint was taken in [3].

Lie superalgebras [4] arose in physics in theories that unify bosons and fermions.
They are essential in modern string theories [5] and appear in other areas of
mathematics, such as the projective representations of the symmetric group. The
crystal basis theory has been developed for various quantum superalgebras [6–
12]. In this paper, we are in particular interested in the queer superalgebra
q(n) (see for example [13]). A theory of highest weight crystals for the queer
superalgebra q(n) was recently developed by Grantcharov et al. [7–9]. They provide
an explicit combinatorial realization of the highest weight crystal bases in terms of
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semistandard decomposition tableaux and show how these crystals can be derived
from a tensor product rule and the vector representation. They also use the tensor
product rule to derive a Littlewood–Richardson rule. Choi and Kwon [14] provide a
new characterization of Littlewood–Richardson–Stembridge tableaux for Schur P -
functions by using the theory of q(n)-crystals. Independently, Hiroshima [15] and
Assaf and Oguz [16, 17] defined a queer crystal structure on semistandard shifted
tableaux, extending the type A crystal structure of [18] on these tableaux.

In this paper, we provide a characterization of the queer supercrystals in analogy
to Stembridge’s [2] characterization of crystals associated to classical simply-laced
root systems. Assaf and Oguz [16, 17] conjecture a local characterization of queer
crystals in the spirit of Stembridge [2], which involves local relations between the
odd crystal operator f−1 with the type An−1 crystal operators fi for 1 ! i < n.
However, we provide a counterexample to [17, Conjecture 4.16], which conjectures
that these local axioms uniquely characterize the queer supercrystals. Instead, we
define a new graph G(C) on the relations between the type A components of the
queer supercrystal C, which together with Assaf’s and Oguz’ local queer axioms
and further new axioms uniquely fixes the queer crystal structure (see Theorem 3).
We provide a combinatorial description of G(C) by providing the combinatorial
rules for all odd queer crystal operators f−i on certain highest weight elements for
1 ! i < n. A long version of this paper containing all proofs is available in [19].

2 Queer Supercrystals

An (abstract) crystal of type An is a nonempty set B together with the maps
ei, fi : B → B # {0} for i ∈ I and wt : B → !, where ! = Zn+1

!0 is the weight
lattice of the root of typeAn and I = {1, 2, . . . , n} is the index set, subject to several
conditions. Denote by αi = εi − εi+1 for i ∈ I the simple roots of type An, where
εi is the i-th standard basis vector of Zn+1. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib
′. Also wt(b′) =

wt(b)− αi .

For b ∈ B, we also define ϕi (b) = max{k ∈ Z!0 | f k
i (b) &= 0} and εi (b) =

max{k ∈ Z!0 | eki (b) &= 0}. For further details, see for example [3, Definition 2.13].
There is an action of the symmetric group Sn on a type An crystal B given by the

operators

si(b) =
{
f k
i (b) if k " 0,

e−ki (b) if k < 0,
(1)

for b ∈ B, where k = ϕi (b) − εi (b). An element b ∈ B is called highest weight if
ei(b) = 0 for all i ∈ I . For a subset J ⊆ I , we say that b is J -highest weight if
ei(b) = 0 for all i ∈ J . We are now ready to define an abstract queer crystal.
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Fig. 1 q(n+ 1)-queer crystal
of letters B

Definition 1 ([8, Definition 1.9]) An abstract q(n+ 1)-crystal is a type An crystal
B together with the maps e−1, f−1 : B → B # {0} satisfying the following
conditions:

Q1. wt(B) ⊂ !;
Q2. wt(e−1b) = wt(b)+ α1 and wt(f−1b) = wt(b)− α1;
Q3. for all b, b′ ∈ B, f−1b = b′ if and only if b = e−1b′;
Q4. if 3 ! i ! n, we have (a) the crystal operators e−1 and f−1 commute with ei

and fi and (b) if e−1b ∈ B, then εi (e−1b) = εi (b) and ϕi (e−1b) = ϕi (b).

Given two q(n + 1)-crystals B1 and B2, Grantcharov et al. [8, Theorem 1.8]
provide a crystal on the tensor product B1 ⊗ B2, which we state here in reverse
convention. It consists of the type An tensor product rule (see for example [3,
Section 2.3]) and the tensor product rule for b1 ⊗ b2 ∈ B1 ⊗ B2

e−1(b1 ⊗ b2) =
{
b1 ⊗ e−1b2 if wt(b1)1 = wt(b1)2 = 0,

e−1b1 ⊗ b2 otherwise,
(2)

and similarly for f−1.Queer supercrystals are connected components ofB⊗&, where
B is the q(n+ 1)-queer crystal of letters depicted in Fig. 1.

In addition to the queer crystal operators f−1, f1, . . . , fn and e−1, e1, . . . , en, we
define crystal operators f−i := s

w−1i
f−1swi and e−i := s

w−1i
e−1swi for 1 < i ! n,

where swi = s2 · · · sis1 · · · si−1 with si as in (1). By [8, Theorem 1.14], with all
operators ei, fi for i ∈ {±1,±2, . . . ,±n} each connected component of B⊗& has a
unique highest weight vector.

The operators fi for i ∈ I0 have an easy combinatorial description on b ∈ B⊗&

given by the signature rule, which can be directly derived from the tensor product
rule (see for example [3, Section 2.4]). One can consider b as a word in the alphabet
{1, 2, . . . , n+1}. Consider the subword of b consisting only of the letters i and i+1.
Pair any consecutive letters i + 1, i in this order, remove this pair, and repeat. Then
fi changes the rightmost unpaired i to i + 1; if there is no such letter fi(b) = 0.
Similarly, ei changes the leftmost unpaired i + 1 to i; if there is no such letter
ei(b) = 0.

Remark 1 From (2), one may also derive a simple combinatorial rule for f−1 and
e−1. Consider the subword v of b ∈ B⊗& consisting of the letters 1 and 2. The crystal
operator f−1 on b is defined if the leftmost letter of v is a 1, in which case it turns it
into a 2. Otherwise f−1(b) = 0. Similarly, e−1 on b is defined if the leftmost letter
of v is a 2, in which case it turns it into a 1. Otherwise e−1(b) = 0.

We now give explicit descriptions of ϕ−i (b) and f−ib for J -highest-weight
elements b ∈ B⊗& for certain J ⊆ I0 := {1, 2, . . . , n} (see Proposition 1 and
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Theorem 1). We will need these results in Sect. 4 when we characterize certain
graphs on the type A components of the queer crystal.

Definition 2 The initial k-sequence of a word b = b1 . . . b& ∈ B⊗&, if it exists, is
the sequence of letters bpk , bpk−1 , . . . , bp1 , where bpk is the leftmost k and bpj is
the leftmost j to the right of bpj+1 for all 1 ! j < k.

Let i ∈ I0 and b ∈ B⊗& be {1, 2, . . . , i}-highest weight with wt(b)i+1 > 0,
where wt(b)i+1 is the (i + 1)-st entry in wt(b) ∈ Zn+1. Then note that b has an
initial (i + 1)-sequence, say bpi+1 , bpi , . . . , bp1 . Also let bqi , bqi−1 , . . . , bq1 be the
initial i-sequence of b. Note that pi+1 < pi < · · · < p1 and qi < qi−1 < · · · < q1
by the definition of initial sequence. Furthermore either qj = pj or qj < pj+1 for
all 1 ! j ! i.

Proposition 1 Let b ∈ B⊗& be {1, 2, . . . , i}-highest weight for i ∈ I0. Then
ϕ−i (b) = 1 if and only if wt(b)i > 0 and either wt(b)i+1 = 0 or pj &= qj for
all j ∈ {1, 2, . . . , i}.
Example 1 Take b = 1331242312111 and i = 3. Then p4 = 6, p3 = 8, p2 =
10, p1 = 11 and q3 = 2, q2 = 5, q1 = 9. We indicate the chosen letters pj by
underlines and qj by overlines: b = 1331242312111. Since no letter has a both an
overline and underline (meaning pj &= qj for all j ), we have ϕ−3(b) = 1.

Recall that in a queer crystal B an element b ∈ B is highest-weight if ei(b) = 0
for all i ∈ I0 ∪ I−, where I0 = {1, 2, . . . , n} and I− = {−1,−2, . . . ,−n}.
Proposition 2 ([8, Prop.1.13]) Let b ∈ B⊗& be highest weight. Then wt(b) is a
strict partition.

Next, we provide an explicit description of f−i (b) for i ∈ I0, when b is
{1, 2, . . . , i}-highest weight. Recall that the sequence bqi , bqi−1 , . . . , bq1 is the
leftmost sequence of letters i, i − 1, . . . , 1 from left to right. Set r1 = q1 and
recursively define rj < rj−1 for 1 < j ! i to be maximal such that brj = j .
Note that by definition qj ! rj . Let 1 ! k ! i be maximal such that qk = rk .

Theorem 1 Let b ∈ B⊗& be {1, 2, . . . , i}-highest weight for i ∈ I0 and ϕ−i (b) = 1
(see Proposition 1). Then f−i (b) is obtained from b by changing bqj = j to j − 1
for j = i, i − 1, . . . , k + 1 and brj = j to j + 1 for j = i, i − 1, . . . , k.

Example 2 Let us continue Example 1 with b = 1331242312111 and i = 3. We
overline bqj and underline brj , so that b = 1331242312111. From this we read
off q3 = 2, q2 = 5, q1 = 9, r3 = 3, r2 = 7, r1 = 9, k = 1 and f−3(b) =
1241143322111.

As another example, take b = 545423321211 in the q(6)-crystalB⊗12 and i = 5.
Again, we overline bqj and underline brj , so that b = 545423321211. This means
that q5 = 1, q4 = 2, q3 = 6, q2 = 8, q1 = 9, r5 = 3, r4 = 4, r3 = 7, r2 = 8,
r1 = 9, k = 2, and f−5(b) = 436522431211.
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Corollary 1 Let b ∈ B⊗& be J -highest weight for {1, 2, . . . , i} ⊆ J ⊆ I0 and
ϕ−i (b) = 1 for some i ∈ I0. Then:

1. Either f−i (b) = fi(b) or f−i (b) is J -highest weight.
2. f−i (b) is I0-highest weight only if b = fi+1fi+2 · · · fh−1u for some n + 1 "

h > i and u a I0-highest weight element.

3 Local Axioms

In [17, Definition 4.11], Assaf and Oguz give a definition of regular queer crystals.
In essence, their axioms are rephrased in the following definition, where Ĩ := I0 ∪
{−1}.
Definition 3 (Local Queer Axioms) Let C be a graph with labeled directed edges
given by fi for i ∈ I0 and f−1. If b′ = fjb for j ∈ Ĩ define ej by b = ej b

′.

LQ1. The subgraph with all vertices but only edges labeled by i ∈ I0 is a type An

Stembridge crystal.
LQ2. ϕ−1(b), ε−1(b) ∈ {0, 1} for all b ∈ C.
LQ3. ϕ−1(b)+ ε−1(b) > 0 if wt(b)1 + wt(b)2 > 0.
LQ4. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ1(b) > 2, we have f1f−1(b) = f−1f1(b), ϕ1(b) = ϕ1(f−1(b)) + 2,
and ε1(b) = ε1(f−1(b)).

(b) If ϕ1(b) = 1, we have f1(b) = f−1(b).

LQ5. Assume ϕ−1(b) = 1 for b ∈ C.
(a) If ϕ2(b) > 0, we have f2f−1(b) = f−1f2(b), ϕ2(b) = ϕ2(f−1(b)) − 1,

and ε2(b) = ε2(f−1(b)).
(b) If ϕ2(b) = 0, we have

ϕ2(b) = ϕ2(f−1(b))− 1 = 0, or ϕ2(b) = ϕ2(f−1(b)) = 0,

ε2(b) = ε2(f−1(b)), ε2(b) = ε2(f−1(b))+ 1.

LQ6. Assume that ϕ−1(b) = 1 and ϕi (b) > 0 with i " 3 for b ∈ C. Then
fif−1(b) = f−1fi(b), ϕi (b) = ϕi (f−1(b)), and εi (b) = εi (f−1(b)).

Axioms LQ4 and LQ5 are illustrated in Fig. 2.

Proposition 3 ([17]) The queer crystal of words B⊗& satisfies the axioms in
Definition 3.

In [17, Conjecture 4.16], Assaf and Oguz conjecture that every regular queer
crystal is a normal queer crystal. In other words, every connected graph satisfying
the local queer axioms of Definition 3 is isomorphic to a connected component
in some B⊗&. We provide a counterexample to this claim in [19, Figure 3]. This
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Fig. 2 Illustration of axioms
LQ4 (left) and LQ5 (right).
The (−1)-arrow at the bottom
of the right figure might or
might not be there

counterexample is based on the I0-components of the q(3)-crystal of highest weight
(4, 2, 0). In addition to the usual queer crystal, there is another choice of arrows that
does not violate the conditions of Definition 3.

The problem with Axiom LQ5 illustrated in Fig. 2 is that the (−1)-arrow at
the bottom of the 2-strings is not closed at the top. Hence, as demonstrated by
the counterexample in switching components with the same I0-highest weights can
cause non-uniqueness.

4 Graph on Type A Components

Definition 4 Let C be a crystal with index set I0∪ {−1} that is a Stembridge crystal
of type An when restricted to the arrows labeled I0. We define the component graph
of C, denoted by G(C), as the following simple directed graph. The vertices of
G(C) are the type An components of C (typically labeled by their highest weight
elements). There is a directed edge from vertexC1 to vertexC2, if there is an element
b1 in component C1 and an element b2 in component C2 such that f−1b1 = b2.

Example 3 Let C be the connected component in the q(3)-crystal B⊗6 with highest
weight element 1⊗ 2⊗ 1⊗ 1⊗ 2⊗ 1 of highest weight (4, 2, 0). The graph G(C)
is given in Fig. 3 on the left. The graph G(C′) for the counterexample C′ in [19,
Figure 3] is given in Fig. 3 on the right. Since the two graphs are not isomorphic
as unlabeled graphs, this confirms that the purple dashed arrows in [19, Figure 3]
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Fig. 3 Left: G(C) for the crystals of Example 3. Right: G(C′) for the crystals of Example 3

do not give the queer crystal even though the induced crystal satisfies the axioms in
Definition 3.

Next we show that the arrows in G(C), where C is a connected component in
B⊗&, can be modeled by e−i on type A highest weight elements.

Proposition 4 Let C be a connected component in the q(n + 1)-crystal B⊗&. Let
C1 and C2 be two distinct type An components in C and let u2 be the I0-highest
weight element in C2. Then there is an edge from C1 to C2 in G(C) if and only if
e−iu2 ∈ C1 for some i ∈ I0.

By Proposition 4, there is an edge from component C1 to component C2 inG(C)
if and only if e−iu2 ∈ C1 for some i ∈ I0, where u2 is the I0-highest weight element
of C2.

We call the arrow combinatorial if e−iu2 is {1, 2, . . . , i}-highest weight. Define
f(−i,h) := f−ifi+1fi+2 · · · fh−1.
Theorem 2 Let C be a connected component in B⊗&. Then each combinatorial
edge in G(C) can be obtained by f(−i,h) for some i ∈ I0 and h > i minimal such
that f(−i,h) applies.

In [19], we showed that it suffices to know the combinatorial edges to construct
all vertices inG(C). By Theorem 2, every combinatorial edge in the graph is labeled
by the operator f(−i,h), where f−i is given by the combinatorial rules stated in
Theorem 1 and connects an I0-highest weight element to another I0-highest weight
element. Hence, all vertices of G(C) can be constructed from the q(n + 1)-highest
weight element u by the application of these combinatorial arrows.
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Remark 2 The construction of the component graph of C with highest weight λ
produces a Schur expansion of the Schur-P polynomial Pλ(x1, . . . , xn+1). This
expansion is obtained by counting the multiplicities of highest weights for all type
An components that are present in G(C). For example, the component graph in
Example 3 yields the expansion P42 = s42 + s33 + s411 + 2s321 + s222.

5 Characterization of Queer Crystals

Our main theorem gives a characterization of the queer supercrystals.

Theorem 3 Let C be a connected component of a generic abstract queer crystal
(see Definition 1). Suppose that C satisfies the following conditions:

1. C satisfies the local queer axioms of Definition 3.
2. C satisfies the connectivity axioms of [19, Definition 4.4].
3. G(C) is isomorphic to G(D), where D is some connected component of B⊗&.

Then the queer supercrystals C and D are isomorphic.
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5. S. J. Gates, Jr., M. T. Grisaru, M. Roček, and W. Siegel. Superspace, volume 58 of Frontiers in

Physics. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA,
1983. One thousand and one lessons in supersymmetry, With a foreword by David Pines.

6. G. Benkart, S.-J. Kang, and M. Kashiwara. Crystal bases for the quantum superalgebra
Uq(gl(m, n)). J. Amer. Math. Soc., 13(2):295–331, 2000.

7. D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim. Quantum queer
superalgebra and crystal bases. Proc. Japan Acad. Ser. A Math. Sci., 86(10):177–182, 2010.



Combinatorial Characterization of Queer Supercrystals (Survey) 73

8. D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim. Crystal bases for the
quantum queer superalgebra and semistandard decomposition tableaux. Trans. Amer. Math.
Soc., 366(1):457–489, 2014.

9. D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim. Crystal bases for the
quantum queer superalgebra. J. Eur. Math. Soc. (JEMS), 17(7):1593–1627, 2015.

10. D. Grantcharov, J. H. Jung, S.-J. Kang, andM. Kim. A categorification of q(2)-crystals. Algebr.
Represent. Theory, 20(2):469–486, 2017.

11. J.-H. Kwon. Super duality and crystal bases for quantum ortho-symplectic superalgebras. Int.
Math. Res. Not. IMRN, (23):12620–12677, 2015.

12. J.-H. Kwon. Super duality and crystal bases for quantum ortho-symplectic superalgebras II. J.
Algebraic Combin., 43(3):553–588, 2016.

13. S.-J. Cheng and W. Wang. Dualities and representations of Lie superalgebras, volume 144 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.

14. S.-I. Choi and J.-H. Kwon. Crystals and Schur P -positive expansions. Electron. J. Combin.,
25(3):Paper 3.7, 27, 2018.

15. T. Hiroshima. q-crystal structure on primed tableaux and on signed unimodal factorizations of
reduced words of type B. Publ. Res. Inst. Math. Sci., 55(2):369–399, (2019).

16. S. Assaf and E. Kantarci Oguz. Crystal graphs for shifted tableaux. Sém. Lothar. Combin.,
80B:Art. 26, 12, 2018.

17. S. Assaf and E. Kantarci Oguz. Toward a local characterization of crystals for the quantum
queer superalgebra. Ann. Combin., 24(1):3–36, 2020. preprint arXiv:1803.06317v1.

18. G. Hawkes, K. Paramonov, and A. Schilling. Crystal analysis of type C Stanley symmetric
functions. Electron. J. Combin., 24(3):Paper 3.51, 32, 2017.

19. M. Gillespie, G. Hawkes, W. Poh, and A. Schilling. Characterization of queer supercrystals.
J. Combin. Theo., Series A, 173:105235, 2020. https://doi.org/10.1016/j.jcta.2020.105235.


