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Abstract—We consider a mobile network consisting of both
the wireless access network and the backhaul network. All base
stations in the access network and gateways in the backhaul
network are equipped with caches, so that routing costs for serving
content requests can be reduced by caching the requested content
items closer to the users. In this case, user association in the
wireless access network must be aware of both the quality of
wireless channels and the content caching strategy. In this paper,
we propose a framework that jointly optimizes wireless user asso-
ciation and content caching in both access and backhaul networks.
The resulting problem is NP-hard. We propose a polynomial-time
algorithm based on convex approximation and pipage rounding
that produces a solution within a constant factor of 1 − 1/e
from the optimal. Simulation results show that the proposed joint
algorithm outperforms schemes that combine cache-independent
user association methods with traditional caching strategies (e.g.
LRU) in terms of minimizing the aggregate routing cost and
backhaul traffic while achieving a high data sum rate in the access
network.

I. INTRODUCTION

In recent years, mobile traffic has experienced explosive
growth due to the proliferation of mobile devices and demands
for high-volume media content. To keep pace with this growth,
mobile caching is proposed as a promising solution. By stor-
ing content items closer to mobile users (UEs), requests are
served at the edge, which helps to improve response time,
reduce backhaul traffic, and alleviate server congestion. At
the same time, the heterogenous network (HetNet) emerges
as an effective way to increase the capacity and coverage of
wireless access networks. In HetNets, together with traditional
macro base stations (MBSs) working at sub-6 GHz band, dense
deployment of short-range small base stations (SBSs) operating
at mmWave frequency bands occurs at distances much closer
to UEs, thus enabling higher data rate access.

In mobile caching, one typically equips BSs with storage
devices. For example, proactive content caching at SBSs is
used to overcome capacity-limited backhaul links and minimize
the delivery delay [1]. Caching at gateways can also reduce
the amount of user traffic that must go to the internet through
backhaul links, thus further increases the effective bandwidth
[2]. At the access network, because of the dense deployment of
SBSs, each UE is likely to be within the range of multiple base
stations (BSs) and can associate (connect) with any of them to
fetch content items, necessitating mechanisms for optimal user
association. The traditional method of associating UEs with
the BS having highest signal to interference plus noise ratio

(SINR), Max-SINR, can lead to unbalanced BS loads. Load
balancing user association has been studied for LTE and 5G
networks for maximizing transmission rates in [3]–[5].

With the availability of mobile caching, cache-aware user
association becomes necessary to take content availability into
consideration. Several works have studied joint user association
and caching at BSs. These include optimizing the fractions of
content items served by different BSs and caching policy to
minimize the average serving time [6]. The problem is studied
for maximizing user data rates and backhaul savings in [7].
Joint user association and caching at unmanned aerial vehicles
(UAVs) that minimizes content acquisition delay is studied in
[8], where UAVs play a similar role as BSs.

None of these existing works, however, consider caching in
backhaul nodes such as gateways. Furthermore, though some
papers formulate a joint problem of association and caching,
the problem is subsequently separated into two sub-problems
(a caching problem with fixed association and an association
problem with fixed caching) for tractability. This separation is
usually sub-optimal and leads to performance loss.

In this paper, we study the joint user association and caching
in mobile networks, which includes caching at not only BSs but
also gateways. To our best knowledge, this is the first work to
consider such a joint optimization. We follow [9] that studies
caching and [10] that studies joint optimization of routing and
caching to minimize the aggregate expected routing cost, while
extend beyond them by including user association in the access
network. We design an approximation algorithm which has
polynomial time-complexity and produces a solution within
a constant factor from the optimal. By simulations, we show
that the proposed joint user association and caching algorithm
achieves not only the lowest aggregate expected routing cost
but also a high data rate compared to existing solutions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study a heterogeneous access network including cache-
enabled MBSs and SBSs, and a backhaul network containing a
number of cache-enabled gateways as shown in Fig. 1. Let K be
the set of UEs, J = JM ∪JS be the set of BSs, where JM is
the set of MBSs operating at sub-6 GHz frequency band and JS
is the set of SBSs working at mmWave band, N represents the
set of gateways in backhaul, and S is the set of servers located
on the Internet. We represent the whole network by a directed
and bidirectional graph G = (V, E), where V = K∪J ∪N ∪S ,
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Fig. 1. A heterogeneous mobile network including cache-enabled gateways
(GWs), LTE macro BSs (MBSs), 5G small BSs (SBSs), and users (UEs).

and E is set of bidirectional links connecting the UEs, BSs,
gateways, and servers.

UEs are located at random locations in the wireless access
network. Each UE is associated with one of the BSs over
wireless links. The SBSs are connected to MBSs via fixed
fronthaul links while MBSs are connected to gateways via fixed
backhaul links. Some gateways are connected to the remote
servers by multi-hop wired links. There is a content catalog C
of equally-sized content items to be delivered in the network.1

Each UE in the network generates content requests for content
items at rates depending on their content preferences and their
activity levels.

A. User Association and Caching

1) User Association: Each UE is associated with one of the
BSs to fetch content items. Let binary association variables

βkj ∈ {0, 1}, k ∈ K, j ∈ J , (1)

be the indicator variables indicating whether UE k is associated
with BS j. We call matrix β = [βkj ]k∈K,j∈J ∈ {0, 1}|K|×|J |
the user association strategy in the access network. We consider
unique user association such that each UE is connected to one
and only one BS at a time.2 Furthermore, each BS j has a load
balancing constraint Dj specified by the maximum number of
UEs it can serve simultaneously, where Dj ≤ Mj , and Mj

is the number of transmit antennas of BS j. Thus, the binary
association variables must satisfy∑

j∈J
βkj = 1 for all k ∈ K, (2)∑

k∈K

βkj ≤ Dj for all j ∈ J , (3)

where the first set of constraints represents the unique associa-
tion and the second set indicates the load balancing constraints.

We note that the association variables are somehow related
to the routing variables in [10], as we also select the paths

1We will address unequally-sized content items in future works. This ex-
tension involves partition items into equally-sized “chunks” and UEs associate
with multiple BSs at a time.

2Techniques involving multiple BSs connections such as coordinated multi-
point (CoMP) are possible future directions.

of the user requests when we determine the user association
with BSs. However, the association variables have one more
constraint, the load constraint, which necessitates a different
method (see III-B2).

2) Caching Strategy: We consider cache-enabled MBSs,
SBSs, and gateways. Each node v ∈ J ∪ N is equipped with
a cache that can store cv ∈ N+ content items. Let

xvi ∈ {0, 1}, for all v ∈ J ∪N , i ∈ C, (4)

be the caching variables indicating whether node v stores
content i in its cache. We call matrix X = [xvi]v∈J∪N ,i∈C ∈
{0, 1}(|J |+|N |)×|C| the caching strategy of the network satisfy-
ing the capacity constraint:∑

i∈C
xvi = cv, v ∈ J ∪N . (5)

B. Content Requests

A request (i, k) is determined by the content item i ∈ C
requested and the requesting UE k ∈ K. Let R ⊆ C×K be the
set of all requests. Requests of different types arrive according
to independent Poisson processes with rates λ(i,k) > 0.

For each content item i ∈ C, there is a set of designated
servers Si ⊆ S that store i permanently. A request (i, k) ∈ R
is routed over a path towards a designated server of i. The path
is determined as follows: Given requested content item i and
associated BS j, we assume that the path between BS j and
the server of content item i is fixed and pre-established by an
external routing algorithm, given by pij = (pij0 , p

ij
1 , . . . , p

ij
M ),

where pij0 = j, pijm ∈ V\K and (pijm−1, p
ij
m) ∈ E for m =

1, . . . ,M . Then the complete path of request (i, k) is given
by (k, pij0 , p

ij
1 , . . . , p

ij
M ). We assume that every path is well-

routed: (1) the path contains no cycles; (2) the last node of the
path is the designated server, i.e., pijM ∈ Si; and (3) no other
node in the path is the designated server, i.e., pijm 6∈ Si for
m = 1, . . . ,M − 1.

C. Requests Routing Cost

1) Link Cost: In this paper, we assume that UEs and BSs
are connected via wireless links, while the links among BSs,
gateways and servers are wired links. We associate each link
(u, v) ∈ E (either wired or wireless link) with a cost wuv ≥ 0
indicating the routing cost (e.g., delay or financial expense)
incurred when transferring a content item across edge (u, v).

In particular, we assume the wireless link cost between BS
j ∈ J and UE k ∈ K is given as

wjk = f(cjk)

where cjk is the capacity of the wireless link between BS j
and UE k, and the wireless cost f(·) is a decreasing function
in link capacity, so that the cost of transferring a content item
over a link with higher capacity is lower. For example, the
following wireless cost function describes the transmission plus
propagation time delay for sending a content item over wireless
link (j, k):

wjk =
d

cjk
+ τjk (6)



where d is the size of content items, and τkj is the (constant)
propagation delay over (j, k).

The link capacity cjk depends on the wireless channel
characteristics, interference, and also receiver processing tech-
niques. With linear processing, the base station transmits a
signal vector precoded for all its associated UEs. The precoding
matrix at the base station is a function of the channel estimate.
We consider the following wireless link capacity (instantaneous
rate) from BS j to an associated UE k:

cjk =W log2

(
1 +

Pjkw
∗
kHjkfjkf

∗
jkH

∗
jkwk

Ijk +N0Ww∗kwk

)
, (7)

where Hjk represents the downlink channel from BS j to UE k,
Pjk = Pj/Dj is the transmit power from BS j dedicated to UE
k, Pj is the total transmit power of BS j, fjk ∈ CMj×1 is the
linear precoder (transmit beamforming vector) for each UE k
associated with BS j, and wk ∈ CNk×1 is the linear combiner
(receive beamforming vector) of UE k. N0 represents the noise
power spectral density, W is the system bandwidth, and Ijk is
the interference power at UE k when connected to BS j, as
defined in [5],

Ijk =
Pj − Pjk
Mj

w∗kHjkH
∗
jkwk +

∑
i∈J ,i 6=j

Pi
Mi

w∗kHikH
∗
ikwk,

where the first and second terms in Ijk represent the intra-
cell and inter-cell interference, respectively. When computing
the interference, we assume that BSs equally allocate the
transmitting power to the antennas, i.e., each BS j has an
precoding matrix Fj = 1√

Mj

IMj . The transmitting power of

BS j is given by Pj

Mj
Tr(FjF ∗j ) = Pj .

2) Routing Cost: A request is routed over its path until
reaching a node (either the designated server or an intermediate
cache node) that stores the requested content item. The content
item is then sent back in a response message over the reverse
path to the UE. Compared with the size of a response message
that carries the content item, the size of a request message
is relatively small. Thus, we assume that the request forward-
ing costs are negligible. Then the routing cost of a request
(i, k) ∈ R is

C(i,k)(β,X) =
∑
j∈J

βkj ·[
wjk +

|pij |−1∑
m=1

wpijm+1p
ij
m

m∏
m′=1

(1− xpij
m

′ i
)

]
. (8)

D. Problem Formulation
We aim to determine the user association strategy and

caching strategy that minimize the aggregate expected routing
cost, defined as

C(β,X) =
∑

(i,k)∈R
λ(i,k)C(i,k)(β,X). (9)

Let C0 be the constant:

C0 =
∑

(i,k)∈R

λ(i,k)
∑
j∈J

wjk + |pij |−1∑
m=1

wpijm+1p
ij
m

 , (10)

which is an upper bound to C(β,X) given in (9), for any
feasible β and X . Then, minimizing the cost (9) is equivalent
to maximizing the association and caching gain, G(β,X) =
C0 − C(β,X), given by

G(β,X) =
∑

(i,k)∈R

λ(i,k)
∑
j∈J

(1− βkj)wjk + F (β,X), (11)

where

F (β,X) =
∑

(i,k)∈R
λ(i,k)

∑
j∈J

|pij |−1∑
m=1

wpijm+1p
ij
m
·{

1− βkj
m∏

m′=1

(
1− xpij

m
′ i

)}
. (12)

We formally pose the joint user association and caching opti-
mization problem as follows:

Maximize: G(β,X) (13a)

subject to: X ∈ DC1 and β ∈ DA1 (13b)

where DA1 is the set of β satisfying (1)-(3) and DC1 is the set of
X satisfying (4) and (5). This problem can be reduced to the
2-disjoint set cover problem [1], and is henceforce NP-hard.

III. JOINT USER ASSOCIATION AND CACHING

Due to the NP-hardness of problem (13), we turn our
attention to efficient approximation algorithms. In this section,
we introduce such an algorithm which produces a solution
within a constant factor 1−1/e from the optimal. The algorithm
mainly consists of two steps: convex approximation and pipage
rounding.

A. Convex Approximation

In the convex approximation step, we relax the constraints in
(13b) and find a convex approximation of the objective in (13a).
The same approximation technique has been applied to caching
[9] and joint optimization of caching and routing [10]. In this
section, we show how this technique applies to our scheme.

We consider the linear relaxation of the constraints in (13b).
Let yvi, v ∈ J ∪ N , i ∈ C be real-valued caching variables
satisfying ∑

i∈C yvi = cv, v ∈ J ∪N ,
yvi ∈ [0, 1], v ∈ J ∪N , i ∈ C,

and Y = [yvi]v∈J∪N ,i∈C ∈ [0, 1](|J |+|N |)×|C|. Let ρkj , k ∈ K,
j ∈ J be real-valued association variables satisfying∑

j∈J ρkj = 1, k ∈ K,∑
k∈K ρkj ≤ Dj , j ∈ J ,
ρkj ∈ [0, 1], k ∈ K, j ∈ J ,

and ρ = [ρkj ]k∈K,j∈J ∈ [0, 1]|K|×|J |. We have ρ ∈ DA2 and
Y ∈ DC2 where DA2 and DC2 are the convex hulls of DA1 and DC1
respectively. We note that the objective G(ρ, Y ), whose form is
given in (11), is the sum of a non-negative linear function and a
non-convex function F (ρ, Y ). The latter, whose form is given



by (12), can be further approximated by a concave function
L(ρ, Y ), given by

L(ρ, Y ) =
∑

(i,k)∈R
λ(i,k)

∑
j∈J

|pij |−1∑
m=1

wpijm+1p
ij
m
·

min

{
1, 1− ρkj +

m∑
m′=1

ypij
m

′ i

}
. (14)

The above approximations lead to a concave objective H(ρ, Y )
and the following convex optimization problem:

Maximize:

H(ρ, Y ) =
∑

(i,k)∈R

λ(i,k)
∑
j∈J

(1− ρkj)wjk + L(ρ, Y ) (15a)

subject to: Y ∈ DC2 and ρ ∈ DA2 (15b)

The functions L(ρ, Y ) and F (ρ, Y ) satisfy the following in-
equalities (first used by Goemans and Williamson to solve the
MAX SAT problem [11]):

(1− 1/e)L(ρ, Y ) ≤ F (ρ, Y ) ≤ L(ρ, Y ).

Then, as the first terms of G(ρ, Y ) and H(ρ, Y ) are the same
non-negative linear function, we obtain:

(1− 1/e)H(ρ, Y ) ≤ G(ρ, Y ) ≤ H(ρ, Y ). (16)

Based on (16), we can derive the following lemma showing
that the association and caching gain derived by solving (15)
is within a constant factor from the optimal association and
caching gain of (13):

Lemma 1. Let (β∗, X∗) and (ρ∗, Y ∗) be the optimal solutions
of (13) and (15) respectively. Then,

G(ρ∗, Y ∗) ≥ (1− 1/e)G(β∗, X∗). (17)

Proof. By (16), G(ρ∗, Y ∗) ≥ (1 − 1/e)H(ρ∗, Y ∗) ≥ (1 −
1/e)H(β∗, X∗) ≥ (1−1/e)G(β∗, X∗), and the lemma follows.

Problem (15) is a convex optimization problem and, in fact,
can be converted to a linear program by introducing auxiliary
variables. Thus, it can be solved in polynomial time.

B. Pipage Rounding

Given the real-valued solution (ρ∗, Y ∗), where ρ∗ ∈ DA2 ,
Y ∗ ∈ DC2 , we show that it is possible to round it to an
integer solution (β

′
, X

′
), where β

′ ∈ DA1 , X
′ ∈ DC1 , with

non-decreased objective value, i.e.,

G(β
′
, X

′
) ≥ G(ρ∗, Y ∗), (18)

by leveraging the so called pipage rounding algorithm [12]. The
rounding process consists of two steps:

1) For fixed ρ∗, round the caching variables Y ∗ to integer
variables X

′
, such that G(ρ∗, X

′
) ≥ G(ρ∗, Y ∗);

2) For fixed X
′
, round the association variables ρ∗ to integer

variables β
′

such that G(β
′
, X

′
) ≥ G(ρ∗, X ′

).

Algorithm 1: Pipage Rounding for Association
Input: K,J and ρ

1 while ρ has non-integral components do
2 Let Hρ = (K,J ;Eρ), where Eρ is the set of edges

with fractional values.
3 Let R be a cycle or a maximal path of Hρ. R can

be represented by two matchings, M1 and M2.
4 ε1 =

min
{
min(k,j)∈M1

ρk,j ,min(k,j)∈M2
(1− ρk,j)

}
5 ε2 =

min
{
min(k,j)∈M1

(1− ρk,j),min(k,j)∈M2
ρk,j

}
6 if G(ρ(−ε1, R)) > G(ρ(ε2, R)) then
7 ρ← ρ(−ε1, R)
8 else
9 ρ← ρ(ε2, R)

10 end
11 end
12 return ρ

1) Rounding for caching variables: The main idea is that
given a fractional caching variable yvi ∈ (0, 1), v ∈ J ∪ N ,
i ∈ C there must exist another fractional yvi′ ∈ (0, 1), for
the same v and i

′ ∈ C, because of the integer cache capacity
constraint, i.e.,

∑
i∈C yvi = cv , v ∈ J ∪ N . Observe that

objective function G, restricted to only these two entries, is
convex. As such, it is maximized at the extrema of the set of
values that the pair (yvi, yvi′ ) may take, presuming all other
entries are constant. This implies that we can transfer equal
mass between these two entries such that at least one of them
becomes 0 or 1. Transferring equal mass ensures constraint (5)
is satisfied and pairwise convexity ensures that the objective
value is non-decreased. For more detailed descriptions one can
refer to [9].

2) Rounding for association variables: Association vari-
ables need to satisfy an additional load-balancing constraint
(3), which necessitates transferring an equal mass among more
than two entries in each iteration. We summarize the pipage
rounding algorithm for association variables in Alg. 1. It
consists of steps at each of which a current fractional solution ρ
is transformed into a new solution ρ′ with a smaller number of
non-integral components. At each step, we consider a bipartite
graph Hρ = (K,J ;Eρ) where K is the set of UEs, J is the set
of BSs. and Eρ is the set of edges satisfying the condition that
(k, j) ∈ Eρ if and only if ρkj is non-integral. If Hρ contains
cycles, we let R be such a cycle. If Hρ is a forest, we let R
be a maximal path 3 of Hρ. Since Hρ is bipartite, in both
cases R can be represented as the union of two matchings
M1 and M2. A new solution ρ(ε, R) is produced as follows:
ρk,j(ε, R) = ρk,j + ε if (k, j) ∈M1 and ρk,j(ε, R) = ρk,j − ε

3We say a path is maximal if you cannot add any new nodes to it to make
it longer.
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Fig. 2. Comparison of the aggregate expected routing cost with different
numbers of UEs. The main figure is plotted in log-scale, while the zoomed
sub-figure is presented in linear-scale.

if (k, j) ∈M2. Define

ε1 = min

{
min

(k,j)∈M1

ρk,j , min
(k,j)∈M2

(1− ρk,j)
}
;

ε2 = min

{
min

(k,j)∈M1

(1− ρk,j), min
(k,j)∈M2

ρk,j

}
.

Let ρ1 = ρ(−ε1, R), ρ2 = ρ(ε2, R). We let the new solution
ρ′ = ρ1 if G(ρ1, X

′
) > G(ρ2, X

′
) and ρ′ = ρ2 otherwise.

The crucial property (ε-convexity) of G that makes this
procedure work is the following: let function φ(ε, ρ,R) =
G(ρ(ε, R), X

′
), then φ is convex in ε. In this case, the

maximum value of φ over [−ε1, ε2] is attained at one of the
endpoints. Thus, in each step, we produce a new solution ρ′

with a non-decreased objective value. Also, ρ′ is still in DA
2

(see [12] for detailed proofs) and the number of non-integral
components is reduced at least by 1. At the end of the iterations,
we obtain an integral β′ ∈ DA

1 satisfying (18).
Combining Lemma 1 and (18), we have the following result

that the process of convex approximation and pipage rounding
produces an integer solution whose corresponding association
and caching gain is within a constant factor from the optimal
association and caching gain:

Theorem 1. Let (β
′
, X

′
) be the rounded solution and (β∗, X∗)

be the optimal solution for the original problem. We have:

G(β
′
, X

′
) ≥ (1− 1/e)G(β∗, X∗)

As in each step, the number of fractional components is
reduced by at least 1, the time complexity of the rounding
process (including rounding for both caching and association
variables) is O(|V|× |C|+ |K|× |J |). Thus, the algorithm that
consists of convex approximation and pipage rounding can also
be finished in polynomial time.

IV. NUMERICAL RESULTS

In our simulations, we consider the mobile network topology
as shown in Fig. 1. There is one server for all the content
items. The mobile network includes five gateways, three MBSs
operating at 1.8 GHz, and six SBSs operating at 28 GHz.
MBSs and SBSs are deployed at fixed locations, while UEs
are randomly located following a Poisson point process, all
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in a 1 × 1 km2 square area. We set the load balancing
constraints Dj = 6, j ∈ JM and Dj = 3, j ∈ JS . Sub-6
GHz channels, mmWave channels, beamforming vectors, and
antenna configuration are set following the simulation settings
in [5]. As the majority of mobile traffic is usually caused by
requests for a small subset of the content items, we focus on
the caching and delivery of these most popular content items.
Accordingly, we set the catalog size |C| = 20. The initial cache
sizes of gateways, MBSs, and SBSs are 2, 2, and 1 respectively.
The overall request rate of each UE is generated uniformly
at random (u.a.r.) from [0, 1] to reflect the different activity
levels of the UEs. For each UE, the request rates of different
content items are generated according to Zipf distribution with
an exponent 0.8. We compare our proposed algorithm with
several baselines which combine Least-Recently-Used (LRU)
policy for caching with several different user association (UA)
algorithms:
• Max-SINR UA & LRU: Adopts Max-SINR for user as-

sociation and LRU policy for caching.
• DA UA & LRU: BSs and UEs run a Deferred Acceptance

(DA) matching game [13] for user association with pref-
erence lists generated based on wireless link costs. LRU
is adopted as the caching scheme.

• WCS UA & LRU: Adopts the max-min fairness version
of the worst connection swapping (WCS) algorithm [5]
for user associations and LRU policy for caching.

• Fractional UA & LRU: Adopts the fractional user-
cell association strategy [4] with LRU policy for caching.

We run simulations using MATLAB and solve the convex op-
timization problem (15) by CVX toolbox. Schemes with LRU
caching are simulated for 1000 time units, and all statistical
results stated are averaged over all observations during the
simulation time, several independent runs of random locations
of UEs and random channel realizations for wireless links.

We first evaluate the impact of the number of UEs in the
network. As the maximum number of UEs that can be served
is fixed and determined by the load constraints of BSs, given
by
∑
j∈J Dj = 36, by varying the number of UEs, we can

evaluate the performance of the algorithms for under-loaded and
fully-loaded networks. Fig. 2 evaluates the aggregate expected
routing cost in the network, given by (9), with different numbers
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Fig. 4. Comparison of the sum rate derived by different user association
schemes at the wireless access network. We also include the results of random
user association in this figure.

of UEs. It shows that the proposed algorithm always leads
to the lowest routing cost. As the number of UEs increases,
baseline algorithms including Fractional UA & LRU, DA
UA & LRU, and Max-SINR UA & LRU lead to high routing
costs. WCS & LRU is the best baseline when the network is
fully-loaded (|K| = 36), however, it still produces a routing cost
twice as much as the cost produced by the proposed algorithm.

Fig. 3 evaluates the ratio of requests that are served by
the server as a function of the number of UEs. This shows
the ability of each algorithm to serve the requests within the
edge/mobile network. We can see that when the network is
lightly-loaded (|K| = 12), all algorithms are able to serve the
majority of the requests at the edge. However, as the network
becomes fully-loaded (|K| = 36), all baseline algorithms let
nearly 80% of the requests be served by server, compared to the
proposed algorithm that lets only 42% of the requests served by
server. Since the server are usually far away from the gateways
and the links close to the server are more congested, the costs of
serving requests at the server are high, which also explains why
in Fig. 2, the aggregate expected routing costs of the baseline
algorithms are higher.

In Fig. 4, we evaluate the performance in terms of the
sum rate of UEs in the wireless access network, which is a
widely-used metric to compare user association schemes. We
can observe that, though the proposed algorithm focuses on
joint optimization of user association and caching, its network
sum rate is higher than most user association schemes and very
close to that of DA UA. Fig. 5 compares the ratio of requests
that are served by the server as a function of cache size. In this
simulation, we consider a fully-loaded network (|K| = 36) and
vary the cache size of BSs and gateways. This shows again
the ability of the proposed algorithm to efficiently serve the
requests at the edge.

V. CONCLUSION

In this paper, the minimization of aggregate routing cost of
all requests is investigated via the joint optimization of user
association and caching in both edge and backhaul networks.
Besides allowing caching at base stations, we also consider
cache-enabled gateways which can help further improve the
network efficiency (e.g. reduce the routing costs). Compared
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to existing works that sub-optimally divide the joint problem
into subproblems, we solve it jointly via a polynomial time-
complexity approximation algorithm. This algorithm also guar-
antees that the produced solution is within a constant factor
from the optimal. By extensive simulations on a 5G network
topology, we show the efficiency of the proposed algorithm in
minimizing the aggregate routing cost, achieving high data sum
rate and serving requests at the edge.
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