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Convolutional neural networks (CNNs) are widely used to recognize the user’s state through elec-
troencephalography (EEG) signals. In the previous studies, the EEG signals are usually fed into the
CNNs in the form of high-dimensional raw data. However, this approach makes it difficult to exploit
the brain connectivity information that can be effective in describing the functional brain network and
estimating the perceptual state of the user. We introduce a new classification system that utilizes brain
connectivity with a CNN and validate its effectiveness via the emotional video classification by using
three different types of connectivity measures. Furthermore, two data-driven methods to construct
the connectivity matrix are proposed to maximize classification performance. Further analysis reveals
that the level of concentration of the brain connectivity related to the emotional property of the target
video is correlated with classification performance.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The perceptual aspects of the user experience such as
emotion and preference are important for various multimedia
applications and services. For example, services such as video
streaming and content recommendation can benefit from under-
standing the user’s perception of the given multimedia content.
It is also crucial to recognize the user’s perceptual states to
enhance the user’s experience in virtual reality. In particular,
emotion, which influences both our individual and social behav-
iors (Dolan, 2002), is one of the most distinguishing perceptual
factors. Therefore, many studies have tried to determine its na-
ture (Cabanac, 2002; Frijda, 1988; Winkielman & Berridge, 2004)
and characteristics (Ekman et al., 1987).

Although emotion is traditionally investigated through explicit
questionnaires or interviews, implicit measurement of emotion
via physiological signals has received much attention recently due
to its advantages over the explicit approach. Example modalities
for physiological signal measurement include electroencephalog-
raphy (EEG) (Moon & Lee, 2017), functional magnetic resonance
imaging (fMRI) (Koelsch et al., 2006), functional near-infrared
spectroscopy (fNIRS) (Bandara et al., 2018), magnetoencephalog-
raphy (MEG) (Abadi et al., 2015), and peripheral physical sig-
nals (Kim & Andre, 2008). The implicit measurements enable
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the real-time monitoring of emotion, whereas a questionnaire
or interview needs to be conducted after the stimulus presen-
tation, which leads to a lag between the emotional event and
the measurement. Moreover, the implicit approach is relatively
free from errors induced by the experimenters and the evaluation
processes.

In particular, EEG is a method to capture electrical brain ac-
tivity, which is expected to contain comprehensive information
on the emotional process. Furthermore, EEG has advantages over
other cerebral physiological channels, such as high temporal res-
olution, low cost, and the portability of the equipment (Moon
& Lee, 2017). Thus, many studies have utilized EEG signals for
emotion analysis.

Recently, deep learning approaches have been applied to EEG
signals to classify the user’s emotional state. Most previous stud-
ies have focused on extracting representations appropriate for
classification from raw EEG signals using deep learning models.
However, EEG signals usually contain much more intense noise
than the image and audio signals that the deep learning approach
mostly has handled. Therefore, it could be beneficial to extract
meaningful information first from the EEG signals and then learn
it via deep learning models.

While instant changes in amplitude or latency and spectral
powers have been traditionally used to represent EEG signals, fea-
tures related to brain connectivity have emerged recently because
they can consider the relationship between the different brain
regions (Abril et al., 2018). Brain connectivity has been actively
employed in neuroscientific research. Moreover, the effectiveness
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of brain connectivity features in recognizing emotional states
was validated in recent studies (Costa et al., 2006; Lee & Hsieh,
2014). However, brain connectivity has not been employed in
deep learning approaches except in our preliminary work (Moon
et al.,, 2018).

In this paper, we propose a new method to exploit the con-
nectivity information in deep learning to recognize emotional
experience using EEG. In our method, the connectivity informa-
tion is represented as a matrix obtained from the raw EEG signals.
In particular, we utilize convolutional neural networks (CNNs)
because of their capability of dealing with the spatial information
of the input data. Furthermore, we note that as the convolution
operation considers the spatial neighboring values in the input
data at the same time, the performance of the proposed method
varies depending on the arrangement of the connectivity matrix.
Therefore, we present two different methods to determine the ar-
rangement of the connectivity matrix and investigate its influence
on the performance of emotional video classification.

Our contributions are summarized as follows:

e We propose a CNN-based system that enables us to learn
representations of neural activities based on brain connec-
tivity by utilizing a connectivity matrix, and we verify its
effectiveness on emotional video classification. Several con-
nectivity measures, namely the Pearson correlation coeffi-
cient (PCC), phase locking value (PLV), and transfer entropy
(TE), are considered to construct the connectivity matrix.

e We present an effective data-driven approach to arrange the
connectivity matrix to maximize performance. We consider
two different methods for this, which utilize the similarity
and dissimilarity between the EEG signals at different spatial
locations, respectively.

e We analyze the results of emotional video classification
with respect to the emotional valence and demonstrate
that the concentrativeness of the valence-related connectiv-
ity in an input connectivity matrix is correlated with the
classification performance.

The rest of the paper is organized as follows. We provide a
survey of the related studies in Section 2. Section 3 contains
a description of our proposed method and the validation of its
effectiveness through experiments. In Section 4, we discuss the
influence of EEG electrode ordering on our proposed method,
propose data-driven ordering methods, and provide further anal-
ysis on the concentrativeness of the valence-related connectivity.
Finally, we provide conclusions on our work in Section 5.

2. Related work

In this section, we review existing studies to analyze emotion
using EEG signals, which are categorized depending on the type
of EEG features and learning models. Representative studies are
summarized in Table 1.

2.1. EEG-based emotion analysis

The response of the brain to emotional events has been ac-
tively explored through EEG. Typically, the EEG signals are rep-
resented by features, which can be categorized depending on the
domain that they consider (Jenke et al., 2014).

Time domain features include statistical features such as the
mean, standard deviation, power, Hjorth features (Hjorth, 1970),
length density, fractal dimensions, etc. In particular, the instant
phase and amplitude changes of EEG signals (called event-related
potential) have been investigated to discover the brain responses
to emotional stimuli in many studies (Olofsson et al., 2008).

They showed that the valence of emotion, which ranges from
negative (low-valence) to positive (high-valence) levels, tends to
manipulate the early EEG signals, and the influence of arousal
describing the intensity of emotion appears relatively later.

The power of EEG signals in the frequency domain is one
of the most popular EEG features for emotion analysis. Typ-
ically, high-amplitude signals in the low-frequency range are
observed when subjects are in a calm state and, in contrast,
high-amplitude signals in the high-frequency range are evident
in an alert state (Bear et al., 2015). Power features are also
used to derive other frequency domain features. For example, the
asymmetry index, which is calculated as the difference between
the power values obtained from symmetrically located electrode
pairs, is utilized to describe the asymmetry between the left and
right hemispheres of the brain. In Liu, Tong et al. (2018), the fre-
quency domain features were used to classify discrete emotional
states (disgust, happiness, neutrality, sadness, and tenseness) in-
duced by watching a video, where the asymmetry indexes of the
12 electrode pairs were employed in addition to the power spec-
tral density (PSD) of the EEG signals. Liu, Yu et al. (2018) used the
same features to distinguish positive emotions (joy, amusement,
and tenderness) and negative emotions (anger, disgust, fear, and
sadness) induced by watching videos.

For the frequency domain features, it is assumed that the EEG
signals are stationary for the duration of a trial, but such an
assumption may not hold in some cases. Therefore, the features
that consider the information in the time and frequency domains
jointly have been proposed. For example, Mert and Akan (2018)
performed classification between the binary states (high vs. low)
of arousal and valence using the time-frequency distribution of
EEG signals obtained by the multivariate synchrosqueezing trans-
form. Meanwhile, Zhang et al. (2016) applied empirical mode
decomposition, which is a time-frequency analysis method based
on the Hilbert-Huan transformation, for emotion classification in
the valence-arousal plane.

The aforementioned features are mostly used with conven-
tional shallow machine learning models. Deep learning-based
emotion analysis methods capable of extracting more effective
features through learning have been recently proposed in the
literature.

2.2. Deep learning approaches for emotion recognition

Deep learning approaches to recognize emotional states can
be roughly categorized into two types: (1) extracting features
from raw EEG signals and (2) utilizing refined information from
EEG signals instead of raw signals to derive further representative
features.

The former is a completely data-driven method and thus has
the potential to maximize performance with a proper learn-
ing model and scheme. For example, Yanagimoto and Sugimoto
(2016) employed raw EEG signals for binary classification of
emotional valence by using CNNs, which outperformed shallow
models such as support vector machine (SVM) and random forest.
Furthermore, recurrent neural networks (RNNs) were applied to
raw EEG signals for emotional state classification by Alhagry
et al. (2017) (high- vs. low-arousal, positive vs. negative valence,
and high- vs. low-liking) and Bozhkov et al. (2016) (high- vs.
low-valence).

However, EEG signals are highly complex because they reflect
various aspects of perceptual experience in addition to emotion.
Moreover, there are differences in EEG patterns among different
individuals, which imposes further difficulty in extracting mean-
ingful emotion-related representation from raw EEG signals via
learning. Therefore, it can be helpful to first process the raw EEG
signals and then utilize the results for further feature extraction
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Results of emotion classification reported in representative existing studies.

Classification target Input data Classifier Classification accuracy
Liu, Tong et al. (2018) Disgusting vs. happy vs. PSD and asymmetry SVM Within-stimulus: 93.3% (PSD),
neutral vs. sad vs. tense features 85.4% (asymmetry),
Cross-stimulus: 68.9% (PSD),
64.4% (asymmetry)
Liu, Yu et al. (2018) Positive emotions (joy vs. PSD and asymmetry SVM Positive emotions: 86.4%,

amusement vs. tenderness),
Negative emotions (anger vs.
disgust vs. fear vs. sadness)

features

Negative emotions: 65.1%

Mert and Akan (2018)

High- vs. low-valence,
High- vs. low-arousal

Time-frequency features

obtained by the

Fully connected neural
network

Valence: 82.0%,
Arousal: 82.1%

multivariate
synchrosqueezing
transform
Zhang et al. (2016) Low-valence & low-arousal vs. Time-frequency features SVM 93.2%
low-valence & high-arousal vs. using empirical mode
high-valence & low-arousal vs. decomposition
high-valence & high-arousal
Yanagimoto and Positive vs. negative Raw EEG signals CNN 73.9%
Sugimoto (2016)
Alhagry et al. (2017) Low- vs. Raw EEG signals LSTM Valence: 85.4%,

high-valence/arousal/liking

Arousal: 85.6%,
Liking: 88.0%

Bozhkov et al. (2016) Positive vs. negative Raw EEG signals Echo state network + 98.1%
SVM
Zheng and Lu (2015) Positive vs. neutral vs. negative Differential entropy Deep belief network 86.6%
features
Li et al. (2018) Positive vs. neutral vs. negative Differential entropy CNN 83.8%
features
Li et al. (2017) Low-valence & low-arousal vs. PSD Hybrid model of LSTM 75.2%

low-valence & high-arousal vs.
high-valence & low-arousal vs.
high-valence & high-arousal

and CNN

Lee and Hsieh (2014)

Positive vs. neutral vs. negative

Correlation, coherence,
and phase
synchronization features

Quadratic discriminant
analysis

Correlation: 61%,
Coherence: 62%,
Phase synchronization: 82%

Clerico et al. (2015) Low- vs. Mutual information + SVM Valence: 58%,
high-valence/arousal/liking/ PSD + asymmetry Arousal: 66%,
dominance features Liking: 64%,
Dominance: 62%
Shahabi and Moghimi Joyful vs. neutral, DTF features SVM Joyful vs. neutral: 93.7%,

(2016) Joyful vs. melancholic

Joyful vs. melancholic: 80.4%

PSD: power spectral density, SVM: support vector machine, CNN: convolutional neural network, LSTM: long short-term memory, DTF: directed transfer function.

using deep learning models, which is the basis of the second
approach and inspired our study.

Zheng and Lu (2015) used differential entropy, which is a mea-
sure of the amount of information included in EEG signals, as the
input of deep belief networks for the classification of emotional
states (positive, neutral, and negative). Differential entropy was
also employed by Li et al. (2018) to distinguish the positive, neu-
tral, and negative emotional states induced by videos, where the
CNN receives input as a topographical 2D image representation
of the differential entropy based on the spatial arrangement of
the EEG electrodes. Meanwhile, Li et al. (2017) designed a hybrid
model incorporating RNN and CNN for emotion classification in
the valence-arousal plane by using topographies of the power
spectral densities (PSDs) of the EEG signals.

The EEG features employed in CNN-based studies (i.e., dif-
ferential entropy and PSD) represent the activity in each brain
region. However, it is generally known that the brain regions
consist of a network, and that brain functions can be interpreted
as interactions between the regions through the network (Has-
san & Wendling, 2018). Therefore, emotion analysis can also
benefit from examining the relationship between different brain
regions, which motivated us to employ brain connectivity from
EEG signals.

2.3. Connectivity-based EEG analysis

While conventional EEG features consider different brain re-
gions individually, brain connectivity examines the relationship
between brain regions by measuring the dependencies of brain
activity such as coactivation and causal relationships. Therefore,
brain connectivity provides information about brain activity from
a different perspective than with conventional EEG features.

Several studies have demonstrated the effectiveness of brain
connectivity for emotion recognition. Costa et al. (2006) revealed
that phase synchronization between EEG signals is influenced by
positive and negative emotions induced by watching videos. Lee
and Hsieh (2014) employed three types of connectivity measures
(correlation, coherence, and phase synchronization) to distin-
guish positive, neutral, and negative emotional states induced
by watching emotional videos. The mutual information of inter-
hemispheric pairs was used for binary classification of emotional
states (high vs. low for valence, arousal, liking, and dominance)
by Clerico et al. (2015). Wyczesany et al. (2018) used the di-
rected transfer function (DTF), which is a measure of the causal
relationship based on Granger causality, to investigate emotional
responses to happy and angry face images. The DTF was also
employed to analyze emotional states (joyful, neutral, and melan-
cholic) by Shahabi and Moghimi (2016).
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Fig. 1. Overview of the proposed classification system.

Existing emotion analyses using the brain connectivity of EEG
signals have been limited to statistical tests (Costa et al., 2006; Lee
& Hsieh, 2014; Wyczesany et al., 2018) or conventional machine
learning methods (Clerico et al., 2015; Lee & Hsieh, 2014; Li et al.,
2019; Shahabi & Moghimi, 2016). To the best of our knowledge,
there have not been any attempts to use brain connectivity with
deep learning, which is probably due to the absence of a proper
way to utilize brain connectivity features within deep learn-
ing models. In this study, we introduce the connectivity matrix,
which is a method to represent the connectivity information for
learning with CNNs, and evaluate its effectiveness.

3. Proposed system

Fig. 1 presents a summary of the proposed classification sys-
tem to utilize brain connectivity with a CNN. After the connec-
tivity measures are calculated from the raw EEG signals, the
connectivity matrix is constructed based on a certain ordering
method. The CNN receives the connectivity matrix as an input
signal and is trained to extract meaningful representations for the
target classification task.

3.1. EEG connectivity matrix

Three different connectivity measures are used in this study:
the Pearson correlation coefficient (PCC), phase locking value
(PLV), and transfer entropy (TE), which have been popularly em-
ployed in neuroscientific studies and reflect various aspects of
brain connectivity.

The PCC measures the linear relationship between two signals
as a continuous number ranging from —1 to 1. PCC values of
—1 and 1 correspond to perfect negative and positive linear
relationships, respectively, and a PCC value of zero indicates that
the two signals are uncorrelated. Let x; = {x}, x,.z, R xiT} denote
an EEG signal of the ith electrode, where T is the time length of
the signal. The PCC of two signals X; and X; is calculated as

D S CA T )

PCC(i, k) = p— ; (1

where 1 and o are the mean and standard deviation of the signal,
respectively.

The PLV (Lachaux et al., 1999) describes the phase synchro-
nization between two signals, which is calculated by averaging
the absolute phase differences as follows:

1 T
PLV(i k)= — | D exp {ilof — 0} (2)
t=1

where ¢! is the phase of the signal at time t. It ranges from 0 to
1, indicating that the two signals are either perfectly independent
or perfectly synchronized, respectively.

The TE (Schreiber, 2000) measures the directed flow of infor-
mation from a signal x; to another signal x;:

T-1 t+1,,t ,t
) 1 p(x. 1xi, xp)
TE(I — k) = ﬁ Zp(Xf, X,t(, X;(‘H)lo W (3)
=1 k k

In other words, it describes the gain obtained by knowing x;
for the prediction of X;. A TE value of zero means that there
is no causal relationship between the two time series. The Java
Information Dynamics Toolkit (Lizier, 2014) is used to calculate
TE features in this study.

The connectivity features are calculated for every pair of EEG
electrodes. Therefore, if there are N, electrodes, the number of
obtained features is N.(N, — 1)/2 for undirected connectivity (PCC
or PLV) or N.(N, — 1) for directed connectivity (TE).

The connectivity features for all electrode pairs can be repre-
sented as a matrix in which the element at (i, k) indicates the
connectivity between the EEG signals obtained from the ith and
kth electrodes, as shown in Fig. 1. This connectivity matrix is
equivalent to the adjacency matrix of a graph in which the EEG
electrodes are considered as nodes and the connectivity features
as edge weights.

One issue arising here is node ambiguity, i.e., how to order
the electrodes in the connectivity matrix. The geometry of the
electrodes is used for the ordering in this section, and data-driven
methods are described in Section 4.

Determining the order based on the locations of the electrodes
on the scalp is to consider that the EEG signals obtained from
neighboring brain regions tend to be similar due to the volume
conductance effect (van den Broek et al., 1998), which enables
the construction of a smooth connectivity matrix. Specifically,
starting from the electrode on the left-frontal region, the one
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(b) dist-restr

Fig. 2. Distance-based ordering methods used to construct connectivity
matrices.

that is the closest to the current electrode is selected as the next
electrode. The result of this ordering for a 32-channel EEG system
is shown in Fig. 2a.

On the other hand, it is generally accepted that the asymmetry
between the left and right hemispheres of the brain is closely re-
lated to emotional valence processes (Coan & Allen, 2004; Reznik
& Allen, 2018). Therefore, we introduce another ordering method
to describe the hemispheric asymmetry. This also starts from the
left-frontal region and proceeds to the closest electrode, but the
candidates for the next electrode are limited to the electrodes
in the same hemisphere. The ordering trajectory can cross the
hemispheric border only when there are no available electrodes
in the same hemisphere. Fig. 2b illustrates the result of this
ordering method. These two ordering methods are denoted as dist
and dist-restr, respectively.

3.2. Database and classification problem

DEAP (Database for Emotion Analysis using Physiological Sig-
nals) by Koelstra et al. (2012), which is one of the largest EEG
databases for emotion analysis, is employed in this study. It con-
tains 32-channel EEG signals from 32 subjects captured while the
subjects were watching 40 emotional music videos. In addition,
subjective scores that quantify the levels of valence, arousal, lik-
ing, and dominance of the emotional states induced by watching
the videos are included in the database. Fig. 3 shows the videos in
the valence-arousal plane. We use the preprocessed EEG signals
provided in the database that had undergone downsampling to
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Fig. 3. Emotional characteristics of the videos in DEAP (Koelstra et al., 2009) in
terms of valence and arousal scores (averaged across the subjects).

Table 2

CNN architecture.
Layer Type Output shape Kernel size Stride
1 Convolution 32 x 32 x 32 3or5 1
2 Convolution 32 x 32 x 64 3or5 1
3 Max-pooling 16 x 16 x 64 2 x 2 2
4 Convolution 16 x 16 x 128 3or5 1
5 Convolution 16 x 16 x 256 3or5 1
6 Max-pooling 8 x 8 x 256 2 X2 2
7 Dense 256 - -
8 Softmax 40 - -

128 Hz, removal of eye movement artifacts using a blind source
separation technique, and band-pass filtering from 4 to 45 Hz.

We apply band-pass filtering to the EEG signals to extract
the delta (0-3 Hz), theta (4-7 Hz), low-alpha (8-9.5 Hz), high-
alpha (10.5-12 Hz), alpha (8-12 Hz), low-beta (13-16 Hz), mid-
beta (17-20 Hz), high-beta (21-29 Hz), beta (13-29 Hz), and
gamma (30-50 Hz) sub-frequency bands. The connectivity ma-
trices obtained for these 10 sub-frequency bands are stacked
along the depth axis, and so the size of the input data becomes
32 x 32 x 10 (number of electrodes x number of electrodes x
number of sub-frequency bands). We divide the EEG signals into
three-second-long segments with an overlap of 2.5 s to obtain a
sufficient number of data samples for training the CNN. Since a
single trial of the database is one minute long, we obtain 115 EEG
signal segments for each trial.

The emotional video classification task as defined by Jang
et al. (2018) is considered for the experiment. The EEG data are
randomly divided into training, validation, and test data, which
hold 80%, 10%, and 10% of the entire data, respectively, as in Jang
et al. (2018). The validation data are used to determine when the
learning process needs to be stopped and to select the best CNN.

3.3. Classifier

Our CNN consists of four convolutional layers with rectified
linear unit (ReLU) activation functions, two max-pooling layers,
and a fully connected layer, as detailed in Table 2. We employ two
different convolution kernel sizes (s = 3 and 5) and evaluate the
influence of the kernel size on the classification performance. The
dropout with a probability of 0.5 is applied to the fully connected
layer and the output layer, and batch normalization is used after
each max-pooling layer.

The Adam algorithm (Kingma & Ba, 2015) is used for training,
and the cross-entropy is employed as the loss function of learn-
ing. The learning rate is initially set to 0.0001 and decreased by
0.8 times at every 10 epochs. The training is stopped when the
validation loss does not decrease for 40 epochs, and the test is
conducted using the network that shows the best validation accu-
racy. The CNN model and classification process are implemented
in PyTorch.
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Table 3
Results of the emotional video classification in terms of accuracy. s indicates the
convolution kernel size of CNNs.

Method Accuracy (%)
k-nearest neighbors (Jang et al., 2018) 48.50
k-nearest neighbors (PCC) 33.48
k-nearest neighbors (PLV) 44,55
k-nearest neighbors (TE) 38.25
Random forest (Jang et al., 2018) 51.34
Random forest (PCC) 49.60
Baseline Random forest (PLV) 42.75
Random forest (TE) 20.26
Neural network (PCC) 16.95
Neural network (PLV) 8.77
Neural network (TE) 10.75
PSD + CNN (s = 3) (Li et al, 2017) 31.01
PSD + CNN (s = 5) (Li et al, 2017) 37.18
Graph CNN (Jang et al, 2018) 65.27
dist (s = 3) 66.96
dist (s = 5) 71.96
pcc dist-restr (s = 3) 67.67
dist-restr (s = 5) 74.53
dist (s = 3) 72.09
Proposed PLV dist (s =5) 80.73
dist-restr (s = 3) 73.12
dist-restr (s = 5) 75.01
dist (s = 3) 58.64
TE dist (s = 5) 65.06
dist-restr (s = 3) 55.42
dist-restr (s = 5) 65.44

3.4. Results

We compare our method with several traditional methods: the
k-nearest neighbors method using entropy features (Jang et al.,
2018) or connectivity features (PCC, PLV, or TE), the random
forest method using signal power features (Jang et al., 2018) or
the connectivity features, and a neural network with two fully
connected hidden layers having 512 and 256 nodes using the
connectivity features. In addition, we compare our method with
a CNN receiving 2D PSD topographies as input (Li et al., 2018),
which does not consider the connectivity, and the graph CNN
approach by Jang et al. (2018) using the graph constructed based
on the distances between the electrodes and the signal entropy
features on the graph, which implicitly considers the underlying
connectivity information in the given graph but assumes a fixed
connectivity structure for all data.

The classification results are reported in Table 3. The obtained
classification accuracies of the proposed method are significantly
higher than random chance (i.e., 2.5%), the accuracies of the
traditional classifiers (k-nearest neighbors, random forest, and
neural network), and the accuracies of the CNN approach without
considering the connectivity (PSD+CNN). One-sample Wilcoxon
signed-rank tests under the null hypothesis that the median of
the accuracies of the proposed method is the same to the accuracy
of a baseline method confirm the significance of the superiority
of the proposed method (p < 0.05 for all comparisons). In partic-
ular, the traditional classifiers using the connectivity features are
not so effective, which shows that the classifiers do not efficiently
exploit the connectivity features. Among them, the neural net-
works show the worst performance. As the connectivity features
are high-dimensional, the number of parameters included in the
neural networks is large compared to the number of training
data, which probably results in overfitting of the neural networks.
Moreover, our method (with PCC or PLV) is superior to the graph
CNN approach that also considers the connectivity information
(but not in a data-specific way), which is confirmed by a one-
sample Wilcoxon signed-rank test (p < 0.01). This demonstrates

that explicitly exploiting the connectivity information specific to
each sample is beneficial.

The classification performance is enhanced by increasing the
kernel size. The performance improvement with s = 5 compared
with s = 3 is consistently observed for all connectivity features,
indicating that aggregating the input signal information over a
relatively wide area through convolution is beneficial. However,
we observed that a larger kernel size (s = 7) did not further
enhance the accuracy, which is probably because of the burden
of the increased number of parameters to be trained and the
over-smoothing effect of the larger kernel size.

Among the connectivity measures, PLV shows the best perfor-
mance for all combinations of the ordering methods and kernel
sizes, which implies the importance of phase information of EEG
signals for emotional analysis. In contrast, the lowest accuracies
are obtained using TE in all cases, one of the possible reasons
being the parameter selection of TE. We considered the first-order
TE without a time delay (i.e., only the signals at t and t + 1
are used in (3)) to make it comparable to the other connectivity
measures. Therefore, although TE attains comparable or better
results compared with the baselines, additional performance im-
provement is expected by giving more freedom to select the
parameters.

There is no significant difference between the classification
performances of the two ordering methods. The dist-restr order-
ing method shows slightly better performances for PCC but not
for PLV and TE. We think that, while the hemispheric asymmetry
is useful for distinguishing the positiveness and negativeness
of emotional states, much more diverse emotional aspects are
involved in emotional video classification.

4. Data-driven ordering of connectivity matrix
4.1. Influence of ordering

In general, the ordering of the connectivity matrix influences
the results of convolution operations because the neighboring
connectivity values are considered at the same time within a
convolutional filter. For example, if the size of the convolution
kernels is 3 x 3, the output of the convolution operation at
(i, k) is calculated by using the element at (i, k) along with its
8-connected elements.

Furthermore, the connectivity matrix must be robust to the
task-irrelevant variation of EEG signals, which can appear even
for the same emotional state depending on the context of stimu-
lation, prior experience, the content of the stimuli, and so on. This
can be achieved if the neighboring elements in the connectivity
matrix have similar functional meanings so that the variation in
brain responses appears at most as local translations of patterns
that can be effectively managed by the CNN.

Therefore, the arrangement of the connectivity matrix needs
to be carefully considered, particularly because there is no inher-
ent axis for determining the ordering. This is a new challenge that
is not present in other fields. For instance, the spatial arrange-
ment of images is determined based on the physical structure
of the objects that the pixels describe, and the arrangement of
the spectrograms of audio signals is defined by the time and
frequency. While we used the physical locations of the EEG elec-
trodes in the arrangement in Section 3.1, the physical distance
between the EEG electrodes is an approximated measure of the
signal similarity. In other words, the distance-based ordering is
somewhat reasonable but not optimal when determining the
adjacency between the electrodes.

Two aspects of EEG signals can be considered for the ordering
of the connectivity matrix: (1) collaboration across multiple re-
gions and (2) interactions between a specific pair of regions. The
former can be considered as a global pattern of brain connectivity
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and the latter as a local pattern. In the following, we propose
data-driven approaches to describe such connectivity patterns.

4.2. Data-driven ordering methods

Inspired by Chen et al. (2011) and Chen and Wang (2019),
we use unidimensional scaling (UDS) to determine the ordering
that conveys either global or local features of the connectivity.
UDS projects given multidimensional data points onto a unidi-
mensional space while preserving the relative distance between
them as much as possible. The distance between data points
is defined by a so-called disparity function depending on the
desired property of the ordering.

In order to obtain the order that enhances global features
(noted as data-global), the electrodes showing high connectivity
are placed close together. For this, the disparity function used in
UDS should be opposite to the connectivity measure. Therefore,
we can define the disparity function for data-global as

S(i, k) =2 (1 — C,‘,k) s (4)

where c; represents the connectivity measure between the ith
and kth electrodes. For example, when the PLV is used as the con-
nectivity measure, the disparity function results in 0 for signals in
which the phases are perfectly synchronized (i.e., the PLV value is
1), and a disparity value of 2 is obtained for perfectly independent
signals. This disparity function is plugged into the objective func-
tion of UDS (known as the normalized stress function (De Leeuw,
1977)), which can be written as

> i (Ui — Ll — 8(i, k)
L) lN ) = . ) (5)

’ 2 icr 81, k2
where |l; — ;| indicates the Euclidean distance between the ith
and kth electrodes in the projected unidimensional space.

The continuous-valued solution (I3, ...,ly,) is obtained by
minimizing the objective function so that the disparity function
value and the distance in the unidimensional space become as
similar as possible on average. We then discard the distance
information and keep only the order from the solution. The EEG
electrodes are arranged in each of the horizontal and vertical
directions of the connectivity matrix according to the new or-
der. This ordering process is implemented by using the regular
multidimensional scaling package in MATLAB.

We can define another disparity function to obtain the order
for local features as follows:

8(i, k) = ¢y (6)

In the case of PLV, this produces disparity values of 0 and 1 for
independent and perfectly synchronized signal pairs, respectively.
Once again, the normalized stress function (5) using this disparity
function is minimized and the order information of the solution
is obtained. In the connectivity matrix arranged through this
ordering, the brain regions having strong positive or negative con-
nectivity are separated as far as possible, and regions having zero
association are arranged as closely as possible. This connectivity
matrix enhances the local patterns of connectivity, and so this
ordering method is denoted as data-local.

stress(ly, ..

4.3. Results

Table 4 reports the classification results of the proposed or-
dering methods for PCC and PLV (TE is excluded here because it
showed significantly worse classification performance than the
others in Section 3). The best classification accuracy of 87.36%
is obtained using data-global in the case of PLV and a kernel
size of 5. The superiority of PLV and the larger kernel size is
consistently observed for the connectivity matrices arranged by

Table 4

Accuracies (%) of the emotional video classification by using the data-driven
ordering methods in comparison with the results of the distance-based ordering
methods.

Ordering PCC PLV
s=3 s=5 s=3 s=5

dist 66.96 71.96 72.09 80.73
dist-restr 67.67 74.53 73.12 75.01
data-global 7151 80.28 75.88 87.36
data-local 69.11 78.97 74.21 84.26

Table 5

x2-values of the McNemar tests for PCC.
s=3 dist dist-restr data-global
dist-restr 2.29 - -
data-global 95.06" 95.67° -
data-local 22.32% 9.22% 28.29*
s=5 dist dist-restr data-global
dist-restr 35.59* - -
data-global 327.66"* 165.82** -
data-local 260.92** 110.79** 10.69"

*p < 0.005.

**p < 0.001.

Table 6

x2-values of the McNemar tests for PLV.
s=3 dist dist-restr data-global
dist-restr 4,62 - -
data-global 62.64" 35.84" -
data-local 17.34* 5.19* 12.01**
s=5 dist dist-restr data-global
dist-restr 133.90** - -
data-global 293.59** 789.31"* -
data-local 69.55"* 346.80"" 61.28*

*p < 0.005.

**p < 0.001.

the data-driven ordering, as in the results of the distance-based
ordering. The connectivity matrices arranged by the data-driven
ordering methods yield significantly better classification perfor-
mance compared to those based on the distance between the
electrodes. The best accuracy is improved by approximately 7%
by adopting the data-driven ordering methods. This demonstrates
that the connectivity matrices arranged based on the data are
more appropriate to extract useful features for the emotional
video classification using CNNs. Between the two data-driven
ordering methods, data-global shows higher classification accura-
cies than data-local in all cases, implying that the global patterns
of connectivity described by data-global are more effective for
emotional video classification.

The differences between the classification accuracies are
statistically evaluated using the McNemar test, which enables
pair-wise comparison of the sensitivity and specificity of the
classification results obtained using different ordering methods.
The results (2-values with 1 degree of freedom) are summarized
in Tables 5 and 6. It can be observed that the classification
performance is significantly different depending on the ordering
method, while the only exception is between dist and dist-restr
for PCC with a kernel size of 3. These results prove that the
improvements using the data-driven ordering methods are sta-
tistically significant. The superiority of data-global over data-local
is also revealed as significant in most cases.
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Fig. 4. Error rates of the emotional video classification depending on the subject.

4.4. Discussion

The classification results are further examined in terms of
the influence of subjects and videos. Fig. 4 shows the classi-
fication error rates depending on the subjects. It is generally
known that brain activity significantly varies among individuals,
which even enables the identification of individuals based on EEG
signals (DelPozo-Banos et al.,, 2015). This individual difference
appears as large variances in error rates across the subjects, while
the difference across the ordering methods is relatively small

when the classification performance is relatively poor (Figs. 4a
(PCC and s = 3) and 4b (PCC and s = 5)). For instance, the stan-
dard deviations of the error rates are 13.07% across the subjects
and 2.75% across the ordering methods in Fig. 4a. However, the
influence of individuality is reduced as the classification perfor-
mance improves, which indicates that the improved classification
accuracies are obtained by learning the representations of the EEG
signals that are robust to the individual difference. For example,
in Fig. 4d (PLV and s = 5), the standard deviation across the
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Fig. 5. Error rates of the emotional video classification depending on the video.

subjects drops to 3.61%, while that across the ordering methods
slightly increases to 4.87%.

We also analyze the error rates depending on the videos, the
results of which are summarized in Fig. 5. It is noticeable that
the classifiers completely fail to recognize some videos despite
well-balanced training and test datasets (each video occupies
2.5 £ 0.017% and 2.5 £ 0.10% of the entire training and test
data, respectively). We observed that some of these cases are due
to the emotional characteristics of the videos, i.e., videos having
similar emotional content are easily misclassified. However, this

explains only some cases, and thus we conduct further analysis,
as reported in the following section.

4.5. Concentration of emotion-related connectivity

It is noteworthy that the videos for which the classification
is unsuccessful are not consistent, even between the data-driven
ordering methods (Fig. 5). This indicates that such failures are
caused by the characteristics of the videos and classification sys-
tems interactively resulting in significantly different classification
accuracies across the videos rather than by defects in the videos.
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Table 7

Error rates (%) of the emotional video classification depending on the valence.

Ordering Valence PCC PLV
s=3 s=5 s=3 s=5
data-global Low 29.18 26.12 17.57 12.25
ata-globa High 27.81 13.48 30.50 13.02
data-local Low 33.36 15.31 29.77 17.56
High 28.47 26.62 21.91 13.96

Therefore, we evaluate the classification performance by con-
currently considering the characteristics of the videos and classi-
fication systems. In other words, we consider that the properties
of classification systems, i.e., the type of connectivity measure,
the kernel size, and the ordering method, affect the recognition
performance of videos with specific emotional characteristics.
Specifically, we hypothesize that it is advantageous for classifi-
cation when the electrode pairs related to the valence of target
videos are placed close together in the connectivity matrix. The
valence is one of the major bases of emotional states, and the
concentration of functionally similar connectivity makes it easier
to capture distinguishing features for classification by convolution
operations.

4.5.1. Valence vs. classification performance

The error rates of the data-driven ordering methods are ex-
amined depending on the valence of the target videos to show
that the valence can explain the varying classification accuracies
with the videos (Table 7). It can be seen that the error rates
significantly differ for the high- and low-valence videos despite
the balanced distribution of valence in the test dataset (49.4%
and 50.6% for high- and low-valence videos, respectively). Better
classification performance is observed for the high-valence videos
with the PCC connectivity matrices in most cases except when
using the data-local method with a kernel size of 5. The results
obtained using PLV exhibit a different tendency from those using
PCC: data-global produces lower error rates for the low-valence
videos whereas data-local shows better classification performance
for the high-valence videos.

4.5.2. Concentrativeness

Previous studies have analyzed which electrode pairs form
connectivity related to valence. Lee and Hsieh (2014) identified
valence-related PCC and phase synchronization index (PSI); the
latter is a measure of phase synchronization and thus can be
equated to PLV. Meanwhile, valence-related PLV was revealed
by Martini et al. (2012). Low- and high-valence-related connec-
tivity incidences based on these studies are summarized in Ta-
ble 8, in which the connectivity incidences that showed a signifi-
cant difference for either negative-neutral or positive-neutral va-
lence are considered as low- or high-valence-related connectivity,
respectively.

We propose a measure to quantify the degree of concentration
of valence-related connectivity in a connectivity matrix, called
concentrativeness. It is defined as the ratio of the number of
connectivity incidences of interest (low- or high-valence-related
connectivity) to the number of entire connectivity incidences
included in the receptive field (a patch of the connectivity matrix
captured by the sliding window of a convolutional filter), i.e.,

N

1
C:N—Mzr"' (7)

n=1

Here, r, indicates the ratio of the connectivity incidences of inter-
est in the nth sliding window of a convolutional filter (e.g., when
four elements in the nth sliding window of a 3 x 3 convolutional
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Fig. 6. Valence-related concentrativenesses of the data-global and data-local
ordering methods.

filter are among the low-valence-related connectivity incidences
listed in Table 8, the value of r,, for low-valence becomes %), N
is the total number of sliding windows (e.g., N = 32 x 32 = 1024
for the first convolutional layer of the CNN architecture used in
our experiment), and M indicates the number of sliding windows
that do not include a connectivity incidence of interest. In other
words, the sliding windows with a corresponding r, value of
zero are excluded from the calculation of the average ratio of
the connectivity incidences of interest. Therefore, ﬁ acts as a
normalization factor to remove the influence of different numbers
of low- and high-valence-related connectivity incidences.

Fig. 6 shows the concentrativenesses of the low- and high-
valence-related connectivity incidences at the first convolutional
layer. The concentrativeness is negatively correlated with the er-
ror rate presented in Table 7, which indicates that our assumption
is verified. The Spearman’s rank-order correlation coefficient be-
tween the error rates and concentrativenesses is —0.667, mean-
ing that the classification performance is enhanced by utilizing
connectivity matrices where the connectivity incidences related
to the valences of the target videos are more concentrated and
thus the activation values via convolution operations become
more distinct. And, this effect results in the varying classification
accuracies depending on the video in Fig. 5.

5. Conclusions

A new approach to utilizing brain connectivity via EEG signals
using CNNs was proposed. We demonstrated the significance of
the proposed method for the emotional video classification task
and compared three connectivity measures that reflect different
aspects of brain connectivity. Moreover, the data-driven meth-
ods, introduced for the optimal arrangement of the connectiv-
ity matrix, significantly improved the classification performance
compared with the connectivity matrix arrangement based on the
locations of the EEG electrodes. We conducted further analysis to
explain the classification results and clarified the influence of the
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Table 8

Electrode pairs corresponding to low- and high-valence-related connectivity (Lee & Hsieh, 2014; Martini et al.,, 2012).

Low-valence

High-valence

PCC Fp2-F7, F7-01, Fz-T8, T8-P3, P8-02, 01-02

PLV Fp1-Fp2, Fp1-FC1, Fp1-FC2, Fp1-F4, Fp1-Fz, Fp1-Cz,
Fp1-P8, Fp2-Fz, Fp2-P3, F3-Fz, F4-T8, F8-Fz, F8-P7,

Fz-P4, T7-P4, T7-P7, T7-Pz, T8-P7, T8-Pz, C3-P3,
C3-P4, P7-02

Fp1-F8, Fp1-P7, Fp2-C3, F3-F4, F3-P7, F4-C3,
F7-F8, F7-P8, Fz-T8, C3-T8, T7-T8

Fp2-T7, Fp2-Pz, F3-Fz, Fz-C4, Fz-P4, C3-C4, C4-P3,
Cz-Pz, T7-Pz, P7-P8, P7-02

arrangement of the connectivity matrix on the classification per-
formance. The performance significantly differed depending on
the target class (i.e., video), which was explained by the valence of
emotion induced by the videos. We found that the classification
performance for low- or high-valence videos is correlated with
the concentrativeness of the related connectivity incidences in
the connectivity matrix. That is to say, the distinguishing features
for emotional video classification are caught effectively when the
related connectivity incidences are closely located.

Although we dealt with the emotional video classification task
in this work, we believe that the proposed approach could also
be successfully applied to other emotional state classification and
prediction tasks. Our results in Section 3.4 and our preliminary
results in Moon et al. (2018) confirm the effectiveness of CNNs
using connectivity features for emotional video classification and
video-induced valence classification, respectively. Furthermore,
our analysis in Section 4.5 demonstrates that the data-driven
ordering methods on top of CNNs with connectivity features are
successful largely due to the effective processing of connectivity
patterns related to emotion (i.e., valence).

In the future, the effectiveness of the connectivity matrix and
data-driven ordering methods will be validated for different tasks.
It will be also interesting to apply our method to other brain
imaging modalities such as fMRI, MEG, and fNIRS.
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