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SUMMARY

Estimation of mean and covariance functions is fundamental for functional data analysis.
While this topic has been studied extensively in the literature, a key assumption is that there are
enough data in the domain of interest to estimate both the mean and covariance functions. We
investigate mean and covariance estimation for functional snippets in which observations from
a subject are available only in an interval of length strictly, and often much, shorter than the
length of the whole interval of interest. For such a sampling plan, no data is available for direct
estimation of the off-diagonal region of the covariance function. We tackle this challenge via a
basis representation of the covariance function. The proposed estimator enjoys a convergence
rate that is adaptive to the smoothness of the underlying covariance function, and has superior
finite-sample performance in simulation studies.

Some key words: Covariance estimation; Fourier series; Functional fragment; Legendre polynomial; Longitudinal data;
Penalized estimation; Sequential compactness.

1. INTRODUCTION

Nowadays functional data are commonly encountered in practice, due to the advances in
modern science and technology that enhance data collection and processing capabilities. Both
unsupervised learning, such as dimension reduction via functional principal component analysis
(Rao, 1958; Hall & Hosseini-Nasab, 2009; Mas & Ruymgaart, 2015), and supervised learn-
ing, such as functional regression (Miiller & Stadtmiiller, 2005; Ferraty & Vieu, 2006; Hall &
Horowitz, 2007; Miiller & Yao, 2008; Kong et al., 2016), are well studied in the literature. For
a comprehensive treatment of these subjects, we recommend the monographs by Ramsay &
Silverman (2005), Ferraty & Vieu (2006), Horvath & Kokoszka (2012), Hsing & Eubank (2015)
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and Kokoszka & Reimherr (2017), and the review papers Wang et al. (2016) and Aneiros et al.
(2019).

Critical to the statistical analysis of such data is the estimation of the mean and covariance
functions, since they are the foundation of the aforementioned unsupervised and supervised learn-
ing tasks. For example, covariance estimation is a critical step to functional principal component
analysis, as illustrated in § 5. In reality, functions can only be recorded at a set of discrete points on
the domain of the functions, where this set may vary among subjects and the measurements may
contain noise. Estimation of mean and covariance functions in this context has been extensively
studied by Rice & Silverman (1991), Cardot (2000), James et al. (2000), Yao et al. (2005b), Cai
& Yuan (2010, 2011), Li & Hsing (2010) and Zhang & Wang (2016), among many others. In
addition to the discrete nature of observed functional data, subjects often stay in the study only
for a subject-specific period that is much shorter than the span of the whole study. This brings
challenges to covariance estimation.

For illustration, and without loss of generality, we assume that the domain of the functional
data X (¢) is the unit interval 7 = [0, 1] and each subject only stays in the study for a period
of length § < 1. Data with these characteristics are termed functional snippets in this article, in
analogy to the longitudinal snippets analysed in Dawson & Miiller (2018). For such data, there is
no information in the off-diagonal region 7 := {(s,¢) € [0, 112 : |s — t| > 8} of the covariance
function cov{X (s), X (¢)}, and therefore there is no local information available for estimating the
covariance function in this region. Mathematically, this amounts to

pr{(U[4:, B NTE =0} = 1, (1)

for some § > 0 and for all n, where [A4;, B;] denotes the subinterval on which X; is observed. In
§ 5 we illustrate such a situation for the bone mineral density data, where the band with available
data is prominent and narrow. Estimating the covariance function for this type of data is therefore
an extrapolation problem. Methods based on interpolation, such as local smoothing methods (Yao
et al., 2005a; Li & Hsing, 2010), fail to yield a consistent estimate of the covariance function in
the off-diagonal region.

Functional snippets were previously studied by Delaigle & Hall (2013, 2016), Descary &
Panaretos (2018, 2019) and Zhang & Chen (2020a,b) under the term fragments or fragmentary
functional data. For instance, Delaigle & Hall (2016) proposed approximating snippets by seg-
ments of Markov chains. This method is only valid at the discrete level, as explained in Descary
& Panaretos (2019). To analyse functional snippets, Descary & Panaretos (2019) and Zhang &
Chen (2020b) used matrix completion techniques that innately work on a common grid. These
approaches require modification when snippets are recorded on random and irregular points,
which are often encountered in applications. Yet, published theoretical analyses focus on the
regular and dense design.

Fragments and other terms, such as censored functional data, incomplete functional data and
partially observed functional data, have also been used to refer to fragments that are not functional
snippets (Liebl, 2013; Gellar et al., 2014; Goldberg et al., 2014; Kraus, 2015; Gromenko et al.,
2017; Mojirsheibani & Shaw, 2018; Stefanucci et al., 2018; Kraus & Stefanucci, 2019; Liebl
& Rameseder, 2019; Kneip & Liebl, 2020). For example, Kneip & Liebl (2020) assumed that
pr([4;, Bi]? =[0,1]%) > 0, and consequently information and design points for the off-diagonal
region 7 are still available. In these works, the problem of recovering the covariance function is
often formulated as an interpolation problem. In contrast, information for that region is completely
missing for functional snippets characterized by (1), which significantly elevates the difficulty of
statistical analysis. Because of this fundamental difference between these two types of data, we
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adopt the term functional snippets to distinguish them from the fragments that are not snippets
and other partially observed functional data.

As an extrapolation problem, estimating the covariance function for functional snippets
requires additional identifiability assumptions, for which the minimal one is the trivial con-
dition that the covariance function in the observable band 75 determines the covariance function
on the entire domain. This minimal identifiability is a high-level concept (Delaigle et al., 2020),
and consequently existing works attempt to find some specialized conditions that imply the above
minimal identifiability assumption. For instance, Descary & Panaretos (2019) assumed that the
covariance function is an analytic function, and Delaigle et al. (2020) proposed the linear pre-
dictability assumption, which assumes that the values of the process X (#) on a subinterval can
be linearly predicted by the values of the same process on another subinterval.

In contrast to the aforementioned approaches, which impose a particular assumption on the
process X (¢) itself or on its covariance function, we define identifiability through a family C in
which the covariance function resides, and term such a family 7s-identifiable in the case that, if
any two members from the family C are identical on the diagonal region 7s, then they are equal
everywhere. This 7s-identifiability is the same as the above minimal identifiability except that we
make the reference to a family explicit. The family C is comparable to the traditional parameter
space or model, so our definition of identifiability is in line with the conventional statistical concept
of identifiability that is imposed on the model. This concept of identifiability is rather general and
encompasses the aforementioned identifiability assumptions as special cases. For example, the
class of analytic functions considered in Descary & Panaretos (2019) and the class of covariance
functions associated with linearly predictable random processes are 7s-identifiable families; see
Examples 1 and 4 for details. The primary reason that we adopt this minimal identifiability is that
our method and theory to be developed in § 2 and § 3 apply to all Zs-identifiable families under
some regularity conditions.

Under the umbrella of 7s-identifiability, we propose to approach functional snippets from
the perspective of basis expansion. The main idea is to represent the covariance function by
basis functions composed from tensor products of analytic orthonormal functions defined on
7. Basis functions, in particular spline basis functions, have been extensively explored in both
nonparametric smoothing and functional data analysis by Wahba (1990), Rice & Wu (2001),
Wood (2003), Ramsay & Silverman (2005) and Crambes et al. (2009), among many others.
However, they are not suited for the extrapolation problem of functional snippets, as these bases
are local. Unlike spline bases that are controlled by knots, analytic bases are global, in the
sense that they are independent of local information such as knots or design points and are
completely determined by their values on a countably infinite subset of the interval 7. This
feature of analytic bases allows information to pass from the diagonal region to the off-diagonal
region along the basis functions. Consequently, the missing pieces of the covariance function can
then be inferred from the data available in the diagonal region when the covariance function is
from a 7s-identifiable class. In contrast, this is generally impossible for B-spline or other local
bases.

In addition to the minimal identifiability assumption, the consistency of the proposed estimator
requires extra regularity conditions to overcome the challenges of extrapolation. One regularity
condition that we identified is the bounded sequential compactness of the family C of covariance
functions under consideration. This new concept, developed in § 3.3, essentially controls the
complexity of the family C and enables us to establish the consistency and convergence rate of the
proposed estimator in a nonparametric extrapolation setting. This condition is mild; for example,
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all families of functions that are uniformly bounded and Lipschitz continuous with a common
Lipschitz constant are boundedly sequentially compact, as shown in § 3.3. Such a regularity
condition, not seen in the literature, is not required for interpolation and thus intrinsically separates
nonparametric extrapolation from interpolation.

When our work was completed, we became aware of a related piece of work that was inde-
pendently developed by Delaigle et al. (2020). Although that work also uses a basis expansion
approach, it is substantially different from ours. First, it focuses more on development of iden-
tifiability conditions while ours is on methodological development and theoretical analysis of
the proposed estimators. Second, the method of Delaigle et al. (2020) extrapolates a pilot esti-
mate from the diagonal region to the entire region by basis expansion without regularization.
This may lead to excessive variability of the estimator in the off-diagonal region. In contrast,
our method estimates the basis coefficients directly from data with penalized least squares and
does not require a pilot estimate. Third, the convergence rate established in that work hinges on,
and thus is limited by, the convergence rate of the pilot estimate, while our analysis gives an
explicit rate that is adaptive to the smoothness of the underlying covariance function. Finally, the
work of Delaigle et al. (2020) heuristically includes the identity function into the Fourier basis to
handle nonperiodicity, while ours adopts the Fourier extension technique that is well established
in numerical analysis.

2. METHODOLOGY
2.1. Mean function

Let {X(¢) : t € T} be a second-order stochastic process on a compact interval 7 C R, which
without loss of generality is taken to be [0, 1]. The mean and covariance functions of X are
defined as o (t) = E{X (t)} and yo(s, 1) = cov{X (s), X (¢)}, respectively. The observed functions
X1,...,X, are statistically modelled as independent and identically distributed realizations of X .
In practice, each realization JX; is only recorded at m; subject-specific time-points Ty, ..., Tjp,
with measurement errors. More precisely, for functional snippets the observed data are pairs
(Ty, Yi), where

Yy =Xi(Ty) +ey  G=1,...mj=1,...,m).

Here, &;; is the random noise with mean zero and unknown variance o2, and there is a constant
8 € (0, 1) for which |Tj; — Ty | < é for all 7, j and k. The focus of this paper is to estimate the
mean and covariance functions of X using these data pairs (7}, Y;;).

Although functional snippets pose a challenge for covariance estimation, they usually do
not obstruct mean estimation, since data for the estimation are likely available across the whole
domain of interest. In light of this observation, traditional methods such as local linear smoothing
(Yao et al., 2005b; Li & Hsing, 2010) can be employed. Below we adopt a different approach
based on analytic basis expansions. The advantage of this approach is its computational efficiency
and adaptivity to the regularity of the underlying mean function wg; see also § 3.2.

Let ® = {¢1,...} be a complete orthonormal basis of L%(0, 1) that consists of squared inte-
grable functions defined on the interval [0, 1]. When g € L2(0, 1), it can be represented by the
series po(f) = Y pey akdk(¢) in terms of the basis ®, where a; = fol wo () (¢) dz. In practice,
one often approximates such a series by its first ¢ > 0 leading terms, where ¢ is a tuning parameter
controlling the approximation quality. The coefficients ay, . .., a, are then estimated from data
by penalized least squares. Specifically, with the notation ®,(¢) = {¢1(?),...,¢,()}" € R? and
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Ao = (a1,...,a,)", the estimator of 4 is given by
n m;
A=argmin| Y v Y0y — A0 (T + pHA'®) | @)

=1 j=1

and p is estimated by () = IZITCDq(t), where the weights v; > 0 satisfy Z?:l vim; = 1, H(")
represents the roughness penalty, and p is a tuning parameter that provides a trade-off between
the fidelity to the data and the smoothness of the estimate. There are two commonly used schemes
for the weights, equal weight per observation and equal weight per subject, for which the weights
v; are 1/ (Z?:l m;) and 1/(nm;), respectively. These, and also alternative weight schemes, are
discussed in Zhang & Wang (2016, 2018).

The penalty term in (2) is introduced to prevent excessive variability of the estimator when a
large number of basis functions are required to adequately approximate wg, and when the sample
size is not sufficiently large. In the asymptotic analysis of & in § 3, we will see that this penalty
term does not affect the convergence rate of i when the tuning parameter p is not too large. In
our study, the roughness penalty is H(g) = fol {g@ (1))? dt, where g@ is the second derivative
of g. The choices of ¢ and p are discussed in § 4.1.

2.2. Covariance function

Since functional snippets do not provide any direct information for the off-diagonal region,
the only way to recover the covariance in the off-diagonal region is to infer it from the diagonal
region. The following definition formulates this basic requirement for identifiability.

DEFINITION 1. A family C of covariance functions is called a Ts-identifiable family if y1, v € C
and y1(s,t) = (s, 1) for all (s,t) € Ty imply that yi(s,t) = y»(s, t) for all (s,t) € T?.

Intuitively, we consider a family C of covariance functions and require the covariance functions
to be uniquely identified within the family C by their values on the diagonal region. Below we
provide four examples to illustrate the ubiquitousness of 7s-identifiable families.

Example 1 (Analytic functions). A function is analytic if it can be locally represented by a
convergent power series. By Corollary 1.2.7 of Krantz & Parks (2002), if two analytic functions
agree on 75 then they are identical on [0, 1]2. Thus, the family of analytic functions is a 7s-
identifiable family, as observed by Descary & Panaretos (2019), who also provided an elegant
example to demonstrate that the space of infinitely differentiable functions is not 7s-identifiable.

Example 2 (Sobolev sandwich families). Forany 0 < € < §, consider the family of continuous
functions that belong to a two-dimensional Sobolev space on 7 and are analytic elsewhere. Such
functions have an r-times differentiable diagonal component sandwiched between two analytic
off-diagonal pieces. The family is Zs-identifiable, because the values of such functions on the off-
diagonal region are fully determined by the values on the uncountable set 7°N7s C 75 according
to Corollary 1.2.7 of Krantz & Parks (2002). This family contains functions with derivatives only
up to a finite order.

Example 3 (Semiparametric families). Consider the family of functions of the form
g(s$)h(s,1)g(t), where g is a function from a nonparametric class G and # is from a paramet-
ric class H of correlation functions. This family, considered in Lin & Wang (2020), is generally
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Ts-identifiable, as long as both G and ‘H are identifiable, for instance when G is a Sobolev space
and H is the class of Matérn correlation functions. No analyticity is assumed for this family.

Example 4 (Linearly predictable families). For a random process X defined on 7, we say
that the snippet {X (¢)};c/+ on the subinterval /* C 7 is linearly (B, ¢)-predictable (Delaigle
et al., 2020) from another subinterval / C 7 if, for all ¢ € I'*, there exists an integrable function
L;(s) defined on 7 such that sup,c;« supse; |L:(s)| < 00, sup,¢+ f[ |L:(s)|ds < B and X(¢) =
w()+ f 1 Le({X (s) —u(s)} ds+Z(t), where, forall ¢ € I*, Z(¢) is a zero-mean random variable
such that E{Z?(¢)} < €. Fix aninteger 4 > 0 and a partition /y, . . ., [, of 7 such that[; x I; C 7Is.
Consider only the class 2" of random processes X whose snippet {X (1) };¢j; is linearly (B}, €;)-
predictable from /;+ for some 0 < j* < j—1landalle; > 0,and forallj = 1,...,h Let £
be the collection of covariance functions of random processes in 2. By Delaigle et al. (2020),
each member in L is identifiable within £ from its values on the diagonal region 75, and thus £
is 7s-identifiable.

With the 7s-identifiability of the family C, it is now possible to infer the off-diagonal region by
the information contained in the raw covariance Iy = {Yj; — (1(T;;) }{Yix — 1 (Ti)} available only
in the diagonal region. To this end, we propose to transport information from the diagonal region
to the off-diagonal region through the basis functions ¢ ® ¢; with (¢r ® ¢1)(s,1) = P (s)Pi(t)
for s,t € T, by approximating yy with

vos.n =Y ah®e0, (0 el0 1P, (3)

1<k I<p

where ¢y = [ yo(s, ) (s)¢i(¢) dsdt, Cp is the matrix of coefficients ¢y and p > 1 is an
integer. There are countless bases that can serve in (3); however, if we choose an analytic basis
®, then their values in the diagonal region completely determine their values in the off-diagonal
region. When such a representation of the covariance function yy is adopted and the unknown
coefficients cj; are estimated from data, the information contained in the estimated coefficients
extends from the diagonal region to the off-diagonal region through the analyticity of the basis.

To estimate the coefficients ¢y from data, we adopt the idea of penalized least squares, where
the squared loss of a given function y is measured by the sum of weighted squared errors
Yo wi Zlg#kgmi{r,ﬂ — y(Tyj, Ti)}*, where w; > 0 are weights satisfying Y 7, m;(m; —
Dw; = 1, while the roughness penalty is given by J(y) = [ {(aZy/asZ)z/z + (82y/8s8t)2 +

(9%y /312)2 /2} ds dt. The estimator 7 (s, ) of yo(s, ) is then taken as 7 (s,) = ®1(s)CD, (1),
with

A

C=argmin Y wi > {Ty — ye(Ty, Ty + A (vo), )
CyeeC o1 1giFi<m;

where yc is defined in (3) with Cy replaced by C, and X is a tuning parameter that provides a
trade-off between the fidelity to the data and the smoothness of the estimate. A numerical method
to solve the constraint optimization (4) is detailed in the Supplementary Material.

Similar to (2), the penalty term in (4) is introduced to overcome excessive variability of an
estimator when a large number of basis functions are required while the sample size is relatively
small. It does not affect the convergence rate of y when the tuning parameter 2 is not too large.
The choices of p and X are discussed in § 4.1. For the weights w;, Zhang & Wang (2016) discussed
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several weighting schemes, including w; = 1/{}"7_, m;(m; — 1)} and w; = 1/{nm;(m; — 1)}.
An optimal weighting scheme was proposed in Zhang & Wang (2018); we refer to this paper for
further details.

3. THEORY
3.1. Analytic basis

While all complete orthonormal bases can be used for the proposed estimator in (2), an analytic
basis is preferred for the estimator in (4). For a clean presentation, we exclusively consider analytic
bases ® = {¢1, ...} that work for both (2) and (4). In this paper, a basis is called an analytic
(o, B)-basis if its basis functions are all analytic and satisfy the following property: for some
constants o, 8 > 0, there exists a constant ¢ such that ||¢r]lcc < ck® and ||¢,Er)|| 2 < ckPr
forr = 1,2 and all £ = 1,.... Here, ||¢x|lco denotes the supremum norm of ¢y, defined as
Supeqo.17 |k ()|, and ¢,Er) represents the rth derivative of ¢y.

Different bases lead to different convergence rates of the approximation to wg and yg. For the
mean function 19, when using the first ¢ basis functions ¢, . . ., ¢4, the approximation error is

quantified by £(uo, ©,q) = ”,uo - ZZ:I aiPr ”LZ’ where we recall that a; = fol o () (t) dt.
The convergence rate of the error (o, @, q), denoted by 7, = 7,(n0, ), signifies the approx-
imation power of the basis ® for wg. Similarly, the approximation error for j is measured
by E(yo, P,p) = || Yo — Zi:l Zle Cudr ¢ ||L2, where the L? norm of a function y (s, f) is

defined by ||y ll;2 = {fo1 fol v2(s, 1) dsdr}!/2. The convergence rate of £(yy, @, p) is denoted by
Kkp = Kkp(y0, P). Below we discuss two examples of analytic («, 8)-bases.

Example 5 (Fourier basis). Fourier basis functions, defined by ¢ (¢) = 1, ¢ (t) = cos(2kmt)
and ¢oy41(¢f) = sin(krt) for k > 1, constitute a complete orthonormal basis of L*(T) for
T = [0, 1]. Itis also an analytic (0, 1)-basis. When p¢ is periodic on 7" and belongs to the Sobolev
space S (7T ), see Appendix A.11.a and A.11.d of Canuto et al. (2006) for the definition, then,
according to equation (5.8.4) of Canuto et al. (2006) one has 7, = O(g™"). Similarly, if yg is
periodic and belongs to " (72), then kp=0@™").

Example 6 (Legendre polynomials). The canonical Legendre polynomial Py (¢) of degree k&
is defined on [—1,1] by Py (1) = 2% (1) /k!, with g (1) = (* — 1)¥ and g\’ denoting the
kth derivative of the function g;. These polynomials are orthogonal in L?(—1,1) and can be
turned into an orthonormal basis of L?(7'). One can show that the Legendre basis is an analytic
(1/2,1)-basis. According to equation (5.8.11) of Canuto et al. (2006), one has 7, = O(¢™") and
kp = O(p™") when pg belongs to 7 (7) and yq belongs to 77" (T 2), respectively.

3.2. Mean function

As functional snippets are often sparsely recorded, in the sense that m; < my < oo for all
i=1,...,nand some my > 0, in this article we focus on theoretical analysis tailored to this
scenario. For simplicity, we assume an identical number of observations and identical weight
for each trajectory, i.e., m; = --- =m, = m,v) = --- = v, and w; = --- = wy,. The results
for a general number m; of observations and general weight schemes can be derived in a similar
fashion.

For functional snippets we shall assume that the observations from a subject scatter randomly
in a subject-specific time interval whose length is § and whose middle point is called the reference
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time in this paper. We further assume that the reference time R; of the ith subject is independently

and identically distributed in the interval [§ /2, 1 —6/2], and the observed time-points T;1, . . . , Tim;,

conditional on R;, are independently and identically distributed in the interval [R; —&/2, R; +8/2].
To study the estimator [i, we make the following assumptions.

Assumption 1. There exist 0 < ¢; < ¢p < 0o such that the density fz(s) of the reference time
R satisfies ¢; < fr(s) < ¢p forany s € [6/2,1 — §/2]. There exist 0 < ¢3 < ¢4 < 00 such that
the conditional density f7r(¢ | s) of the observed time 7 satisfies ¢3 < f7r(f | 5) < ¢4 for any
given reference time s € [§/2,1 — /2] and ¢ € [s — §/2,5 + §/2].

Assumption 2. We have that E{||.X IIiz} < ¢5 < oo for some constant ¢s > 0.
Assumption 3. We have that ¢>**2/n — 0 and p/(n~'/2¢g*=4F~1/2) - 0.

Assumption 1 requires the density of the reference time and conditional densities of the
time-points to be bounded away from zero and infinity. This also guarantees that the marginal
probability density of the time-points 7}; is bounded away from zero and infinity. Assumption 2
is mild and Assumption 3 facilitates the convergence rate, where the dimension ¢ can grow with
n. In the following, we use a,, < b, to denote 0 < limy,—, @, /b, < 0.

THEOREM 1. If ® is a («, B)-basis, Assumptions 1-3 imply that

5 q2a+l 5
IIM—Molle=OP< " +rq>, O]

where 1, is the convergence rate of £ (o, ®, q) defined in §3.1.

Under Assumption 3, the tuning parameter o does not have direct impact on the asymptotic rate
of /1. We also observe that in (5), the term ¢>*T!n~! specifies the estimation error using a finite
sample, while 7, is the deterministic approximation error for using only the first g < oo basis
functions. The latter term depends on the smoothness of j¢. Intuitively, it is easier to approximate
smooth functions with basis functions. For a given number of basis functions, smoother functions
generally yield smaller approximation errors. As discussed in Examples 5 and 6, when 1o belongs
to the Sobolev space .77 (0, 1), i.e., 1o is r times differentiable, we have 7, = O(¢™"). This leads
to the following convergence rate.

COROLLARY 1. Suppose that ,u(()r) exists and satisfies ||,u(()r) ;2 < oo for some r > 1. Assume
that Assumptions 1-3 hold.

(1) If @ is the Fourier basis and g is periodic, then |1 — ,uuo||i2 = Op(n=2"/ @+ with the

choice g < n'/@+D),
(ii) If ® is the Legendre basis, then ||ﬂ—u0||%2 = Op(n~"/U+ VY with the choice g < n'/>r+2).

For » = 2 and a periodic function s, the convergence rate for /i is n=2/ and n~!/3, respec-
tively, for an estimator based on Fourier and Legendre bases. We can see that the convergence
rate is faster for a Fourier basis. This is because, although they are both («, 8)-bases, « = 1/2 for
the Legendre basis is larger than o = 0 for the Fourier basis. According to (5), a larger value of
leads to a slower rate. Indeed, « controls the growth rate of the extrema of basis functions. Fourier
basis functions are uniformly bounded between —1 and 1. In contrast, high-order Legendre basis
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functions tend to have large extrema that amplify variability. This limits the number of basis func-
tions for estimation and thus causes a slower convergence rate for the Legendre basis. When g is
nonperiodic, the classic Fourier basis suffers from the so-called Gibbs phenomenon which, how-
ever, can be substantially alleviated by the Fourier extension technique; see the Supplementary
Material for more details.

3.3. Covariance function

In § 2 we assumed Yy to reside in a 75-identifiable family C in order to meet a basic criterion
of identifiability. To study the asymptotic properties of the covariance estimator, we require the
family C to satisfy an additional regularity condition as described below. Let F be the space of real-
valued functions defined on 72 endowed with the product topology. In this topology, a sequence
of functions {f;} converges to a limit / if and only if limy_, oo f3 (s, £) = f'(s, ) for all (s, 1) € T2.

DEFINITION 2. A subset S of F is called a boundedly sequentially compact family if every
sequence {fy} C S that is bounded in the L* norm, i.e., sup; ||fill,2 < oo, has a subsequence
converging to a limit in S in the product topology.

The concept of bounded sequential compactness is closely related to the topological concept of
sequential compactness. Specifically, a subset S C F is sequentially compact if every sequence
in S has a subsequence that converges to a limit in S in the topology of F. Sequential compactness
is stronger than bounded sequential compactness and thus implies the latter. However, when the
subset S is uniformly bounded in the L? norm, i.e., supses [If 2 < oo, then the two concepts
coincide. If all functions in S are bounded by a common constant and are Lipschitz continuous
with a common Lipschitz constant, then S is a boundedly sequentially compact family. Such a
family is locally equicontinuous, and also the set {f'(s,?) : f € S} is bounded for all 5,7 € 7.
Then the claim follows from the Arzela—Ascoli theorem (Chapter 7, Remmert, 1997). Also, the
product of two boundedly sequentially compact families of which the functions are uniformly
bounded in the L? norm is also a boundedly sequentially compact family. This property is useful
for constructing new boundedly sequentially compact families from existing ones; see Example 8
for an illustration. The following proposition, of which the proof is trivial or already discussed in
the above and thus is omitted, summarizes the aforementioned properties of bounded sequential
compactness and its connections to sequential compactness.

PROPOSITION 1. Let F be the collection of real-valued functions defined on T?* and endowed
with the product topology. Let S be a subset of F.

(1) If'S is sequentially compact, then it is boundedly sequentially compact.

(ii) If S is a boundedly sequentially compact family and supscs |fll;2 < oo, then S is
sequentially compact.

(ii1) Ifsupres Ilf lloo < 00 andsupreg sup,, |[f )=/ I/ llx—yll2 < oo, then S is a boundedly
sequentially compact family.

(iv) Ifboth S and Q C F are sequentially compact, then the family SQ = {fg : f € S,g € 9}
is sequentially compact. Consequently, if S and Q are boundedly sequentially compact and
satisfy supresug If 2 < 00, then SQ is also boundedly sequentially compact.

The following examples utilize Proposition 1 to exhibit boundedly sequentially compact
families and illustrate their abundance.
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Example 7 (Bounded Sobolev sandwich families). Let M1, M> > 0 be fixed, but potentially
arbitrarily large constants. Let S(M1, M>) be the subfamily of the 7s-identifiable family intro-
duced in Example 2 such that, if f € S(M1, M3), then ||f || oo < M and the Lipschitz constant of /
is bounded by M, where the Lipschitz constant of / is defined as sup,, [/ (x) —f ()|/llx — yll2.
By Proposition 1(iii), S(M1, M>) is a boundedly sequentially compact family.

Example 8 (Boundedly sequentially compact semiparametric families). Let H be a family of
covariance functions indexed by a parameter § in a compact space ® C R? forsomed > 0. Ifeach
fo € 'H is Lipschitz continuous and has a Lipschitz constant continuous in 8, i.e., |[fo (s) —fo ()| <
Lollx — |2 for x,y € R? and £y is continuous in 6 on O, then H is a boundedly sequentially
compact family. The continuity of £y and compactness of 7 and ® imply that ||f||cc < M and
sup,+,, [f () = fI/llx — yll2 < M; for some constants My, M> > 0. Then the claim follows
from Proposition 1(iii). Similar reasoning shows that the family G = {g ® g : |Igllcc < M3
and ||g’|lcc < My} is a boundedly sequentially compact family of which functions are uniformly
bounded in the L2 norm, where (g®g)(s,t) = g(s)g(t) and M3, M4 > 0 are constants. According
to Proposition 1(iv), the semiparametric family {gh : g € G,h € H} is boundedly sequentially
compact.

The construction in the above example can be used to derive boundedly sequentially compact
subfamilies of the 7s-identifiable families introduced in Examples 1 and 4. In the following
we shall assume that the family C under consideration is boundedly sequentially compact. The
above examples suggest that this regularity condition, essentially controlling the complexity of the
family, holds for any family of functions that are collectively bounded and Lipschitz continuous,
and thus is mild. Formally, we shall assume the following conditions.

Assumption 4. The covariance function yy belongs to a 7s-identifiable boundedly sequentially
compact family C.

Assumption 5. The random function X satisfies £{||X ||22} < 00.

Assumption 6. We have that p8t4/n — 0 and A/ (n=1/?2p?*=*F=3/2) 5 0asn — oo.

Since a 7s-identifiable boundedly sequentially compact family such as S (M7, M>) in Example 7
may contain covariance functions of infinite rank, the theory developed below applies to func-
tional snippets of infinite dimension. To avoid entanglement with the error from mean function
estimation, we shall assume that 11 is known in the following discussion, noting that the case that
o is unknown can also be covered, but requires a much more involved presentation and tedious
technical details, and thus is not pursued here. The following result establishes the convergence
rate of the proposed estimator for any class of analytic (¢, 8)-bases.

THEOREM 2. If @ is an analytic (o, B)-basis, under Assumptions 1, 4—6 and m > 2, we have

) p4a+2 )
17 — vl =0p( ; +xp>, (6)

where K, is the convergence rate of £(yo, ®, p) defined in §3.1.

With the condition of Assumption 6 on A, the tuning parameter A does not affect the asymptotic
rate of y. As in the case of the mean function, the rate in (6) contains two components, the
estimation error p***2n~! stemming from the finiteness of the sample, and the approximation
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bias «;, attributed to the finiteness of the number of basis functions being used in the estimation.
When the Fourier basis or Legendre basis is used, we have the following convergence rate for »
times differentiable covariance functions.

COROLLARY 2. Suppose that Assumptions 1 and 4-6 hold, m > 2, and yy belongs to the
Soboley space " (T?) for some r > 1.

(i) If © is the Fourier basis and yy is periodic, then with p < n'/®"*2) one has ||y — || %2 =
OP(n—r/(r—H))_

(ii) If @ is the Legendre basis, then with p =< n™™M/Q+D1/8} 6ue has |17 — w ||i2 =
Op (n—min{r/(r+2),r/4}).

When » = 2 and yy is periodic, the convergence rate for 7 is n~'/3 and n~=1/4, respectively,
for the estimator based on the Fourier and Legendre bases. The reason behind this observation is
similar to the case of the mean function: high-order Legendre basis functions tend to have large
extrema that amplify variability, which limits the number of basis functions for estimation and
leads to a relatively slower rate. For a nonperiodic yy, the Fourier extension technique can be
used to alleviate the Gibbs phenomenon suffered by the Fourier basis; see the Supplementary
Material for more details.

Corollaries 1 and 2 show that the proposed analytic basis expansion approach automatically
adapts to the smoothness of (o and yy. In particular, when g or yy is smooth, i.e., has infinite
order of differentiability, our estimators enjoy a near-parametric rate. This contrasts with the local
polynomial smoothing method and the B-spline basis approach, for which the convergence rate
is limited by the order of the polynomials or B-spline basis functions used in the estimation, even
when g or yp might have a higher order of smoothness. In practice, it is not easy to determine
the right order for these methods, since the mean and covariance functions and their smoothness
are unknown.

Remark 1. Delaigle et al. (2020) adopted a two-stage procedure to estimate the covariance
function, where in the first stage a pilot estimate is constructed only in the diagonal region 7Zs.
This pilot estimate can be obtained by a smoother, for example, Yao et al. (2005a). At the second
stage, this pilot estimate is numerically extrapolated by basis expansion without penalization to
arrive at an estimate of the entire covariance function. The advantage of this two-stage approach
is that the convergence rate of the final estimator is immediately available and inherited from the
convergence rate of the pilot estimator, since the basis approximation error is negligible when a
sufficiently large number of basis functions are used. The drawback is that the convergence rate
(Theorem 2, Delaigle et al., 2020) is then limited by the pilot estimate. For instance, if a local linear
smoother is adopted to produce the pilot estimate, then the convergence rate of the final estimator
is the same as the local linear smoother, even though the true covariance function might have
a higher-order degree of smoothness. In contrast, our approach estimates the basis coefficients
directly from the data, and thus is able to automatically exploit the high-order smoothness of the
true covariance. This also allows us to establish an explicit convergence rate without reference
to a pilot estimate. The convergence theories in Delaigle et al. (2020) and our paper are based on
incomparable sets of conditions, and thus do not imply each other.

One of the theoretical novelties in Delaigle et al. (2020) is the approximation error bound
in their Theorem 2 to quantify the approximation errors when the covariance function is not
identifiable. This is a very appealing feature and upon the suggestion of a referee we address the
case that yy is not in the 7s-identifiable boundedly sequentially compact family C, but can be well
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approximated by a member of the family. Specifically, let y € C and assume ||yp — ¥ ||;2 < n for
some constant > 0. Below we show that, when the model of yy is misspecified, the estimation
quality also depends on the degree of misspecification that is quantified by 7.

THEOREM 3. Suppose that ® is an analytic (o, B)-basis, m > 2, and Assumptions 1 and 4—6
hold. If there exists y € C such that ||y — yll;2 < 1, then we have

da+2

N p
1P = yollj. = OP( — +x, +772>,

where k), is the convergence rate of (o, ®,p) defined in §3.1.

COROLLARY 3. Suppose that the conditions of Theorem 3 hold, and yy belongs to the Sobolev
space 7 (T?) for some r > 1.

(i) If © is the Fourier basis and yy is periodic, then with p < n'/#+2 one has || — )/olli2 =
OP(n—r/(r-H) + 772).
(ii) If ® is the Legendre basis, then with p =< n™™MV/Q+01/8 oo has ||y — V0||%2 =

OP (n— min{r/(r+2),r/4} + 772)-

Remark 2. Although for simplicity we focus on functional snippets where each observed
trajectory consists of only a single snippet of equal width, without any modification, the proposed
estimation procedure in § 2 is applicable to more general cases, including the case that snippets
have random and different widths of span and/or the case that each trajectory is composed of
multiple pieces of snippets. The theory developed in this section can also accommodate such
cases with a slight modification of Assumption 1, as follows. For random width §, we require
pr(§ > &p) > 0 for some constant §y € (0, 1). To model multiple pieces of snippets per trajectory,
one can introduce multiple reference time-points, one for each piece, i.e., for the jth piece within
a single trajectory there is a reference time RY). Without loss of generality, we assume R\ <
R® < ... < RS where the potentially random quantity S > 1 denotes the number of snippets
per trajectory. Then, our theories are still valid if Assumption 1 holds for the first and last pieces,
i.e., for the pieces indexed by the reference time-points R\ and R®®.

4. NUMERICAL STUDIES
4.1. Computational details

To compute the estimator in (2), one needs to determine a set of basis functions. We recommend
the Fourier basis, for it is often computationally stabler than Legendre polynomials and other
polynomial bases. To handle nonperiodic data, we incorporate the technique of Fourier extension,
which seems less explored in statistics, to overcome the Gibbs phenomenon (Zygmund, 2003);
see the Supplementary Material for a brief introduction. It requires selection of an additional
tuning parameter, the extension margin ¢. Through extensive numerical experiments, we found
that the results are often not sensitive to ¢ when it is not too large and too small. As a rule of
thumb, we recommend ¢ to be one tenth of the span of the study. If computational capacity
allows, a data-driven value for ¢ can also be selected via cross-validation.

To select the other two tuning parameters g and p, we adopt a K-fold cross-validation
procedure with K = 5, as follows. Let E and ® be sets of candidate values for g and p,
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~

respectively. We choose a pair (¢, p) € E x O that minimizes the validation error cv(g, p) =
211521 Zie??k ij:ll {Y; — ,&‘fi (T, ,j)}z, where Py, ..., Px form a roughly even random partition
of {1,...,n},and % ,f is the estimator for ;o when there are ¢ basis functions, the penalization
parameter is p, and only subjects with indices in {1, ..., n}\P; are used in estimation.

To compute the covariance estimator in (4), we choose a boundedly sequentially compact
family C, and for our simulation studies we adopt the family exhibited in Example 7 with large
values of M1 = 100 and M, = 100, since it is a large family that allows us to reduce model bias
while identifying the covariance function. The matrix C in (4) should be positive definite, which
makes the optimization challenging. We tackle the issue of positive definiteness via the geometric
Newton method by realizing that the space of symmetric positive definite matrices is a Riemannian
manifold when it is endowed with the easy-to-compute log-Cholesky metric (Lin, 2019); see the
Supplementary Material for details. In contrast, Delaigle et al. (2020) reparameterized C by its
Cholesky factor B, which is a lower triangular matrix satisfying C = BB", and then turned it into
a nonconstrained optimization problem. This approach suffers from numerical instability, as the
Cholesky decomposition C = BB is not unique.

For the other two parameters p and A, we adopt the following selection procedure. Let E and
® be sets of candidate values for p and A, respectively. We choose a pair (p,A) € E x © that
minimizes the error

BRR(p, M) = Y {P@Gn = PP 0, )

INANCAIRIR)

where 11, . .., tg are G equally spaced points on the domain 7 for some G > 0, § = max{|T;; —
Tyl : 1 <i<n1<j,l<m}isanestimate for §, y is a pilot estimate for y on the diagonal
region 73 and can be computed by a smoother (Yao et al., 2005a; Chen et al., 2020), and PP s
the estimator with p basis functions and the penalization parameter 1. Unlike the selection of ¢
and p for estimating the mean function, we use (7) instead of the cross-validation error that would
be computed from the raw observations I';; = {Y;; — fi(Tj;)}{Yy — [1(Ty)}. This is because the
raw observations are too noisy and often result in substantial variability in the cross-validation
procedure. In contrast, by utilizing a smoothed pilot estimate y, we not only denoise the raw
observations, but also better leverage the information available in the diagonal region through the
equally spaced grid (71, . . ., tg). In Delaigle et al. (2020), the pilot estimator y is used to directly
estimate the basis coefficients, instead of selecting tuning parameters. The simulation studies in
the next subsection demonstrate that our strategy is preferable in most cases.

4.2. Monte Carlo simulations
We now illustrate the numerical performance of the proposed approach using the Fourier
basis. For the mean function we consider two scenarios, () = ZZ:I (—D*1.27% ¢y (1) and
w2 (t) = 2t, where ¢y, is the Fourier basis function defined in Example 5. The former is a periodic
function while the latter is nonperiodic. For the covariance function, we consider the following
cases:

I. the periodic covariance function y (s, ) = ), < k<l cik®;($)@y (1) for I = 5, where ¢j, =
27U=KI=5/2 if j + f and 1.5' 7 ifj = k;
I1. the nonperiodic and nonsmooth covariance function y» (s, 1) = 4/v(s)v(t)/2e~ Is=t? with the

correlation function e~ 5~I" and the variance function v(t) ={1+ fot (1+ [4.5x]) dx}/4/2,
where |4.5x] denotes the integer part of 4.5x;
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Table 1. MISE of the proposed estimator for the mean function

n=>50 n=150 n =450
Setting Method 8§ =025 8 =0.75 § =0.25 8§ =0.75 8§ =025 § =0.75
I FE 3.27(3.19) 1.94(1.27) 1.10(0.59) 0.68(0.44) 0.35(0.20) 0.25(0.16)
NFE 3.18(3.09) 1.89(1.26) 1.05(0.57) 0.65(0.41) 0.34(0.19) 0.23(0.16)
73 FE 2.74(3.20) 1.53(0.95) 0.99(0.73) 0.66(0.50) 0.42(0.28) 0.27(0.20)
NFE 3.20(3.03) 2.00(0.75) 1.61(0.60) 1.20(0.37) 0.89(0.31) 0.77(0.21)

The MISE and their Monte Carlo standard errors in this table are scaled by 10 for a clean presentation. FE, the proposed
estimator with Fourier extension; NFE, the method without the Fourier extension.

III. the periodic covariance function y;3 that is the same as y; except that / = 30;

IV. the one-rank covariance function y4(s,t) = 0.4¢(s)e(t) with ¢(t) = 0.3p3,0.05() +
0.7f0.7,0.05(t), where f;, ; is the probability density of the normal distribution with mean a
and standard deviation b.

The covariance functions in Cases I, III and IV fall into the family C we chose in § 4.1, while the
one in Case II does not, since the function 3, is nonsmooth and falls outside the chosen family
C. The covariance functions in the last two cases, y3 and y4, although having different ranks,
require a large number of Fourier basis functions for a good approximation. All of the last three
covariance functions represent challenging cases for our approach.

In evaluating the performance of the mean estimate, the covariance function is fixed to be yy,
while the mean function is fixed to be ;| when evaluating the covariance function. This strategy
avoids the bias from covariance influencing the estimation of the mean function, and vice versa.

The estimation quality is measured by the empirical mean integrated squared error based
on N = 100 independent simulation replicates. For the mean estimator /i, the mean integrated

squared error is defined by MISE = ]l\, ZLI f { ik () — o (£)}? dt, and for the covariance estimator
y it is defined by MISE = % Zgzl [[{P(s, ) — yo(s,H)}? ds dt, where fi; and Py are estimators
in the kth simulation replicate. The tuning parameters g, p, p, A and the extension margin are
selected by the procedures described in §4.1.

Inall replicates, the reference times R; are sampled from a uniform distribution on [§/2, 1—§/2].
The numbers of observations m; are independently sampled from the distribution 2 + Po(3). The
measurement noise variables ¢;; are independently sampled from a centred Gaussian distribution
with variance o2, where the noise level o2 is set to make the signal-to-noise ratio E{||X —
woll iz} / 02 = 4. We consider three sample sizes, n = 50, 150, 500, and two different values of §,
8 = 0.25,0.75, representing short snippets and long snippets, respectively.

The results are summarized in Tables 1 and 2 for the mean and covariance functions, respec-
tively. As expected, in all settings, the performance of the estimators improves as » or § increases.
Also, if the function to be estimated is periodic, like ;1 and y;, Fourier extension leads to slightly
reduced estimation quality. However, if the function is nonperiodic, like 1, and y», then the esti-
mators with Fourier extension considerably outperform those without the extension, especially
for the mean function or when the sample size is large. This demonstrates that Fourier extension
is a rather effective technique that complements the Fourier basis for nonparametric smoothing,
and might deserve further investigation in the framework of statistical methodology.

As a comparison, we implement the estimators ypp, Yzc and Ppunx of Descary & Panaretos
(2019), Zhang & Chen (2020b) and Delaigle et al. (2020), respectively, where the first two are
obtained by extrapolating the raw covariance function in the region 75 using matrix completion
techniques; see the Supplementary Material for implementation details.

Table 2 summarizes the numerical results, while figures in the Supplementary Material provide
a visual comparison of the four methods. Based on these results, we summarize the findings
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Table 2. MISE of the estimators for the covariance function

Setting n § FE NFE Sy Vor Ve

Y1 50 0.25 6.40(3.90) 6.32(3.85) 10.65(4.10) 9.64(5.12) 8.22(4.66)
0.75 6.04(3.17) 5.81(3.91) 9.46(3.59) 7.58(4.89) 8.11(3.93)

150 0.25 3.60(2.20) 3.44(2.05) 8.94(3.13) 8.53(5.17) 7.71(4.21)

0.75 3.38(2.01) 3.11(2.25) 5.91(2.99) 4.42(3.36) 5.64(3.18)

450 0.25 2.22(1.21) 2.09(1.12) 7.61(3.06) 7.67(4.25) 6.68(3.01)

0.75 1.52(1.39) 1.42(1.38) 3.53(2.65) 2.31(1.79) 3.11(2.18)

V2 50 0.25 5.40(3.50) 5.51(3.73) 7.88(4.89) 6.35(3.49) 5.83(2.82)
0.75 4.09(3.03) 4.16(3.13) 4.90(2.93) 4.41(3.10) 4.13(2.75)

150 0.25 2.65(1.47) 2.74(1.43) 4.32(4.15) 3.73(4.40) 3.07(3.33)

0.75 2.35(2.02) 2.41(2.59) 2.48(2.18) 2.33(2.78) 2.35(2.70)

450 0.25 1.56(1.02) 1.68(1.07) 2.47(2.16) 2.00(1.64) 1.58(1.03)

0.75 1.16(0.93) 1.29(0.94) 1.12(1.17) 0.98(0.91) 1.08(1.00)

V3 50 0.25 7.91(5.62) 7.85(5.78) 12.81(7.72) 11.55(6.88) 10.14(4.98)
0.75 6.85(3.74) 6.53(3.45) 11.51(8.13) 8.61(4.61) 7.94(3.66)

150 025 5.25(2.88) 4.93(2.82) 9.92(5.85) 9.26(5.56) 8.37(3.83)

0.75 4.81(3.45) 4.42(3.61) 7.61(5.31) 6.14(3.82) 6.09(3.81)

450 0.25 3.50(2.13) 3.22(1.88) 8.46(4.52) 8.14(4.22) 8.06(4.63)

0.75 2.18(0.98) 1.79(0.73) 4.52(3.02) 2.88(1.23) 3.35(1.50)

V4 50 0.25 10.64(5.27) 10.54(5.12) 13.28(7.81) 10.13(5.77) 12.47(6.85)
0.75 7.50(2.04) 7.45(2.07) 8.14(2.24) 7.84(2.04) 8.08(2.24)

150 0.25 8.57(2.15) 8.51(2.19) 8.97(3.72) 8.40(4.88) 9.19(5.88)

0.75 6.93(1.36) 6.89(1.41) 7.17(1.33) 7.23(1.23) 6.67(1.30)

450 025 7.05(1.20) 6.97(1.16) 8.19(2.92) 7.25(4.53) 7.90(3.82)

0.75 6.47(0.67) 6.41(0.68) 6.84(0.94) 6.24(0.93) 6.26(0.97)

The MISE and their Monte Carlo standard errors in this table are scaled by 10 for a clean presentation. FE, the proposed
estimator with Fourier extension; NFE, the method without the Fourier extension.

below for each case. For Case I the proposed method substantially outperforms the competing
procedures. This is not surprising, since the true covariance function y; favours our method. In
Case Il all methods have similar performance. Our method is slightly better when the sample size is
small, while the matrix completion methods have slightly better performance when the sample size
is large. In Case III our method has superior performance in all settings. This could be attributed
to the fact that the true covariance function is still representable by a finite number of Fourier basis
functions, although the number of Fourier basis functions in such a representation is large. Since
Case IV is arather challenging case, all methods have similar, but deteriorating performance, and
there is no clear winner. In summary, the performance of our method dominates the estimator
Younk Which also depends on Fourier basis expansion. In addition, we find that the approach
of Delaigle et al. (2020) tends to produce excessive variability, especially in the off-diagonal
region. The detailed discussion in Remark 1 provides an explanation for these observations. The
proposed method outperforms the matrix completion methods when the sample size is small or
a small number of basis functions are sufficient to approximate the true covariance function. In
other scenarios, like Cases II and IV with a large sample size, the performance of our estimator
is nearly as good as the matrix completion methods.

5. APPLICATIONS

We present an application to spinal bone mineral density in this section. A second application
to systolic blood pressure is presented in the Supplementary Material.

In the study of Bachrach et al. (1999), 423 individuals with ages ranging from 8 to 27 were
examined for their longitudinal spinal bone mineral density. The bone density of each individual
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Fig. 1. (a) Spinal bone mineral density data. (b) Estimated mean function. (c) Empirical design plot of the covariance
structure of the spinal bone mineral density. (d) Estimated covariance function, using the proposed method with Fourier
basis and nonperiodic extension.

was irregularly recorded in four consecutive years, at most once for each year. This resulted in
functional snippets with measurements spanning at most four years for all subjects. In our study,
individuals who have only one measurement are excluded, since they do not carry information
to the covariance structure. This results in a total of 280 individuals who have at least two
measurements and whose ages range from 8.8 to 26.2.

We are interested in the mean and covariance structure of the mineral density across the age
spectrum. The covariance structure enables us to derive the principal components. Figure 1(c)
depicts the empirical design of the covariance function, underscoring the nature of these data
as a collection of snippets: there are no data available to directly infer the off-diagonal region
of the covariance structure, and the design time-points are irregular. This feature renders tech-
niques based on matrix completion less appropriate since they require a regular design for the
measurement time-points. In contrast, our method is able to accommodate this irregularity.

The mineral density data and the estimated mean function are displayed in Figs. 1(a) and 1(b),
respectively; the marked rightmost point in Fig. 1(a) is removed to avoid the boundary effect. We
observe that the mean density starts with a low level, rises rapidly before age 16, then increases
relatively slowly to a peak at age 20, and finally levels off after age 20. This indicates that the
spinal bone mineral accumulates fast during adolescence, during which rapid physical growth
and psychological changes occur, and then remains at a stable high level in the early 20s.

The estimated covariance surface is shown in Fig. 1(d), which suggests larger variability of
the data around the age of 17. It also indicates that the covariance of the longitudinal mineral
density at different ages decays drastically as ages become more distant. The first three principal
components based on the estimated covariance function in the entire domain are shown in Fig. 2.
These principal components account for 69.6%, 22.1% and 3.6% of the variance of the data,
respectively, and altogether they account for over 95% of the total variation of the data. The first
principal component, which explains nearly 70% of the variation, shows that the highest variation
in the bone density trajectories corresponds to overall growth that is consistently either above
or below the mean curve, with the difference from the mean most prominent around age 15.
Those with positive first principal component scores have bone densities consistently above the
mean function, with a surge at age 15, and vice versa for those with negative scores. The second
principal component reflects the contrast of growth before and after age 17.5. Those with positive
second scores have above average bone densities up to age 17.5, but then drop below the average
afterwards. The third principal component reflects the random fluctuation of the bone growth.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online contains additional implementation
details, the second data application and technical proofs of the theorems in the article.
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