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ABSTRACT: The device performance of thin film electronics is known to be dependent on
morphological properties such as the size, shape, and orientation of aggregates and crystalline
domains. So far, descriptions of morphology have been semi-quantitative and loosely linked to
device performance. However, by using our recently reported quantitative analysis tool m2py, we
create morphology labels and, for the first time, extract quantitative morphology information from
scanning probe microscopy measurements. In this work, we use the labels and extracted
morphology measurements to validate a novel approach of generating quantitative structure-
property relationships through the use of machine learning and regression models; we present this
generalizable approach by demonstrating it on organic photovoltaics. In our approach, the open-
source toolkit, m2py, is used to label and describe a set of organic photovoltaic devices that have
received different thermal annealing treatments, thereby altering their morphologies and,
subsequently, their performance. Different regressors and types of morphology descriptions are
used to examine the efficacy of quantitative morphology descriptors in predicting device
performance. Despite the fact that scanning probe measurements only image the thin film surface,
we find that the information-rich nature of morphology data enables accurate device performance
predictions, even with datasets that would traditionally be considered too small to generate high-
quality predictions. The implications of introducing quantitative morphology information for
predictive analysis of other devices and materials is also discussed; given the general and material-
agnostic nature of m2py, it is anticipated that the predictive capability of these labels will be

ubiquitous to all thin film applications.



1. INTRODUCTION

The performance and properties of thin film electronic devices are strongly dependent on the
morphology of the active layer. For instance, in m-conjugated polymers (CPs), it is important to
develop methods for extracting quantitative morphological information on the nanometer- and
micrometer-scale, as it is often features at these length scales that determine bulk performance for
CP-based devices.'® The current standards for quantitative measurements of morphological
parameters, such as crystal structure and crystallinity, are techniques such as grazing incidence
wide-angle X-ray spectroscopy or differential scanning calorimetry. These techniques are bulk-
averaged measurements, meaning that they are insensitive to many nanoscopic changes in
morphology. In order to progress towards truly predictive models of materials properties and
device performance, it is useful 1) to be able to generate quantitative and reproducible descriptions
of morphology that communicate local, nanoscopic details and heterogeneities, and 2) to integrate
this quantitative morphology information into predictive models.

Our previous work addressed the first of these two goals by developing and describing a
universal segmentation workflow that algorithmically identifies different material phases and
morphological domains in scanning probe microscopy (SPM) datasets.” Although only the surface
is imaged by SPM, rather than the full morphology, surfaces imaged by SPM techniques are
commonly used to represent active layer morphologies and are consistently shown to be correlated
with thin film properties and performance. To access the important features comprising a thin film
surface, the m2py workflow takes in SPM measurements to produce labels that describe the size,
shape, and identity of every domain in the image. Such quantitative morphology reports will be
important for defining and comparing differences between underperforming and optimal active

layer morphologies, as well as for probing thermodynamic phase transitions and improving



simulations of materials, all of which require quantitative insight into the nanoscale structure of
the materials.® 13

In the current work, we address the second step — using the m2py-generated morphology
descriptions to predict final device performance. Predictive models for organic photovoltaic (OPV)

performance have focused primarily on chemical structure or electron density information, "

and there has been little integration of morphological information in predictive models.* 2**? To
validate our approach, a series of OPV devices with bulk heterojunction (BHJ) active layers that
are made from the well-understood materials poly(3-hexylthiophene) (P3HT) and phenyl-Ce;-
butyric acid methyl ester (PCs1BM). The OPV devices are identical in fabrication, except for a
post-deposition thermal annealing treatment, which is known to affect morphology and final
device performance.”> > The P3HT:PCs;1BM OPV power conversion efficiency (PCE), open-
circuit voltage (Voc), short-circuit current (Js), and fill-factor (FF) are measured across a range of
annealing times and temperatures. For a subset of these devices, the surface morphology of the
active layers was imaged using fast force-distance mapping (FDM), a nanomechanical SPM
technique. While this manuscript utilizes SPM datasets as an example input of morphological data,
other data formats, including scanning tunneling microscopy data, could be used as inputs
following a similar methodology. The m2py toolkit was used to generate morphology-label maps
and domain measurements from this surface morphology dataset. Using this well-understood OPV
system, we show that incorporating quantitative morphology information drastically improves

model learning and predictive accuracy, even when using datasets that are typically too small to

perform well.

2. METHODS AND MATERIALS



P3HT was purchased from Rieke Metals (4002-EE). Glass/ITO substrates were purchased from

WRS. All other materials were purchased and used as-received from Sigma-Aldrich.

2.1 REGRESSION AND CODE DEVELOPMENT

All modules were written in Python. NumPy?® was used for the preparation and manipulation of
data. PyTorch was used to create and train all artificial neural networks.?’” Matplotlib?® and
Seaborn® were used to create all data plots. Scikit-learn*® was used for regression and
optimization. To maximize data use and mitigate overtraining, five-fold cross validation was used
for model training. Loss and accuracy were monitored during training cycles to ensure overfitting
did not occur. The results of this training are shown in the supporting information, Section II. All
hyperparameters were optimized to balance for maximum training stability, minimum loss, and
minimum error by using Scikit-learn’s GridSearchCV(), as discussed in the supporting
information, Section IIl. All data was subjected to MinMax normalization before regression to
account for differences in orders of magnitude between the different device metrics and their units.
Batch normalization was used in all neural network models. Several optimization algorithms
(Adam, AdamW, SGD, Adagrad) were tested for performance; however, the optimizer used in this

work, Adam, resulted in the best performance.

2.2 SUBSTRATE PREPARATION

All substrates were cleaned by scrubbing with Micro90 soap and DI water, followed by
sonication in deionized water, acetone, and isopropyl alcohol for 15 min each. Following
sonication, the substrates were dried under a stream of air and subsequently plasma cleaned for 15
minutes using air plasma. As one of the transport layers in these P3HT:PC61BM OPV, ZnOAc

was spin-coated at 2500 RPM for 60 seconds under air. After annealing at 150 °C for 15 minutes,



the ZnO transport layer was formed and the substrates were transferred to a glovebox for active

layer deposition.

2.3 ACTIVE LAYER DEPOSITION

P3HT:PCs;BM blends (1:0.95, total concentration 30 mg mL 1) were stirred in chlorobenzene

overnight at 70 °C prior to spin-coating. Spin-coating was performed at 2000 RPM for 60 seconds.

Solution preparation and spin-coating were all carried out in a nitrogen glovebox.

2.4 OPV DEVICES AND TESTING

Using an Angstrom Engineering NextDep PVD system, 10 nm of MoOs were deposited,
followed by 100 nm of Ag. Both films were deposited at 0.5 A/s under no more than 10 torr of
pressure. Through a photomask, 8 different back contacts and a single front contact was deposited.
After contact deposition, the devices were annealed as prescribed by Table S1, still in the glovebox.
Finally, using a VeraSol Solar Simulator, J-V profiles were extracted while the devices were under
AM 1.5 illumination. Current—voltage characteristics were measured using a 2400 Series Keithley
Source Meter and calibrated with an IR-filtered Si reference cell. The illuminated area of each
pixel is 0.013 cm?. A range of voltages from -0.2 to 1.0 V was used. J-V curve analysis was
performed to extract PCE, Voc, Jse, and FF. The Python code associated with this GUI is available

open-source and free of charge from www.github.com/wesleyktatum/OPV _analysis.

2.5 FAST FORCE-DISTANCE MAPPING ATOMIC FORCE MICROSCOPY
FDM AFM micrographs were obtained on a Bruker ICON AFM in Peak-force Quantitative
Nanomechanical Mapping mode. ScanAsyst-Air tips were used for these measurements (SiN/Al,

~70kHz, and 0.4 N m™1). Samples were stored in a N2 glovebox prior to analysis.



3. RESULTS AND DISCUSSION

3.1 DATA AND SAMPLING

OPVs made from P3HT:PCs1BM were fabricated in an inverted architecture and thermally
annealed across a range of temperatures and durations, as indicated in Figure 1. Once fabricated,
the devices were tested to determine four different metrics of their performance — PCE, Vo, Jc,
and FF. In agreement with literature, the devices with the highest performance were obtained when
the active layers were annealed near 150 °C for 15-30 minutes, due to active layer morphology
evolution during annealing.'*> To record the active layers’ morphology, three representative 1
um? FDM scans were taken for a subset of the substrates, representing the morphology of all
devices for that annealing procedure. Following the guidelines outlined in our previous work,
thirty-six of the FDM imaged active layers were labeled with domain and phase labels by an m2py
workflow.” Briefly, this workflow assigns each pixel in an image with two sets of labels that
designate the pixel’s material phase and domain. Figure 1 shows examples of these m2py phase
labels at each of the sample points across the range of annealing conditions and illustrates the
thermally driven evolution in morphology and phase distribution. For the imaged OPV, three
different phases are labeled: polymer-rich, fullerene-rich, and mixed. As expected, short annealing
times combined with low annealing temperatures resulted in the nucleation of small, spherical
aggregates of the polymer-rich phase. With more heat and time, these aggregates ripen into more
elongated and co-continuous domains, which are necessary for efficient charge separation and
transport. This is expected, as the highest performing P3HT:PCs1BM devices tend have ~150 °C
annealing for 15-30 min.’! Through the m2py labels, these rules of thumb for active layer
optimization can be quantitatively identified and described using domain shape descriptors such

as eccentricity, perimeter, and orientation. The descriptors’ measurements are easily plotted, as
b b



shown in Figure 2.a, allowing for the direct viewing of morphological evolution throughout
annealing conditions. For example, our visual observations in Figure 1 regarding the nucleation
and growth of domains throughout annealing are clearly reflected in the surfaces shown in Figure
2.a. At lower temperatures and shorter annealing times, the major and minor axis lengths are
smaller for the polymer-rich phase, as visible in Figure 2.a. As annealing continues, the major axis
length increases while the minor axis length becomes smaller or stays the same. This corresponds
to the observed elongation and growth of the polymer-rich phase, which corresponds to increases
in the PCE and Ji of the OPV devices, shown in Figure 2.b. This is anticipated because these
elongated, anisotropic domains are generally known to improve charge separation and transport.
When the devices are over-annealed, the elongated domains spheroidize or become irregularly
shaped. This sub-optimal morphology is visible in Figure 1 at 175 °C, 30 min. and is reflected in
Figure 2.a by the increase in the minor axis length at these conditions, during which the major axis
length remains relatively static. As a result of this over-annealed morphology, there is less exciton
dissociation and more recombination of charge-carriers. This, in turn, decreases both the J;. and
PCE, as is clearly seen in Figure 2.b. Also visible in Figure 2.a, as the nucleated domains grow
and elongate, the perimeter of the domains concomitantly increases, until spheroidization of some
domains and aggregation of others, which is reflected in the slight decrease of the perimeter
metric’s surface and an increase in its standard deviation. These observations are all in agreement
with the literature understanding of morphological impacts on P3HT:PCs1BM OPV, which has
been empirically developed. However, this reported workflow allows for an unprecedented degree
of specificity. Not only are the average sizes extractable, as might be expected of Scherrer analysis,
but the standard deviation, median, and variance can be calculated as a result of cataloging all of

the individual domains with m2py. Further, the shapes, orientations, and other feature descriptions



of the domains, which are not measurable by diffraction or calorimetry, can be quantitatively
reported. Additional representative surface plots that show the evolution of OPV domain
descriptors throughout annealing are shown in Figures S3-7 and a comprehensive archive of the
morphology and  performance surfaces are available for free online at

www.github.com/wesleyktatum/py-conjugated. The m2py toolkit source code is also available for

free online at www.github.com/ponl/m2py. It should be noted that while the work herein focuses

on a P3HT:PCBM OPV architecture, the m2py toolkit is material agnostic, and can extract
morphological features from any material. From this, the algorithms presented herein could be

applied to other OPV architectures and material compositions.


http://www.github.com/wesleyktatum/py-conjugated
http://www.github.com/ponl/m2py
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the squares corresponds to observed device quality, green conditions producing better and more

consistent OPV devices than red conditions.
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Figure 2. Representative examples of the variations in features throughout the datasets are shown.
The average value for all devices at each time-temperature point were used to generate the surface,
while each individual device is shown as a black circle. Z-axis units are normalized for all samples
to be between 0 and 1. a. Three morphology descriptors for phase 3, the polymer-rich phase
(yellow in Figure 1), are shown for the imaged device active layers in the complete tabular dataset

(CTD). b. The PCE and Ji. for all devices in the annealing-conditions only dataset (AOD).

Having collected a detailed spread of data on the OPV device performance and active layer
morphology, we can examine and compare various methods of encoding morphological

information into numerical representations in order to evaluate its influence on the ability of
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machine learning models to predict several solar cell performance metrics. To that end, we use
different subsets of the overall dataset to isolate and understand the influence of different
morphological encodings on our performance predictions. As a baseline for the level of
predictivity that annealing conditions alone can have, a dataset containing only annealing
conditions and device performance was created. This dataset is referred to as the Annealing-
conditions Only Dataset (AOD, Nsamples = 366) and representative surface plots of the device
performances are shown in Figure 2.b. Although it does have the most samples of all the datasets,
the AOD encodes no morphology information and is therefore expected to not have enough
information to produce good predictions. The most information-rich encoding of morphology
information would be to directly use the FDM images of the active layers as an input into our
predictive models. This is because the FDM images capture a morphology representation that
closely resembles the actual, ground truth surface morphology of the active-layer and can thereby
convey many of the ground truth’s local and continuous variations. This information is also
encoded across eight different imaging channels that include material properties such as Young’s
modulus and deformation. These measurements are defined as the image dataset (Nsamples = 36).
Another substituent dataset used was the labelled images, called the m2py labels dataset (Nsamples
= 36). In this dataset, there are only 3 image channels of morphology information, which are
derived from the material phase labels — individual channels that are used to convey a binary
representation of the distribution and placement for each of the three phases identified in the OPV
thin films (i.e. polymer-rich, fullerene-rich, and mixed-phase). Because the m2py labels are a
distillation of the FDM images, there are fewer channels and the m2py dataset retains fewer local
and continuous fluctuations than the raw FDM images, potentially losing predictive information.

However, the information is more densely encoded and could potentially result in improved

12



performance due to the removal of instrumental noise and overall information distillation. The
morphology encodings can be further simplified with m2py by measuring the features of the
labeled morphological domains. This most distilled morphological description is the Complete
Tabular Dataset (CTD, Nsamples = 36) and was used to produce the descriptor surfaces in Figure
2.a. In this most simple quantitative morphology description, nine different domain measurement
values (relative area, total area, filled area, extent, major axis length, minor axis length,
eccentricity, orientation, and perimeter)®® were averaged across all the domains within each of the
phases labeled by m2py. The average values are stored in a table, along with their associated
standard deviation. By simplifying the m2py labels into these tabular summaries, the morphology
data is able to be directly incorporated into simple predictive models, like polynomial regression.
An advantage of this is that the contribution of different morphological features to the final
prediction can be more explicitly extrapolated, enabling an understanding of which quantitative
morphology descriptors have the largest influence on device performance. In this work, we use
several types of regressors to identify contributions of the aforementioned individual features. In
particular, we focus on understanding the impact of different morphology encodings on
performance predictions of a well-understood OPV system. We utilize traditional machine
learning regressors as baseline comparisons, while using neural networks (NN) as the main
regressor model because of its feasibility in creating models that accommodate different formats

and combinations of data.

3.2 MODEL ACCURACY AND PERFORMANCE

Because the datasets are small, results are reported from 5-fold cross validation, with an 80:20
train-test split for each fold, through custom and Scikit-Learn functions. The regressors tested

include custom NNs,?’ least absolute shrinkage selection operator (LASSO), ridge, support vector

13



machine (SVM), and random forest (RF).>* For comparison of model performance, mean absolute
percent error (MAPE), mean-squared error (MSE), and the coefficient of determination (R?) are
used. The best results of MAPE and R? reported by the cross-validation are shown in Figure 4, and
MSE is shown in Figure S1. The best, average, and worst cross-validation values for each NN are
reported in Table S1, and the best hyperparameters for all models are reported in Table S2,
including architecture parameters for the NN.

The architecture of the NNs is a common backbone followed by multiple output branches as
depicted in Figures 3 and S2. One key difference to note is that each NN model predicts all four
metrics at once, while each of the non-NN regressors need four separate models to predict the
metrics. Thus, the traditional regressors should have outperformed NNs since they are learning

multiple models with each specializing on a single metric. However, the results in Figures 4 and
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Figure 3. A representation of the structure used for NN5 and NN6. These networks take in
both tabular data (the CTD) and image data, where NN5 uses m2py labels and NN6 uses
FDM images. After 3 cycles of convolution, pooling, and activation, the flattened image

encoding is combined with the CTD encoding. This common embedding is then sent to
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each of the 4 branches that are used to predict OPV performance metrics. In each branch,

further compression of the encoding allows for specialized predictions for each metric.

S1 indicate that when morphological information is included, the added complexity of the NN
regressors make up for the lack of specialization, allowing them to make higher quality predictions
than the traditional regressors. This is attributed to three main factors: first, NNs are feature
engineers that optimize learned features based on the outputs of the model; second, the learned
features from the shared backbone have extracted meaningful descriptors from the input
morphology information; and lastly, the learned features for each of the output branches have
extracted relevant information specialized to each of the OPV performance metrics. This
specialization of branches for predicting specific values from a common input, commonly known
as multi-task learning, has been shown to be, not only more effective than individually trained
networks, but also quicker and simpler to use and train.** Therefore, by leveraging the advantages
of multi-task learning and the interdependent nature of the physical properties being predicted by
the system, the NN models are able to outperform the traditional regressors. Within this work, our
goal was to explore how the level of incorporated morphological information introduced into the
model influenced its performance. We anticipate that using a more complicated NN architecture
could potentially improve the performance of the NNs further; such modifications represent

reasonable next steps, but are beyond the scope of the current work.
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datasets: AOD (1), the CTD (2), m2py labels (3), FDM images (4), CTD and m2py labels (5),

CTD and FDM images (6), or the CTD, FDM images, and their m2py labels (7).

In general, we see that the models tend to have the easiest time predicting Vo and Jic, while there
is consistently more error in predicting PCE and FF. In looking at the V,. surfaces for both the
CTD and AOD (Figures S3 and S4, respectively), we see that this device metric is the most tightly
distributed and consistent across all annealing conditions. This is due to the fact that V,. is not
dependent so much on device morphology as it is on the energy-levels of the donor and acceptor
compounds.®® Since all of these devices were made with the same ratio of P3HT:PC61BM, it can
be assumed that only minor fluctuations will be present as a result of local fluctuations in
P3HT:PCs1BM, and that these differences are small enough that most models will predict Vo with
relatively low error. Js, however, shows large distributions and variations throughout the
annealing conditions. Despite this, many models were able to predict Js with relatively low error,
especially as more morphological information is presented to the models. This is due to the fact
that Ji. 1s strongly linked to active-layer morphology, with sub-optimal morphologies leading to
charge-recombination pathways that directly decrease the overall Jy. possible in the thin film.?*3¢-
%0 This correlation is so strong that the models with more encoded morphological information
consistently predict Js. most accurately, surpassing even the tightly distributed V., as seen with
NN3-NN7 in Figure 4 (especially Figure 4.b). This observation confirms that the morphological
information distilled by these reported methods are highly descriptive and useful, even with small
datasets. Due to the number of factors outside of morphology that influence PCE and FF, such as

contact resistance, it is expected that prediction accuracy will be worse for these performance

metrics. In looking at the PCE and FF results of Figure 4, this trend is seen. Promisingly, though,
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there are still large improvements in PCE and FF upon the incorporation of morphology
information, especially when most or all of the morphology information is included (as with NN6
and NN7). In order to further improve the model predictions for PCE and FF, it is expected that
adding additional training features that convey such information, such as J-J curves or the
measured contact resistance, would address these extra-morphological characteristics that are
included in the calculation of PCE and FF.

Looking at the morphological encodings used to train these models, the CTD contains
summarized domain measurements for each phase in the image. In addition to these, each phase’s
relative area occupied in the image and its total area in pixels were included as training features.
As such, along with the annealing conditions, there were a total of 74 training features in the CTD
to describe the image’s morphology. Four different types of regressors were trained using the AOD
and the CTD. The results of training with these datasets are shown in Figure 4 with the naming
convention following the pattern “Regressorl” and “Regressor2”, respectively (e.g. LASSOI,
LASSO2). For the NN that saw more than just the AOD and CTD, the models are named similarly,
as described by Table 1. When compared to the AOD, which has far more samples (366 as
compared to 36), it is remarkable how well the models trained on the smaller datasets perform.
The information-rich morphology summary of the CTD allows all regressors to perform similar to
or better than those trained on the AOD, in spite of having an order of magnitude fewer training
samples. This is true for all four regressors and each of the OPV performance metrics, although
the most drastic improvements with the introduction of morphology data are seen in the SVM and
NN (NNI to NN2).

These results already point to significant improvements made to each model when they are

trained on the CTD as compared to just the AOD, even though the CTD is only a high-level
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summary of the OPV active layer morphology. In order to explore the extent to which more
descriptive quantitative morphology data informs the prediction of device performance, NNs were
trained on gradually increasing degrees of encoded morphology data, as described by Table 1. This
table outlines the different NN models and structures, listing them in order of increasing extent of
morphology information incorporation. The generalized architectures for each model are shown
in Figure S2, as denoted in Table 1 and their hyper parameters are reported in Table S2.

Table 1. Visual architecture reference, model name, and dataset for the series of NN models

evaluated in this work.

Architecture Model Dataset

NNI1 Annealing-conditions only (AOD)
Figure S2.a

NN2 All Tabular Data (CTD)

NN3 m2py labels only
Figure S2.b

NN4 Image Data Only

m2py labels
Figure 3, AN & tabular data

Figure 52.¢ NN6 Image Data & Tabular Data
Figure S2.d NN7 All data

As anticipated, the NN models with the worst performance were NN1 and NN2, which relied
only on tabular data. Although there were improvements from NN1 to NN2 with the incorporation
of morphological training features, the addition of two-dimensional morphological data, either as
m2py labels or as FDM images, significantly improves model accuracy beyond that of NN2. As
previously stated, the densest encoding of morphological information is in FDM images and
models incorporating this data are expected to demonstrate better performance. In looking at the

results presented in Figure 4 and Table S1, we do see that the best reported cross-validation (CV)
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metrics tend to come from models that incorporate the image data, especially NN6. However,
Figure 4 shows that the models incorporating the m2py label dataset have similar, if not better
performance in their best CV folds. On top of this, Table S1 shows that models that are trained on
m2py labels have far higher 5-fold CV metrics for both the average and worst folds than their
image dataset counterparts (e.g. the MAPE of NN3 is lower for both the average and worse CV
folds than NN4). This result demonstrates that, although there are fewer continuous, local
fluctuations encoded in the m2py label dataset, the captured features are more consistently
representative of the active-layer’s morphology; even though there is less overall data in the m2py
label dataset, it contains more information that is densely represented. So, the m2py label dataset
allows the NN models to learn how the distribution of the phases present in the active layer affect
its device performance.

It is clear that having quantitative morphology information is important to making accurate
predictions of final device performance. The inter- and intramolecular interactions of the
components in the active-layer directly influence the generation and harvesting of charge-carriers
in OPV and affect the electronic properties in many other thin film devices. The highly distilled
CTD introduces tractable quantitative morphology features that describe these interactions and
that can be used in any regression model. However, the benefits of the richly informative and
distilled morphological encoding of the m2py labels seem to surpass these simplified
representations by providing broader training features to the NN models, while remaining clearer
than the FDM images, as evidenced in Table S1. That said, the performances of NN3 and NNS are
similar enough to imply that the distilled CTD could be sufficient for many applications.
Distinguishing the extent to which the more densely encoded morphology information is beneficial

will require much larger datasets than those investigated here. It is also worth noting that NN3
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through NN7 all have a MAPE below 10% for all OPV metrics, reaching as low as 1.69% for
NN6’s Ji prediction (Table S1.b). The fact that these models exhibit such high accuracy with so
few training samples points to just how informative these reported quantitative morphology
encodings are in determining properties and performance of thin film photovoltaics. Further, NN6
and NN7 produce the highest R? values of all metrics, with R? for NN6’s J,. being the highest at
0.73. This is a remarkable result, especially considering the dataset size. These results show that
quantitative morphology information, as distilled by m2py labels or summarized in the CTD, are
crucial to the success of projects seeking to predict final properties based on thin film morphology.
Addition of the CTD descriptions significantly improved the predictive capabilities of all models,
even when already training with FDM images, as evidenced by the performance of NN6 compared
to NN4.

Finally, although the addition of more detailed device performance information during training,
such as contact-resistance or full J-V curves, is expected to improve predictions of device metrics
that are not fully dependent on active-layer morphology, such as PCE and FF, the quantitative
morphology encodings are shown to already be highly predictive of thin film device performance.
So, morphology datasets collected and prepared as those shown in this work can be used to train
predictive models that identify the optimal processing conditions for high performing

morphologies.

4. CONCLUSIONS

In this work, we outline a generalizable workflow for quantitatively examining thin film
morphologies and using those descriptions to train predictive models. These results utilize labels

produced by the open-source toolkit, m2py, to identify and measure the size, shape, and
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distribution of domains and phases in SPM images of the thin films. Despite the fact that only the
surface is imaged, these quantitative morphology summaries are shown to be highly informative
in describing changes in thin film nanostructures as a result of annealing conditions. Using this
workflow, varying levels of morphological information were extracted from the images and
encoded for training predictive models. As more morphology information was included in the
model training, the prediction accuracy also increased, in spite of a drastically reduced dataset
sample size from the larger AOD to the CTD, m2py labels, and FDM images. When summary
morphology descriptors were included alongside SPM image data, the percent error reached as
low as 1.7% for Js¢, which is highly correlated to morphology, and as high as 8.8% for PCE, which
is more challenging to predict. These results confirm the high correlation between morphology
and thin film device performance. As such, quantitative morphology descriptions extracted using
m2py are shown to be crucial in understanding morphological contributions to the properties of
thin film active layers, as well as in predicting final device performance of OPVs. This workflow
is expected to be generalizable to all thin film optoelectronic devices whose active layers can be

measured by SPM.
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