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ABSTRACT: The device performance of thin film electronics is known to be dependent on 

morphological properties such as the size, shape, and orientation of aggregates and crystalline 

domains. So far, descriptions of morphology have been semi-quantitative and loosely linked to 

device performance. However, by using our recently reported quantitative analysis tool m2py, we 

create morphology labels and, for the first time, extract quantitative morphology information from 

scanning probe microscopy measurements. In this work, we use the labels and extracted 

morphology measurements to validate a novel approach of generating quantitative structure-

property relationships through the use of machine learning and regression models; we present this 

generalizable approach by demonstrating it on organic photovoltaics. In our approach, the open-

source toolkit, m2py, is used to label and describe a set of organic photovoltaic devices that have 

received different thermal annealing treatments, thereby altering their morphologies and, 

subsequently, their performance. Different regressors and types of morphology descriptions are 

used to examine the efficacy of quantitative morphology descriptors in predicting device 

performance. Despite the fact that scanning probe measurements only image the thin film surface, 

we find that the information-rich nature of morphology data enables accurate device performance 

predictions, even with datasets that would traditionally be considered too small to generate high-

quality predictions. The implications of introducing quantitative morphology information for 

predictive analysis of other devices and materials is also discussed; given the general and material-

agnostic nature of m2py, it is anticipated that the predictive capability of these labels will be 

ubiquitous to all thin film applications.  
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1. INTRODUCTION 

The performance and properties of thin film electronic devices are strongly dependent on the 

morphology of the active layer. For instance, in π-conjugated polymers (CPs), it is important to 

develop methods for extracting quantitative morphological information on the nanometer- and 

micrometer-scale, as it is often features at these length scales that determine bulk performance for 

CP-based devices.1–6 The current standards for quantitative measurements of morphological 

parameters, such as crystal structure and crystallinity, are techniques such as grazing incidence 

wide-angle X-ray spectroscopy or differential scanning calorimetry. These techniques are bulk-

averaged measurements, meaning that they are insensitive to many nanoscopic changes in 

morphology. In order to progress towards truly predictive models of materials properties and 

device performance, it is useful 1) to be able to generate quantitative and reproducible descriptions 

of morphology that communicate local, nanoscopic details and heterogeneities, and 2) to integrate 

this quantitative morphology information into predictive models. 

Our previous work addressed the first of these two goals by developing and describing a 

universal segmentation workflow that algorithmically identifies different material phases and 

morphological domains in scanning probe microscopy (SPM) datasets.7 Although only the surface 

is imaged by SPM, rather than the full morphology, surfaces imaged by SPM techniques are 

commonly used to represent active layer morphologies and are consistently shown to be correlated 

with thin film properties and performance. To access the important features comprising a thin film 

surface, the m2py workflow takes in SPM measurements to produce labels that describe the size, 

shape, and identity of every domain in the image. Such quantitative morphology reports will be 

important for defining and comparing differences between underperforming and optimal active 

layer morphologies, as well as for probing thermodynamic phase transitions and improving 



4 
 

simulations of materials, all of which require quantitative insight into the nanoscale structure of 

the materials.8–13  

In the current work, we address the second step – using the m2py-generated morphology 

descriptions to predict final device performance. Predictive models for organic photovoltaic (OPV) 

performance have focused primarily on chemical structure or electron density information,14–19 

and there has been little integration of morphological information in predictive models.6, 20–22 To 

validate our approach, a series of OPV devices with bulk heterojunction (BHJ) active layers that 

are made from the well-understood materials poly(3-hexylthiophene) (P3HT) and phenyl-C61-

butyric acid methyl ester (PC61BM). The OPV devices are identical in fabrication, except for a 

post-deposition thermal annealing treatment, which is known to affect morphology and final 

device performance.23–25 The P3HT:PC61BM OPV power conversion efficiency (PCE), open-

circuit voltage (Voc), short-circuit current (Jsc), and fill-factor (FF) are measured across a range of 

annealing times and temperatures. For a subset of these devices, the surface morphology of the 

active layers was imaged using fast force-distance mapping (FDM), a nanomechanical SPM 

technique. While this manuscript utilizes SPM datasets as an example input of morphological data, 

other data formats, including scanning tunneling microscopy data, could be used as inputs 

following a similar methodology. The m2py toolkit was used to generate morphology-label maps 

and domain measurements from this surface morphology dataset. Using this well-understood OPV 

system, we show that incorporating quantitative morphology information drastically improves 

model learning and predictive accuracy, even when using datasets that are typically too small to 

perform well.  

 

2. METHODS AND MATERIALS 
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P3HT was purchased from Rieke Metals (4002-EE). Glass/ITO substrates were purchased from 

WRS. All other materials were purchased and used as-received from Sigma-Aldrich. 

2.1 REGRESSION AND CODE DEVELOPMENT 

All modules were written in Python. NumPy26 was used for the preparation and manipulation of 

data. PyTorch was used to create and train all artificial neural networks.27 Matplotlib28 and 

Seaborn29 were used to create all data plots. Scikit-learn30 was used for regression and 

optimization. To maximize data use and mitigate overtraining, five-fold cross validation was used 

for model training. Loss and accuracy were monitored during training cycles to ensure overfitting 

did not occur. The results of this training are shown in the supporting information, Section II. All 

hyperparameters were optimized to balance for maximum training stability, minimum loss, and 

minimum error by using Scikit-learn’s GridSearchCV(), as discussed in the supporting 

information, Section III. All data was subjected to MinMax normalization before regression to 

account for differences in orders of magnitude between the different device metrics and their units. 

Batch normalization was used in all neural network models. Several optimization algorithms 

(Adam, AdamW, SGD, Adagrad) were tested for performance; however, the optimizer used in this 

work, Adam, resulted in the best performance. 

2.2 SUBSTRATE PREPARATION 

All substrates were cleaned by scrubbing with Micro90 soap and DI water, followed by 

sonication in deionized water, acetone, and isopropyl alcohol for 15 min each. Following 

sonication, the substrates were dried under a stream of air and subsequently plasma cleaned for 15 

minutes using air plasma. As one of the transport layers in these P3HT:PC61BM OPV, ZnOAc 

was spin-coated at 2500 RPM for 60 seconds under air. After annealing at 150 ºC for 15 minutes, 



6 
 

the ZnO transport layer was formed and the substrates were transferred to a glovebox for active 

layer deposition. 

2.3 ACTIVE LAYER DEPOSITION 

P3HT:PC61BM blends (1:0.95, total concentration 30 mg mL−1) were stirred in chlorobenzene 

overnight at 70 °C prior to spin-coating. Spin-coating was performed at 2000 RPM for 60 seconds. 

Solution preparation and spin-coating were all carried out in a nitrogen glovebox. 

2.4 OPV DEVICES AND TESTING 

Using an Ångstrom Engineering NextDep PVD system, 10 nm of MoO3 were deposited, 

followed by 100 nm of Ag. Both films were deposited at 0.5 Å/s under no more than 10-6 torr of 

pressure. Through a photomask, 8 different back contacts and a single front contact was deposited. 

After contact deposition, the devices were annealed as prescribed by Table S1, still in the glovebox. 

Finally, using a VeraSol Solar Simulator, J-V profiles were extracted while the devices were under 

AM 1.5 illumination. Current–voltage characteristics were measured using a 2400 Series Keithley 

Source Meter and calibrated with an IR‐filtered Si reference cell. The illuminated area of each 

pixel is 0.013 cm2. A range of voltages from -0.2 to 1.0 V was used. J-V curve analysis was 

performed to extract PCE, Voc, Jsc, and FF. The Python code associated with this GUI is available 

open-source and free of charge from www.github.com/wesleyktatum/OPV_analysis. 

2.5 FAST FORCE-DISTANCE MAPPING ATOMIC FORCE MICROSCOPY 

FDM AFM micrographs were obtained on a Bruker ICON AFM in Peak-force Quantitative 

Nanomechanical Mapping mode. ScanAsyst-Air tips were used for these measurements (SiN/Al, ∼70kHz, and 0.4 N m−1). Samples were stored in a N2 glovebox prior to analysis.  
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3. RESULTS AND DISCUSSION 

3.1 DATA AND SAMPLING 

OPVs made from P3HT:PC61BM were fabricated in an inverted architecture and thermally 

annealed across a range of temperatures and durations, as indicated in Figure 1. Once fabricated, 

the devices were tested to determine four different metrics of their performance – PCE, Voc, Jsc, 

and FF. In agreement with literature, the devices with the highest performance were obtained when 

the active layers were annealed near 150 ºC for 15-30 minutes, due to active layer morphology 

evolution during annealing.31,32 To record the active layers’ morphology, three representative 1 

µm2 FDM scans were taken for a subset of the substrates, representing the morphology of all 

devices for that annealing procedure. Following the guidelines outlined in our previous work, 

thirty-six of the FDM imaged active layers were labeled with domain and phase labels by an m2py 

workflow.7 Briefly, this workflow assigns each pixel in an image with two sets of labels that 

designate the pixel’s material phase and domain. Figure 1 shows examples of these m2py phase 

labels at each of the sample points across the range of annealing conditions and illustrates the 

thermally driven evolution in morphology and phase distribution. For the imaged OPV, three 

different phases are labeled: polymer-rich, fullerene-rich, and mixed. As expected, short annealing 

times combined with low annealing temperatures resulted in the nucleation of small, spherical 

aggregates of the polymer-rich phase. With more heat and time, these aggregates ripen into more 

elongated and co-continuous domains, which are necessary for efficient charge separation and 

transport. This is expected, as the highest performing P3HT:PC61BM devices tend have ~150 ºC 

annealing for 15-30 min.31 Through the m2py labels, these rules of thumb for active layer 

optimization can be quantitatively identified and described using domain shape descriptors such 

as eccentricity, perimeter, and orientation. The descriptors’ measurements are easily plotted, as 
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shown in Figure 2.a, allowing for the direct viewing of morphological evolution throughout 

annealing conditions. For example, our visual observations in Figure 1 regarding the nucleation 

and growth of domains throughout annealing are clearly reflected in the surfaces shown in Figure 

2.a. At lower temperatures and shorter annealing times, the major and minor axis lengths are 

smaller for the polymer-rich phase, as visible in Figure 2.a. As annealing continues, the major axis 

length increases while the minor axis length becomes smaller or stays the same. This corresponds 

to the observed elongation and growth of the polymer-rich phase, which corresponds to increases 

in the PCE and Jsc of the OPV devices, shown in Figure 2.b. This is anticipated because these 

elongated, anisotropic domains are generally known to improve charge separation and transport. 

When the devices are over-annealed, the elongated domains spheroidize or become irregularly 

shaped. This sub-optimal morphology is visible in Figure 1 at 175 ºC, 30 min. and is reflected in 

Figure 2.a by the increase in the minor axis length at these conditions, during which the major axis 

length remains relatively static. As a result of this over-annealed morphology, there is less exciton 

dissociation and more recombination of charge-carriers. This, in turn, decreases both the Jsc and 

PCE, as is clearly seen in Figure 2.b. Also visible in Figure 2.a, as the nucleated domains grow 

and elongate, the perimeter of the domains concomitantly increases, until spheroidization of some 

domains and aggregation of others, which is reflected in the slight decrease of the perimeter 

metric’s surface and an increase in its standard deviation. These observations are all in agreement 

with the literature understanding of morphological impacts on P3HT:PC61BM OPV, which has 

been empirically developed. However, this reported workflow allows for an unprecedented degree 

of specificity. Not only are the average sizes extractable, as might be expected of Scherrer analysis, 

but the standard deviation, median, and variance can be calculated as a result of cataloging all of 

the individual domains with m2py. Further, the shapes, orientations, and other feature descriptions 
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of the domains, which are not measurable by diffraction or calorimetry, can be quantitatively 

reported. Additional representative surface plots that show the evolution of OPV domain 

descriptors throughout annealing are shown in Figures S3-7 and a comprehensive archive of the 

morphology and performance surfaces are available for free online at 

www.github.com/wesleyktatum/py-conjugated. The m2py toolkit source code is also available for 

free online at www.github.com/ponl/m2py. It should be noted that while the work herein focuses 

on a P3HT:PCBM OPV architecture, the m2py toolkit is material agnostic, and can extract 

morphological features from any material. From this, the algorithms presented herein could be 

applied to other OPV architectures and material compositions.  

 

 

http://www.github.com/wesleyktatum/py-conjugated
http://www.github.com/ponl/m2py
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machine learning models to predict several solar cell performance metrics. To that end, we use 

different subsets of the overall dataset to isolate and understand the influence of different 

morphological encodings on our performance predictions. As a baseline for the level of 

predictivity that annealing conditions alone can have, a dataset containing only annealing 

conditions and device performance was created. This dataset is referred to as the Annealing-

conditions Only Dataset (AOD, Nsamples = 366) and representative surface plots of the device 

performances are shown in Figure 2.b. Although it does have the most samples of all the datasets, 

the AOD encodes no morphology information and is therefore expected to not have enough 

information to produce good predictions. The most information-rich encoding of morphology 

information would be to directly use the FDM images of the active layers as an input into our 

predictive models. This is because the FDM images capture a morphology representation that 

closely resembles the actual, ground truth surface morphology of the active-layer and can thereby 

convey many of the ground truth’s local and continuous variations. This information is also 

encoded across eight different imaging channels that include material properties such as Young’s 

modulus and deformation. These measurements are defined as the image dataset (Nsamples = 36). 

Another substituent dataset used was the labelled images, called the m2py labels dataset (Nsamples 

= 36). In this dataset, there are only 3 image channels of morphology information, which are 

derived from the material phase labels – individual channels that are used to convey a binary 

representation of the distribution and placement for each of the three phases identified in the OPV 

thin films (i.e. polymer-rich, fullerene-rich, and mixed-phase). Because the m2py labels are a 

distillation of the FDM images, there are fewer channels and the m2py dataset retains fewer local 

and continuous fluctuations than the raw FDM images, potentially losing predictive information. 

However, the information is more densely encoded and could potentially result in improved 



13 
 

performance due to the removal of instrumental noise and overall information distillation. The 

morphology encodings can be further simplified with m2py by measuring the features of the 

labeled morphological domains. This most distilled morphological description is the Complete 

Tabular Dataset (CTD, Nsamples = 36) and was used to produce the descriptor surfaces in Figure 

2.a. In this most simple quantitative morphology description, nine different domain measurement 

values (relative area, total area, filled area, extent, major axis length, minor axis length, 

eccentricity, orientation, and perimeter)33 were averaged across all the domains within each of the 

phases labeled by m2py. The average values are stored in a table, along with their associated 

standard deviation. By simplifying the m2py labels into these tabular summaries, the morphology 

data is able to be directly incorporated into simple predictive models, like polynomial regression. 

An advantage of this is that the contribution of different morphological features to the final 

prediction can be more explicitly extrapolated, enabling an understanding of which quantitative 

morphology descriptors have the largest influence on device performance. In this work, we use 

several types of regressors to identify contributions of the aforementioned individual features. In 

particular, we focus on understanding the impact of different morphology encodings on 

performance predictions of a well-understood OPV system. We utilize traditional machine 

learning regressors as baseline comparisons, while using neural networks (NN) as the main 

regressor model because of its feasibility in creating models that accommodate different formats 

and combinations of data. 

3.2 MODEL ACCURACY AND PERFORMANCE 

Because the datasets are small, results are reported from 5-fold cross validation, with an 80:20 

train-test split for each fold, through custom and Scikit-Learn functions. The regressors tested 

include custom NNs,27 least absolute shrinkage selection operator (LASSO), ridge, support vector 
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machine (SVM), and random forest (RF).30 For comparison of model performance, mean absolute 

percent error (MAPE), mean-squared error (MSE), and the coefficient of determination (R2) are 

used. The best results of MAPE and R2 reported by the cross-validation are shown in Figure 4, and 

MSE is shown in Figure S1. The best, average, and worst cross-validation values for each NN are 

reported in Table S1, and the best hyperparameters for all models are reported in Table S2, 

including architecture parameters for the NN.  

The architecture of the NNs is a common backbone followed by multiple output branches as 

depicted in Figures 3 and S2. One key difference to note is that each NN model predicts all four 

metrics at once, while each of the non-NN regressors need four separate models to predict the 

metrics. Thus, the traditional regressors should have outperformed NNs since they are learning 

multiple models with each specializing on a single metric. However, the results in Figures 4 and 

 

Figure 3. A representation of the structure used for NN5 and NN6. These networks take in 

both tabular data (the CTD) and image data, where NN5 uses m2py labels and NN6 uses 

FDM images. After 3 cycles of convolution, pooling, and activation, the flattened image 

encoding is combined with the CTD encoding. This common embedding is then sent to 
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each of the 4 branches that are used to predict OPV performance metrics. In each branch, 

further compression of the encoding allows for specialized predictions for each metric. 

 
S1 indicate that when morphological information is included, the added complexity of the NN 

regressors make up for the lack of specialization, allowing them to make higher quality predictions 

than the traditional regressors. This is attributed to three main factors: first, NNs are feature 

engineers that optimize learned features based on the outputs of the model; second, the learned 

features from the shared backbone have extracted meaningful descriptors from the input 

morphology information; and lastly, the learned features for each of the output branches have 

extracted relevant information specialized to each of the OPV performance metrics. This 

specialization of branches for predicting specific values from a common input, commonly known 

as multi-task learning, has been shown to be, not only more effective than individually trained 

networks, but also quicker and simpler to use and train.34 Therefore, by leveraging the advantages 

of multi-task learning and the interdependent nature of the physical properties being predicted by 

the system, the NN models are able to outperform the traditional regressors. Within this work, our 

goal was to explore how the level of incorporated morphological information introduced into the 

model influenced its performance. We anticipate that using a more complicated NN architecture 

could potentially improve the performance of the NNs further; such modifications represent 

reasonable next steps, but are beyond the scope of the current work. 





17 
 

datasets: AOD (1), the CTD (2), m2py labels (3), FDM images (4), CTD and m2py labels (5), 

CTD and FDM images (6), or the CTD, FDM images, and their m2py labels (7).  

 

In general, we see that the models tend to have the easiest time predicting Voc and Jsc, while there 

is consistently more error in predicting PCE and FF. In looking at the Voc surfaces for both the 

CTD and AOD (Figures S3 and S4, respectively), we see that this device metric is the most tightly 

distributed and consistent across all annealing conditions. This is due to the fact that Voc is not 

dependent so much on device morphology as it is on the energy-levels of the donor and acceptor 

compounds.35 Since all of these devices were made with the same ratio of P3HT:PC61BM, it can 

be assumed that only minor fluctuations will be present as a result of local fluctuations in 

P3HT:PC61BM, and that these differences are small enough that most models will predict Voc with 

relatively low error. Jsc, however, shows large distributions and variations throughout the 

annealing conditions. Despite this, many models were able to predict Jsc with relatively low error, 

especially as more morphological information is presented to the models. This is due to the fact 

that Jsc is strongly linked to active-layer morphology, with sub-optimal morphologies leading to 

charge-recombination pathways that directly decrease the overall Jsc possible in the thin film.24,36–

40 This correlation is so strong that the models with more encoded morphological information 

consistently predict Jsc most accurately, surpassing even the tightly distributed Voc, as seen with 

NN3-NN7 in Figure 4 (especially Figure 4.b). This observation confirms that the morphological 

information distilled by these reported methods are highly descriptive and useful, even with small 

datasets. Due to the number of factors outside of morphology that influence PCE and FF, such as 

contact resistance, it is expected that prediction accuracy will be worse for these performance 

metrics. In looking at the PCE and FF results of Figure 4, this trend is seen. Promisingly, though, 
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there are still large improvements in PCE and FF upon the incorporation of morphology 

information, especially when most or all of the morphology information is included (as with NN6 

and NN7). In order to further improve the model predictions for PCE and FF, it is expected that 

adding additional training features that convey such information, such as J-V curves or the 

measured contact resistance, would address these extra-morphological characteristics that are 

included in the calculation of PCE and FF. 

Looking at the morphological encodings used to train these models, the CTD contains 

summarized domain measurements for each phase in the image. In addition to these, each phase’s 

relative area occupied in the image and its total area in pixels were included as training features. 

As such, along with the annealing conditions, there were a total of 74 training features in the CTD 

to describe the image’s morphology. Four different types of regressors were trained using the AOD 

and the CTD. The results of training with these datasets are shown in Figure 4 with the naming 

convention following the pattern “Regressor1” and “Regressor2”, respectively (e.g. LASSO1, 

LASSO2). For the NN that saw more than just the AOD and CTD, the models are named similarly, 

as described by Table 1. When compared to the AOD, which has far more samples (366 as 

compared to 36), it is remarkable how well the models trained on the smaller datasets perform. 

The information-rich morphology summary of the CTD allows all regressors to perform similar to 

or better than those trained on the AOD, in spite of having an order of magnitude fewer training 

samples. This is true for all four regressors and each of the OPV performance metrics, although 

the most drastic improvements with the introduction of morphology data are seen in the SVM and 

NN (NN1 to NN2). 

These results already point to significant improvements made to each model when they are 

trained on the CTD as compared to just the AOD, even though the CTD is only a high-level 
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summary of the OPV active layer morphology. In order to explore the extent to which more 

descriptive quantitative morphology data informs the prediction of device performance, NNs were 

trained on gradually increasing degrees of encoded morphology data, as described by Table 1. This 

table outlines the different NN models and structures, listing them in order of increasing extent of 

morphology information incorporation. The generalized architectures for each model are shown 

in Figure S2, as denoted in Table 1 and their hyper parameters are reported in Table S2. 

Table 1. Visual architecture reference, model name, and dataset for the series of NN models 

evaluated in this work. 

Architecture Model Dataset 

Figure S2.a 
NN1 Annealing-conditions only (AOD) 

NN2 All Tabular Data (CTD) 

Figure S2.b 
NN3 m2py labels only 

NN4 Image Data Only 

Figure 3,  
Figure S2.c 

NN5 
m2py labels 

& tabular data 

NN6 Image Data & Tabular Data 

Figure S2.d NN7 All data 

 

As anticipated, the NN models with the worst performance were NN1 and NN2, which relied 

only on tabular data. Although there were improvements from NN1 to NN2 with the incorporation 

of morphological training features, the addition of two-dimensional morphological data, either as 

m2py labels or as FDM images, significantly improves model accuracy beyond that of NN2. As 

previously stated, the densest encoding of morphological information is in FDM images and 

models incorporating this data are expected to demonstrate better performance. In looking at the 

results presented in Figure 4 and Table S1, we do see that the best reported cross-validation (CV) 
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metrics tend to come from models that incorporate the image data, especially NN6. However, 

Figure 4 shows that the models incorporating the m2py label dataset have similar, if not better 

performance in their best CV folds. On top of this, Table S1 shows that models that are trained on 

m2py labels have far higher 5-fold CV metrics for both the average and worst folds than their 

image dataset counterparts (e.g. the MAPE of NN3 is lower for both the average and worse CV 

folds than NN4). This result demonstrates that, although there are fewer continuous, local 

fluctuations encoded in the m2py label dataset, the captured features are more consistently 

representative of the active-layer’s morphology; even though there is less overall data in the m2py 

label dataset, it contains more information that is densely represented. So, the m2py label dataset 

allows the NN models to learn how the distribution of the phases present in the active layer affect 

its device performance.  

It is clear that having quantitative morphology information is important to making accurate 

predictions of final device performance. The inter- and intramolecular interactions of the 

components in the active-layer directly influence the generation and harvesting of charge-carriers 

in OPV and affect the electronic properties in many other thin film devices. The highly distilled 

CTD introduces tractable quantitative morphology features that describe these interactions and 

that can be used in any regression model. However, the benefits of the richly informative and 

distilled morphological encoding of the m2py labels seem to surpass these simplified 

representations by providing broader training features to the NN models, while remaining clearer 

than the FDM images, as evidenced in Table S1. That said, the performances of NN3 and NN5 are 

similar enough to imply that the distilled CTD could be sufficient for many applications. 

Distinguishing the extent to which the more densely encoded morphology information is beneficial 

will require much larger datasets than those investigated here. It is also worth noting that NN3 
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through NN7 all have a MAPE below 10% for all OPV metrics, reaching as low as 1.69% for 

NN6’s Jsc prediction (Table S1.b). The fact that these models exhibit such high accuracy with so 

few training samples points to just how informative these reported quantitative morphology 

encodings are in determining properties and performance of thin film photovoltaics. Further, NN6 

and NN7 produce the highest R2 values of all metrics, with R2 for NN6’s Jsc being the highest at 

0.73. This is a remarkable result, especially considering the dataset size. These results show that 

quantitative morphology information, as distilled by m2py labels or summarized in the CTD, are 

crucial to the success of projects seeking to predict final properties based on thin film morphology. 

Addition of the CTD descriptions significantly improved the predictive capabilities of all models, 

even when already training with FDM images, as evidenced by the performance of NN6 compared 

to NN4. 

Finally, although the addition of more detailed device performance information during training, 

such as contact-resistance or full J-V curves, is expected to improve predictions of device metrics 

that are not fully dependent on active-layer morphology, such as PCE and FF, the quantitative 

morphology encodings are shown to already be highly predictive of thin film device performance. 

So, morphology datasets collected and prepared as those shown in this work can be used to train 

predictive models that identify the optimal processing conditions for high performing 

morphologies. 

 

4. CONCLUSIONS 

In this work, we outline a generalizable workflow for quantitatively examining thin film 

morphologies and using those descriptions to train predictive models. These results utilize labels 

produced by the open-source toolkit, m2py, to identify and measure the size, shape, and 
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distribution of domains and phases in SPM images of the thin films. Despite the fact that only the 

surface is imaged, these quantitative morphology summaries are shown to be highly informative 

in describing changes in thin film nanostructures as a result of annealing conditions. Using this 

workflow, varying levels of morphological information were extracted from the images and 

encoded for training predictive models. As more morphology information was included in the 

model training, the prediction accuracy also increased, in spite of a drastically reduced dataset 

sample size from the larger AOD to the CTD, m2py labels, and FDM images. When summary 

morphology descriptors were included alongside SPM image data, the percent error reached as 

low as 1.7% for Jsc, which is highly correlated to morphology, and as high as 8.8% for PCE, which 

is more challenging to predict. These results confirm the high correlation between morphology 

and thin film device performance. As such, quantitative morphology descriptions extracted using 

m2py are shown to be crucial in understanding morphological contributions to the properties of 

thin film active layers, as well as in predicting final device performance of OPVs. This workflow 

is expected to be generalizable to all thin film optoelectronic devices whose active layers can be 

measured by SPM. 

 

CONFLICTS OF INTEREST 

There are no conflicts of interest to declare. 

 

ACKNOWLEDGEMENTS 

W.K.T. and C.K.L. acknowledge NSF DMR-1708317 and NSF DESE-1633216 for funding. 

W.K.T. and D.T. acknowledge MATDAT18 (NSF DMR-1748198) for fostering their 



23 
 

collaboration. Part of this work was conducted at the Molecular Analysis Facility, a National 

Nanotechnology Coordinated Infrastructure site at the University of Washington, which is 

supported in part by the National Science Foundation (Grant ECCS-1542101), the University of 

Washington, the Molecular Engineering & Sciences Institute, and the Clean Energy Institute. 

 

DATA AVAILABILITY 

The processed data required to reproduce these findings are available to download from 

http://dx.doi.org/10.17632/9j7wm22cgn.1 and is citable as Tatum, Wesley; Torrejon, Diego; 

Resing, Anton; Luscombe, Christine (2021), “Py-Conjugated: Quantitative Morphology Data for 

Organic Photovoltaics”, Mendeley Data, V1, DOI: 10.17632/9j7wm22cgn.1 

 
 

REFERENCES 

(1)  Goh, T.; Huang, J.-S.; Yager, K. G.; Sfeir, M. Y.; Nam, C.-Y.; Tong, X.; Guard, L. M.; 

Melvin, P. R.; Antonio, F.; Bartolome, B. G.; et al. Quaternary Organic Solar Cells 

Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Adv. 

Energy Mater. 2016, 6 (21), 1600660. 

(2)  Botiz, I.; Stingelin, N. Influence of Molecular Conformations and Microstructure on the 

Optoelectronic Properties of Conjugated Polymers. Materials (Basel). 2014, 7 (12), 2273–

2300. 

(3)  Yan, Y.; Liu, X.; Wang, T. Conjugated-Polymer Blends for Organic Photovoltaics: 

Rational Control of Vertical Stratification for High Performance. Adv. Mater. 2017, 29 

(20), 1601674. 

(4)  Chang, M.; Lim, G.; Park, B.; Reichmanis, E. Control of Molecular Ordering, Alignment, 

http://dx.doi.org/10.17632/9j7wm22cgn.1


24 
 

and Charge Transport in Solution-Processed Conjugated Polymer Thin Films. Polymers 

(Basel). 2017, 9 (12), 212. 

(5)  Lan, S.; Yang, H.; Zhang, G.; Wu, X.; Ning, W.; Wang, S.; Chen, H.; Guo, T. Impact of 

Fullerene Structure on Nanoscale Morphology and Miscibility and Correlation of 

Performance on Small Molecules: Fullerene Solar Cell. J. Phys. Chem. C 2016, 120 (38), 

21317–21324. 

(6)  Wang, T.; Kupgan, G.; Brédas, J. L. Organic Photovoltaics: Relating Chemical Structure, 

Local Morphology, and Electronic Properties. Trends in Chemistry. Cell Press June 1, 

2020, pp 535–554. 

(7)  Tatum, W. K.; Torrejon, D.; O’Neil, P.; Onorato, J. W.; Resing, A. B.; Holliday, S.; 

Flagg, L. Q.; Ginger, D. S.; Luscombe, C. K.; O’Neil, P.; et al. A Generalizable 

Framework for Algorithmic Interpretation of Thin Film Morphologies in Scanning Probe 

Images. J. Chem. Inf. Model. 2020, 16 (03). 

(8)  Zhou, K.; Liu, J.; Li, M.; Yu, X.; Xing, R.; Han, Y. Phase Diagram of Conjugated 

Polymer Blend P3HT/PF12TBT and the Morphology-Dependent Photovoltaic 

Performance. J. Phys. Chem. C 2015, 119 (4), 1729–1736. 

(9)  Zhou, G.; Ding, H.; Zhu, L.; Qiu, C.; Zhang, M.; Hao, T.; Feng, W.; Zhang, Y.; Zhu, H.; 

Liu, F. Photophysics, Morphology and Device Performances Correlation on Non-

Fullerene Acceptor Based Binary and Ternary Solar Cells. J. Energy Chem. 2020, 47, 

180–187. 

(10)  Jones, M. L.; Dyer, R.; Clarke, N.; Groves, C. Are Hot Charge Transfer States the Primary 

Cause of Efficient Free-Charge Generation in Polymer:Fullerene Organic Photovoltaic 

Devices? A Kinetic Monte Carlo Study. Phys. Chem. Chem. Phys. 2014, 16 (38), 20310–



25 
 

20320. 

(11)  Groves, C. Developing Understanding of Organic Photovoltaic Devices: Kinetic Monte 

Carlo Models of Geminate and Non-Geminate Recombination, Charge Transport and 

Charge Extraction. Energy Environ. Sci. 2013, 6 (11), 3202. 

(12)  Ye, L.; Xiong, Y.; Zhang, M.; Guo, X.; Guan, H.; Zou, Y.; Ade, H. Enhanced Efficiency 

in Nonfullerene Organic Solar Cells by Tuning Molecular Order and Domain 

Characteristics. Nano Energy 2020, 77, 105310. 

(13)   Li, Haoyuan; Sini, Gjergji; Sit, Joseph; Moulé, Adam J.; Bredas, Jean-Luc. Understanding 

Charge Transport in Donor/Acceptor Blends From Large-Scale Device Simulations Based 

on Experimental Film Morphologies. Energy & Env. Sci. 2020, 13 (2), 601–615. 

(14)  Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A. A.; Wu, Z.; Sun, Y.; Feng, L.; Chen, 

D.; Xiao, Z.; et al. Machine Learning–Assisted Molecular Design and Efficiency 

Prediction for High-Performance Organic Photovoltaic Materials. Sci. Adv. 2019, 5 (11). 

(15)  Wu, Y.; Guo, J.; Sun, R.; Min, J. Machine Learning for Accelerating the Discovery of 

High-Performance Donor/Acceptor Pairs in Non-Fullerene Organic Solar Cells. npj 

Comput. Mater. 2020, 6 (1), 1–8. 

(16)  Miller, E. D.; Jones, M. L.; Henry, M. M.; Stanfill, B.; Jankowski, E. Machine Learning 

Predictions of Electronic Couplings for Charge Transport Calculations of P3HT. AIChE J. 

2019, 65 (12). 

(17)  Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Deng, Z.; Ong, S. P. A Critical Review of Machine 

Learning of Energy Materials. Adv. Energy Mater. 2020, 10 (8), 1903242. 

(18)  Nagasawa, S.; Al-Naamani, E.; Saeki, A. Computer-Aided Screening of Conjugated 

Polymers for Organic Solar Cell: Classification by Random Forest. J. Phys. Chem. Lett. 



26 
 

2018, 9 (10), 2639–2646. 

(19)  Sahu, H.; Ma, H. Unraveling Correlations between Molecular Properties and Device 

Parameters of Organic Solar Cells Using Machine Learning. J. Phys. Chem. Lett. 2019, 10 

(22), 7277–7284. 

(20)  Pokuri, B. S. S.; Ghosal, S.; Kokate, A.; Sarkar, S.; Ganapathysubramanian, B. 

Interpretable Deep Learning for Guided Microstructure-Property Explorations in 

Photovoltaics. npj Comput. Mater. 2019, 5 (1), 1–11. 

(21)  Cao, B.; Adutwum, L. A.; Oliynyk, A. O.; Luber, E. J.; Olsen, B. C.; Mar, A.; Buriak, J. 

M. How To Optimize Materials and Devices via Design of Experiments and Machine 

Learning: Demonstration Using Organic Photovoltaics. ACS Nano 2018, 12 (8), 7434–

7444. 

(22)  Rodríguez-Martínez, X.; Pascual-San-José, E.; Fei, Z.; Heeney, M.; Guimerà, R.; 

Campoy-Quiles, M. Predicting the Photocurrent–Composition Dependence in Organic 

Solar Cells. Energy Environ. Sci. 2021, 14 (2), 986–994. 

(23)  Kohn, P.; Rong, Z.; Scherer, K. H.; Sepe, A.; Sommer, M.; Müller-Buschbaum, P.; 

Friend, R. H.; Steiner, U.; Hüttner, S. Crystallization-Induced 10-Nm Structure Formation 

in P3HT/PCBM Blends. Macromolecules 2013, 46 (10), 4002–4013. 

(24)  Huang, Y.-C. C.; Cha, H.-C. C.; Chen, C.-Y. Y.; Tsao, C.-S. S. Morphological Control 

and Performance Improvement of Organic Photovoltaic Layer of Roll-to-Roll Coated 

Polymer Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 150, 10–17. 

(25)  Chen, D.; Nakahara, A.; Wei, D.; Nordlund, D.; Russell, T. P. P3HT/PCBM Bulk 

Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Lett. 

2011, 11 (2), 561–567. 



27 
 

(26)  van der Walt, S. C. C.; Varoquaux, G. The Numpy Array: A Structure for Efficient 

Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. 

(27)  Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Chintala, S. 

PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural 

Inf. Process. Syst. 2019, 32, 8024–8035. 

(28)  Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. 

(29)  Waskom, M.; Team, S. development. Seaborn: Statistical Data Visualization. Zenodo 

2020. 

(30)  Fabian Pedregosa Gael Varoquaux, A. G. et al. Scikit-Learn: Machine Learning in Python. 

J. Mach. Learn. Res. 2011, 12, 2825–2830. 

(31)  Dang, M. T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic 

Research. Adv. Mater. 2011, 23 (31), 3597–3602. 

(32)  Chen, J.-Y.; Kuo, C.-C.; Lai, C.-S.; Chen, W.-C.; Chen, H.-L. Manipulation on the 

Morphology and Electrical Properties of Aligned Electrospun Nanofibers of Poly(3-

Hexylthiophene) for Field-Effect Transistor Applications. Macromolecules 2011, 44 (8), 

2883–2892. 

(33)  van der Walt Johannes L. Schonberger, J. N.-I. et al. Scikit-Image: Image Processing in 

Python. PeerJ. 2014, p e453. 

(34)  Girshick, R. Fast R-CNN. 

(35)  Azzouzi, M.; Kirchartz, T.; Nelson, J. Factors Controlling Open-Circuit Voltage Losses in 

Organic Solar Cells. Trends in Chemistry. Cell Press April 1, 2019, pp 49–62. 

(36)  Min Nam, Y.; Huh, J.; Ho Jo, W. Optimization of Thickness and Morphology of Active 

Layer for High Performance of Bulk-Heterojunction Organic Solar Cells. Sol. Energy 



28 
 

Mater. Sol. Cells 2010, 94 (6), 1118–1124. 

(37)  Mazzio, K. A.; Luscombe, C. K. The Future of Organic Photovoltaics. Chem. Soc. Rev. 

2015, 44, 78–90. 

(38)  Giridharagopal, R.; Ginger, D. S. Characterizing Morphology in Bulk Heterojunction 

Organic Photovoltaic Systems. J. Phys. Chem. Lett. 2010, 1 (7), 1160–1169. 

(39)  Masters, R. C.; Wan, Q.; Zhang, Y.; Dapor, M.; Sandu, A. M.; Jiao, C.; Zhou, Y.; Zhang, 

H.; Lidzey, D. G.; Rodenburg, C. Novel Organic Photovoltaic Polymer Blends: A Rapid, 

3-Dimensional Morphology Analysis Using Backscattered Electron Imaging in the 

Scanning Electron Microscope. Sol. Energy Mater. Sol. Cells 2017, 160, 182–192. 

(40)  Treat, N. D.; Chabinyc, M. L. Phase Separation in Bulk Heterojunctions of 

Semiconducting Polymers and Fullerenes for Photovoltaics. Annu. Rev. Phys. Chem. 

2014, 65 (1), 4. 


	2.1 REGRESSION AND CODE DEVELOPMENT

