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Abstract

In many applications of zero-inflated models, score tests are often used to evaluate whether the population heteroge-

neity as implied by these models is consistent with the data. The most frequently cited justification for using score tests

is that they only require estimation under the null hypothesis. Because this estimation involves specifying a plausible

model consistent with the null hypothesis, the testing procedure could lead to unreliable inferences under model

misspecification. In this paper, we propose a score test of homogeneity for zero-inflated models that is robust against

certain model misspecifications. Due to the true model being unknown in practical settings, our proposal is developed

under a general framework of mixture models for which a layer of randomness is imposed on the model to account for

uncertainty in the model specification. We exemplify this approach on the class of zero-inflated Poisson models, where a

random term is imposed on the Poisson mean to adjust for relevant covariates missing from the mean model or a

misspecified functional form. For this example, we show through simulations that the resulting score test of zero

inflation maintains its empirical size at all levels, albeit a loss of power for the well-specified non-random mean

model under the null. Frequencies of health promotion activities among young Girl Scouts and dental caries indices

among inner-city children are used to illustrate the robustness of the proposed testing procedure.
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1 Introduction

Zero-inflated models provide a simple parametric framework to describe count data with extra zeros. These
models view extra zeros as the result of a heterogeneous process resulting from zero counts being generated

from both a random and a non-random source. They have been extensively studied in various substantive

applications including engineering, medicine, oral health, and agriculture. Lambert,1 Ridout et al.,2 B€ohning
et al.,3 Farewell et al.,4 and references therein provide typical examples of these applications. In typical applica-

tions of these models, it is often of interest to evaluate whether the heterogeneity as implied by the mixture is
consistent with observed data.5–10 Due to its ease of implementation resulting from requiring only estimation of

the null model regardless of the oftentimes complicated full model, the score test has emerged as a popular

approach for this evaluation. It has long been established that this test behaves well in the finite dimensional
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setting under correct specification of the working model.11–15 However, under model misspecification, it is unclear
how the test would perform both asymptotically and in finite sample settings. By misspecification, we mean
instances where the working model is restrictive in view of the true but unknown model. In this paper, we are
specifically interested in situations where model misspecification arises from the mean component of the model
being incorrectly specified (e.g. important variables being ignored in the working model or the functional form
relating the mean to covariates being misspecified).

The issue of model misspecification in parametric modeling is always a concern, both from the estimation and
inference perspective, due to the true data generating mechanism being unknown in practical settings. In this
paper, we investigate the impact of model misspecification on the test of zero inflation for the popular zero-
inflated models, and show how this impact can be mitigated in real applications. More specifically, we propose a
testing procedure that is robust against the stated misspecifications. Unlike existing tests that require the mean
component of the working model to be fully specified, our proposed test can be performed without such spec-
ification and hence its protection from this type of misspecification. Conceptually, our approach consists of
extending the model to a two-level hierarchical formulation by imposing a layer of randomness on the mean
component of the homogeneous model to account for uncertainty in the model specification. We exemplify this
approach on the test of zero inflation for the class of zero-inflated Poisson models, where a random term is
imposed on the Poisson mean to adjust for relevant covariates missing from the mean model or a misspecified
functional form. We consider two scenarios which are often encountered in real applications. The first scenario
occurs when the analyst has no knowledge of important covariates for the mean model in which case our
approach simply treats the mean as an unobserved random variable. The second scenario occurs when the analyst
has partial information on important covariates for the mean model, in which case our approach simply adds an
unobserved random term on the mean model being entertained. A computational advantage of our approach is
that it imposes a gamma distribution on the unobserved random terms and exploits the Poisson-Gamma con-
jugacy to avoid numerical integration. Because the marginal homogeneous process (average across the random
mean) is negative binomial (NB), it provides an important added value for homogeneity testing vis-a-vis robust-
ness, especially in settings where the true homogeneous distribution is Poisson. From a modeling perspective, a
similar approach was proposed by Kassahun et al.16 to represent correlated count data with extra zeros in
addition to overdispersion. These authors focused their effort primarily on the full model fitting, but did not
provide any inference on goodness-of-fit (e.g. test of zero inflation) with respect to observed data. Without such
evaluation, we argue that the applied analysts may be required to interpret an unnecessarily complex mixture
model. This necessitates a need for a critical evaluation of the value of zero-inflated models relative to easily
interpretable non mixture-based (one component) models.

The rest of this paper is organized as follows. The zero-inflated models and the classical score test for homo-
geneity are briefly introduced in Section 2. In Section 3, we conduct a preliminary simulation study to evaluate the
impact of two popular misspecifications on the classical score test for zero inflation. In Section 4, we propose a
robust homogeneity test for zero inflation in count data models. A simulation study to evaluate the finite sample
performance of the proposed test is conducted and presented in Section 5. The proposed test is applied to dental
caries indices among inner city Africa-American children in the Detroit Dental Health Project (DDHP) and the
frequency of health and nutrition promotion activities among participants in the Scouting Nutrition and Activity
Program (SNAP) in Section 6. Discussion and conclusion are given in Section 7.

2 Zero-inflated model and score test of homogeneity

2.1 Zero-inflated model

Suppose that a random sample of n independent subjects with count responses Yi; i ¼ 1; . . . ; n are drawn from a
population governed by a mixture of a point mass at 0 and a discrete distribution with the probability mass
function gið:; hÞ, where h is a vector of unknown parameters. The baseline distribution in zero-inflated models
shall refer to gið:; hÞ. The probability mass function of Yi is

PðYi ¼ yÞ ¼ xi þ ð1� xÞ gið0; hÞ if y ¼ 0

ð1� xiÞ giðy; hÞ if y > 0

(
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where xi is the mixing weight. In general, this weight is a probability constrained between 0 and 1, but a more
relaxed constraint �gið0; hÞ=ð1� gið0; hÞÞ � xi � 1, for i ¼ 1; . . . ; n, can be entertained to accommodate both
zero inflation and zero deflation.5,6,9 When xi ¼ 0, for all i, the mixture model reduces to a homogeneous model
which corresponds to the baseline distribution gið:; hÞ. Depending on the baseline distribution, we have the pop-
ular two-component mixture models such as zero-inflated Poisson (ZIP) models, zero-inflated negative binomial
(ZINB) models and zero-inflated binomial (ZIB) models.1,17,18

2.2 Classical score test of homogeneity

As a goodness of fit, it is often of interest to evaluate the mixing weight by setting xi ¼ 0; i ¼ 1; . . . ; n. For
simplicity, many testing procedures in the literature assume a constant mixing weight such that a single x is
evaluated for all i. For example, Van den Broek5 proposed a score test under ZIP models assuming a constant
mixing weight. Deng and Paul6 also adopted this constancy assumption to perform a score test under ZIB models.
Jansakul and Hinde7,19 further extended the idea to a covariate-adjusted score test by assuming that the mixing
weight depends on covariates via an identity link function in order to improve the power of test. Their test can
access H0 : xi ¼ 0 for all i versus H1 : xi 6¼ 0 for some i for ZIP and ZINB models. They have shown that the test
adopting a constant mixing weight, such as Van den Broek’s test, is just a special case of their approach. Another
similar extension to a covariate-adjusted score test in a more general setting is proposed by Todem et al.9

In this paper, we adopt the constancy assumption and focus our evaluation on the null hypothesis H0 : x ¼ 0
against the two-sided alternative H1 : x 6¼ 0 consistent with the wider support set of x. The associated score test
statistic can be easily derived by following the regular asymptotic theory.11,20 Specifically, the score test statistic
for the class of zero-inflated models is given by

ST ¼ Sxðĥ; 0ÞTV̂x
�1
Sxðĥ; 0Þ

where Sxðĥ; 0Þ is the partial score function with respect to x and evaluated at x¼ 0 and ĥ a consistent estimator of
h under the null hypothesis, and V̂x is the estimated variance of the partial score function Sxðĥ; 0Þ. This score test
statistic follows a v2 distribution with one degree of freedom asymptotically under the null hypothesis.

3 Misspecification schemes

Even though the behavior of the score test under proper model specification is well understood, it is amenable to
produce unreliable inferences if the working null model gið:; hÞ containing the nuisance parameter is misspecified.
Misspecifications may be due to the mean function of the homogeneous model not being well specified in terms of
important covariates and the functional forms. Table 1 is a matrix representing the profile of the mean model
specification both in covariates and the functional form. In this paper, we focus on the practical situations where
the practicing statistician has no knowledge of important covariates or the functional form relating covariates to
mean response. Because of this lack of knowledge of the true data generating mechanisms, misspecification is a
concern that requires a careful examination.

We conduct a preliminary simulation study to evaluate the empirical size of the score test under the misspe-
cification stated in Table 1. As a working example, let X1 and X2 be two independent covariates, and assume a
Poisson process for which the true mean model is k� ¼ expf0:6þ 0:45X1g, but misspecified in working models as
k ¼ expfb0g or k ¼ expfb0 þ b2X2g. Even when the distribution is well specified, the simulation results indicate
that the score test becomes very liberal, rejecting the null hypothesis more often than anticipated (see Table 2).
This result holds even when the sample size is large. We observe similar results when the model misspecification
arises from wrongly assuming a log-linear model for the mean component (results not shown). This limited
simulation study suggests that the test of zero-inflation should be carefully interpreted regarding the potential
model misspecifications. This then necessitates the development of a score test of homogeneity that is robust
against these popular forms of misspecification.

4 A robust homogeneity test for zero-inflated models

We propose a robust score test for homogeneity for the popular ZI models, focusing on the ZIP models. In its
basic formulation, the proposed testing procedure avoids specifying any functional form of the mean response as a
function of covariates. Instead, the method relies on a hierarchical model for which the mean component is simply
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regarded as an unobserved random variable, assuming the analyst has no knowledge of relevant

covariates. We impose a gamma distribution on these unobserved random variables, and exploit the Poisson-

Gamma conjugacy to avoid numerical integration over the unobserved random mean. For situations

where partial knowledge of relevant covariates is available, we extend the proposed test to incorporate covariates

for efficiency gain.

4.1 Robust test with no knowledge of covariates

In settings where the analyst has no knowledge of the true mean in terms of important covariates or its functional

form, we consider a hierarchical model for which the mean is simply a positive random variable. We assume that

Yi; i ¼ 1; . . . ; n are independent realizations from the hierarchical model

YijKi �
0; with weight xi

PoissonðKiÞ; with weight 1� xi

and Ki �Gammaða; bÞ
(

(1)

where xi is the mixing weight and a and b are the shape and scale parameters, respectively. In this model, we avoid

specifying the mean of the Poisson model, and instead use a general random mean Ki. Because the random mean is

unobserved, the marginal distribution of fYðyÞ obtained by integrating out K is

fYðyiÞ ¼
Z 1

0

fYjKðyijkiÞfKðkiÞdki ¼ Iðyi¼0Þxi þ ð1� xiÞ
Z 1

0

e�kikyii
yi!

ka�1
i

CðaÞba e
�ki=bdki

As the result, the zero-inflated model can be re-expressed as

PðYi ¼ yiÞ ¼
xi þ ð1� xiÞ fY� ð0Þ; if yi ¼ 0

ð1� xiÞ fY� ðyiÞ; if yi ¼ 1; 2; 3; . . .

(

Table 2. Empirical sizes of the score test statistics at the nominal level 0.05 using 1,000 Monte Carlo samples of size n generated
from a null model with true mean k� ¼ expf0:6þ 0:45X1g.

Working mean function

Null model n

True Working 50 100 200 500 1000

Misspecification of the mean function

logðkÞ ¼ b0 Poisson Poisson 0.064 0.078 0.082 0.091 0.144

logðkÞ ¼ b0 þ b2X2 Poisson Poisson 0.071 0.087 0.092 0.095 0.137

X1 �Uð0; 1Þ and X2 � truncated normal(0,1) within the interval ð�1; 1Þ.

Table 1. The mean model specification schemes.

The functional form

Correctly specified Misspecified

Relevant covariates

Included Well-specified modela Poor-specified modelb

Ignored Poor-specified modelb Poor-specified modelb

aThe behavior of the score test for the well-specified model is well understood.
bThe behavior of the score test is poorly understood.
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where the density function of the baseline distribution is

fY� ðyiÞ ¼ Cðyi þ aÞ
yi! CðaÞ

b
1þ b

� �yi 1

1þ b

� �a

; yi ¼ 0; 1; 2; 3; . . .

This baseline distribution fY� ðyiÞ is actually a NB with mean EðY�Þ ¼ ab and variance VarðY�Þ ¼ abð1þ bÞ.
Hence, with an additional dispersion parameter a, a Poisson baseline distribution can be naturally accommodated

by this particular zero-inflated model, which indeed is a larger class of model in view of Poisson. Intuitively, we

are using a more general and larger model to avoid any potential misspecifications on the mean component.
The log-likelihood function, given independent observations y ¼ ðy1; . . . ; ynÞ and assuming xi ¼ x for all i, is

lða; b;x; yÞ ¼
Xn
i¼1

fIðyi¼0Þlog½xþ ð1� xÞð1þ bÞ�a� þ Iðyi>0Þ½logð1� xÞ þ logCðyi þ aÞ
� logCðaÞ � logCðyi þ 1Þ þ yilogðbÞ � ðyi þ aÞlogð1þ bÞ�g

Under the null hypothesis H0 : x ¼ 0, the proposed robust score test is

ST ¼ Sxðâ; b̂; 0ÞTV̂x
�1
Sxðâ; b̂; 0Þ

where Sxðâ; b̂; 0Þ ¼
Xn

i¼1
Iðyi¼0Þ½ð1þ b̂Þâ � 1�

n o
is the partial score function, with â and b̂ being the maximum

likelihood estimates of a and b under the null hypothesis. The estimate V̂x is given by

V̂x ¼ Ixxðâ; b̂; 0Þ � Ixabðâ; b̂; 0ÞT½Iabðâ; b̂; 0Þ��1Ixabðâ; b̂; 0Þ, where

Ixabðâ; b̂; 0Þ ¼ Ixaðâ; b̂; 0Þ
Ixbðâ; b̂; 0Þ

" #
and Iabðâ; b̂; 0Þ ¼ Iaaðâ; b̂; 0Þ Iabðâ; b̂; 0Þ

Ibaðâ; b̂; 0Þ Ibbðâ; b̂; 0Þ

" #

Matrices Ixxðâ; b̂; 0Þ; Ixaðâ; b̂; 0Þ; Ixbðâ; b̂; 0Þ; Iaaðâ; b̂; 0Þ; Ibbðâ; b̂; 0Þ; Iabðâ; b̂; 0Þ, and Ibaðâ; b̂; 0Þ are subma-

trices of the Fisher information matrix evaluated under H0. Under the null hypothesis, this score test statistic

ST follows a v21 distribution asymptotically. Details are relegated to Supplementary material Appendix A.

4.2 Robust test with partial knowledge of covariates

A limitation of the above proposed testing procedure, albeit its robustness against the stated misspecifications, is

that it may not be efficient in settings where the analysts have a good knowledge of important variables. To

improve efficiency in this type of settings, a simple extension would consist of entertaining a mixed effects model in

which both random effects and fixed effects are entertained in the model in the spirit of Kassahun et al.16 More

specifically, the following hierarchical model is entertained

YijKi �
0; with weight xi

PoissonðKifcðXiÞÞ; with weight 1� xi

and Ki �Gammaða; bÞ
(

Here Yi (i ¼ 1; . . . ; n) are independent count observations, xi is the mixing weight and fcðXiÞ is a non-negative

and non-random finite dimensional function in covariate Xi. A good example for such functions is the log-linear

model fcðXiÞ ¼ expfXicg, where the covariate vector Xi ¼ ðxi1; xi2; � � � ; xipÞ and c ¼ ðc1; � � � ; cpÞT. The assumption

of multiplicative effect fcðXiÞ is partly driven by the nature of Poisson mean as adopted by Molenberghs et al.21

and Kassahun et al.16 The advantage of using the log link for fcðXiÞ is to reflect that with count data the effects of

predictors are often multiplicative.22,23 For model identifiability purposes, no intercept is included in the log-linear

model. When there is no knowledge of covariates, this hierarchical model reduces to the simple model in equation

(1) by letting Xi¼ 0. Overall, it is straightforward to see that if an important covariate is ignored from the model,

the random component Ki may help alleviate the impact of such misspecification.
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In this formulation, the baseline distribution is again a NB with mean EðY�
i Þ ¼ abeXic and variance

VarðY�
i Þ ¼ abeXicð1þ beXicÞ. As we can see the important covariates Xi are accommodated into its marginal

mean and variance to systematically characterize the variability in the data, thus it is anticipated that the testing

efficiency can be improved.
The log-likelihood function lða; b; c;x; yÞ of this hierarchical model is given as

lða; b; c;x; yÞ ¼
Xn
i¼1

fIðyi¼0Þlog½xþ ð1� xÞð1þ beXicÞ�a�

þ Iðyi>0Þ½logð1� xÞ þ logCðyi þ aÞ � logCðaÞ � logCðyi þ 1Þ
þ yilogðbeXicÞ � ðyi þ aÞlogð1þ beXicÞ�g

As the score vector and the information matrix can be obtained using the above log-likelihood function, one

can follow the standard procedure to conduct the robust score test easily. The formulations of these associated

score vector and the information matrix are given in Supplementary material Appendix B. It is expected that this

test will be more powerful than the one without any covariates, as long as the important covariates are included,

regardless of its functional form, into the working mean component.

5 Simulation study

The empirical performance of the proposed test is evaluated by investigating the sizes and powers of the test

under misspecification of the mean function. We generate data from ZIP models with various true mean

functions for assessing the empirical sizes and powers of the proposed robust test. We consider the

true means logðk�Þ ¼ 1; logðk�Þ ¼ 1� 0:4X1; logðk�Þ ¼ 1� 0:4X1 � 0:25X2, and a non-log-linear form

k� ¼ 3� 1:2X1 þ 0:24X2
1, where k

� > 0 with X1 and X2 being two independent covariates generated from uniform

U(0, 1) and Bernoulli Berð0:6Þ, respectively. We use the integrated mean squared error (IMSE) of the estimated

marginal mean relative to its true counterpart throughout the covariate profile to measure the magnitude of

misspecifications. Throughout all simulations, we perform the proposed robust score test with/without covariates

and the correctly specified test (i.e. Van den Broek’s test5) for comparison purposes. All simulations are conducted

with 1000 Monte Carlo samples for sample sizes 50, 100, 200, 400, and 800.
We first generate data from homogeneous Poisson models (i.e. the null model) with the stated true mean

functions for assessing the empirical sizes of the proposed robust test. The empirical sizes of the tests are given

in Table 3. Overall, the size of the proposed test tends to be conservative but remains stable with an increasing

sample size. When the working mean is correctly specified in terms of covariates, the proposed robust test can

maintain its size at the nominal level of 0.05 in large sample size. This is also true for over-fitted mean models (e.g.

an irrelevant covariate is included into the model). For example, the true mean model only involves X1, but it is

over-specified with X1 and X2. For such a case, we observe that their associated IMSEs decrease when the sample

size increases. This result shows that the impact of misspecification has been relieved as long as an important

covariate is incorporated into the working mean model. In contrast, when an important covariate is omitted from

the working mean model, the proposed tests tend to be conservative and their associated IMSEs remain large even

in a large sample size. A good example in our simulation is that the true mean function is logðk�Þ ¼ 1� 0:4X1, but

the working mean is assumed to be independent of any covariates (i.e. using no covariate). The result indicates

that the proposed tests can entertain their robustness but cannot alleviate the impact of misspecification when

important covariates are ignored.
We further evaluate the test when the working mean function has a different functional form from the true

mean. For instance, the true mean is k� ¼ 3� 1:2X1 þ 0:24X2
1 (i.e. a quadratic function) but the working mean is

specified as either a function independent of any covariates or a log-linear function of covariates. If the important

covariate is totally ignored from the testing procedure, the size of our robust test (without using any covariates)

remains stable but slightly conservative. When we include important covariates in the working mean, the pro-

posed robust test (with partial knowledge of covariates) can lessen the effect of misspecification and possibly

maintain its size at the nominal level. This is particularly true when the working mean can well approximate the

true mean. A good example is that the true mean k� ¼ 3� 1:2X1 þ 0:24X2
1 can be well approximated by a working

mean function expfb0 þ b1X1g. This can be easily shown by a Taylor series approximation.
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Overall, the size of the proposed test can be well maintained at the nominal level with large sample size, as long
as important covariates are included. If there is no knowledge of covariates, the proposed test tends to be slightly
conservative but very stable for all sample sizes. Even though the proposed robust test behaves conservative, the
test still retains its robustness property against any misspecification of the mean.

Next, we evaluate the powers of the tests by generating the data from ZIP models with the true mixing weight
x� ¼ 0:1 (i.e. the alternative model). We consider the simulation schemes where the working mean may be well
specified, misspecified or over-fitted to evaluate the performance of our robust tests. We also conduct the well-
specified score test (i.e. Van den Broek’s test) in the simulation for comparison purposes. As expected, the power
of the robust test increases as the sample size increases (see Table 4). The proposed robust test gains more power
when the working mean is well specified (i.e. important covariates are included). For example, the robust test
using covariate X1 outperforms the test that uses no covariate or only X2 when the true mean is

Table 3. Empirical sizes (x� ¼ 0) of the robust score test statistics and the Integrated Mean Squared Errors (IMSEs) for estimating
marginal mean using 1000 samples generated from Poisson regression models with true mean k�, at the nominal level 0.05.

True mean function Test Working mean function

Sample size n

50 100 200 400 800

logðk�Þ ¼ 1 Robust test Using no covariate 0.031 0.024 0.036 0.046 0.048

(0.055) (0.028) (0.014) (0.007) (0.003)

Using only X1 0.030 0.026 0.037 0.044 0.049

(0.111) (0.055) (0.027) (0.014) (0.007)

Using only X2 0.028 0.023 0.039 0.043 0.050

(0.111) (0.055) (0.028) (0.014) (0.007)

Using X1 and X2 0.027 0.024 0.037 0.048 0.054

(0.167) (0.082) (0.041) (0.021) (0.010)

Van den Broek’s testa 0.038 0.042 0.045 0.051 0.054

logðk�Þ ¼ 1� 0:4X1 Robust test Using no covariate 0.024 0.021 0.018 0.038 0.030

(0.108) (0.088) (0.078) (0.072) (0.069)

Using only X1 0.026 0.026 0.026 0.047 0.059

(0.087) (0.046) (0.022) (0.011) (0.006)

Using only X2 0.028 0.026 0.020 0.041 0.032

(0.150) (0.110) (0.090) (0.078) (0.072)

Using X1 and X2 0.027 0.032 0.025 0.047 0.063

(0.131) (0.069) (0.034) (0.017) (0.009)

Van den Broek’s testa 0.043 0.036 0.043 0.057 0.060

logðk�Þ ¼ 1� 0:4X1 � 0:25X2 Robust test Using no covariate 0.019 0.019 0.013 0.011 0.018

(0.145) (0.128) (0.120) (0.115) (0.112)

Using only X1 0.020 0.025 0.018 0.024 0.028

(0.135) (0.097) (0.079) (0.069) (0.064)

Using only X2 0.021 0.026 0.022 0.023 0.028

(0.126) (0.090) (0.071) (0.061) (0.056)

Using X1 and X2 0.024 0.030 0.036 0.039 0.059

(0.119) (0.060) (0.031) (0.015) (0.007)

Van den Broek’s testa 0.033 0.047 0.052 0.044 0.051

k� ¼ 3� 1:2X1 þ 0:24X2
1 Robust test Using no covariate 0.016 0.026 0.025 0.029 0.030

(0.126) (0.102) (0.089) (0.083) (0.080)

Using only X1 0.020 0.033 0.039 0.044 0.047

(0.102) (0.051) (0.025) (0.012) (0.006)

Using only X2 0.018 0.027 0.027 0.031 0.028

(0.172) (0.125) (0.102) (0.089) (0.083)

Using X1 and X2 0.018 0.041 0.037 0.048 0.045

(0.151) (0.075) (0.038) (0.019) (0.009)

Van den Broek’s testb – – – – –

X1 �Uð0; 1Þ and X2 �Berð0:6Þ; IMSEs are given in the parentheses.
aVan den Broek’s test with the correctly specified mean.
bVan den Broek’s test is under misspecification when the true mean function is not log-linear.
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logðk�Þ ¼ 1� 0:4X1. It is also true for settings where the working mean is over-fitted. We observe similar results
when both X1 and X2 are included in the working mean while the true mean is logðk�Þ ¼ 1� 0:4X1. Notice that the
existing classical score tests of homogeneity for zero-inflated models will suffer from model misspecification badly
if the true mean function is not a log-linear function. That is because these existing tests are all assuming a log-
linear working mean.

Overall, compared to the well-specified test, the robust test could lose some power in detecting the heteroge-
neity in the data. But the robust test can gain power when important covariates are used. This result is anticipated
because when we know more about the important covariates, then we can better alleviate the impact of mis-
specification. When there is no knowledge of covariates, our robust test becomes conservative as we observed
from the simulations. This finding indicates that conservativeness comes as the price for having the robustness

Table 4. Empirical powers (x� ¼ 0:1) of the robust score test statistics and the Integrated Mean Squared Errors (IMSEs) for
estimating marginal mean using 1,000 samples generated from zero-inflated Poisson regression models with true mean k�, at the
nominal level 0.05.

True mean function Test Working mean function

Sample size n

50 100 200 400 800

logðk�Þ ¼ 1 Robust test Using no covariate 0.148 0.308 0.534 0.849 0.951

(0.134) (0.099) (0.088) (0.085) (0.078)

Using only X1 0.153 0.310 0.519 0.842 0.938

(0.201) (0.132) (0.104) (0.093) (0.082)

Using only X2 0.155 0.315 0.536 0.838 0.951

(0.191) (0.129) (0.104) (0.093) (0.082)

Using X1 and X2 0.127 0.283 0.518 0.845 0.956

(0.259) (0.162) (0.120) (0.101) (0.086)

Van den Broek’s testa 0.494 0.788 0.973 0.999 0.999

logðk�Þ ¼ 1� 0:4X1 Robust test Using no covariate 0.083 0.126 0.250 0.455 0.769

(0.160) (0.142) (0.128) (0.123) (0.120)

Using only X1 0.089 0.131 0.249 0.513 0.848

(0.144) (0.103) (0.074) (0.064) (0.057)

Using only X2 0.091 0.137 0.250 0.450 0.781

(0.205) (0.167) (0.141) (0.129) (0.123)

Using X1 and X2 0.072 0.134 0.256 0.496 0.837

(0.192) (0.128) (0.087) (0.070) (0.060)

Van den Broek’s testa 0.323 0.581 0.842 0.986 0.999

logðk�Þ ¼ 1� 0:4X1 � 0:25X2 Robust test Using no covariate 0.081 0.108 0.147 0.252 0.477

(0.182) (0.163) (0.157) (0.151) (0.150)

Using only X1 0.084 0.092 0.147 0.253 0.532

(0.177) (0.134) (0.117) (0.106) (0.103)

Using only X2 0.074 0.083 0.142 0.281 0.561

(0.170) (0.128) (0.109) (0.098) (0.095)

Using X1 and X2 0.064 0.083 0.128 0.292 0.623

(0.167) (0.100) (0.070) (0.053) (0.047)

Van den Broek’s testa 0.202 0.416 0.683 0.949 0.999

k� ¼ 3� 1:2X1 þ 0:24X2
1 Robust test Using no covariate 0.127 0.170 0.335 0.662 0.878

(0.190) (0.164) (0.148) (0.146) (0.143)

Using only X1 0.117 0.199 0.387 0.740 0.917

(0.177) (0.117) (0.087) (0.077) (0.070)

Using only X2 0.113 0.181 0.343 0.663 0.863

(0.244) (0.190) (0.162) (0.152) (0.146)

Using X1 and X2 0.096 0.171 0.381 0.719 0.912

(0.234) (0.145) (0.101) (0.083) (0.073)

Van den Broek’s testb – – – – –

X1 �Uð0; 1Þ and X2 �Berð0:6Þ; IMSEs are given in the parentheses.
aVan den Broek’s test with the correctly specified mean.
bVan den Broek’s test is under misspecification when the true mean function is not log-linear.
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under any mean misspecifications, showing the tradeoff between the statistical power and the robustness when

using the proposed test.

6 Real data application

6.1 Girl Scouts data

To illustrate the proposed test, we use the Girl Scouts data from the SNAP study.24 The objective of this study was

to evaluate the effectiveness of an intervention program designed to improve the physical activity and nutrition

environment in the Girl Scout troops. In this study, three Girl Scout troops were randomized to the intervention

arm and four to the control arm. In the intervention arm, troop leaders were trained to implement policies

promoting physical activity and healthful eating opportunities at troop meetings. In the control troops, the leaders

were not given any training to implement such promotions. At each of the seven troop meetings taking place

between October 2007 and April 2008, a trained research assistant observed and counted the number of times

health and nutrition promotions implemented by troop leaders. Research assistants were blinded to the condition

of each troop (for more details, see Schlechter et al.25).
For our analysis, we are interested in the frequency of nutrition promotion activities occurring every 5min at

the troop meeting. We conduct the proposed robust score test along with Van den Broek’s score test in which the

baseline distribution is Poisson and the mixing weight is a constant. For Van den Broek’s test, the mean is k ¼
expfb0 þ b1X1g where X1 is an indicator variable of the intervention (1 ¼ intervention group, 0 ¼ control group).

The test results are presented in Table 5.
Van den Broek’s score test rejects the null hypothesis at a 0.05 significance level. However, our proposed robust

tests with/without covariates fail to reject the null hypothesis, which are in favor of the model under the null

hypothesis. In other words, the robust tests are inclined to suggest a homogeneous model, rather than a more

complex model. To further evaluate these test results, we compare several count models using Bayesian

Information Criteria (BIC) (see results in Table 6). The mean function in each count model is assumed as k ¼
expfb0 þ b1X1g where X1 is an indicator variable for the intervention. Among these count models, the NB model

shows the smallest BIC (BIC¼ 279.87), suggesting a better model fit compared to the ZIP model which has a BIC

of 312.29. Figure 1(a) further supports the relative good fit of the NB model compared to the ZIP model. This

result is in agreement with the results of our robust test and that of Jansakul and Hinde’s test19 (test

statistic¼ 0:030, p-value¼ 0:862) which incorporates covariates. In Table 6, it is interesting to see the opposite

signs of the estimated mixing weights for the ZIP and ZINB models. Although the negative mixing weight is not

significant in the ZINB model, it does indicate a sign of zero deflation in the data. Compared to the ZINB model,

the ZIP model indicates the presence of zero inflation but it does not provide a better model fit to the data. In fact,

the ZIP model can incorporate extra zeros in the data but cannot handle overdispersion nicely. The real data

exhibit certain overdispersion, thus this may explain why we observe the opposite results in model estimation

between the ZIP and ZINB models.
We additionally conduct a stratified analysis to investigate whether both zero inflation and deflation are present

in the data. Figure 1(b) and (c) show the observed and predicted proportions with a homogeneous NB model for

the intervention group and the control group, respectively. In these figures, the fitted proportions are very close to

the observed proportions, suggesting the data could be well fitted by a NB model, showing no evidence for a

mixture model. We further examine the mixing weights at zero for both groups using Wald test. The mixing

weight is neither significant (p-value¼ 0.793) for the intervention group nor for the control group (p-val-

ue¼ 0.991); thus, there is no evidence to support the presence of zero inflation or deflation in the data.

Table 5. Comparison of score test statistics, degrees of freedom, and the associated p-values of homogeneity tests for the girl
scouts data.

Van den
The proposed robust test

Broek’s test Without covariates Intervention (X1)

df 1 1 1

Test statistic 56.856 0.075 1.065

p-Value <0.001 0.784 0.302

Hsu et al. 3661



Clearly, a zero-inflated model is too complex for the Girl Scouts data. These additional results also support our

robust test, and indicating our test’s robustness and effectiveness.
It is worth mentioning that the coefficient of X1 in NB is significant (estimated coefficient¼ 1.965, p-val-

ue< 0.001, Table 6), indicating the intervention program has a significant effect on the Nutrition Promotions

implemented by Girl Scout leaders.

6.2 Dental caries data

We further illustrate the proposed robust score test with the dental caries data from the DDHP study which was

designed to assess dental caries severity of low-income African-American children under age 6 and their main

caregivers who resided in Detroit, Michigan.26 Although the study is longitudinal in nature, we use cross-sectional

data of 897 children surveyed in the first wave of examinations conducted between 2002 and 2003. The outcome

variable in our analysis is DS which represents the number of decayed tooth surfaces. Sugar intake and age are

Table 6. Fits of different count models for the Girl Scouts data.

Estimated coefficient for intervention Estimated mixing weight BIC

Model b̂1 x̂

Poisson 1.965 – 360.36

(<0.001)

NB 1.965 – 279.87

(<0.001)

ZIP 1.775 0.487 312.29

(<0.001) (< 0.001)

ZINB 2.023 –2.696 283.90

(<0.001) (0.864)

Note: p-Value of Wald test is given in the parentheses.
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Figure 1. Observed versus fitted proportions by the NB model for all participants (a), the intervention group (b) and the control
group (c).

Table 7. Comparison of score test statistics and the associated p-values for the dental caries data.

Van den Broek’s test

The proposed robust test

Without covariates Age SI Age and SI

df 1 1 1 1 1

Test statistic 740366.9 37.786 38.978 14.737 134.780

p-value <0.001 <0.001 <0.001 <0.001 <0.001
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used as covariates in our model. For comparison purpose, we perform the proposed robust tests and Van den
Broek’s test. Van den Broek’s test is performed under the assumption of a Poisson distribution with a mean
function of covariates Age (child’s age in years), SI (the child’s sugar intake), and interaction Age*SI. Our robust
test does not require the specification of the mean function. By knowing the covariates Age and SI, we can also
perform the robust tests that incorporate Age and SI into the mean model. The results are given in Table 7.

Our robust tests with/without covariates and Van den Broek’s score test reject the null hypothesis at a 0.05
significance level, supporting the hypothesis of heterogeneity. Even though all tests are not in favor of the null
model (i.e. Poisson model), our robust tests provide much smaller test statistics compared to Van den Broek’s test
statistic. In other words, unlike Van den Broek’s test, the proposed tests do not give a very strong evidence in
favor of the ZIP model. When observing such a huge discrepancy in test statistic, we suggest that further inves-
tigation is needed to ensure the validity of statistical inferences for the study. Especially, rejecting the hypothesis
of homogeneity does not give evidence that the ZIP model provides the best fit for the data. In fact, Todem et al.9

have conducted Jansakul and Hinde’s test to assess the inclusion of extra zeros in the data, and the test actually
failed to reject the null hypothesis of a homogeneous NB model. On top of the non-significant testing result,
Todem et al.9 further provided additional graphical evidence and indicated that a simple NB model can provide a
better fit to the data than a zero-inflated model. This example highlights the need for practicing statisticians to
carefully interpret rejection of the null hypothesis in the light of a possible model misspecification. This is a
reminder that rejecting the null hypothesis simply implies that the alternative complex model should be further
evaluated against other competing models.

7 Discussion

In this paper, we proposed a random-variable approach for evaluating the need of a zero-inflated model when the
working model is potentially misspecified. We showed that the test is robust under misspecifications of the
associated components of the working model (e.g. important covariates being ignored in the working model).
Unlike existing tests that require the mean component to be fully specified in terms of covariates or functional
form, our proposed test can be performed without an explicit specification of the mean function. Rather the test
uses unobserved random effects as a proxy for the mean function. A gamma distribution was imposed on these
random effects to capitalize on the Poisson-Gamma conjugacy and ease computations. This method is particularly
important in settings where the analyst has little to no knowledge of covariates and the associated functional form
relating these covariates to the mean response. In our view, this approach is the most conservative method in that
the practicing statisticians have no knowledge of true underlying model in many applications. We recognized that
the gamma distribution may be too restrictive. The reason for using the gamma distribution in our method is its
computational simplicity and, more importantly, its popularity among practicing analysts in many applica-
tions.27,28 This restriction may be alleviated by imposing instead a finite mixture gamma distribution for which
the number of components may be dictated by the observed data. The advantage of the mixture is that marginally
the homogeneous model will become a mixture of negative binomial.29 Such an approach still enjoys the com-
putational simplicity while providing protection for possible misspecifications. This and other extensions merit
further research.

We further extend the working model to incorporate partial information (e.g. some knowledge of covariates)
into the testing procedure in order to improve the testing efficiency. Such an extension intrinsically assumes a low-
dimensional structure under the null model. However, even under this condition, complications in deriving the
information matrix for more than four covariates are expected in practice. Albeit being more complicated, the
proposed test should work well. Alternatively, a summary score of many covariates can be computed before
performing the proposed test, in which case the estimates under the null model will be only a non-zero regression
coefficient associated with the summary score. Such an approach significantly reduces the dimension of covariate
space prior to the implementation of the proposed test. One popular and well-known approach for creating a
summary score is Principle Component Analysis (PCA). However, the standard PCA may fail to yield consistent
estimators of the loading vectors under very high-dimensional settings.30,31 In such a case, the impact of incon-
sistent estimators on the asymptotic properties of the resulting test statistics is not clear and this requires a further
investigation. For cases where the number of covariates is large in view of the sample size (i.e. high dimensional
structure), conducting the proposed test is not straightforward without knowing a priori the important variables.
However, guided by the scientific knowledge, a small set of variables that are known to be associated with the
phenomenon under study could be chosen to perform the test. And for variables that are associated but not
entertained in this selection would then contribute to the random term (latent variable logðKiÞ). In sum, an
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important message for practicing statisticians is to use the knowledge from historical studies to include the

important covariates when evaluating the zero inflation.
In practice, the test of homogeneity for zero-inflated count data is usually daunting because the true underlying

model that generated the data is typically unknown. This then requires analysts to carefully examine whether the

features of the data are in agreement with the suggested model. To this end, our recommendation is that the

proposed robust score test can be first entertained due to its robustness against the model misspecifications

discussed in this paper. Particularly, the proposed score test tends to be conservative and in favor of the homo-

geneity hypothesis as protection. When the homogeneity hypothesis is rejected, a careful investigation on the zero-

inflated models versus other competing models should be conducted in view of the data. That is because the

rejection does not necessarily imply that the zero-inflated model gives the best fit to the data. When the proposed

test fails to reject the homogeneity hypothesis, we suggest that complex one-component models, such as negative

binomial model, can be adopted even when many zeros are apparently observed in the data. As no significant

evidence supporting a two-component mixture model, using one-component models can further enjoy the ease of

interpretation at the marginal level.
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