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Abstract

In many applications of zero-inflated models, score tests are often used to evaluate whether the population heteroge-
neity as implied by these models is consistent with the data. The most frequently cited justification for using score tests
is that they only require estimation under the null hypothesis. Because this estimation involves specifying a plausible
model consistent with the null hypothesis, the testing procedure could lead to unreliable inferences under model
misspecification. In this paper, we propose a score test of homogeneity for zero-inflated models that is robust against
certain model misspecifications. Due to the true model being unknown in practical settings, our proposal is developed
under a general framework of mixture models for which a layer of randomness is imposed on the model to account for
uncertainty in the model specification. We exemplify this approach on the class of zero-inflated Poisson models, where a
random term is imposed on the Poisson mean to adjust for relevant covariates missing from the mean model or a
misspecified functional form. For this example, we show through simulations that the resulting score test of zero
inflation maintains its empirical size at all levels, albeit a loss of power for the well-specified non-random mean
model under the null. Frequencies of health promotion activities among young Girl Scouts and dental caries indices
among inner-city children are used to illustrate the robustness of the proposed testing procedure.

Keywords
Early childhood caries indices, model extension, mixture models, model misspecification, health promotion activity
frequency, zero inflation

I Introduction

Zero-inflated models provide a simple parametric framework to describe count data with extra zeros. These
models view extra zeros as the result of a heterogeneous process resulting from zero counts being generated
from both a random and a non-random source. They have been extensively studied in various substantive
applications including engineering, medicine, oral health, and agriculture. Lambert,' Ridout et al.,”> Béhning
et al.,’ Farewell et al.,* and references therein provide typical examples of these applications. In typical applica-
tions of these models, it is often of interest to evaluate whether the heterogeneity as implied by the mixture is
consistent with observed data.” ' Due to its ease of implementation resulting from requiring only estimation of
the null model regardless of the oftentimes complicated full model, the score test has emerged as a popular
approach for this evaluation. It has long been established that this test behaves well in the finite dimensional
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setting under correct specification of the working model.'' "> However, under model misspecification, it is unclear
how the test would perform both asymptotically and in finite sample settings. By misspecification, we mean
instances where the working model is restrictive in view of the true but unknown model. In this paper, we are
specifically interested in situations where model misspecification arises from the mean component of the model
being incorrectly specified (e.g. important variables being ignored in the working model or the functional form
relating the mean to covariates being misspecified).

The issue of model misspecification in parametric modeling is always a concern, both from the estimation and
inference perspective, due to the true data generating mechanism being unknown in practical settings. In this
paper, we investigate the impact of model misspecification on the test of zero inflation for the popular zero-
inflated models, and show how this impact can be mitigated in real applications. More specifically, we propose a
testing procedure that is robust against the stated misspecifications. Unlike existing tests that require the mean
component of the working model to be fully specified, our proposed test can be performed without such spec-
ification and hence its protection from this type of misspecification. Conceptually, our approach consists of
extending the model to a two-level hierarchical formulation by imposing a layer of randomness on the mean
component of the homogeneous model to account for uncertainty in the model specification. We exemplify this
approach on the test of zero inflation for the class of zero-inflated Poisson models, where a random term is
imposed on the Poisson mean to adjust for relevant covariates missing from the mean model or a misspecified
functional form. We consider two scenarios which are often encountered in real applications. The first scenario
occurs when the analyst has no knowledge of important covariates for the mean model in which case our
approach simply treats the mean as an unobserved random variable. The second scenario occurs when the analyst
has partial information on important covariates for the mean model, in which case our approach simply adds an
unobserved random term on the mean model being entertained. A computational advantage of our approach is
that it imposes a gamma distribution on the unobserved random terms and exploits the Poisson-Gamma con-
jugacy to avoid numerical integration. Because the marginal homogeneous process (average across the random
mean) is negative binomial (NB), it provides an important added value for homogeneity testing vis-a-vis robust-
ness, especially in settings where the true homogeneous distribution is Poisson. From a modeling perspective, a
similar approach was proposed by Kassahun et al.'® to represent correlated count data with extra zeros in
addition to overdispersion. These authors focused their effort primarily on the full model fitting, but did not
provide any inference on goodness-of-fit (e.g. test of zero inflation) with respect to observed data. Without such
evaluation, we argue that the applied analysts may be required to interpret an unnecessarily complex mixture
model. This necessitates a need for a critical evaluation of the value of zero-inflated models relative to easily
interpretable non mixture-based (one component) models.

The rest of this paper is organized as follows. The zero-inflated models and the classical score test for homo-
geneity are briefly introduced in Section 2. In Section 3, we conduct a preliminary simulation study to evaluate the
impact of two popular misspecifications on the classical score test for zero inflation. In Section 4, we propose a
robust homogeneity test for zero inflation in count data models. A simulation study to evaluate the finite sample
performance of the proposed test is conducted and presented in Section 5. The proposed test is applied to dental
caries indices among inner city Africa-American children in the Detroit Dental Health Project (DDHP) and the
frequency of health and nutrition promotion activities among participants in the Scouting Nutrition and Activity
Program (SNAP) in Section 6. Discussion and conclusion are given in Section 7.

2 Zero-inflated model and score test of homogeneity

2.1 Zero-inflated model

Suppose that a random sample of n independent subjects with count responses Y;,i = 1,...,n are drawn from a
population governed by a mixture of a point mass at 0 and a discrete distribution with the probability mass
function g;(.; @), where 0 is a vector of unknown parameters. The baseline distribution in zero-inflated models
shall refer to g;(.;@). The probability mass function of Y; is

w;+ (1 —w) g(0;0) if y=0

P(Yi:y):{(l—wi) gi(y; 0) if y>0
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where w; is the mixing weight. In general, this weight is a probability constrained between 0 and 1, but a more
relaxed constraint —g;(0;0)/(1 — g:(0;0)) < w; < 1, for i=1,...,n, can be entertained to accommodate both
zero inflation and zero deflation.>®® When w; = 0, for all i, the mixture model reduces to a homogeneous model
which corresponds to the baseline distribution g;(.; #). Depending on the baseline distribution, we have the pop-
ular two-component mixture models such as zero-inflated Poisson (ZIP) models, zero-inflated negative binomial
(ZINB) models and zero-inflated binomial (ZIB) models.'!"-!#

2.2 Classical score test of homogeneity

As a goodness of fit, it is often of interest to evaluate the mixing weight by setting w; =0,i=1,...,n. For
simplicity, many testing procedures in the literature assume a constant mixing weight such that a single o is
evaluated for all i. For example, Van den Broek®> proposed a score test under ZIP models assuming a constant
mixing weight. Deng and Paul® also adopted this constancy assumption to perform a score test under ZIB models.
Jansakul and Hinde”"'? further extended the idea to a covariate-adjusted score test by assuming that the mixing
weight depends on covariates via an identity link function in order to improve the power of test. Their test can
access Hy : w; = 0 for all i versus H; : w; # 0 for some i for ZIP and ZINB models. They have shown that the test
adopting a constant mixing weight, such as Van den Broek’s test, is just a special case of their approach. Another
similar extension to a covariate-adjusted score test in a more general setting is proposed by Todem et al.’

In this paper, we adopt the constancy assumption and focus our evaluation on the null hypothesis Hy : o =0
against the two-sided alternative H; : w # 0 consistent with the wider support set of w. The associated score test
statistic can be easily derived by following the regular asymptotic theory.''° Specifically, the score test statistic
for the class of zero-inflated models is given by

A A~ 1 A

St =8,(0,0"V,  S,(0,0)

where Sw(é, 0) is the partial score function with respect to w and evaluated at w =0 and 0a consistent estimator of
0 under the null hypothesis, and ¥, is the estimated variance of the partial score function S,,(0,0). This score test
statistic follows a %> distribution with one degree of freedom asymptotically under the null hypothesis.

3 Misspecification schemes

Even though the behavior of the score test under proper model specification is well understood, it is amenable to
produce unreliable inferences if the working null model g;(.; 0) containing the nuisance parameter is misspecified.
Misspecifications may be due to the mean function of the homogeneous model not being well specified in terms of
important covariates and the functional forms. Table 1 is a matrix representing the profile of the mean model
specification both in covariates and the functional form. In this paper, we focus on the practical situations where
the practicing statistician has no knowledge of important covariates or the functional form relating covariates to
mean response. Because of this lack of knowledge of the true data generating mechanisms, misspecification is a
concern that requires a careful examination.

We conduct a preliminary simulation study to evaluate the empirical size of the score test under the misspe-
cification stated in Table 1. As a working example, let X; and X, be two independent covariates, and assume a
Poisson process for which the true mean model is 2 = exp{0.6 + 0.45X] }, but misspecified in working models as
L =exp{fy} or A =exp{f, + f,X2}. Even when the distribution is well specified, the simulation results indicate
that the score test becomes very liberal, rejecting the null hypothesis more often than anticipated (see Table 2).
This result holds even when the sample size is large. We observe similar results when the model misspecification
arises from wrongly assuming a log-linear model for the mean component (results not shown). This limited
simulation study suggests that the test of zero-inflation should be carefully interpreted regarding the potential
model misspecifications. This then necessitates the development of a score test of homogeneity that is robust
against these popular forms of misspecification.

4 A robust homogeneity test for zero-inflated models

We propose a robust score test for homogeneity for the popular ZI models, focusing on the ZIP models. In its
basic formulation, the proposed testing procedure avoids specifying any functional form of the mean response as a
function of covariates. Instead, the method relies on a hierarchical model for which the mean component is simply
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Table 1. The mean model specification schemes.

The functional form

Correctly specified Misspecified
Relevant covariates
Included Well-specified model® Poor-specified model®
Ignored Poor-specified model® Poor-specified model®

*The behavior of the score test for the well-specified model is well understood.
®The behavior of the score test is poorly understood.

Table 2. Empirical sizes of the score test statistics at the nominal level 0.05 using 1,000 Monte Carlo samples of size n generated
from a null model with true mean 1* = exp{0.6 + 0.45X, }.

Null model n
Working mean function True Working 50 100 200 500 1000
Misspecification of the mean function
log(4) = Bo Poisson Poisson 0.064 0.078 0.082 0.091 0.144
log(X) = Bo + f2Xa Poisson Poisson 0.071 0.087 0.092 0.095 0.137
X ~U(0, 1) and X, ~ truncated normal(0,l) within the interval (—1, I).

regarded as an unobserved random variable, assuming the analyst has no knowledge of relevant
covariates. We impose a gamma distribution on these unobserved random variables, and exploit the Poisson-
Gamma conjugacy to avoid numerical integration over the unobserved random mean. For situations
where partial knowledge of relevant covariates is available, we extend the proposed test to incorporate covariates
for efficiency gain.

4.1 Robust test with no knowledge of covariates

In settings where the analyst has no knowledge of the true mean in terms of important covariates or its functional
form, we consider a hierarchical model for which the mean is simply a positive random variable. We assume that

Y, i=1,...,n are independent realizations from the hierarchical model
0, with weight w;
YilAi~ ) ) ) and A;~Gamma(z, §) (1
Poisson(A;), with weight 1 — w;

where w; is the mixing weight and « and f§ are the shape and scale parameters, respectively. In this model, we avoid
specifying the mean of the Poisson model, and instead use a general random mean A;. Because the random mean is
unobserved, the marginal distribution of fy(y) obtained by integrating out A is

et !
it T()p

fr(vi) = /0 Syailz)fa(Ai)d; = 1y —oyo;i + (1 — wt)/o e Hlbd ),

As the result, the zero-inflated model can be re-expressed as

o+ (1 =) fy(0), if yi=0

P(Yl:yl):{(l_wl)fw(yl)’ lfy1:17233’
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where the density function of the baseline distribution is

fy*(yi)zr(yiJra)( b >yi< : )a, yi=0,1,2,3,...

yit T(a) \1+8 1+8

This baseline distribution fy-(y;) is actually a NB with mean E(Y*) = aff and variance Var(Y*) = af(1 + f).
Hence, with an additional dispersion parameter o, a Poisson baseline distribution can be naturally accommodated
by this particular zero-inflated model, which indeed is a larger class of model in view of Poisson. Intuitively, we
are using a more general and larger model to avoid any potential misspecifications on the mean component.

The log-likelihood function, given independent observations y = (yy,...,»,) and assuming w; =  for all i, is

o, r5y) = Y {Li=g)loglo + (1 = o)(1+ B) "] + L= [log(l — ) +logl(y; + 2)
i=1

— logl'(o) —logl'(y; + 1) + yilog(B) — (yi + o)log(l + B)]}

Under the null hypothesis Hy : @ = 0, the proposed robust score test is

Sr=Su(5,5.0) V., 'S, (@,B,0)
where S, (4, B, 0) = Z; {I@izo)[(l + B)a — 1]} is the partial score function, with & and j being the maximum

likelihood estimates of o and f under the null hypothesis. The estimate V, is given by
Vio = Lo (8, B,0) — 7P (5, B,0) [ (&, B,0)] " 1°* (&, B,0), where

L>

]woc(

P ,0) = [
Iw/}(&

’[A}’O)] and I“ﬂ(&,B,O)—[IW(&“[j’O) L (2, 5.0)
:8,0) B,0 0

Matrices Zuo (&, B,0), Lo(3, B,0), Lop(3, B, 0), La(&, B,0), Iys(, B,0), L(é, B,0), and Ig,(3, B,0) are subma-
trices of the Fisher information matrix evaluated under H,. Under the null hypothesis, this score test statistic
Sy follows a y? distribution asymptotically. Details are relegated to Supplementary material Appendix A.

4.2 Robust test with partial knowledge of covariates

A limitation of the above proposed testing procedure, albeit its robustness against the stated misspecifications, is
that it may not be efficient in settings where the analysts have a good knowledge of important variables. To
improve efficiency in this type of settings, a simple extension would consist of entertaining a mixed effects model in
which both random effects and fixed effects are entertained in the model in the spirit of Kassahun et al.'® More
specifically, the following hierarchical model is entertained

0, with weight w;
YilA;~ and A; ~Gamma(a, f§)

Poisson(Af,(X;)), with weight 1 — w;

Here Y; (i = 1,...,n) are independent count observations, w; is the mixing weight and f,(Xj;) is a non-negative
and non-random finite dimensional function in covariate X;. A good example for such functions is the log-linear
model f,(X;) = exp{X;y}, where the covariate vector X; = (xj1,xn,---,X;) and y = (y,--- ,yp)T. The assumption
of multiplicative effect f,(X;) is partly driven by the nature of Poisson mean as adopted by Molenberghs et al.”!
and Kassahun et al.'® The advantage of using the log link for f5(X;) is to reflect that with count data the effects of
predictors are often multiplicative.”*** For model identifiability purposes, no intercept is included in the log-linear
model. When there is no knowledge of covariates, this hierarchical model reduces to the simple model in equation
(1) by letting X;=0. Overall, it is straightforward to see that if an important covariate is ignored from the model,
the random component A; may help alleviate the impact of such misspecification.
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In this formulation, the baseline distribution is again a NB with mean E(Y}) = afe’ and variance
Var(Y7) = afe’¥(1 + Be’?). As we can see the important covariates X; are accommodated into its marginal
mean and variance to systematically characterize the variability in the data, thus it is anticipated that the testing
efficiency can be improved.

The log-likelihood function /(o, 8,7, @;y) of this hierarchical model is given as

1o, oy, 53) = Y {Li=o)logle + (1 — o) (1 + fe7) ™)

i=1
+ Iy,~0)[log(l — w) + logl'(y; + o) — log'() — logl'(y; + 1)
+ yilog(Pe*™) — (y; + a)log(1 + pe*™)]}

As the score vector and the information matrix can be obtained using the above log-likelihood function, one
can follow the standard procedure to conduct the robust score test easily. The formulations of these associated
score vector and the information matrix are given in Supplementary material Appendix B. It is expected that this
test will be more powerful than the one without any covariates, as long as the important covariates are included,
regardless of its functional form, into the working mean component.

5 Simulation study

The empirical performance of the proposed test is evaluated by investigating the sizes and powers of the test
under misspecification of the mean function. We generate data from ZIP models with various true mean
functions for assessing the empirical sizes and powers of the proposed robust test. We consider the
true means log(4*) =1, log(1") =1—-0.4X), log(A") =1—-0.4X, —0.25X,, and a non-log-linear form
AF=3-12X,+ 0.24X%, where 2* > 0 with X; and X, being two independent covariates generated from uniform
U(0, 1) and Bernoulli Ber(0.6), respectively. We use the integrated mean squared error (IMSE) of the estimated
marginal mean relative to its true counterpart throughout the covariate profile to measure the magnitude of
misspecifications. Throughout all simulations, we perform the proposed robust score test with/without covariates
and the correctly specified test (i.e. Van den Broek’s test’) for comparison purposes. All simulations are conducted
with 1000 Monte Carlo samples for sample sizes 50, 100, 200, 400, and 800.

We first generate data from homogeneous Poisson models (i.e. the null model) with the stated true mean
functions for assessing the empirical sizes of the proposed robust test. The empirical sizes of the tests are given
in Table 3. Overall, the size of the proposed test tends to be conservative but remains stable with an increasing
sample size. When the working mean is correctly specified in terms of covariates, the proposed robust test can
maintain its size at the nominal level of 0.05 in large sample size. This is also true for over-fitted mean models (e.g.
an irrelevant covariate is included into the model). For example, the true mean model only involves X7, but it is
over-specified with X and X,. For such a case, we observe that their associated IMSEs decrease when the sample
size increases. This result shows that the impact of misspecification has been relieved as long as an important
covariate is incorporated into the working mean model. In contrast, when an important covariate is omitted from
the working mean model, the proposed tests tend to be conservative and their associated IMSEs remain large even
in a large sample size. A good example in our simulation is that the true mean function is log(4*) = 1 — 0.4X}, but
the working mean is assumed to be independent of any covariates (i.e. using no covariate). The result indicates
that the proposed tests can entertain their robustness but cannot alleviate the impact of misspecification when
important covariates are ignored.

We further evaluate the test when the working mean function has a different functional form from the true
mean. For instance, the true mean is A = 3 — 1.2.X + 0.24X? (i.e. a quadratic function) but the working mean is
specified as either a function independent of any covariates or a log-linear function of covariates. If the important
covariate is totally ignored from the testing procedure, the size of our robust test (without using any covariates)
remains stable but slightly conservative. When we include important covariates in the working mean, the pro-
posed robust test (with partial knowledge of covariates) can lessen the effect of misspecification and possibly
maintain its size at the nominal level. This is particularly true when the working mean can well approximate the
true mean. A good example is that the true mean 4 = 3 — 1.2X; + 0.24X7 can be well approximated by a working
mean function exp{f, + ;X }. This can be easily shown by a Taylor series approximation.
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Table 3. Empirical sizes (o* = 0) of the robust score test statistics and the Integrated Mean Squared Errors (IMSEs) for estimating
marginal mean using 1000 samples generated from Poisson regression models with true mean /., at the nominal level 0.05.

Sample size n

True mean function Test Working mean function 50 100 200 400 800
log(4") =1 Robust test Using no covariate 0.031 0.024 0.036 0.046  0.048
(0.055) (0.028) (0.014) (0.007) (0.003)
Using only X| 0.030 0.026 0.037 0.044  0.049
(0.1'1T)  (0.055) (0.027) (0.014) (0.007)
Using only X, 0.028  0.023 0.039  0.043 0.050
©.111) (0.055) (0.028) (0.014) (0.007)
Using X, and X, 0.027  0.024 0.037 0.048  0.054
(0.167) (0.082) (0.041) (0.021) (0.010)
Van den Broek’s test® 0.038 0.042 0.045 0.051 0.054
log(A") = 1 —0.4X Robust test Using no covariate 0.024 0.021 0.018 0.038 0.030
(0.108) (0.088) (0.078) (0.072) (0.069)
Using only X 0.026 0.026 0.026  0.047  0.059
(0.087) (0.046) (0.022) (0.011) (0.006)
Using only X, 0.028  0.026 0.020  0.041 0.032
(0.150) (0.110) (0.090) (0.078) (0.072)
Using X, and X, 0.027  0.032 0.025 0.047  0.063
(0.131) (0.069) (0.034) (0.017) (0.009)
Van den Broek’s test® 0.043 0.036 0.043 0.057  0.060
log(A") = 1 —0.4X; — 0.25X, Robust test Using no covariate 0.019 0.019 0.013 0.0l 0.018
(0.145)  (0.128) (0.120) (0.115) (0.112)
Using only X| 0.020  0.025 0.018 0.024 0.028
(0.135) (0.097) (0.079) (0.069) (0.064)
Using only X, 0.021 0.026  0.022  0.023 0.028
(0.126) (0.090) (0.071) (0.061) (0.056)
Using X, and X, 0.024  0.030 0.036 0.039  0.059
(0.119)  (0.060) (0.031) (0.015) (0.007)
Van den Broek’s test® 0.033 0.047 0.052 0.044 0.051
=3 —1.2X| 4+ 0.24X? Robust test Using no covariate 0.016 0.026 0.025 0.029 0.030
(0.126)  (0.102) (0.089) (0.083) (0.080)
Using only X| 0.020  0.033 0.039  0.044  0.047
(0.102) (0.051) (0.025) (0.012) (0.006)
Using only X, 0.018 0.027  0.027  0.031 0.028
(0.172)  (0.125) (0.102) (0.089) (0.083)
Using X, and X, 0.018  0.041 0.037  0.048  0.045

. (0.151) (0.075) (0.038) (0.019) (0.009)
Van den Broek’s test - - — _ _

X ~U(0, 1) and X ~Ber(0.6); IMSEs are given in the parentheses.
?Van den Broek’s test with the correctly specified mean.
®Van den Broek’s test is under misspecification when the true mean function is not log-linear.

Overall, the size of the proposed test can be well maintained at the nominal level with large sample size, as long
as important covariates are included. If there is no knowledge of covariates, the proposed test tends to be slightly
conservative but very stable for all sample sizes. Even though the proposed robust test behaves conservative, the
test still retains its robustness property against any misspecification of the mean.

Next, we evaluate the powers of the tests by generating the data from ZIP models with the true mixing weight
w* = 0.1 (i.e. the alternative model). We consider the simulation schemes where the working mean may be well
specified, misspecified or over-fitted to evaluate the performance of our robust tests. We also conduct the well-
specified score test (i.e. Van den Broek’s test) in the simulation for comparison purposes. As expected, the power
of the robust test increases as the sample size increases (see Table 4). The proposed robust test gains more power
when the working mean is well specified (i.e. important covariates are included). For example, the robust test
using covariate X; outperforms the test that uses no covariate or only X, when the true mean is
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Table 4. Empirical powers (w* = 0.1) of the robust score test statistics and the Integrated Mean Squared Errors (IMSEs) for
estimating marginal mean using 1,000 samples generated from zero-inflated Poisson regression models with true mean 17, at the
nominal level 0.05.

Sample size n

True mean function Test Working mean function 50 100 200 400 800
log(2") =1 Robust test Using no covariate 0.148 0308 0.534 0.849  0.95I
(0.134) (0.099) (0.088) (0.085) (0.078)
Using only X 0.153 0310 0519 0842  0.938
(0.201) (0.132) (0.104) (0.093) (0.082)
Using only X; 0.155 0.315 0.536 0.838 0.951
0.191) (0.129) (0.104) (0.093) (0.082)
Using X, and X, 0.127  0.283 0518 0.845  0.956
(0.259) (0.162) (0.120) (0.101) (0.086)
Van den Broek’s test® 0.494 0.788 0.973 0.999 0.999
log(Z") =1 —0.4X, Robust test Using no covariate 0.083 0.126 0250 0455 0769
(0.160) (0.142) (0.128) (0.123) (0.120)
Using only X 0.089  0.131 0.249 0513 0.848
(0.144) (0.103) (0.074) (0.064) (0.057)
Using only X, 0.091 0.137 0250 0450 0.78]
(0.205) (0.167) (0.141) (0.129) (0.123)
Using X, and X, 0.072 0.134 0256 0496 0837
(0.192) (0.128) (0.087) (0.070) (0.060)
Van den Broek’s test” 0.323 0.581 0.842 0.986 0.999
log(A") = 1 —0.4X; —0.25X, Robust test Using no covariate 0.081 0.108 0.147 0.252 0.477
(0.182) (0.163) (0.157) (0.151) (0.150)
Using only X 0.084 0.092 0.147  0.253 0.532
0.177) (0.134) (0.117) (0.106) (0.103)
Using only X; 0.074  0.083 0.1492  0.281 0.561
(0.170) (0.128) (0.109) (0.098) (0.095)
Using X, and X, 0.064  0.083 0.128 0292  0.623
(0.167) (0.100) (0.070) (0.053) (0.047)
Van den Broek’s test® 0.202 0416 0.683 0.949 0.999
A =3-12X + 0.24X|2 Robust test Using no covariate 0.127 0.170 0.335 0.662 0.878
(0.190) (0.164) (0.148) (0.146) (0.143)
Using only X 0.117 0.199 0387 0740 0917
0.177) (0.117) (0.087) (0.077) (0.070)
Using only X, 0.113 0.181 0.343 0.663 0.863
(0.244) (0.190) (0.162) (0.152) (0.146)
Using X, and X, 0.096 0.171 0.381 0.719 0.912

. (0.234) (0.145) (0.101) (0.083) (0.073)
Van den Broek’s test - - — - _

X ~U(0, 1) and X, ~Ber(0.6); IMSEs are given in the parentheses.
?Van den Broek’s test with the correctly specified mean.
®Van den Broek’s test is under misspecification when the true mean function is not log-linear.

log(4*") = 1 — 0.4X). It is also true for settings where the working mean is over-fitted. We observe similar results
when both X; and X> are included in the working mean while the true mean is log(4*) = 1 — 0.4X,. Notice that the
existing classical score tests of homogeneity for zero-inflated models will suffer from model misspecification badly
if the true mean function is not a log-linear function. That is because these existing tests are all assuming a log-
linear working mean.

Opverall, compared to the well-specified test, the robust test could lose some power in detecting the heteroge-
neity in the data. But the robust test can gain power when important covariates are used. This result is anticipated
because when we know more about the important covariates, then we can better alleviate the impact of mis-
specification. When there is no knowledge of covariates, our robust test becomes conservative as we observed
from the simulations. This finding indicates that conservativeness comes as the price for having the robustness
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Table 5. Comparison of score test statistics, degrees of freedom, and the associated p-values of homogeneity tests for the girl
scouts data.

The proposed robust test

Van den

Broek’s test Without covariates Intervention (X))
df | | |
Test statistic 56.856 0.075 1.065
p-Value <0.001 0.784 0.302

under any mean misspecifications, showing the tradeoff between the statistical power and the robustness when
using the proposed test.

6 Real data application
6.1 Girl Scouts data

To illustrate the proposed test, we use the Girl Scouts data from the SNAP study.?* The objective of this study was
to evaluate the effectiveness of an intervention program designed to improve the physical activity and nutrition
environment in the Girl Scout troops. In this study, three Girl Scout troops were randomized to the intervention
arm and four to the control arm. In the intervention arm, troop leaders were trained to implement policies
promoting physical activity and healthful eating opportunities at troop meetings. In the control troops, the leaders
were not given any training to implement such promotions. At each of the seven troop meetings taking place
between October 2007 and April 2008, a trained research assistant observed and counted the number of times
health and nutrition promotions implemented by troop leaders. Research assistants were blinded to the condition
of each troop (for more details, see Schlechter et al.*).

For our analysis, we are interested in the frequency of nutrition promotion activities occurring every 5Smin at
the troop meeting. We conduct the proposed robust score test along with Van den Broek’s score test in which the
baseline distribution is Poisson and the mixing weight is a constant. For Van den Broek’s test, the mean is /4 =
exp{f, + f; X1} where X is an indicator variable of the intervention (1 = intervention group, 0 = control group).
The test results are presented in Table 5.

Van den Broek’s score test rejects the null hypothesis at a 0.05 significance level. However, our proposed robust
tests with/without covariates fail to reject the null hypothesis, which are in favor of the model under the null
hypothesis. In other words, the robust tests are inclined to suggest a homogeneous model, rather than a more
complex model. To further evaluate these test results, we compare several count models using Bayesian
Information Criteria (BIC) (see results in Table 6). The mean function in each count model is assumed as 4 =
exp{fy + f; X1} where X is an indicator variable for the intervention. Among these count models, the NB model
shows the smallest BIC (BIC =279.87), suggesting a better model fit compared to the ZIP model which has a BIC
of 312.29. Figure 1(a) further supports the relative good fit of the NB model compared to the ZIP model. This
result is in agreement with the results of our robust test and that of Jansakul and Hinde’s test'® (test
statistic= 0.030, p-value= 0.862) which incorporates covariates. In Table 6, it is interesting to see the opposite
signs of the estimated mixing weights for the ZIP and ZINB models. Although the negative mixing weight is not
significant in the ZINB model, it does indicate a sign of zero deflation in the data. Compared to the ZINB model,
the ZIP model indicates the presence of zero inflation but it does not provide a better model fit to the data. In fact,
the ZIP model can incorporate extra zeros in the data but cannot handle overdispersion nicely. The real data
exhibit certain overdispersion, thus this may explain why we observe the opposite results in model estimation
between the ZIP and ZINB models.

We additionally conduct a stratified analysis to investigate whether both zero inflation and deflation are present
in the data. Figure 1(b) and (c) show the observed and predicted proportions with a homogeneous NB model for
the intervention group and the control group, respectively. In these figures, the fitted proportions are very close to
the observed proportions, suggesting the data could be well fitted by a NB model, showing no evidence for a
mixture model. We further examine the mixing weights at zero for both groups using Wald test. The mixing
weight is neither significant (p-value=0.793) for the intervention group nor for the control group (p-val-
ue=0.991); thus, there is no evidence to support the presence of zero inflation or deflation in the data.
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Table 6. Fits of different count models for the Girl Scouts data.

Estimated coefficient for intervention Estimated mixing weight BIC

Model B )

Poisson 1.965 - 360.36
(<o0.001)

NB 1.965 - 279.87
(<0.001)

ZIP 1.775 0.487 312.29
(<0.001) (< 0.001)

ZINB 2.023 —2.696 283.90
(<0.001) (0.864)

Note: p-Value of Wald test is given in the parentheses.

(a) (b) (c)

—— Obs. prop. —— Obs. prop. —— Obs. prop.
= -6~ Pred. prop. 24 -6~ Pred. prop. 24 -6~ Pred. prop.
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Figure |. Observed versus fitted proportions by the NB model for all participants (a), the intervention group (b) and the control
group ().

Table 7. Comparison of score test statistics and the associated p-values for the dental caries data.

The proposed robust test

Van den Broek’s test Without covariates Age S| Age and SI
df | | | | I
Test statistic 740366.9 37.786 38.978 14.737 134.780
p-value <0.001 <0.001 <0.001 <0.001 <0.001

Clearly, a zero-inflated model is too complex for the Girl Scouts data. These additional results also support our
robust test, and indicating our test’s robustness and effectiveness.

It is worth mentioning that the coefficient of X in NB is significant (estimated coefficient=1.965, p-val-
ue < 0.001, Table 6), indicating the intervention program has a significant effect on the Nutrition Promotions
implemented by Girl Scout leaders.

6.2 Dental caries data

We further illustrate the proposed robust score test with the dental caries data from the DDHP study which was
designed to assess dental caries severity of low-income African-American children under age 6 and their main
caregivers who resided in Detroit, Michigan.?® Although the study is longitudinal in nature, we use cross-sectional
data of 897 children surveyed in the first wave of examinations conducted between 2002 and 2003. The outcome
variable in our analysis is DS which represents the number of decayed tooth surfaces. Sugar intake and age are
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used as covariates in our model. For comparison purpose, we perform the proposed robust tests and Van den
Broek’s test. Van den Broek’s test is performed under the assumption of a Poisson distribution with a mean
function of covariates Age (child’s age in years), SI (the child’s sugar intake), and interaction Age*SI. Our robust
test does not require the specification of the mean function. By knowing the covariates Age and SI, we can also
perform the robust tests that incorporate Age and SI into the mean model. The results are given in Table 7.

Our robust tests with/without covariates and Van den Broek’s score test reject the null hypothesis at a 0.05
significance level, supporting the hypothesis of heterogeneity. Even though all tests are not in favor of the null
model (i.e. Poisson model), our robust tests provide much smaller test statistics compared to Van den Broek’s test
statistic. In other words, unlike Van den Broek’s test, the proposed tests do not give a very strong evidence in
favor of the ZIP model. When observing such a huge discrepancy in test statistic, we suggest that further inves-
tigation is needed to ensure the validity of statistical inferences for the study. Especially, rejecting the hypothesis
of homogeneity does not give evidence that the ZIP model provides the best fit for the data. In fact, Todem et al.”
have conducted Jansakul and Hinde’s test to assess the inclusion of extra zeros in the data, and the test actually
failed to reject the null hypothesis of a homogeneous NB model. On top of the non-significant testing result,
Todem et al.? further provided additional graphical evidence and indicated that a simple NB model can provide a
better fit to the data than a zero-inflated model. This example highlights the need for practicing statisticians to
carefully interpret rejection of the null hypothesis in the light of a possible model misspecification. This is a
reminder that rejecting the null hypothesis simply implies that the alternative complex model should be further
evaluated against other competing models.

7 Discussion

In this paper, we proposed a random-variable approach for evaluating the need of a zero-inflated model when the
working model is potentially misspecified. We showed that the test is robust under misspecifications of the
associated components of the working model (e.g. important covariates being ignored in the working model).
Unlike existing tests that require the mean component to be fully specified in terms of covariates or functional
form, our proposed test can be performed without an explicit specification of the mean function. Rather the test
uses unobserved random effects as a proxy for the mean function. A gamma distribution was imposed on these
random effects to capitalize on the Poisson-Gamma conjugacy and ease computations. This method is particularly
important in settings where the analyst has little to no knowledge of covariates and the associated functional form
relating these covariates to the mean response. In our view, this approach is the most conservative method in that
the practicing statisticians have no knowledge of true underlying model in many applications. We recognized that
the gamma distribution may be too restrictive. The reason for using the gamma distribution in our method is its
computational simplicity and, more importantly, its popularity among practicing analysts in many applica-
tions.>”*® This restriction may be alleviated by imposing instead a finite mixture gamma distribution for which
the number of components may be dictated by the observed data. The advantage of the mixture is that marginally
the homogeneous model will become a mixture of negative binomial.?” Such an approach still enjoys the com-
putational simplicity while providing protection for possible misspecifications. This and other extensions merit
further research.

We further extend the working model to incorporate partial information (e.g. some knowledge of covariates)
into the testing procedure in order to improve the testing efficiency. Such an extension intrinsically assumes a low-
dimensional structure under the null model. However, even under this condition, complications in deriving the
information matrix for more than four covariates are expected in practice. Albeit being more complicated, the
proposed test should work well. Alternatively, a summary score of many covariates can be computed before
performing the proposed test, in which case the estimates under the null model will be only a non-zero regression
coefficient associated with the summary score. Such an approach significantly reduces the dimension of covariate
space prior to the implementation of the proposed test. One popular and well-known approach for creating a
summary score is Principle Component Analysis (PCA). However, the standard PCA may fail to yield consistent
estimators of the loading vectors under very high-dimensional settings.’>*' In such a case, the impact of incon-
sistent estimators on the asymptotic properties of the resulting test statistics is not clear and this requires a further
investigation. For cases where the number of covariates is large in view of the sample size (i.e. high dimensional
structure), conducting the proposed test is not straightforward without knowing a priori the important variables.
However, guided by the scientific knowledge, a small set of variables that are known to be associated with the
phenomenon under study could be chosen to perform the test. And for variables that are associated but not
entertained in this selection would then contribute to the random term (latent variable log(A;)). In sum, an
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important message for practicing statisticians is to use the knowledge from historical studies to include the
important covariates when evaluating the zero inflation.

In practice, the test of homogeneity for zero-inflated count data is usually daunting because the true underlying
model that generated the data is typically unknown. This then requires analysts to carefully examine whether the
features of the data are in agreement with the suggested model. To this end, our recommendation is that the
proposed robust score test can be first entertained due to its robustness against the model misspecifications
discussed in this paper. Particularly, the proposed score test tends to be conservative and in favor of the homo-
geneity hypothesis as protection. When the homogeneity hypothesis is rejected, a careful investigation on the zero-
inflated models versus other competing models should be conducted in view of the data. That is because the
rejection does not necessarily imply that the zero-inflated model gives the best fit to the data. When the proposed
test fails to reject the homogeneity hypothesis, we suggest that complex one-component models, such as negative
binomial model, can be adopted even when many zeros are apparently observed in the data. As no significant
evidence supporting a two-component mixture model, using one-component models can further enjoy the ease of
interpretation at the marginal level.
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