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Consider the problem of estimating a low-rank matrix when its entries
are perturbed by Gaussian noise, a setting that is also known as “spiked
model” or “deformed random matrix.” If the empirical distribution of the
entries of the spikes is known, optimal estimators that exploit this knowl-
edge can substantially outperform simple spectral approaches. Recent work
characterizes the asymptotic accuracy of Bayes-optimal estimators in the
high-dimensional limit. In this paper, we present a practical algorithm that
can achieve Bayes-optimal accuracy above the spectral threshold. A bold
conjecture from statistical physics posits that no polynomial-time algorithm
achieves optimal error below the same threshold (unless the best estimator is
trivial).

Our approach uses Approximate Message Passing (AMP) in conjunction
with a spectral initialization. AMP algorithms have proved successful in a
variety of statistical estimation tasks, and are amenable to exact asymptotic
analysis via state evolution. Unfortunately, state evolution is uninformative
when the algorithm is initialized near an unstable fixed point, as often hap-
pens in low-rank matrix estimation problems. We develop a new analysis
of AMP that allows for spectral initializations, and builds on a decoupling
between the outlier eigenvectors and the bulk in the spiked random matrix
model.

Our main theorem is general and applies beyond matrix estimation. How-
ever, we use it to derive detailed predictions for the problem of estimating a
rank-one matrix in noise. Special cases of this problem are closely related—
via universality arguments—to the network community detection problem for
two asymmetric communities. For general rank-one models, we show that
AMP can be used to construct confidence intervals and control false discov-
ery rate.

We provide illustrations of the general methodology by considering the
cases of sparse low-rank matrices and of block-constant low-rank matri-
ces with symmetric blocks (we refer to the latter as to the “Gaussian block
model”).

1. Introduction. The “spiked model” is the simplest probabilistic model of a data ma-
trix with a latent low-dimensional structure. Consider, to begin with, the case of a symmetric
matrix. The data are written as the sum of a low-rank matrix (the signal) and Gaussian com-
ponent (the noise):

k
(1.1 A=) "rviv] + W.
i=1
Here, A1 > Ay > - .- > A are nonrandom numbers, v; € R” are nonrandom vectors and W ~
GOE(n) is a matrix from the Gaussian orthogonal ensemble.! The asymmetric (rectangular)
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IRecall that this means that W = W', and the entries (Wij)i<j<n are independent with (W;;)i<n ~iid
N(0,2/n) and (W;})i< j<n ~iid N(O, 1/n).
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version of the same model is also of interest. In this case, we observe A € R"*¢ given by

k
(1.2) A=>"Viuiv] + W,
i=1
where W is a noise matrix with entries (W;;)i<n, j<a ~iid N(O, 1/n). An important special
case assumes u; ~ N(0, I,,/n). In this case,? the rows of A are i.i.d. samples from a high-
dimensional Gaussian a; ~ N(0, X) where X = (Zf-‘zl AivivlT + I4)/n. Theoretical analysis
of this spiked covariance model has led to a number of important statistical insights [32, 33].

Within probability theory, the spiked model (1.1) is also known as “deformed GOE” or
“deformed Wigner random matrix,” and the behavior of its eigenvalues and eigenvectors has
been studied in exquisite detail [3, 4, 8, 9, 14, 24, 36]. The most basic phenomenon unveiled
by this line of work is the so-called BBAP phase transition, first discovered in the physics
literature [28], and named after the authors of [3]. Let k, be the number of rank-one terms
with |X;| > 1. Then the spectrum of A is formed by a bulk of eigenvalues in the interval
[—2, 2] (whose distribution follows Wigner’s semicircle), plus k. outliers that are in one-to-
one correspondence with the large rank-one terms in (1.1). The eigenvectors associated to the
outliers exhibit a significant correlation with the corresponding vectors v;. To simplify the
discussion, in the rest of this Introduction we will assume that A; > O for all ;.

The spiked model (1.1), (1.2) and their generalizations have also been studied from a sta-
tistical perspective [31, 48]. A fundamental question in this context is to estimate the vectors
v; from a single realization of the matrix A. It is fair to say that this question is relatively
well understood when the vectors v; are unstructured, for example, they are a uniformly ran-
dom orthonormal set (distributed according to the Haar measure). In this case, and in the
high-dimensional limit n, d — oo, the best estimator of vector v; is the ith eigenvector of A.
Random matrix theory provides detailed information about its asymptotic properties.

This paper is concerned with the case in which the vectors v; are structured, for example,
they are sparse, or have bounded entries. This structure is not captured by spectral methods,
and other approaches lead to significantly better estimators. This scenario is relevant for a
broad range of applications, including sparse principal component analysis [17, 33, 53], non-
negative principal component analysis [38, 43], community detection under the stochastic
block model [1, 16, 45], and so on. Understanding what are optimal ways of exploiting the
structure of signals is—to a large extent—an open problem.

Significant progress has been achieved recently under the assumption that the vectors
(V1,js..-s Uk, j) € R¥ (i.e., the k-dimensional vectors obtained by taking the jth component
of the vectors vy, ..., vx) are approximately i.i.d. (across j € {1,...,n}) with some com-
mon distribution puy on R¥. This is, for instance, the case if each v, has i.i.d. components,
and distinct vectors are independent (but mutual independence between vy, ..., v iS not re-
quired). Following heuristic derivations using statistical physics methods (see, e.g., [40]),
closed form expressions have been rigorously established for the Bayes-optimal estimation
error in the limit n — oo (with A;’s fixed). We refer to [16, 17] for special cases and to [5,
37, 39, 42] for an increasingly general theory.

Unfortunately, there is no general algorithm that computes the Bayes-optimal estimator
and is guaranteed to run in polynomial time. Markov Chain Monte Carlo can have exponen-
tially large mixing time and is difficult to analyze [26]. Variational methods are nonconvex
and do not come with consistency guarantees [12]. Classical convex relaxations do not gen-
erally achieve the Bayes optimal error, since they incorporate limited prior information [30].

2For the formal analysis of this model, it will be convenient to consider the case of deterministic vectors u;,
v; satisfying suitable asymptotic conditions. However, these conditions hold almost surely, for example, u; ~
N, I,/n).
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In the positive direction, approximate message passing (AMP) algorithms have been suc-
cessfully applied to a number of low-rank matrix estimation problems [25, 35, 43, 47, 50].
In particular, AMP was proved to achieve the Bayes optimal estimation error in special cases
of the model (1.1), in the high-dimensional limit n — oo [17, 18]. In fact, a bold conjecture
from statistical physics suggests that the estimation error achieved by AMP is the same that
can be achieved by the optimal polynomial-time algorithm.

An important feature of AMP is that it admits an exact characterization in the limit n — oo
that goes under the name of state evolution [7, 13, 22]. There is however one notable case in
which the state evolution analysis of AMP falls short of its goal: when AMP is initialized near
an unstable fixed point. This is typically the case for the problem of estimating the vectors
v;’s in the spiked model (1.1). (We refer to the next section for a discussion of this point.)

In order to overcome this problem, we propose a two-step algorithm:

1. We compute the principal eigenvectors @1, ..., @ of A, which correspond to the out-
lier eigenvalues.
2. We run AMP with an initialization that is correlated with these eigenvectors.

Our main result (Theorem 5) is a general asymptotically exact analysis of this type of pro-
cedure. The analysis applies to a broad class of AMP algorithms, with initializations that are
obtained by applying separable functions to the eigenvectors @, ..., @; (under some tech-
nical conditions). Let us emphasize that our core technical result (state-evolution analysis) is
completely general and applies beyond low-rank matrix estimation.

The rest of the paper is organized as follows.

e Section 2 applies our main results to the problem of estimating a rank-one matrix in Gaus-
sian noise (the case k = 1 of the model (1.1)). We compute the asymptotic empirical distri-
bution of our estimator. In particular, this characterizes the asymptotics of all sufficiently
regular separable losses.

We then illustrate how this state evolution analysis can be used to design specific AMP
algorithms, depending on what prior knowledge we have about the entries of v1. In a first
case study, we only know that v is sparse, and analyze an algorithm based on iterative
soft thresholding. In the second, we assume that the empirical distribution of the entries
of v is known, and develop a Bayes-AMP algorithm. The asymptotic estimation error
achieved by Bayes-AMP coincides (in certain regimes) with the Bayes-optimal error (see
Corollary 2.3). When this is not the case, no polynomial-time algorithm is known that
outperforms our method.

e Section 3 shows how AMP estimates can be used to construct confidence intervals and p-
values. In particular, we prove that the resulting p-values are asymptotically valid on the
nulls, which in turn can be used to establish asymptotic false discovery rate control using
a Benjamini—-Hochberg procedure.

e Section 4 generalizes the analysis of Section 2 to the case of rectangular matrices. This
allows, in particular, to derive optimal AMP algorithms for the spiked covariance model.
The theory for rectangular matrices is completely analogous to the one for symmetric ones,
and indeed can be established via a reduction to symmetric matrices.

e Section 5 discusses a new phenomenon arising in case of degeneracies between the values

M, ..., Ag. For the sake of concreteness, we consider the case A = AAg + W, where Ag
is a rank-k matrix obtained as follows. We partition {1, ...,n} in ¢ = k + 1 groups and set
Ag,ij =k/nif i, j belong to the same group and Ag ;; = —1/n otherwise. Due to its close

connections with the stochastic block model of random graphs, we refer to this as to the
“Gaussian block model.”

It turns out that in such degenerate cases, the evolution of AMP estimates does not
concentrate around a deterministic trajectory. Nevertheless, state evolution captures the
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asymptotic behavior of the algorithm in terms of a random initialization (whose distribu-
tion is entirely characterized) plus a deterministic evolution.

e Section 6 presents our general result in the case of a symmetric matrix A distributed ac-
cording to the model (1.1). Our theorems provide an asymptotic characterization of a gen-
eral AMP algorithm in terms of a suitable state evolution recursion. A completely analo-
gous result holds for rectangular matrices. The corresponding statement is presented in the
Supplementary Material.

e Section 7 provides an outline of the proofs of our main results. Earlier state evolution re-
sults do not allow to rigorously analyze AMP unless its initialization is independent from
the data matrix A. In particular, they do not allow to analyze the spectral initialization
used in our algorithm. In order to overcome this challenge, we prove a technical lemma
(Lemma B.3 in the Supplementary Material [44]) that specifies an approximate represen-
tation for the conditional distribution of A given its leading outlier eigenvectors and the
corresponding eigenvalues. Namely, A can be approximated by a sum of rank-one matri-
ces, corresponding to the outlier eigenvectors, plus a projection of a new random matrix
A" independent of A. We leverage this explicit independence to establish state evolution
for our algorithm.

Complete proofs of the main results are deferred to the Appendices A and B in the Supple-
mentary Material [44]. For the reader’s convenience, we present separate proofs for the case
of rank k£ = 1, and then for the general case, which is technically more involved. The proofs
concerning the examples in Section 2 and 4 are also presented in the Appendices.

As mentioned above, while several of our examples concern low-rank matrix estimation,
the main result in Section 6 is significantly more general, and is potentially relevant to a broad
range of applications in which AMP is run in conjunction with a spectral initialization.

2. Estimation of symmetric rank-one matrices. In order to illustrate our main result
(to be presented in Section 6), we apply it to the problem of estimating a rank-one symmetric
matrix in Gaussian noise. We will begin with a brief heuristic discussion of AMP and its
application to rank-one matrix estimation. The reader is welcome to consult the substantial
literature on AMP for further background [6, 7, 11, 29].

2.1. Main ideas and heuristic justification. Letxy= xo(n) € R”" be a sequence of signals
indexed by the dimension #, satisfying the following conditions:

(i) Their rescaled £>-norms converge limy, o [|Xo(1)|2//n = 1;
(i1) The empirical distributions of the entries of x¢(n) converges weakly to a probability
distribution vy, on R, with unit second moment.

We then consider the following spiked model, for W ~ GOE(n):
A
2.1) A= ;xoxg +W.

Given one realization of the matrix A, we would like to estimate the signal xo. Note that this
matrix is of the form (1.1) withk =1, A = A||xo(n)||%/n — Aand vy =xo(n)/|lxo(®)|2.

In order to discuss informally the main ideas in AMP, assume for a moment to be given an
additional noisy observation of x, call it y € R", which is independent of A (i.e., indepen-
dent of W, since x¢ is deterministic). More specifically, assume y ~ N(uoxo, 0021 n). How
can we denoise this observation, and incorporate the quadratic observation A in (2.1)?

A first idea would be to denoise y, using an entrywise scalar denoiser fy: R — R. We
denote the vector obtained by applying fy componentwise by fo(y). Of course, the choice
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of fo depends on our knowledge of x¢. For instance, if we know that x( is sparse, then we
could apply componentwise soft thresholding:

(2.2) Jo(yi) =n(yi; ©),

where 1 (x; ) = sign(x)(|x| — )+, and t is a suitable threshold level. Classical theory guar-
antees the accuracy of such a denoiser [20, 21].

However, fo(y) does not exploit the observation A in any way. We could try to improve
this estimate by multiplying fo(y) by A:

A
2.3) x!'= A fo(y) = —{xo, oo+ W foy).
It is not hard to see that the second term is a centered Gaussian vector whose entries have
variance close to || fo(y)||>/n — 012 = E{ fo(uoXo + 00G)?}, while the first term is essen-
tially deterministic by the law of large numbers. We thus obtain that x! is approximately
N(u1xo, 0121,1), where

(2.4) w1 = AE{Xo fo(uoXo +00G)},  of =E{fo(oXo + 00G)?}.

Here, expectation is taken with respect to X ~ vy, independent of G ~ N(0, 1). This anal-
ysis also suggests how to design the function fj: ideally, it should maximize the signal-to-
noise ratio (SNR) [L% /012. Of course, the precise choice of fy depends on our prior knowl-
edge of x¢. For instance, if we know the law vy,, we can maximize this ratio by taking
So(y) =E{Xo | noXo +00G = y}.

At this point, it would be tempting to iterate the above procedure, and consider the nonlin-
ear power iteration

(2.5) xf;fl = Afi(xpp),

for a certain sequence of functions f; : R — R. (As above, f; (xi,l) is the vector obtained
by applying f; componentwise to xp;, and we will use superscripts to indicate the iteration
number.) While this approach has been studied in the literature [15, 34, 52], sharp results
could only be established in a high SNR regime where A = A(n) — oo at a sufficiently fast
rate. Indeed, analyzing the recursion (2.5) is difficult because A is correlated with x{;l (unlike
in equation (2.3)), and hence the simple calculation that yields equation (2.4) is no longer
permitted. This problem is compounded by the fact that we do not have an additional obser-
vation y independent of A, and instead we plan to use a spectral initialization x° o ¢, that
depends on the top eigenvector ¢; of A. As a consequence, even the first step of the analysis
(given in equation (2.4)) is no longer obvious.

Let us emphasize that these difficulties are not a limitation of the proof technique. For
t > 1, the iterates (2.5) are no longer Gaussian or centered around u;xg, for some scaling
factor ;. This can be easily verified by considering, for instance, the function f;(x) = x?2
(we refer to [6] which carries out the calculation for such an example).

AMP solves the correlation problem in nonlinear power iteration by modifying equation
(2.5): namely, we subtract from from A f; (x’L) the part that is correlated to the past iterates.
LetG, =0 ({x%, x%, ..., X[ }) be the o -algebra generated by iterates up to time ¢. The correc-
tion that compensates for correlations is most conveniently explained by using the following
Long AMP recursion, introduced in [11]:

t
2.6) x{t'=Af(x]) —E{Wfi(x])I&} +Txo+ > orsx]
s=0

! A
2.7 =) o) + (at + ;(xo, ﬁ(xi)))xo + W fi(x) — E{W fi (x]) IS},
s=0
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where (@;)o<s, (otr,s)o<s<: are suitable sequences of deterministic numbers. In words, the
new vector xf“l is a linear combination of iterates up to time ¢, plus a term xo(o; +
Ax0, f,(xi)) /n) that is essentially deterministic, plus a random term (W f,(xi) —
E{W ft(xtL)|6,}) that is uncorrelated with the past. If the past iterates (xj )o<s<; are jointly
Gaussian, then the first two components (linear and deterministic) are also jointly Gaussian
with (x{ )o<s<;. Since the third (random) term is uncorrelated with the past iterates, it can be
shown by induction that the sequence (x] )o<;<7 is approximately Gaussian as n — oo, for
any fixed ¢ (in the sense of finite dimensional marginals), and centered around x¢; see [11].

At first sight, this might appear as a mathematical trick, with no practical implications.
Indeed equation (2.6) does not provide an algorithm. We are explicitly using the true signal
xo which we are supposed to estimate, and the expectation E{W f; (x! )|, } is, at best, hard to
compute. However, it turns out that (for a certain choice of the numbers (@;)o<;, (0r.5)o<s<t)s
the term subtracted from A f; (xi) in equation (2.6) can be approximated by b; f;_1 (xi_l)
with a coefficient b, that can be computed easily. We will not try to justify this approximation
here (see, for instance, [11]). We will instead use the resulting algorithm (given below in
equation (2.8)) as the starting point of our analysis.

2.2. General analysis. Motivated by the discussion in the previous section, we consider
the following general algorithm for rank-one matrix estimation in the model (2.1). In order
to estimate x(, we compute the principal eigenvector of A, to be denoted by ¢, and apply
the following iteration, with initialization x° = \/n¢;:

_ 1<
(2.8) T =Af,(x")—b fioi(x1), b= ;th/(xf).
i=1
Here, f;(x) = (fi(x1),..., fi(x,)Tisa separable function for each 7. As mentioned above,

we can think of this iteration as an approximation of equation (2.6) where all the terms except
the first one have been estimated by —by f;_1 (xtfl). The fact that this is an accurate estimate
for large n is far from obvious, but can be established by induction over ¢ [11].

Note that xo can be estimated from the data A only up to an overall sign (since x( and
—Xx¢ give rise to the same matrix A as per equation (2.1)). In order to resolve this ambiguity,
we will assume, without loss of generality, that (x¢, ¢{) > 0.

THEOREM 1. Consider the k = 1 spiked matrix model of equation (2.1), with xo(n) € R”
a sequence of vectors satisfying assumptions (i), (ii) above, and ) > 1. Consider the AMP
iteration in equation (2.8) with initialization x° = Vne, (where, without loss of generality
(x0, 1) = 0). Assume f; : R — R to be Lipschitz continuous for each t € N.

Let (s, 01)1>0 be defined via the recursion

(2.9) w1 = AE[Xo fi (: Xo + 0:G)],
(2.10) o1 =E[fi(ui X0+ 0,G)?],

where Xo ~ vy, and G ~ N(0, 1) are independent, and the initial condition is o =

V1—=21"2,00=1/A.
Then, for any function ¥ : R xR — Rwith | (x) =¥ ()| = C(L+Ixll2+ 1yl lx — yll2
for a universal constant C > 0, the following holds almost surely for t > 0:

1y
(2.11) g&;;wmﬁm=mwmwmﬁwab
1=
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The proof of this theorem is presented in Appendix A in the Supplementary Material [44].

One peculiarity of our approach is that we do not commit to a specific choice of the non-
linearities f;, and instead develop a sharp asymptotic characterization for any—sufficiently
regular—nonlinearity. A poor choice of the functions f; might result in large estimation error,
and yet Theorem 1 will continue to hold.

On the other hand, the state evolution characterization can be used to design optimal non-
linearities in a principled way. Given equations (2.9) and (2.10), the general principle is quite
transparent. The optimal nonlinearity is defined in terms of a scalar denoising problem. For
Xo ~ vx, and G ~ N(0, 1) independent, consider the problem of estimating X from the
noisy observation ¥ = u;Xo + 0;G. At step ¢, f; should be constructed as to maximize the
ratio B[ X0 f; (s Xo 4+ 0: G)1/EL f; (1u: X o + 0,G)?]'/2. Two specific instantiations of this prin-
ciple are given in Sections 2.3 and 2.4.

REMARK 2.1. The state evolution recursion of equations (2.9), (2.10) in Theorem 1 was
already derived by Fletcher and Rangan in [25]. However, as explained in [25], Section 5.3,
their results only apply to cases in which AMP can be initialized in a way that: (i) has
positive correlation with the spike x¢ (and this correlation does not vanish as n — 00); (i7) is
independent of A.

Theorem 1 analyzes an algorithm which does not require such an initialization, and hence
applies more broadly.

2.3. The case of a sparse spike. In some applications, we might know that the spike x is
sparse. We consider a simple model in which x¢ is known to have at most ne nonzero entries
for some ¢ € (0, 1).

Because of its importance, the use of nonlinear power iteration methods for this problem
has been studied by several authors in the past [34, 41, 52]. However, none of these works
obtains precise asymptotics in the moderate SNR regime (i.e., for A, & of order one). In
contrast, sharp results can be obtained by applying Theorem 1. Here, we will limit ourselves
to taking the first steps, deferring a more complete analysis to future work. We focus on
the case of symmetric matrices for simplicity (cf. equation (2.1)), but a generalization to
rectangular matrices is straightforward along the lines of Section 4.

The sparsity assumption implies that the random variable X entering the state evolution
recursion in equation (2.9) should satisfy vx,({0}) > 1 — ¢. Classical theory for the sparse
sequence model [20, 21] suggests taking f; to be the soft thresholding denoiser f;(x) =
n(x; 1), for (t;);>0 a well-chosen sequence of thresholds. The resulting algorithm reads

x' = A% —p, 27!, ' =n(x"; 1),
(2.12)

1
bl - _”.i\ft
n

0

where ||v]|o is the number of nonzero entries of vector v. The initialization is, as before x° =

/ne@,. The algorithm alternates soft thresholding, to produce sparse estimates and power
iteration, with the crucial correction term —b,itil.

Theorem 1 can be directly applied to characterize the performance of this algorithm for
any fixed distribution vy, of the entries of x(. For instance, we obtain the following exact

prediction for the asymptotic correlation between estimates X' and the signal x(:

(& (A), x0)|  peg

(2.13) A - _
n=oo X (A)ll2llxoll Aot

For a given distribution vy,, it is easy to compute u,, oy using equation (2.9) with f;(x) =
t.
n(x"; 7).
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We can also use Theorem 1 to characterize the minimax behavior over ne-sparse vec-
tors. We sketch the argument next: similar arguments were developed in [19, 22] in the
context of compressed sensing. The basic idea is to lower bound the signal-to-noise ratio
(SNR) M,Z 1/ O’ZZ_H iteratively as a function of the SNR at the previous iteration, over the set
of probability distributions F, = {vx, : vx,({0}) > 1 —¢, fxzvxo (dx) = 1}. As shown in Ap-
pendix E.1 in the Supplementary Material [44], it is sufficient to consider the extremal points
of the set F¢, which are given by the three-points priors:

(2.14) Tp.ay.ay = (1 — )80 + epbay + (1 — p)ay, pal+(1—pyas=1, pelo,1].
We then define the following SNR maps:

[E{Xon(/¥ X0+ G; 0)}°
E{(n(/¥Xo+G;0)?}

(2.16) S(y:0) =inf{S.(y.0: Tp.ay.ay) : pai + (1= p)as =1, p €[0, 11}

(2]5) S*(V»e» VX()) =

The interpretation of these quantities is as follows: y — S, (y, 0; vx,) describes the evolution
of the signal-to-noise ratio after one step of AMP, when the signal distribution is vy, ; the map
y = S(y; ) is the same evolution, for the least favorable prior, which can be taken of the
form 7y 4, 4,

Notice that the function Sx(y, 0; 7 4;.4,) can be evaluated by performing a small number
(six, to be precise) of Gaussian integrals. The function S is defined by a two-dimensional
optimization problem, which can be computed numerically quite efficiently.

We define the sequences (L),Zo, (6;)r>0 by setting Yo= 22 — 1, and then recursively

32 . _ .
(2.17) =21"S8(y,; 60, Gz—argeg[loa}go]S(L,@)-

Yin

The next proposition provides the desired lower bound for the signal-to-noise ratio over
the class of sparse vectors.

PROPOSITION 2.1. Assume the setting of Theorem 1, and furthermore, || xo(n)|lo < ne.
Let (' = %'(A));>0 be the sequence of estimates produced by the AMP iteration equation
(2.12) with initialization x° = /1@, and thresholds t, = 0,6, where 6, is a estimator of o,
from data x°, ..., x' such that 6; <> o,. (For instance, take 62=|fio1(x'™h ||%/nf0rt > 1.
Fort =0, take 63 = l/i, where . is given in equation (3.1).)

Then for any fixed t > 0 we have, almost surely,

(& (A, xo) i VT

(2.18) i — — >
1= || x"(A)l2llxoll2 A0i+1 A

Here, (j;+1, 0111) are recursively defined as follows, starting from juo = ~/1 — A2 and 002 =
A2

(2.19) w1 =rE{Xon(w:Xo+0:1G; 60}, ol =E{n(uXo+ 0:G; 6,01)%}.

The proof of Proposition 2.1 is given in Appendix E in the Supplementary Material [44].
The proposition reduces the analysis of algorithm (2.12) to the study of a one-dimensional
recursion y = A2S (v, 00, which is much simpler. We defer this analysis to future work.
We emphasize that the AMP algorithm in equation (2.12) with thresholds t; = 6,6, does not
require knowledge of either the sparsity level € or the SNR parameter A—these quantities are
only required to compute the sequence of lower bounds (Zz)’ZO'
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2.4. Bayes-optimal estimation. As a second application of Theorem 1, we consider the
case in which the asymptotic empirical distribution vy, of the entries of x¢ is known. This
case is of special interest because it provides a lower bound on the error achieved by any
AMP algorithm.

To simplify some of the formulas below, we assume here a slightly different normalization
for the initialization, but otherwise we use the same algorithm as in the general case, namely

(2.20) x0=/na2(2 = 1)gy,
1 n
(2.21) X = Af (") = b fin (x' 7, W=;§:ﬁwy
i=1
In order to define the optimal nonlinearity, consider again the scalar denoising problem of

estimating Xo from the noisy observation ¥ = /¥y Xo + G (note that Xo, G € R are scalar
random variables). The minimum mean square error is

(2.22) mmse(y) = E{[Xo — E(Xo|/7 X0 + G)]*}.
With these notation, we can introduce the state evolution recursion
(2.23) vo=r>—1,

(2.24) Yir1 = A1 — mmse(y,)).

These describe the evolution of the effective signal-to-noise ratio along the algorithm execu-
tion.

The optimal nonlinearity f;(-) after ¢ iterations is the minimum mean square error denoiser
for signal-to-noise ratio y;:

(2.25) i) =AF(y; 1),
(2.26) F(y;v)=E{Xo|yXo+/YG =y}

After ¢ iterations, we produce an estimate of xo by computing ¥’ (A) = f;(x") /A = F(x'; y;).
We will refer to this choice as to Bayes AMP.

REMARK 2.2. Implementing the Bayes-AMP algorithm requires to approximate the
function F(y;y) of equation (2.26). This amounts to a one-dimensional integral and can
be done very accurately by standard quadrature methods: a simple approach that works well
in practice is to replace the measure vy, by a combination of finitely many point masses.
Analogously, the function mmse(y) (which is needed to compute the sequence y;), can be
computed by the same method.>

We are now in position to state the outcome of our analysis for Bayes AMP, whose proof
is deferred to Appendix F in the Supplementary Material [44].

THEOREM 2. Consider the spiked matrix model (2.1), with xo(n) € R" a sequence of
vectors satisfying assumptions (i), (ii) above, and A > 1. Let (x");>0 be the sequence of
iterates generated by the Bayes AMP algorithm defined in equation (2.8), with initialization
(2.20), and optimal choice of the nonlinearity defined by equation (2.25). Assume F(-;y) :
R — R fo be Lipschitz continuous for any y € (0, A*]. Finally, define state evolution by
equations (2.23), (2.24).

3 AMP noes not require high accuracy in the approximations of the nonlinear functions f;. As shown several
times in the Appendices (see, e.g., Appendix A) the algorithm is stable with respect to perturbations of f;.
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Then, for any function ¥ : R xR — Rwith [ (x) =¥ ()| = C(1+xll2+ [ yll2) lx — yll2
for a universal constant C > 0, the following holds almost surely for t > 0:

. 1/2
(227 dim — Zl ¥ (x0,i, x]) = E{y(Xo, i Xo + v " 2)},
where expectation is taken with respect to Xo ~ vx, and Z ~ N(0, 1) mutually independent,
and we assumed without loss of generality that (¢, xo) > 0.

In particular, let yarg(A) denote the smallest strictly positive solution of the fixed point
equation y = 221 — mmse(y)]. Then the AMP estimate (A = fr(x") /X achieves

(%' (A). x0)|  yaLc()

(2.28) fim, 1 ’
>oon= | (A)|hllxol A
| A
(2.29) lim lim — _min ||sx (A) —xof3=1- e,
t—0on—>00 p se{+ -

Finally, the algorithm has total complexity O (n*logn).

REMARK 2.3. The assumption on F(-;y) : R — R being Lipschitz continuous is re-
quired in order to apply our general theory. Note that this is implied by either of the following:
(i) supp(vx,) € [—M, M] for some constant M; (ii) vy, has log-concave density.

It is interesting to compare the above result with the Bayes optimal estimation accuracy.
The following statement is a consequence of the results of [39] (see Appendix D in the Sup-
plementary Material [44]).

PROPOSITION 2.2. Consider the spiked matrix model (2.1), with xo(n) € R" a vector
with i.i.d. entries with distribution vx, with bounded support and [ x*vx,(dx) = 1. Then
there exists a countable set D C R such that, for A € R\ D, the Bayes-optimal accuracy
in the rank-one estimation problem is given by

(i(A),x0>2 } . YBayes (1)
n=00 gy LIR(A) 3 ]x0ll3 Az

where the supremum is over (possibly randomized) estimators, that is, measurable functions
X R™" x [0, 1] — R", where [0, 1] is endowed with the uniform measure. Here, yBayes (1)
is the fixed point of the recursion (2.24) that maximizes the following free energy functional:

)\’2 y2
2.31 Uy, \)=—+"——L 41
(2.31) (y.A) = 4+4x 2+(V)

(2.30) lim sup E{

where 1(y) = Elog %(Y, Xo) is the mutual information for the scalar channel Y =
VY Xo+ G, with Xo ~ vy, and G ~ N(0, 1) mutually independent.

Together with this proposition, Theorem 2 precisely characterizes the gap between Bayes-
optimal estimation and message passing algorithms for rank-one matrix estimation. Simple
calculus (together with the relation I'(y) = mmse(y)/2 [27]) implies that the fixed point of
the recursion (2.24) coincide with the stationary points of y — W(y, A). We therefore have
the following characterization of the Bayes optimality of Bayes-AMP.

COROLLARY 2.3. Under the setting of Theorem 2 (in particular, A > 1), let the func-
tion V(y, A) be defined as in equation (2.31). Then Bayes-AMP asymptotically achieves
the Bayes-optimal error (and yaLG(A) = YBayes(A)) If and only if the global maximum of
y > W(y, L) over (0, 00) is also the first stationary point of the same function (as y grows).
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As illustrated in Section 2.5, this condition holds for some cases of interest, and hence
message passing is asymptotically optimal for these cases.

REMARK 2.4. In some applications, it is possible to construct an initialization x° that
is positively correlated with the signal xo and independent of A. If this is possible, then
the spectral initialization is not required and Theorem 2 follows immediately from [7]. For
instance, if vx, has positive mean, then it is sufficient to initialize x = 1. This principle was
exploited in [17, 18, 43].

However, such a positively correlated initialization is not available in general: the spectral
initialization analyzed here aims at overcoming this problem.

REMARK 2.5. No polynomial-time algorithm is known that achieves estimation accu-
racy superior to the one guaranteed by Theorem 2. In particular, it follows from the opti-
mality of posterior mean with respect to square loss and the monotonicity of the function
y = A2{1 — mmse(y)} that Bayes AMP is optimal among AMP algorithms. That is, for any
other sequence of nonlinearities f;(-), we have

[(fr "), X0l pasr _ Vi
n=o0 || fy(x)2llxoll2 Aorpr T A

As further examples, [30] analyzes a semidefinite programming (SDP) algorithm for the spe-
cial case of a two-points symmetric mixture vy, = (1/2)d41 + (1/2)8_;. Theorem 2 implies
that, in this case, message passing is Bayes optimal (since YALG = ¥Bayes follows from [16]).
In contrast, numerical simulations and nonrigorous calculations using the cavity method from
statistical physics (see [30]) suggest that SDP is suboptimal.

(2.32)

REMARK 2.6. A result analogous to Theorem 2 for the symmetric two-points distribu-
tion vx, = (1/2)84+1 4+ (1/2)6_; is proved in [46], Theorem 3, in the context of the stochastic
block model of random graphs. Note, however, that the approach of [46] requires the graph
to have average degree d — 0o, d = O(logn).

2.5. An example: Two-points distributions. Theorem 2 is already interesting in very sim-
ple cases. Consider the two-points mixture:

(2.33) Vx, =&8q, + (1 —€)d_¢_,

1_
(2.34) a4y = e = 2
e 1—¢

Here, the coefficients a4, a_ are chosen to ensure that [ xvy,(dx) =0, [ xzvxo (dx) = 1. The
conditional expectation F(y; y) of equation (2.26) can be computed explicitly, yielding

sa+e“+y_7’“i/2 —(1-— 8)a_e_“—y_}"’3/2
(2.35) F(y;y)=

gea+yfyai/2 —+ (1 — g)efa*yfyag/z

Figure 1 reports the results of numerical simulations with the AMP algorithm described in
the previous section. We also plot y,. (1) / A2 as a function of A, where ¥«(X) is the fixed point
of the state-evolution equation (2.24). The figure shows plots for four values of ¢ € (0, 1/2].
The qualitative behavior depends on the value of ¢. For ¢ close enough to 1/2, equation (2.24)
only has one stable fixed point* that is also the minimizer of the free energy functional (2.31).
Hence yALG(Y) = ¥Bayes(2) for all values of A: message passing is always Bayes optimal.

4This is proved formally in [16] for ¢ = 1/2 and holds by a continuity argument for ¢ close enough to 1/2.
However, here we will limit ourselves to a heuristic discussion based on the numerical solution of equation (2.24).
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FIG. 1. Estimation in the single spiked model (2.1) with entries of x( following the two-points distribution of
equation (2.33), and four different values of the sparsity ¢ € {0.025,0.05, 0.25, 0.5}. Continuous thick blue line:
asymptotic accuracy achieved by AMP (with spectral initialization). Red circles: numerical simulations with the
AMP algorithm (form matrices of dimension n = 2000 and t = 200 iterations). Continuous thin blue line: Bayes
optimal estimation accuracy. Dashed blue line: other fixed points of state evolution. Red line: Accuracy achieved
by principal component analysis. Vertical dashed black lines: the thresholds AT and Aa1 G-

For ¢ small enough, there exists Ag(¢) < 1 such that equation (2.24) has three fixed points
for A € (Ao(e), 1): yo(A) < y1(A) < y2(A) whereby y9 = 0 and y» are stable and y; is un-
stable. AMP is controlled by the smallest stable fixed point, and hence yarg(t) = 0 for
all < 1. On the other hand, by minimizing the free energy (2.31) over these fixed points,
we obtain that there exists Arp(¢) € (Ao(¢), 1) such that ygayes(2) = 0 for A < Arr(¢) while
YBayes(A) = y2(A) for A > Arr(e). We conclude that AMP is asymptotically suboptimal for
A € (M7(e), 1), while it is asymptotically optimal for A € [0, Arr(¢)) and A € (1, 00).

3. Confidence intervals, p-values, asymptotic FDR control. As an application of The-
orem 2, we can construct confidence intervals that achieve a preassigned coverage level
(1 — ), where « € (0, 1). Indeed, Theorem 2 informally states that the AMP iterates x’
are approximately Gaussian with mean (proportional to) the signal xq. This relation can be
inverted to construct confidence intervals.

We begin by noting that we do not need to know the signal strength A. Indeed, for A > 1,
the latter can be estimated from the maximum eigenvalue of A, Apax(A), via

~ 1
3.1 rMA) = E{)\max(A) + )Lmax(A)z - 4}-



ESTIMATION OF LOW-RANK MATRICES VIA AMP 333

This is a consistent estimator for A > 1, and can replace A in the iteration of equation (2.8) and
initialization (2.20) as well as in the state evolution iteration of equations (2.23) and (2.24).
We discuss two constructions of confidence intervals: the first one uses the Bayes AMP al-
gorithm of Section 2.4, and the second instead uses the general algorithm of Section 2.2.
The optimality of Bayes AMP translates into shorter confidence intervals but also requires
knowledge of the empirical distribution vy,,.

Bayes-optimal construction. In order to emphasize the fact that we use the estimated A
both in the AMP iteration and in the state evolution recursion, we write X' for the Bayes
AMP iterates and y; for the state evolution parameter, instead of x” and y,. We then form the
intervals:

(3.2) Ji@;n) [l—f : c1>—1<1 “) L q>—1<1 “)]
. (1) =| =X; — — — =), =x; — ——
l vtV 2)° %V 2

We can also define corresponding p-values by

1
(33) P =2(1 —d><—A|f’.|)).
' Vi
General construction (no prior knowledge). Given a sequence of Lipschitz functions f; :
R — R, we let x’ be the general AMP iterates as per Section 2.2; cf. equation (2.8). In order

to form confidence intervals, we need to estimate the parameters ., oy. In view of Theorem 1,
a possible choice is given by

1
(3.4) 62 = ;Hft_l(xt_l)

1

n

2
20

1
(3.5) e L R VATC [

We then construct confidence intervals and p-values

~ 1 t Oy —1 o 1 t &t -1 o
(3.6) Jiein =|—xf = 2o (1- ), —xl+ 207 (1= |,
Mt Mt Mt Mt

3.7) p,-(t)=2<1 —q><&i[|x; ))

COROLLARY 3.1. Consider the spiked matrix model (2.1), under the assumptions of
Theorem 1 (in case of no prior knowledge) or Theorem 2 (for the Bayes optimal construction).
Defining the confidence intervals Ji(a; t) as per equations (3.2) (3.6), we have almost surely

B A
(3.8) Aim ~ Z}ﬂ(xo,i eJi(a;t))=1—a.
=
Further assume that the fraction of nonzero entries in the spike is ||xo(n)|o/n — ¢ € [0, 1),
and vx,({0}) =1 — &. Then the p-values constructed above are asymptotically valid for the
nulls. Namely, let ig = io(n) any index such that xg,(n) = 0. Then, for any o € [0, 1], and
any fixed t > 0,

(3.9) Tim_ P(pigqn (1) < @) =a.
The proof of this result is presented in Appendix G in the Supplementary Material [44].

Notice that, by dominated convergence, this corollary also implies validity of the confi-
dence intervals on average, namely lim,, _, o % Z?:l P(xp,; € Ji(ae; t)) = 1 —o. As mentioned
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above, cf. Remark 2.5, the Bayes-optimal construction maximizes the ratio u;/o; and, there-
fore, minimizes the length of confidence intervals. This requires however additional knowl-
edge of the empirical distribution vy, .

Corollary 3.1 allows to control the probability of false positives when using the p-values
pi; see equation (3.9). We might want to use these p-values to select a subset of variables
Scl p] to be considered for further exploration. For such applications, it is common to aim
for false discovery rate (FDR) control. The p-values p; guarantee asymptotic FDR control
through a simple Benjamini—-Hochberg procedure [10]. For a threshold s € [0, 1], we define
the following estimator of false discovery proportion [23]:

ns
LV (2 Tpi<s)

Using this notion, we define a threshold and a rejection set as follows. Fix « € (0, 1), let

(3.10) FDP(s; 1) =

(3.11) sx(o; 1) =inf{s € [0, 1] :FDP(s; 1) > al, S(a;t) = {i €nl: pi(r) < si(a;0)}.

The false discovery rate for this procedure is defined as usual

1S (e; 1) N {i < xo,4 =0}|}

(3.12) FDR(«, t; n) EE{ ~
1V [S(a; 1)]

Our next corollary shows that the above procedure is guaranteed to control FDR in an asymp-
totic sense. Its proof can be found in Appendix H in the Supplementary Material [44].

COROLLARY 3.2. Consider the spiked matrix model (2.1), under the assumptions of
Theorem 1 (in case of no prior knowledge) or Theorem 2 (for the Bayes optimal construction).
Further assume that the fraction of nonzero entries in the spike is || xo(n)|o/n — ¢ € [0, 1),
and vx,({0}) =1 — &. Then, for any fixed t > 0,

(3.13) nli)ngo FDR(«, t;n) = (1 — ¢)a.

REMARK 3.1. The procedure defined by threshold and rejection set in equation (3.11)
does not assume knowledge of the sparsity level ¢. If one knew ¢, then an asymptotic false
discovery rate of exactly @ can be obtained by defining [49]

n(l —e¢)s
v 2 Lpioy<sp)

With the threshold and rejection set defined as in equation (3.11), such a procedure would
have an asymptotic FDR equal to «, and higher power than the procedure using the estimator
in equation (3.10).

FDP(s; 1) =

4. Estimation of rectangular rank-one matrices. The algorithms and analysis devel-
oped in previous sections can be generalized to rectangular matrices. We illustrate this by
generalizing the rank-one result of Theorem 1. We consider a data matrix A € R"*¢ given by

A
(4.1 A="uox)+ W,
n

where (W;;)i<n, j<a ~iid N(0, 1/n). To be definite, we will think of sequences of instances
indexed by n and assume n, d — oo with aspect ratio d(n)/n — « € (0, 00).
We will make the following assumptions on the sequences of vectors ug = ug(n), xo =

xo(n):
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(i) Their rescaled ¢>-norms converge:
gim Juo()|,/va=1.  lim [xom)],/vd@) =1;

(i) The empirical distributions of the entries of xo(n) and uy(n) converges weakly to
probability distributions vy,, vy,, on R, with unit second moment.

In analogy with the symmetric case, we initialize the AMP iteration by using the principal
right singular vector of A, denoted by ¢ (which we assume to have unit norm). In the present
case, the phase transition for the principal singular vector takes place at A% /a = 1 [2, 48].
Namely, if kzﬁ > 1 then the correlation between |(x¢, @)|/[|x0ll stays bounded away from
zero as n,d — o0.

Setting x0= \/3(01 and g, (u' —1y = 0, we consider the following AMP iteration:

1 d
(42) ut = Af;(xt) — b[g[_l(ut_l), bt = ; Z ft/(xlt)
1 n
(4.3) M =ATg, W) - fi(x"), o= - > g (ul).

i=1
The asymptotic characterization of this iteration is provided by the next theorem, which
generalizes Theorem 1 to the rectangular case.

THEOREM 3. Consider the k = 1 spiked matrix model of equation (4.1), with n, d — oo,
d/n — a. Assume xo(n) € RY, ug(n) € R? to be two sequences of vectors satisfying as-
sumptions (i), (ii) above, and kzﬁ > 1. Consider the AMP iteration in equation (2.8)
with initialization x° = J/ne, (where, without loss of generality (xq, @) > 0). Assume
ft, & : R — R to be Lipschitz continuous for each t € N.

Let (s, 01)r>0 be defined via the recursion

(4.4) 1 = \E[Uogi (T, Up +7,G)], o =E[g(m,Uo +7,G)?],
(4.5) T, = aE[Xofi(u X0 +0:G)], & =aE[fi(wXo+0:G)?],

where Xo ~ vx,, Uy ~ vy, and G ~ N(0, 1) are independent, and the initial condition is

1 —o x4 N S
4.6 = =/
(4.6) 1o 532 00 52

(This is to be substituted in equation (4.5) to yield [Ty, 00.)
Then, for any function ¢ : R xR — Rwith [ (x) =¥ (y)| = C(A+xl2+yl2)x — yl2
for a universal constant C > 0, the following holds almost surely for t > 0:

d(n)
4.7 Mod(n)wao,, ) =E{y (X0, s Xo +0:G)},
1 , B
4.8) Aim = (o, up) = E{Y (Uo, 7, Uo + 51 G}
i=1

As a special class of examples covered by this setting, we can consider the case in
which we are given i.i.d. Gaussian samples (y;)i<, ~ N(0, X), with covariance matrix
Y= pzfcoig + I ; where xg = xo/\/g. Letting A be the matrix with ith row equal to y;//n,
this takes the form of equation (4.1), with ug ~ N(0, I,,), and A = p//«. Notice that the
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sequence of random Gaussian vectors ug(n), n > 1 satisfies conditions (i), (ii) above almost
surely, with limit distribution vy, equal to the standard Gaussian measure.

In this case, the optimal choice of the function g; in equation (4.4) is of course linear:
g+(u) = a;u for some a; > 0. The value of the constant a; is immaterial, because it only
amounts to a common rescaling of the u,, o;, which can be compensated by a redefinition
of f; in equation (4.5). We set a; = Alt,/ (ﬁ,z + Etz). Substituting in equation (4.4), we obtain
[i+1 =02, | = Vi+1, where

4.9) V41 = T 5>

where ¥, = 12/ 2. Taking the ratio of the two equations in (4.5), we obtain

E{Xofi(yi X + 76\
E{fitviX + /¥ G)?}

(4.10) 7, =2 a

We thus reduced the problem of covariance estimation in the spiked model ¥ = pZJEoJEg +14,
to the analysis of a one-dimensional recursion defined by equations (4.9), (4.10).

5. Degenerate cases and nonconcentration. The spectral initialization at unstable fixed
points leads to a new phenomenon that is not captured by previous theory [7]: the evolution
of empirical averages (e.g., estimation accuracy) does not always concentrate around a deter-
ministic value. Our main result, Theorem 5 below, provides a description of this phenomenon
by establishing a state evolution limit that is dependent on the random initial condition. The
initial condition converges in distribution to a well-defined limit, which—together with state
evolution—yields a complete characterization of the asymptotic behavior of the message
passing algorithm.

The nonconcentration phenomenon arises when the deterministic low-rank component in
equation (1.1) has degenerate eigenvalues. This is unavoidable in cases in which the underly-
ing low-rank model to be estimated has symmetries.

Here, we illustrate this phenomenon on a simple model that we will refer to as the Gaussian
Block Model (GBM). For g > 3 a fixed integer, let ¢ = (o1, ..., 0,) be a vector of vertex
labels with o; € {1, ..., g} and consider deterministic matrix Ay € R"*" (with rank(Ag) =
g — 1) defined by

_J@—1D/n ifo; =0y,

5.1 Apii =
1) 047 —1/n otherwise.

We assume the vertex labeling to be perfectly balanced. That is, Y/, 15,—s = n/q for
o €{1,...,q}: While most of our discussion holds under an approximate balance condition,
this assumption avoids some minor technical complications. Notice that Ag is an orthogonal
projector on a subspace V,, € R” of dimension g — 1. We observe the noisy matrix (with noise
W ~ GOE(n))

(5.2) A=AAg+ W,

and would like to estimate Ag from these noisy observations. The matrix A takes the form of
equation (1.1) withk=¢g — 1, A1 =--- = Ax =X and vy, ..., v; an orthonormal basis of the
space V,. We will assume A > 1 so that k, = k. In particular, for ¢ > 3, the low-rank signal
has degenerate eigenvalues.
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We use the following AMP algorithm to estimate Ag. We compute the top k eigenvectors

of A, denoted by ¢, ..., ¢, € R"” and generate x’ € R"*4 for t > 0, according to

(5.3) x0 = [Vngi - 1V, 10],

(54) X = A () = fxhBY,
where the “Onsager coefficient” B, € R?7*9 is a matrix given by

1 & of

5.5 B, =—)» —(x%, y).

( ) t n ; ax( 1 yl)
Here, % € R9*? denotes the Jacobian matrix of the function f : R? — RY. Furthermore, the

function f :R? — RY is defined by letting, for o € {1, ..., g}:

qun
(5.6) f@o =5 1)
and f(x) is defined for x € R"*? by applying the same function row by row. This choice
of the function f corresponds to Bayes-optimal estimation as can be deduced from the state
evolution analysis below: we will not discuss this point in detail here.

The output x’ after 7 iterations of (5.4) can be interpreted as an estimate of the labels o
in the following sense. Let xo € R"*? be the matrix whose ith row is xo; = Pleai, with
Pl e RI%4 the projector orthogonal to the all ones vector, and ey, ..., e, the canonical basis
in R?. Note that Ag = (¢/ n)xoxg. Then x! is an estimator of x( (up to a permutation of the
labels’ alphabet {1, ..., g}).

Let S, be the group of ¢ x ¢ permutation matrices. We evaluate the estimator x via the
overlap

(x', xoI)
(5.7) Overlap,, (A; ) = max O ITRTIONTI,
nes, x| Fllxollr
where (-, -) denotes the Frobenius inner product. In Figure 2, we plot the evolution of the
overlap in two sets of numerical simulations, for ¢ =3 and g = 4. Each curve is obtained by
running AMP (with spectral initialization) on a different realization of the random matrix A.
The nonconcentration phenomenon is quite clear:

e For fixed number of iterations ¢ and large n, the quantity Overlap, (A; ¢) has large fluctua-
tions, that do not seem to vanish as n — oco.

e Despite this, the algorithm is effective in reconstructing the signal: after = 10 iterations,
the accuracy achieved is nearly independent of the initialization.

The empirical data in Figure 2 are well described by the state evolution prediction that is
shown as continuous curves in the same figure. In this case, state evolution operates on the
pair of matrices M, Q, € R?*4, which are updated according to

(5.8) Moy =)E[f(qgMes + Q,*G)el P},

(5.9) 0,1 =E{f(gMe; + 0,”°G) f(qMe, + 0;"*G)"},

where f :RY — RY is defined as per equation (5.6), and expectation is with respect to o
uniform in {1, ..., ¢} independent of G ~ N(0, I,). Note that Q, is symmetric and both
Q1=M1=1"M,=0forall > 1.

The state evolution prediction for the present model is provided by the next theorem, which
is proved in Appendix I in the Supplementary Material [44].
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F1G. 2. Estimation in the Gaussian Block Model of equation (5.2) using the AMP algorithm with spectral ini-
tialization of equations (5.3), (5.4). We plot the reconstruction accuracy (overlap) as a function of the number
of iterations for g =3, . = 1.5, n = 6000 (left frame), and g =4, A = 1.75, n = 8000 (right frame). Each set
of symbols corresponds to a different realization of the random matrix A, and curves report the corresponding
prediction of Theorem 4. Dashed black lines report the Bayes optimal accuracy as per [5, 39].

THEOREM 4. Let A € R™" be the random matrix of equation (5.2) with A > 1, and let
@1, ..., be its top k eigenvectors. Denote by x' the sequence of estimates produced by the
AMP algorithm of equation (5.3) with the spectral initialization in equation (5.4).

Let {M;, Q,};>0 be the state evolution iterates with initialization M = xNTxg /n and
0= Al diag(1,1,...,1,0) Then, for any function  : R24 — R with [y (x) — ¥ (y)| <
CA+lxll24+ Iyl lx — yll2, we have, almost surely

.1 1/2 1
(5.10) dim |~ Ew(xg,xo,,-) —E{y(qM.es + 0)°G, PLe,)}| =0,
i=
where expectation is with respect to o uniform in {1, ..., q} independent of G ~N(0, 1 ;).

Further as n — oo, M converges in distribution as

OT
(5.11) Mo—%m[ <q—1>xq]

leq

where O € R1*Y~Y s Haar distributed orthogonal matrix with column space orthogonal
to 1.

The continuous curves in Figure 2 are obtained as described in the last theorem. For
each experiment, we generate a random matrix A according to equation (5.2), compute
the spectral initialization of equation (5.3) and set My = xNTxg /n. We then compute the
state evolution sequence {(M,, Q,)};>0 via equations (5.8), (5.9), and use equation (5.10)
to predict the evolution of the overlap. The variability in the initial condition M leads to
a variability in the predicted trajectory {(M;, Q,)};>0 that matches well with the empirical
data.

Finally, as mentioned above, AMP converges to an accuracy that is roughly independent
of the matrix realization for large ¢, and matches the Bayes optimal prediction of [5, 39].
While a full explanation of this phenomenon goes beyond the scope of the present paper,
this behavior can be also explained by Theorem 4: the initialization M breaks the symmetry
between the g blocks uniformly, as per equation (5.11). Once the symmetry is broken, the
state evolution iteration of equations (5.8), (5.9) converges to a fixed point that is unique up
to permutations.
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6. Main result.

6.1. Notation and definitions. We say that a function ¥ : R — R is pseudo-Lipschitz
of order k (and write ¢ € PL(k)) if there exists a constant L such that |{(x) — ¥ (y)| <
LA+ (x| /v " + Uy l/ V) Hllx — ylla/Vd.

Recall that a sequence of probability distributions v, on R” converges weakly to v (v, =
v) if, for any bounded Lipschitz function i : R” — R, lim,,—, « E¥(X,) = E{(X) where
expectation is with respect to X,, ~ v,, X ~ v. Given a (deterministic) sequence of matrices
Z, € R"* jndexed by n (with d > 1 fixed), we say that the empirical distribution of Z,
converges weakly to a probability distribution v on R¥ if, letting z; = Zle,- denote the ith
row of Z,,, for each i we have

1 < w
6.1 — Y 87 .= .
(6.1) - ; 2
Equivalently, lim,,_, oo n ™" Y ¥ (zi) = Ey(z) for z ~ v and any bounded Lipschitz func-
tion . We apply the same terminology if we are given d vectors (z(ln), ey zg')), where
zé") € R": in this case Z,, is the matrix with columns z%"), e z;”).

Given two probability measures p (on the space X) and v (on the space ))), a coupling p
of 1 and v is a probability distribution on X x ) whose first marginal coincides with p and
second coincides with v. We denote the set of couplings of u, v by C(u, v). For k > 1, the
Wasserstein-k (Wj) distance between two probability measures u, v on R? is defined by

(6.2) Wi(u.v)= inf Ex.y~,{I1X — Y5}
peC(i,v)

where the infimum is over all the couplings of © and v. A sequence of probability distri-

butions v, on R™ converges in Wy to v (v, V=V§ v) if lim,,— oo Wi (v, v) = 0. An equivalent
definition is that, for any ¥ € PL(k), lim,,—,oc E¥ (X,) = E¢(X) where expectation is with
respect to X, ~ v,, X ~ v [51], Theorem 6.9.

Generalizing from the definitions introduced for weak convergence, given sequence of
matrices Z, € R"*¢ indexed by n (with d > 1 fixed), we say that the empirical distribution
of Z, converges in Wy to v (a probability distribution on RY), if letting z; = Zle,- denote the
ithrow of Z,,,

1 n
(6.3) OIS %y,
i=1

Equivalently, lim,,_, n! "_1 ¥ (zi) =Ey(z) forany ¢ € PL(k) (where z ~ v). Again the
same terminology is used for d-tuples of vectors (z&"), e zé(in)).

We will typically use upper case bold symbols for matrices (e.g., A, B,...), lower case
bold for vectors (e.g., u, v, .. .) and lower case plain font for scalars (e.g., x, v, ... ). However,
we will often denote random variables and random vectors using upper case.

We often consider vectors (or matrices) whose elements are indexed by arbitrary finite sets.
For instance, given finite sets Sy, Sz, Q € RS1%52 i a matrix 0 = (Qi,j)ies,jes,- When there
is an obvious ordering of the elements of Sy, S», such a matrix is understood to be identified
with a matrix in R”1*"2 where n; = |S;|. For instance, RI"1*["] is identified with R"*".
Given a vector v € R” an a set § C [m], we denote by vg € RS the subvector indexed by
elements of S. Analogously, for a matrix M € R™>" we let Mg s € R¥ %5 be the submatrix
with row indices in R and column indices in S. If the submatrix includes all the rows, we
adopt the shorthand M, s.

Finally, we adopt the convention that all vectors (including the rows of a matrix) are viewed
as column vectors, unless explicitly transposed.
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6.2. Statement of the result: Symmetric case. Recall the spiked model of equation (1.1),
which we copy here for the reader’s convenience:

k
(6.4) A=) "1viv] + W=VAV + W.

i=1

Here, v; € R" are nonrandom orthonormal vectors and W ~ GOE(n). We denote by
9, ..., 9, the eigenvectors of A, with corresponding eigenvalues z1 > z2 > --- > z,,.

For a sequence of functions f;(-) : R? x R — R, we consider the AMP algorithm that
produces a sequence of iterates x’ according to the recursion

(6.5) T =Af ", y)— fio1(x"L, y)Bl.

Here, y € R" is a fixed vector, and it is understood that f (-; ¢) is applied row-by-row. Namely,
denoting by x! € RY the ith row of x’, the ith row of f;(x'; y) is given by f;(x!, y;). The
“Onsager coefficient” B, € R?*? is a matrix given by

1 &Afr,
6.6 B, =—Y —L(x,v),
(6.6) ' n,z:l oy K0 i)

where % € R7*9 denotes the Jacobian matrix of the function f;(-, y) : R? — RY. The al-
gorithm is initialized with x® € R"*? and f_;(x~!, y) € R"*4 is taken to be the all-zeros

matrix.

REMARK 6.1. Notice that the present setting generalizes the one of Section 2 in two
directions (apart from the more general model for the matrix A, cf. equation (6.4)). First,
the state of the algorithm is a matrix x’ € R"*4 with ¢ an arbitrary fixed integer. While it is
natural to take g equal to the number of outliers in the spectrum of A (i.e., ¢ = k, according
to the notation introduced below), we believe that a more general choice of g can be useful for
certain applications. Further, the nonlinearity f; is a function of x’ but also on the independent
vector y that can be regarded as side information: again, we believe this additional freedom
will be useful for future applications of our main result.

We will make the following assumptions:

(A1) The values X;(n) have finite limits as n — 0o, that we denote by A;. Further, assume
there exist ky, k_ such that Ay > ... A, > 1> A, 41 and A > =1 > Agp_ 41>+ >
M- WeletS=(A, ... kyk—k_+1,...,k), ki =kt +k_ andgz(l,...,l@r,n—k_ +
1,..., n). Further, we let A g denote the diagonal matrix with entries (Ag);; = A;, i € S.

(A2) Setting ¢ > ky, we initialize the iteration (6.5) by setting x° € R"*? equal to the
matrix with first k, ordered columns given by (/n@;) and 0 for the remaining g — k
columns.

(A3) The joint empirical distribution of the vectors (/nv;(n))¢ecs, and y has a limit in
Wasserstein-2 metric. Namely, if we let 9; = (\/nvg,)ees € R+, then there exists a random
vector U taking values in R*+ and a random variable Y, with joint law uy y, such that

ieS’

1 1%
6.7) ~2 S5y = Huy-
i=1

(A4) The functions f;(-, ) : R? x R — R? are Lipschitz continuous.
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State evolution operates on the pair of matrices M, € R7*k, @, e R7*4, with Q, > 0,
evolving according to

(6.8) M =E{f,(M,U + Q,”°G,Y)U}As,
(6.9) Q1 =E{fi(MU+ ,”G.Y) (MU + 0;”G.Y)"},

where expectation is taken with respect to (U,Y) ~ uy,y independent of G ~ N(0, I,;).
These recursions are initialized with Q,, Mo which will be specified in the statement of
Theorem 5 below.

We denote by R(A) C RS the set of orthogonal matrices R (with R R = Ig) such that
Rij =0if A; # A orif j ¢ S. Notice that the k, x k, submatrix Rg s of R € R(A) is a block-
diagonal orthogonal matrix, with blocks in correspondence with the degenerate A;’s. As such,
these matrices form a compact group, which we will denote by R, (A) C R*>*k«_This group
can be endowed with the Haar measure, which is just the product of Haar measures over
the orthogonal group corresponding to each block. We define the Haar measure on R(A) by
adding k — k, columns equal to O for column indices j € [k] \ S.

THEOREM 5. Let (x');>0 be the AMP iterates generated by algorithm (6.5), under as-
sumptions (A1) to (A4), for the spiked matrix model (1.1). For n,, > n—12%¢ such that Ny — 0
as n — 00, define the set of matrices

_ Sx[kl . o —n\1/2
(6.10) Gi(A)={Q R min @ — (I AG)*R[ ;< m},

Let = QEV € R*K ywhere o€ Rk« js the matrix with columns (@;);csand V € R7*k

is the matrix with columns (v;);c[x]. Denote by ¢ € RS*S the submatrix corresponding to
the ky columns of @ with index in S, and let flo = - SZOSZE)I/Z.

Then, for any pseudo-Lipschitz function  : RIT5+1 5 R v € PL(2), the following holds
almost surely for t > 0:

.1 - 12
(6.11) lim ;;w(xg,vi,yi)—E{w(MtU+ 0/7G.U.v)}| =0,

Here, b; = (/nvg i)es € R and expectation is with respect to (U,Y) ~ nyy independent
of G ~N(0, 1,). Finally, (M;, Q,) is the state evolution sequence specified by equations

(6.8) and (6.9) with initialization (M), 1, (k.1 = 20, (M0) g\ [k, 1,1kl = 05 (Q0) [k, 1, lki] = Slg,
and (Qo)i.j =0if (i, j) ¢ [kl x [ks].

Further, P( € G,(A)) > 1 —n~4 for any A > 0 provided n > no(A), and R converges in
distribution to (I — AEZ)]/ZR, with R Haar distributed on R(A).

The theorem is proved for the case of a rank one spike in Appendix A. The proof for the
general case is given in Appendix B. In the following section, we provide a brief overview of
the key steps in the proof.

REMARK 6.2. Theorem 5 focuses on the case of symmetric square matrices A. How-
ever, a standard reduction (see, for instance, [11], Section 6) allows to obtain a completely
analogous statement for rectangular matrices, namely A € R"*? with

k
(6.12) A=) nuiv] + W,

i=l
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where W is a noise matrix with independent entries W;; ~ N(0, 1/n). We already considered
the case kK = 1 of this model in Section 4. Given Theorem 5, the generalization to k > 1
rectangular matrices is straightforward: we provide a precise statement in Appendix J in the
Supplementary Material [44].

Another generalization of interest would be to non-Gaussian matrices. It might be possible
to address this by using the methods of [6].

7. Proof outline. We first consider the rank one spiked model in equation (2.1), and give
an outline of the proof of Theorem 1. Letting v = T equation (2.1) can be written as

(7.1) A= v +W.

Recalling that (¢4, z1) are the principal eigenvector and eigenvalue of A, we write A as
the sum of a rank one projection onto the space spanned by ¢, plus a matrix that is the
restriction of A to the subspace orthogonal to ¢;. That is,

(7.2) A=210,0T+ P + W)PL,

where Pt =1 — (plgoI is the projector onto the space orthogonal to ¢. The proof of The-
orem 1 is based on an approximate representation of the conditional distribution of A given
(@1, z1). To this end, we define the matrix

(7.3) A=z10,0] + PL(v0" + W)P+

where W ~ GOE(n) is independent of W.

The proof is based on a key technical lemma (Lemma B.3 in the Supplementary Material
[44]) which shows that for large enough r, the conditional distribution of A g1ven (@1,z1) 18
close in (in total variation dlstance) to that of A with high probability. Given A, we consider
a sequence of AMP iterates (%¥'),>( obtained by replacing A with A in equation (2.8). That
is, we set

(74) 2= nsign((xo.@)er. ¥ = ALE) — b fia (7).
Theorem 1 is proved in three steps:

1. Using the conditional distribution lemma (Lemma B.3 in the Supplementary Material
[44]), we show that for any PL(2) test function ¥ : R x R — R, almost surely

1 n 1 n _
(1) Jim =3 (xf xo.) = Jim Z} W (&, x04),
whenever the limit on the right exists.

2. Step 1 allows us to establish Theorem 1 by analyzing the modified AMP iteration in
equation (7.4). For the modified AMP, the initialization %0 is independent of W. Conse-
quently, adapting techniques from standard AMP analysis we show that the following holds
almost surely for any PL(2) test function ¥ : R® — R:

I RN

Here, the random variables (Xo, L, G¢) are jointly distributed as follows: X ~ vx, and
Go ~ N(0, 1) are independent, L = +/1 —A=2X( + 271Gy, where G| ~ N(0, 1) is inde-
pendent of both Xg and Gy. It is shown in Corollary C.3 that (almost surely) the empirical
distribution of (x¢, /n@;) converges in W, to the distribution of (X, L). The constants
(ot, Br, Tr) in equation (7.6) are iteratively defined using a suitable state evolution recursion
given in Appendix A.
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3. The proof of Theorem 1 is completed by showing that for ¢ > 0,
(7.7) E{y (e Xo + B:L + 1.Go, Xo. L)} = E{¢y (1, X0 + 0:G, X0)},
where (i, 01)s>0 are the state evolution parameters defined in the statement of Theorem 1.

Combining equations (7.5)—(7.7) yields the claim of Theorem 1. The detailed proof of this
theorem is given in Appendix A in the Supplementary Material [44].

General case: For the general spiked model equation (1.1), the proof of the state evolution
result (equation (6.11) of Theorem 5) is along similar lines. Here, the modified matrix A is
defined as

k
(7.8) 1iz§:m%wz+lﬂ(§:hmmi+ﬂ)Pl,
ie§ i=1
where P is the projector onto the orthogonal complement of the space spanned by (¢ iied
and W ~ GOE(n) is independent of W. (Recall that S contains the indices i for which
|Ai| > 1.) Lemma B.3 shows that with high probability the conditional distributions of A
and A are close in total variation distance. We then consider iterates (X);>0 generated via the

AMP iteration using A:
(7.9) 0= nlol-- o 10]---10],
(7.10) P =AfF . y) — fia (@), y)Bl.

Using Lemma B.3, we first show that once the state evolution result equation (6.11) holds for
x', it also holds for x’. The result for ¥’ is then shown in two steps, which are analogous to
equations (7.6) and (7.7) for the rank one case.
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