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Abstract

Deep learning methods operate in regimes that defy the traditional statistical

mindset. Neural network architectures often contain more parameters than train-

ing samples, and are so rich that they can interpolate the observed labels, even

if the latter are replaced by pure noise. Despite their huge complexity, the same

architectures achieve small generalization error on real data.

This phenomenon has been rationalized in terms of a so-called ‘double de-

scent’ curve. As the model complexity increases, the test error follows the usual

U-shaped curve at the beginning, first decreasing and then peaking around the in-

terpolation threshold (when the model achieves vanishing training error). How-

ever, it descends again as model complexity exceeds this threshold. The global

minimum of the test error is found above the interpolation threshold, often in

the extreme overparametrization regime in which the number of parameters is

much larger than the number of samples. Far from being a peculiar property of

deep neural networks, elements of this behavior have been demonstrated in much

simpler settings, including linear regression with random covariates.

In this paper we consider the problem of learning an unknown function over

the ❞ -dimensional sphere S
❞�✶, from ♥ i.i.d. samples ✳①✐ ❀ ②✐ ✴ ✷ S

❞�✶ ✂ R,

✐ ✔ ♥. We perform ridge regression on ◆ random features of the form ✛✳✇T
❛①✴,

❛ ✔ ◆ . This can be equivalently described as a two-layer neural network with

random first-layer weights. We compute the precise asymptotics of the test error,

in the limit ◆❀ ♥❀ ❞ ✦ ✶ with ◆❂❞ and ♥❂❞ fixed. This provides the first

analytically tractable model that captures all the features of the double descent

phenomenon without assuming ad hoc misspecification structures. In particular,

above a critical value of the signal-to-noise ratio, minimum test error is achieved

by extremely overparametrized interpolators, i.e., networks that have a number

of parameters much larger than the sample size, and vanishing training error.
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1 Introduction

Statistical lore recommends not to use models that have too many parameters,

since this will lead to ‘overfitting’ and poor generalization. Indeed, a plot of the test

error as a function of the model complexity often reveals a U-shaped curve. The test

error first decreases because the model is less and less biased, but then increases

because of a variance explosion [36]. In particular, the interpolation threshold, i.e.,

the threshold in model complexity above which the training error vanishes (the

model completely interpolates the data) corresponds to a large test error. It seems

wise to keep the model complexity well below this threshold in order to obtain a

small generalization error.

These classical prescriptions are in stark contrast with the current practice in

deep learning. The number of parameters of modern neural networks can be much

larger than the number of training samples, and the resulting models are often

so complex that they can perfectly interpolate the data. Even more surprisingly,

they can interpolate the data when the actual labels are replaced by pure noise

[67]. Despite such a large complexity, these models have small test error and can

outperform others trained in the classical underparametrized regime.
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FIGURE 1.1. Random features ridge regression with ReLU activation

(✛ ❉ max❢①❀ ✵❣). Data are generated via ②✐ ❉ ❤☞✶❀①✐ ✐ (zero noise)

with ❦☞✶❦✷✷ ❉ ✶, and ✥✷ ❉ ♥❂❞ ❉ ✸. Left frame: regularization

✕ ❉ ✶✵�✽ (we didn’t set ✕ ❉ ✵ exactly for numerical stability). Right

frame: ✕ ❉ ✶✵�✸. The continuous black line is our theoretical predic-

tion, and the colored symbols are numerical results for several dimen-

sions ❞ . Symbols are averages over ✷✵ instances and the error bars report

the standard error of the means over these ✷✵ instances.

This behavior has been rationalized in terms of a so-called ‘double-descent’

curve [13, 15]. A plot of the test error as a function of the model complexity fol-

lows the traditional U-shaped curve until the interpolation threshold. However,

after a peak at the interpolation threshold, the test error decreases and attains a

global minimum in the overparametrized regime. In fact, the minimum error of-

ten appears to be ‘at infinite complexity’: the more overparametrized is the model,

the smaller is the error. It is conjectured that the good generalization behavior in

this highly overparametrized regime is due to the implicit regularization induced

by gradient descent learning: among all interpolating models, gradient descent se-

lects the simplest one, in a suitable sense. An example of a double descent curve

is plotted in Figure 1.1. The main contribution of this paper is to describe a natu-

ral, analytically tractable model leading to this generalization curve and to derive

precise formulae for the same curve in a suitable asymptotic regime.

The double-descent scenario is far from being specific to neural networks and

was instead demonstrated empirically in a variety of models including random

forests and random features models [13]. Recently several elements of this sce-

nario were established analytically in simple least square regression, with certain

probabilistic models for the random covariates [1, 14,35]. These papers consider a

setting in which we are given i.i.d. samples ✳②✐ ❀①✐ ✴ ✷ R ✂ R
❞ , ✐ ✔ ♥, where ②✐

is a response variable that depends on covariates ①✐ via ②✐ ❉ ❤☞❀①✐ ✐ ❈ ✧✐ , with

E✳✧✐ ✴ ❉ ✵ and E✳✧✷✐ ✴ ❉ ✜✷, or in matrix notation, ② ❉ ❳☞❈✧. The authors study

the test error of ‘ridgeless least square regression’ ❜☞ ❉ ❳➂② (where ❳➂ stands

for the pseudoinverse of ❳ ), and use random matrix theory to derive its precise
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asymptotics in the limit ♥❀ ❞ ✦✶ with ❞❂♥ ❉ ✌ fixed, when ①✐ ❉ ❺✶❂✷➫✐ with

➫✐ a vector with i.i.d. entries.

Despite its simplicity, this random covariates model captures several features

of the double descent scenario. In particular, the asymptotic generalization curve

is U-shaped for ✌ ❁ ✶, diverging at the interpolation threshold ✌ ❉ ✶, and de-

scends again exceeding that threshold. The divergence at ✌ ❉ ✶ is explained by

an explosion in the variance, which is in turn related to a divergence of the condi-

tion number of the random matrix ❳ . At the same time, this simple model misses

some interesting features that are observed in more complex settings: (i) In the

Gaussian covariates model, the global minimum of the test error is achieved in the

underparametrized regime ✌ ❁ ✶, unless ad hoc misspecification structure is as-

sumed; (ii) The number of parameters is tied to the covariates dimension ❞ and

hence the effects of overparametrization are not isolated from the effects of the

ambient dimensions; (iii) Ridge regression, with some regularization ✕ ❃ ✵, is al-

ways found to outperform the ridgeless limit ✕ ✦ ✵. Moreover, this linear model

is not directly connected to actual neural networks, which are highly nonlinear in

the covariates ①✐ .

In this paper, we study the random features model of Rahimi and Recht [57].

The random features model can be viewed either as a randomized approximation

to kernel ridge regression or as two-layer neural networks with random first-layer

weights. We compute the precise asymptotics of the test error and show that it

reproduces all the qualitative features of the double-descent scenario.

More precisely, we consider the problem of learning a function

❢❞ ✷ ▲✷
�
S
❞�✶✳

♣
❞✴
✁

on the ❞ -dimensional sphere. (Here and below S
❞�✶✳r✴ denotes the sphere of

radius r in ❞ dimensions, and we set r ❉
♣
❞ without loss of generality.) We

are given i.i.d. data ❢✳①✐ ❀ ②✐ ✴❣✐✔♥ ✘iid P①❀② , where ①✐ ✘iid Unif✳S❞�✶✳
♣
❞✴✴ and

②✐ ❉ ❢❞ ✳①✐ ✴ ❈ ✧✐ , with ✧✐ ✘iid P✧ independent of ①✐ . The noise distribution

satisfies E✧✳✧✶✴ ❉ ✵, E✧✳✧
✷
✶✴ ❉ ✜✷, and E✧✳✧

✹
✶✴ ❁ ✶. We fit these training data

using the random features (RF) model, which is defined as the function class

FRF✳❶✴ ❉
✭
❢ ✳①■ ❛❀❶✴ ✑

◆❳
✐❉✶

❛✐✛✳❤✒ ✐ ❀①✐❂
♣
❞✴ ❲ ❛✐ ✷ R ✽✐ ✷ ➀◆ ➁

✮
✿(1.1)

Here, ❶ ✷ R
◆✂❞ is a matrix whose ✐ th row is the vector ✒ ✐ , which is chosen ran-

domly and independently of the data. In order to simplify some of the calculations

below, we will assume the normalization ❦✒ ✐❦✷ ❉
♣
❞ , which justifies the factor

✶❂
♣
❞ in the above expression, yielding ❤✒ ✐ ❀①❥ ✐❂

♣
❞ of order ✶. As mentioned

above, the functions in FRF✳❶✴ are two-layers neural networks, except that the first

layer is kept constant. A substantial literature draws connections between random

features models, fully trained neural networks, and kernel methods. We refer to

Section 3 for a summary of this line of work.
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We learn the coefficients ❛ ❉ ✳❛✐ ✴✐✔◆ by performing ridge regression

❜❛✳✕✴ ❉ arg min
❛✷R◆

✽❁✿✶♥
♥❳

❥❉✶

✥
②❥ �

◆❳
✐❉✶

❛✐✛✳❤✒ ✐ ❀①❥ ✐❂
♣
❞✴

✦✷
❈ ◆✕

❞
❦❛❦✷✷

✾❂❀✿(1.2)

The choice of ridge penalty is motivated by the connection to kernel ridge regres-

sion, of which this method can be regarded as a finite-rank approximation. Further,

the ridge regularization path is naturally connected to the path of gradient flow with

respect to the mean square error
P

✐✔♥✳②✐ � ❢ ✳①✐ ■ ❛❀❶✴✴✷, starting at ❛ ❉ ✵. In

particular, gradient flow converges to the ridgeless limit (✕✦ ✵) of❜❛✳✕✴, and there

is a correspondence between positive ✕, and early stopping in gradient descent [66].

We are interested in the ‘prediction’ or ‘test’ error (which we will also call ‘gen-

eralization error’, with a slight abuse of terminology), that is, the mean square

error on predicting ❢❞ ✳①✴ for ① ✘ Unif✳S❞�✶✳
♣
❞✴✴, a fresh sample independent

of the training data ❳ ❉ ✳①✐ ✴✐✔♥, noise ✧ ❉ ✳✧✐ ✴✐✔♥, and the random features

❶ ❉ ✳✒❛✴❛✔◆ :

❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉ E①

✂�
❢❞ ✳①✴ � ❢ ✳①■❜❛✳✕✴❀❶✴✁✷✄✿(1.3)

Notice that we do not take expectation with respect to the training data ❳ , the

random features❶, or the data noise ✧. This is not very important, because we will

show that ❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ concentrates around the expectation ①❘RF✳❢❞ ❀ ✕✴ ✑
E❳ ❀❶❀✧❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴. We study the following setting:

✎ The random features are uniformly distributed on a sphere: ✳✒ ✐ ✴✐✔◆ ✘iid

Unif✳S❞�✶✳
♣
❞✴✴.

✎ ◆❀ ♥❀ ❞ lie in a proportional asymptotics regime. Namely, ◆❀ ♥❀ ❞ ✦ ✶
with ◆❂❞ ✦ ✥✶, ♥❂❞ ✦ ✥✷ for some ✥✶❀ ✥✷ ✷ ✳✵❀✶✴.

✎ We consider two models for the regression function ❢❞ : ✳✶✴A linear model:

❢❞ ✳①✴ ❉ ☞❞❀✵❈ ❤☞❞❀✶❀①✐, where ☞❞❀✶ ✷ R
❞ is arbitrary with ❦☞❞❀✶❦✷✷ ❉

❋ ✷
✶ and ✳✷✴ a nonlinear model: ❢❞ ✳①✴ ❉ ☞❞❀✵❈❤☞❞❀✶❀①✐❈❢ NL

❞
✳①✴, where

the nonlinear component ❢ NL

❞
✳①✴ is a centered isotropic Gaussian process

indexed by ① ✷ S
❞�✶✳

♣
❞✴. (Note that the linear model is a special case

of the nonlinear one, but we prefer to keep the former distinct since it is

purely deterministic.)

Within this setting, we are able to determine the precise asymptotics of the pre-

diction error as an explicit function of the dimension parameters ✥✶❀ ✥✷, the noise

level ✜✷, the activation function ✛ , the regularization parameter ✕, and the power

of linear and nonlinear components of ❢❞ : ❋ ✷
✶ and ❋ ✷

❄ ✑ lim❞✦✶ E❢❢ NL

❞
✳①✴✷❣.

The resulting formulae are somewhat complicated, and we defer them to Section

5, limiting ourselves to give the general form of our result for the linear model.

THEOREM 1.1 (Linear truth, formulas omitted). Let ✛ ❲ R ✦ R be weakly dif-

ferentiable, with ✛ ✵ a weak derivative of ✛ . Assume ❥✛✳✉✴❥❀ ❥✛ ✵✳✉✴❥ ✔ ❝✵❡
❝✶❥✉❥
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for some constants ❝✵❀ ❝✶ ❁ ✶. Define the parameters ✖✵, ✖✶, ✖❄, ✏, and the

signal-to-noise ratio ✚ ✷ ➀✵❀✶➁ via

✖✵ ❉ E➀✛✳●✴➁❀ ✖✶ ❉ E➀●✛✳●✴➁❀ ✖✷❄ ❉ E➀✛✳●✴✷➁ � ✖✷✵ � ✖✷✶❀
✏ ✑ ✖✷✶❂✖

✷
❄❀ ✚ ✑ ❋ ✷

✶ ❂✜
✷❀

where expectation is taken with respect to ● ✘ N✳✵❀ ✶✴. Assume ✖✵❀ ✖✶❀ ✖❄ ↕ ✵.

Then, for linear ❢❞ in the setting described above, for any ✕ ❃ ✵, the prediction

risk converges in probability

❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴
♣✦ �

❋ ✷
✶ ❈ ✜✷

✁
R✳✚❀ ✏❀ ✥✶❀ ✥✷❀ ✕❂✖

✷
❄✴❀(1.4)

where R✳✚❀ ✏❀ ✥✶❀ ✥✷❀ ✕✴ is explicitly given in Definition 5.2.

Section 5.1 also contains an analogous statement for the nonlinear model.

Remark 1.2. Theorem 1.1 and its generalizations stated below require ✕ ❃ ✵ fixed

as ◆❀ ♥❀ ❞ ✦ ✶. We can then consider the ridgeless limit by taking ✕ ✦ ✵. Let

us stress that this does not necessarily yield the prediction risk of the min-norm

least square estimator that is also given by the limit ❜❛✳✵❈✴ ✑ lim✕✦✵❜❛✳✕✴ at

◆❀ ♥❀ ❞ fixed. Denoting by❩ ❉ ✛✳❳❶T❂
♣
❞✴❂

♣
❞ the design matrix, the latter is

given by❜❛✳✵❈✴ ❉ ✳❩T❩ ✴➂❩T②❂
♣
❞ . While we conjecture that indeed this is the

same as taking ✕ ✦ ✵ in the asymptotic expression of Theorem 1.1, establishing

this rigorously would require proving that the limits ✕ ✦ ✵ and ❞ ✦ ✶ can be

exchanged. We leave this to future work.

Remark 1.3. As usual, we can decompose the risk

❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉ ❦❢❞ � ❜❢ ❦✷
▲✷

(where ❜❢ ✳①✴ ❉ ❢ ✳①■❜❛✳✕✴❀❶✴) into a variance component ❦❜❢ � E✧✳❜❢ ✴❦✷▲✷ and a

bias component ❦❢❞ � E✧✳❜❢ ✴❦✷▲✷ . The asymptotics of the variance component

in the ✕ ✦ ✵❈ limit was concurrently computed in [35, sec. 8]. Notice that

the variance calculation only requires us to consider a pure noise model in which

② ❉ ✧ ✘ N✳✵❀ ✜✷I♥✴, and indeed [35] does not mention the nonparametric model

②✐ ❉ ❢❞ ✳①✐ ✴ ❈ ✧✐ . The pure noise ridgeless (✕ ✦ ✵) setting captures the diver-

gence of the risk at ◆ ❉ ♥ but misses most phenomena that are interesting from

a statistical viewpoint: the optimality of vanishing regularization, the optimality of

large overparametrization, and the disappearance of double descent for optimally

regularized models.

Our work is the first one to provide a complete treatment of the nonparametric

model in the proportional asymptotics and to establish those phenomena. From a

mathematical viewpoint, the calculation of the test error can be reduced to studying

a block-structured kernel random matrix, with a more intricate structure than the

one of [35]. The reduction itself is novel in the present context and goes through

the log determinant of this random matrix, while the variance computation of [35]

is directly connected to the resolvent.
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Figure 1.1 reports numerical results for learning a linear function ❢❞ ✳①✴ ❉
❤☞✶❀①✐, ❦☞✶❦✷✷ ❉ ✶ with E➀✧✷➁ ❉ ✵ using the ReLU activation function ✛✳①✴ ❉
max❢①❀ ✵❣ and ✥✷ ❉ ♥❂❞ ❉ ✸. We use minimum ❵✷-norm least squares (the

✕ ✦ ✵ limit of equation (1.2), left figure) and regularized least squares with

✕ ❉ ✶✵�✸ (right figure), and plot the prediction error as a function of the num-

ber of parameters per dimension ✥✶ ❉ ◆❂❞ . We compare the numerical results

with the asymptotic formula R✳✶❀ ✏❀ ✥✶❀ ✥✷❀ ✕❂✖
✷
❄✴. The agreement is excellent

and displays all the key features of the double descent phenomenon, as discussed

in the next section.

The proof of Theorem 1.1 builds on ideas from random matrix theory. A careful

look at these arguments unveils an interesting phenomenon. While the random

features ❢✛✳❤✒ ✐ ❀①✐❂
♣
❞✴❣✐✔❞ are highly non-Gaussian, it is possible to construct

a Gaussian covariates model with the same asymptotic prediction error as for the

random features model. Apart from being mathematically interesting, this finding

provides additional intuition for the behavior of random features models, and opens

the way to some interesting future directions. In particular, [50] uses this Gaussian

covariates proxy to analyze maximum margin classification using random features.

The rest of the paper is organized as follows:

✎ In Section 2 we summarize the main insights that can be extracted from

the asymptotic theory and illustrate them through plots.

✎ Section 3 provides a succinct overview of related work.

✎ Section 4 introduces the notations that are used in this paper.

✎ Section 5 contains formal statements of our main results, which is the

asymptotics of prediction error as in Theorem 5.3. It also presents some

special cases of the asymptotic formula.

✎ Section 6 contains the statements of the asymptotics of the training error

as in Theorem 6.2.

✎ Section 7 presents an interesting phenomenon which is that the random

features model has the same asymptotic prediction error as a simpler model

with Gaussian covariates.

✎ In Section 8 we present the proof of main results. The main results will

use several propositions that are proved in the following sections and in

the appendices.

2 Results and Insights: An Informal Overview

Before explaining in detail our technical results—which we will do in Section

5—it is useful to pause and describe some consequences of the exact asymptotic

formulae that we prove. Our focus here will be on insights that have a chance to

hold more generally, beyond the specific setting studied here.

Bias term also exhibits a singularity at the interpolation threshold. A prominent

feature of the double descent curve is the peak in test error at the interpolation

threshold which, in the present case, is located at ✥✶ ❉ ✥✷. In the linear regression
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FIGURE 2.1. Analytical predictions for the test error of learning a linear

function ❢❞ ✳①✴ ❉ ❤☞✶❀①✐ with ❦☞✶❦✷✷ ❉ ✶ using random features with

ReLU activation function ✛✳①✴ ❉ max❢①❀ ✵❣. Here we perform ridgeless

regression (✕ ✦ ✵). The signal-to-noise ratio is ❦☞✶❦✷✷❂✜✷ ✑ ✚ ❉ ✷.

In the left figure, we plot the test error as a function of ✥✶ ❉ ◆❂❞ , and

different curves correspond to different sample sizes (✥✷ ❉ ♥❂❞ ). In

the right figure, we plot the test error as a function of ✥✷ ❉ ♥❂❞ , and

different curves correspond to different number of features (✥✶ ❉ ◆❂❞ ).

model of [1,14,35], this phenomenon is entirely explained by a peak in the variance

of the estimator (that diverges in the ridgeless limit ✕ ✦ ✵), while its bias is

monotone increasing across to this threshold.

In contrast, in the random features model studied here, both variance and bias

have a peak at the interpolation threshold, diverging there when ✕ ✦ ✵. This is

apparent from Figure 1.1, which was obtained for ✜✷ ❉ ✵, and therefore in a setting

in which the error is entirely due to bias. The fact that the double descent scenario

persists in the noiseless limit is particularly important, especially in view of the

fact that many machine learning tasks are usually considered nearly noiseless.

Optimal prediction error is achieved in the highly overparametrized regime. Figure

2.1 (left) reports the predicted test error in the ridgeless limit ✕ ✦ ✵ (for a case

with nonvanishing noise, ✜✷ ❃ ✵) as a function of ✥✶ ❉ ◆❂❞ for several values of

✥✷ ❉ ♥❂❞ . Figure 2.2 plots the predicted test error as a function of ✥✶❂✥✷ ❉ ◆❂♥
for fixed ✥✷, several values of ✕ ❃ ✵, and two values of the SNR. We repeatedly

observe that: (i) For a fixed ✕, the minimum of test error (over ✥✶) is in the highly

overparametrized regime ✥✶ ✦ ✶. (ii) The global minimum (over ✕ and ✥✶) of

test error is achieved at a value of ✕ that depends on the SNR, but always at ✥✶ ✦
✶. (iii) In the ridgeless limit ✕ ✦ ✵, the generalization curve is monotonically

decreasing in ✥✶ when ✥✶ ❃ ✥✷.

To the best of our knowledge, this is the first natural and analytically tractable

model that satisfies the following requirements: ✳✶✴ large overparametrization is
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FIGURE 2.2. Analytical predictions for the test error of learning a linear

function ❢❞ ✳①✴ ❉ ❤☞✶❀①✐ with ❦☞✶❦✷✷ ❉ ✶ using random features with

ReLU activation function ✛✳①✴ ❉ max❢①❀ ✵❣. The rescaled sample size

is fixed to ♥❂❞ ✑ ✥✷ ❉ ✶✵. Different curves are for different values of

the regularization ✕. On the left: high SNR ❦☞✶❦✷✷❂✜✷ ✑ ✚ ❉ ✺. On the

right: low SNR ✚ ❉ ✶❂✺.

necessary to achieve optimal prediction, and ✳✷✴ no special misspecification struc-

ture needs to be postulated.

Optimal regularization eliminated the double-descent. Figure 2.2 reports the as-

ymptotic prediction for the test error as a function of the overparametrization ratio

◆❂♥ for various values of the regularization parameter ✕. The peak at the inter-

polation threshold ◆ ❉ ♥ is apparent, but it becomes less prominent as the reg-

ularization increases. In particular, if we consider the optimal regularization (the

lower envelope of these curves), the test error becomes monotone decreasing in the

number of parameters: regularization compensates overparametrization.

Nonvanishing regularization can hurt (at high SNR). Figure 2.3 plots the predicted

test error as a function of ✕ for several values of ✥✶ with ✥✷ fixed. The lower

envelope of these curves is given by the curve at ✥✶ ✦ ✶, confirming that the

optimal error is achieved in the highly overparametrized regime. However, the

dependence of this lower envelope on ✕ changes qualitatively, depending on the

SNR. For small SNR, the global minimum is achieved as some ✕ ❃ ✵: regulariza-

tion helps. However, for a large SNR the minimum error is achieved as ✕ ✦ ✵.

The optimal regularization is vanishingly small.

These two noise regimes are separated by a phase transition at a critical SNR,

which we denote by ✚❄. A characterization of this critical value is given in Section

5.2.

Note that, in the overparametrized regime, the training error vanishes as ✕✦ ✵,

and the resulting model is a ‘near-interpolator’. We therefore conclude that highly
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FIGURE 2.3. Analytical predictions for the test error of learning a linear

function ❢❞ ✳①✴ ❉ ❤☞✶❀①✐ with ❦☞✶❦✷✷ ❉ ✶ using random features with

the ReLU activation function ✛✳①✴ ❉ max❢①❀ ✵❣. The rescaled sample

size is fixed to ✥✷ ❉ ♥❂❞ ❉ ✶✵. Different curves are for different

values of the number of neurons ✥✶ ❉ ◆❂❞ . On the left: high SNR

❦☞✶❦✷✷❂✜✷ ✑ ✚ ❉ ✺. On the right: low SNR ✚ ❉ ✶❂✶✵.

overparametrized (near) interpolators1 are statistically optimal when the SNR is

above the critical value ✚❄.

Self-induced regularization. What is the mechanism underlying the optimality of

the ridgeless limit ✕✦ ✵? An intuitive explanation can be obtained by considering

the (random) kernel associated to the ridge regression (1.2), namely,

H◆ ✳①❀①✵✴ ❉ ✶

◆

◆❳
✐❉✶

✛✳❤①❀✒ ✐ ✐❂
♣
❞✴✛✳❤①✵❀✒ ✐ ✐❂

♣
❞✴✿(2.1)

The diagonal elements of the empirical kernel H◆❀♥ ❉ ✳H◆ ✳①✐ ❀①❥ ✴✴✐❀❥✔♥ ✷
R
♥✂♥ concentrate around the value

EH◆ ✳①✐ ❀①✐ ✴ ✙ E❢✛✳●✴✷❣
(here ● ✘ N✳✵❀ ✶✴), while the terms that are out-of-diagonal are equal to a constant

E❢✛✳●✴❣✷ plus fluctuations of order ✶❂
♣
◆ . One would naively expect that these

diagonal elements are equivalent to a regularization (that we call ‘self-induced’)

✕✵ of order Var✳✛✳●✴✴. The reality is more complicated because out-of-diagonals

are random and not negligible. However, this intuition is essentially correct in the

wide limit ◆❂❞ ✦✶ (after ◆❀ ♥❀ ❞ ✦✶); see Section 5.2.

1 We cannot prove it is an exact interpolator because here we take ✕✦ ✵ after ❞ ✦✶. Following

Remark 1.2, we expect the minimum ❵✷ norm interpolator also to achieve asymptotically minimum

error.
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3 Related Literature

3.1 Learning via interpolation

A recent stream of papers studied the generalization behavior of machine learn-

ing models in the interpolation regime. An incomplete list of references includes

[13, 15, 16, 44, 58]. The starting point of this line of work were the experimental

results in [15,67], which showed that deep neural networks as well as kernel meth-

ods can generalize even if the prediction function interpolates all the data. It was

proved that several machine learning models including kernel regression [16] and

kernel ridgeless regression [44] can generalize under certain conditions.

The double descent phenomenon, which is our focus in this paper, was first

discussed in general terms in [13]. The same phenomenon was also observed in

[1, 33]. The paper [41] observes that the optimal amount of ridge regularization

is sometimes vanishing and provides an explanation in terms of noisy features.

Analytical predictions confirming this scenario were obtained, within the linear

regression model, in two concurrent papers [14, 35]. In particular, [35] derives the

precise high-dimensional asymptotics of the prediction error, for a general model

with correlated covariates. On the other hand, [14] gives an exact formula for any

finite dimension, for a model with i.i.d. Gaussian covariates. The same papers also

compute the double descent curve within other models, including an overspecified

linear model [35] and a Fourier series model [14].

As mentioned in the introduction, [35, sec. 8] also calculates the variance term of

the prediction error in the random features model in the ridgeless limit ✕✦ ✵. Both

the simple linear regression models of [14, 35] and the variance calculation of [35,

sec. 8] capture the peak of the test error at the interpolation threshold. However,

these calculations do not elucidate several crucial statistical phenomena, which

are instead the main contribution of our work (see Section 2): optimality of large

overparametrization, optimality of interpolators at high SNR (✕ ✦ ✵ limit), the

role of self-induced regularization, and the disappearance of the double descent at

optimal overparametrization.

Rate-optimal bounds on the generalization error of overparametrized linear mod-

els were recently derived in [12] (see also [51] for a different perspective).

3.2 Random features and kernels

The random features model has been studied in considerable depth since the

original work in [57]. A classical viewpoint suggests that FRF✳❶✴ should be re-

garded as a random approximation of the reproducing kernel Hilbert space F❍
defined by the kernel

H✳①❀①✵✴ ❉ E
✒✘Unif✳S❞�✶✳

♣
❞✴✴

➀✛✳❤①❀✒✐❂
♣
❞✴✛✳❤①✵❀✒✐❂

♣
❞✴➁✿(3.1)

Indeed, FRF✳❶✴ is an RKHS defined by the finite-rank approximation of this kernel

defined in equation (2.1). The paper [57] showed the pointwise convergence of the

empirical kernel ❍◆ to ❍ . Subsequent work [10] showed the convergence of the
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empirical kernel matrix to the population kernel in terms of operator norm and

derived bound on the approximation error (see also [2, 8, 61] for related work).

The setting in the present paper is quite different, since we take the limit of a

large number of neurons ◆ ✦ ✶, together with a large dimension ❞ ✦ ✶. Our

focus on this high-dimensional regime is partially motivated by [58], which em-

phasizes that optimality of interpolators is somewhat un-natural in low dimension.

It is well-known that approximation using a two-layer network suffers from the

curse of dimensionality, in particular when first-layer weights are not trained [9,

24, 34, 64]. The recent paper [34] studies random features regression in a setting

similar to ours by considering two different regimes: ✳✶✴ the population limit ♥ ❉
✶, with ◆ scaling as a polynomial of ❞ , and ✳✷✴ the wide limit ◆ ❉ ✶, with

♥ scaling as a polynomial of ❞ . In particular, [34] proves that, if ❞❦❈✍ ✔ ◆ ✔
❞❦❈✶�✍ and ♥ ❉ ✶ or ❞❦❈✍ ✔ ♥ ✔ ❞❦❈✶�✍ and ◆ ❉ ✶, then a random

features model can only fit the projection of the true function ❢❞ onto degree-❦

polynomials.

Here we consider ◆❀ ♥ ❉ ❶❞ ✳❞✴, and therefore [34] only implies that the test

error of the random feature model is (asymptotically) lower-bounded by the norm

of the nonlinear component of the target function ❋ ✷
❄ ❉ lim❞✦✶ E✳❢ NL

❞
✳①✴✷✴.

The present results are of course much more precise: we confirm this lower bound,

which is achieved in the limit ◆❂❞❀ ♥❂❞ ✦✶, but also derive the precise asymp-

totics of the test error for finite ♥❂❞ , ◆❂❞ . The connection between neural net-

works and random features models was pointed out originally in [52,65] and has at-

tracted significant attention recently [32,37,42,47,54]. The papers [21,22] showed

that, for a certain initialization, gradient descent training of overparametrized neu-

ral networks learns a function in an RKHS, which corresponds to the random

features kernel. A recent line of work [3, 4, 7, 27, 28, 39, 43, 55, 68] studied the

training dynamics of overparametrized neural networks under a second type of

initialization, and showed that it learns a function in a different but comparable

RKHS, which corresponds to the ‘neural tangent kernel’. A concurrent approach

[6,20,40,49,53,59,60,62] studies the training dynamics of overparametrized neu-

ral networks under a third type of initialization, and showed that the dynamics

of empirical distribution of weights follows a Wasserstein gradient flow of a risk

functional. The connection between neural tangent theory and Wasserstein gradi-

ent flow was studied in [19, 26, 48].

3.3 Technical contribution

We use methods from random matrix theory. The general class of matrices we

need to consider are kernel inner product random matrices, namely, matrices of the

form ✛✳❲ ❲ T❂
♣
❞✴, where ❲ is a random matrix with i.i.d. entries, or similar

(✛ ❲ R ✦ R is a scalar function and for a matrix ❆ ✷ R
♠✂♥, ✛✳❆✴ ✷ R

♠✂♥ is a

matrix that is formed by applying ✛ to❆ elementwise). The paper [30] studied the

spectrum of random kernel matrices when ✛ can be well approximated by a linear

function, and hence the spectrum converges to a scaled Marchenko-Pastur law. In
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the nonlinear regime, the spectrum was shown to converge to the free convolution

of a Marchenko-Pastur and a scaled semicircular law [17]. The extreme eigenval-

ues of the same random matrix were studied in [31]. The random matrix we need

to consider is an asymmetric kernel matrix ❩ ❉ ✛✳❳❶T❂
♣
❞✴❂

♣
❞ , whose as-

ymptotic singular values distribution was calculated in [56] (see also [45] for ❳

deterministic).

The asymptotic singular values distribution of ❩ is not sufficient to compute

the asymptotic prediction error, which also depends on the singular vectors of ❩ .

The paper [35] addresses this challenge for what concerns the variance term of the

error, and only in the limit ✕ ✦ ✵. Notice that the variance term is given (up to

constants) by Tr✳✳❩T❩ ✴➂❺✴. It is quite straightforward to express this quantity in

terms of the Stieltjes transform of a certain block random matrix, and [35] use the

leave-one-out method to characterize the asymptotics of this Stieltjes transform.

Unfortunately, the approach of [35] cannot be pushed to compute the full test

error (i.e., both the bias and variance terms): the latter cannot be expressed in terms

of the Stieltjes transform of the same matrix. A key observation of the present

paper is that the full prediction error can be expressed in terms of derivatives of

the log-determinant of a different block-structured random matrix. In order to

compute the asymptotics of this log-determinant, we use leave-one-out arguments

(e.g., [11, chap. 3.3]) to derive fixed point equations for the Stieltjes transform of

this random matrix, and then integrate this Stieltjes transform.

Another difference from [35] is that we consider the full nonparametric model

②✐ ❉ ❢❞ ✳①✐ ✴ ❈ ✧✐ , while [35] does not model the target function. As mentioned

above, our setting is similar to the one of [34]. However, the main technical content

of [34] is to prove that, under polynomial scalings of ♥ and ❞ (at ◆ ❉ ✶) or ◆

and ❞ (at ♥ ❉ ✶), the kernel matrix is near isometric. In contrast, here we study

a regime in which it is not true that the same matrix is a near isometry, and we

characterize its spectral distribution (alongside those properties of the eigenvectors

that determine the test error).

4 Notations

Let R denote the set of real numbers, C the set of complex numbers, and N ❉
❢✵❀ ✶❀ ✷❀ ✿ ✿ ✿❣ the set of natural numbers. For ➫ ✷ C, let Re ➫ and Im ➫ denote the

real part and the imaginary part of ➫, respectively. We denote by C❈ ❉ ❢➫ ✷ C ❲
Im ➫ ❃ ✵❣ the set of complex numbers with positive imaginary part. We denote by

i ❉
♣
�✶ the imaginary unit. We denote by S

❞�✶✳r✴ ❉ ❢① ✷ R
❞ ❲ ❦①❦✷ ❉ r❣ the

set of ❞ -dimensional vectors with radius r . For an integer ❦, let ➀❦➁ denote the set

❢✶❀ ✷❀ ✿ ✿ ✿ ❀ ❦❣.
Throughout the proofs, let ❖❞ ✳ ✁ ✴ denote the standard big-O notation, let ♦❞ ✳ ✁ ✴

denote the standard little-o notation, and let ⑧❞ ✳ ✁ ✴ denote the standard big-Omega

notation, where the subscript ❞ emphasizes the asymptotic variable. We denote by

❖❞❀P✳ ✁ ✴ the big-O in probability notation: ❤✶✳❞✴ ❉ ❖❞❀P✳❤✷✳❞✴✴ if for any ✧ ❃ ✵,
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there exists ❈✧ ❃ ✵ and ❞✧ ✷ Z❃✵, such that

P✳❥❤✶✳❞✴❂❤✷✳❞✴❥ ❃ ❈✧✴ ✔ ✧ ✽❞ ✕ ❞✧✿

We denote by ♦❞❀P✳ ✁ ✴ the little-o in probability notation: ❤✶✳❞✴ ❉ ♦❞❀P✳❤✷✳❞✴✴, if

❤✶✳❞✴❂❤✷✳❞✴ converges to ✵ in probability. We write ❤✳❞✴ ❉ ❖❞ ✳Poly✳log ❞✴✴, if

there exists a constant ❦ such that ❤✳❞✴ ❉ ❖❞ ✳✳log ❞✴❦✴.

Throughout the paper, we use bold lowercase letters ❢①❀②❀ ➫❀ ✿ ✿ ✿❣ to denote vec-

tors and bold uppercase letters ❢❆❀❇❀❈ ❀ ✿ ✿ ✿❣ to denote matrices. We denote by

I♥ ✷ R
♥✂♥ the identity matrix, by ✶♥✂♠ ✷ R

♥✂♠ the all-ones matrix, and by

✵♥✂♠ ✷ R
♥✂♠ the all-zero matrix.

For a matrix ❆ ✷ R
♥✂♠, we denote by ❦❆❦❋ ❉ ✳

P
✐✷➀♥➁❀❥✷➀♠➁❆

✷
✐❥ ✴

✶❂✷ the

Frobenius norm of ❆, ❦❆❦❄ the nuclear norm of ❆, ❦❆❦op the operator norm of

❆, and ❦❆❦max ❉ max✐✷➀♥➁❀❥✷➀♠➁ ❥❆✐❥ ❥ the maximum norm of ❆. Further, we

denote by ❆➂ ✷ R
♠✂♥ the Moore-Penrose inverse of matrix ❆ ✷ R

♥✂♠. For a

measurable function ❤ ❲ R ✦ R and a matrix ❆ ✷ R
♥✂♠, we denote ❤✳❆✴ ❉

✳❤✳❆✐❥ ✴✴✐✷➀♥➁❀❥✷➀♠➁ ✷ R
♥✂♠. For a matrix ❆ ✷ R

♥✂♥, we denote by Tr✳❆✴ ❉P♥
✐❉✶❆✐ ✐ the trace of ❆. For two integers ❛ and ❜, we denote by Tr➀❛❀❜➁✳❆✴ ❉P❜
✐❉❛ ❆✐ ✐ the partial trace of ❆. For two matrices ❆❀❇ ✷ R

♥✂♠, let ❆ ☞ ❇

denote the elementwise product of ❆ and ❇.

Let ✖● denote the standard Gaussian measure (on the real line), and ✌❞ the

uniform probability distribution on S
❞�✶✳

♣
❞✴. Let ✖❞ denote the distribution

of ❤①✶❀①✷✐❂
♣
❞ when ①✶❀①✷ ✘iid N✳✵❀ I❞ ✴, ✜❞ the distribution of ❤①✶❀①✷✐❂

♣
❞

when ①✶❀①✷ ✘iid Unif✳S❞�✶✳
♣
❞✴✴, and ③✜❞ the distribution of ❤①✶❀①✷✐ when

①✶❀①✷ ✘iid Unif✳S❞�✶✳
♣
❞✴✴✿

5 Main Results

We begin by stating our assumptions and notations for the activation function

✛ . It is straightforward to check that these are satisfied by all commonly used

activations, including ReLU and sigmoid functions.

Assumption 1. Let ✛ ❲ R ✦ R be weakly differentiable, with weak derivative ✛ ✵.
Assume ❥✛✳✉✴❥❀ ❥✛ ✵✳✉✴❥ ✔ ❝✵❡

❝✶❥✉❥ for some constants ❝✵❀ ❝✶ ❁✶. Define

✖✵ ✑ E❢✛✳●✴❣❀ ✖✶ ✑ E❢●✛✳●✴❣❀ ✖✷
❄ ✑ E❢✛✳●✴✷❣ � ✖✷

✵ � ✖✷
✶❀(5.1)

where expectation is with respect to● ✘ N✳✵❀ ✶✴. Assuming ✵ ❁ ✖✷
✵❀ ✖

✷
✶❀ ✖

✷
❄ ❁✶,

define ✏ by

✏ ✑ ✖✶

✖❄
✿(5.2)

We will consider sequences of parameters ✳◆❀ ♥❀ ❞✴ that diverge proportionally

to each other. When necessary, we can think such sequences to be indexed by ❞ ,

with ◆ ❉ ◆✳❞✴, ♥ ❉ ♥✳❞✴ functions of ❞ .
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Assumption 2. Defining ✥✶❀❞ ❉ ◆❂❞ and ✥✷❀❞ ❉ ♥❂❞ , we assume that the fol-

lowing limits exist in ✳✵❀✶✴:
lim

❞✦✶
✥✶❀❞ ❉ ✥✶❀ lim

❞✦✶
✥✷❀❞ ❉ ✥✷✿(5.3)

Our last assumption concerns the distribution of the data ✳②❀①✴, and, in particu-

lar, the regression function ❢❞ ✳①✴ ❉ E➀②❥①➁. As stated in the introduction, we take

❢❞ to be the sum of a deterministic linear component, and a nonlinear component

that we assume to be random and isotropic.

Assumption 3. We assume ②✐ ❉ ❢❞ ✳①✐ ✴❈ ✧✐ , where ✳✧✐ ✴✐✔♥ ✘iid P✧ are indepen-

dent of ✳①✐ ✴✐✔♥, with E✧✳✧✶✴ ❉ ✵, E✧✳✧
✷
✶✴ ❉ ✜✷, and E✧✳✧

✹
✶✴ ❁✶. In addition,

❢❞ ✳①✴ ❉ ☞❞❀✵ ❈ ❤☞❞❀✶❀①✐ ❈ ❢ NL

❞ ✳①✴❀

where ☞❞❀✵ ✷ R and ☞❞❀✶ ✷ R
❞ are deterministic with lim❞✦✶ ☞✷❞❀✵ ❉ ❋ ✷

✵ ,

lim❞✦✶ ❦☞❞❀✶❦✷✷ ❉ ❋ ✷
✶ . The nonlinear component ❢ NL

❞
✳①✴ is a centered Gaussian

process indexed by ① ✷ S
❞�✶✳

♣
❞✴, with covariance

E❢ NL
❞

✟
❢ NL

❞ ✳①✶✴❢
NL

❞ ✳①✷✴
✠ ❉ ❺❞ ✳❤①✶❀①✷✐❂❞✴(5.4)

satisfying

E
①✘Unif✳S❞�✶✳

♣
❞✴✴
❢❺❞ ✳①✶❂

♣
❞✴❣ ❉ ✵❀

E
①✘Unif✳S❞�✶✳

♣
❞✴✴
❢❺❞ ✳①✶❂

♣
❞✴①✶❣ ❉ ✵❀

and lim❞✦✶❺❞ ✳✶✴ ❉ ❋ ✷
❄ . We define the signal-to-noise ratio parameter ✚ by

✚ ❉ ❋ ✷
✶

❋ ✷
❄ ❈ ✜✷

✿(5.5)

Remark 5.1. The last assumption covers, as a special case, deterministic linear

functions ❢❞ ✳①✴ ❉ ☞❞❀✵ ❈ ❤☞❞❀✶❀①✐, but also a large class of random nonlinear

functions. As an example, let ● ❉ ✳●✐❥ ✴✐❀❥✔❞ , where ✳●✐❥ ✴✐❀❥✔❞ ✘iid N✳✵❀ ✶✴,

and consider the random quadratic function

❢❞ ✳①✴ ❉ ☞❞❀✵ ❈ ❤☞❞❀✶❀①✐ ❈
❋❄

❞
➀❤①❀●①✐ � Tr✳● ✴➁(5.6)

for some fixed ❋❄ ✷ R. It is easy to check that this ❢❞ satisfies Assumption 3,

where the covariance function gives

❺❞ ✳❤①✶❀①✷✐❂❞✴ ❉
❋ ✷
❄

❞✷
✳❤①✶❀①✷✐✷ � ❞✴✿

Higher-order polynomials can be constructed analogously (or using the expansion

of ❢❞ in spherical harmonics).

We also emphasize that that the nonlinear part ❢ NL

❞
✳①✷✴, although being random,

is the same for all samples, and hence should not be confused with additive noise ✧.
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We finally introduce the formula for the asymptotic prediction error, denoted by

R✳✚❀ ✏❀ ✥✶❀ ✥✷❀ ✕✴ in Theorem 1.1.

DEFINITION 5.2 (Formula for the prediction error of random features regression).

Let the functions ✗✶❀ ✗✷ ❲ C❈ ✦ C❈ be uniquely defined by the following condi-

tions: (i) ✗✶, ✗✷ are analytic on C❈. (ii) For Im✳✘✴ ❃ ✵, ✗✶✳✘✴ and ✗✷✳✘✴ satisfy the

equations

(5.7)

✗✶ ❉ ✥✶

✒
�✘ � ✗✷ �

✏✷✗✷

✶ � ✏✷✗✶✗✷

✓�✶
❀

✗✷ ❉ ✥✷

✒
�✘ � ✗✶ �

✏✷✗✶

✶ � ✏✷✗✶✗✷

✓�✶
✿

(iii) ✳✗✶✳✘✴❀ ✗✷✳✘✴✴ is the unique solution of these equations with

❥✗✶✳✘✴❥ ✔ ✥✶❂ Im✳✘✴❀ ❥✗✷✳✘✴❥ ✔ ✥✷❂ Im✳✘✴ for Im✳✘✴ ❃ ❈ ❀

with ❈ a sufficiently large constant.

Let

(5.8) ✤ ✑ ✗✶✳i✳✥✶✥✷✕✴
✶❂✷✴ ✁ ✗✷✳i✳✥✶✥✷✕✴

✶❂✷✴❀

and

(5.9)

E✵✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ✑ �✤✺✏✻ ❈ ✸✤✹✏✹ ❈ ✳✥✶✥✷ � ✥✷ � ✥✶ ❈ ✶✴✤✸✏✻

� ✷✤✸✏✹ � ✸✤✸✏✷ ❈ ✳✥✶ ❈ ✥✷ � ✸✥✶✥✷ ❈ ✶✴✤✷✏✹

❈ ✷✤✷✏✷ ❈ ✤✷ ❈ ✸✥✶✥✷✤✏
✷ � ✥✶✥✷❀

E✶✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ✑ ✥✷✤
✸✏✹ � ✥✷✤

✷✏✷ ❈ ✥✶✥✷✤✏
✷ � ✥✶✥✷❀

E✷✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ✑ ✤✺✏✻ � ✸✤✹✏✹ ❈ ✳✥✶ � ✶✴✤✸✏✻

❈ ✷✤✸✏✹ ❈ ✸✤✸✏✷ ❈ ✳�✥✶ � ✶✴✤✷✏✹ � ✷✤✷✏✷ � ✤✷✿
We then define

B✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ✑
E✶✳✏❀ ✥✶❀ ✥✷❀ ✕✴

E✵✳✏❀ ✥✶❀ ✥✷❀ ✕✴
❀(5.10)

V ✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ✑
E✷✳✏❀ ✥✶❀ ✥✷❀ ✕✴

E✵✳✏❀ ✥✶❀ ✥✷❀ ✕✴
❀(5.11)

R✳✚❀ ✏❀ ✥✶❀ ✥✷❀ ✕✴ ✑
✚

✶❈ ✚
B✳✏❀ ✥✶❀ ✥✷❀ ✕✴❈

✶

✶❈ ✚
V ✳✏❀ ✥✶❀ ✥✷❀ ✕✴✿(5.12)

The formula for the asymptotic risk can be easily evaluated numerically. In

order to gain further insight, it can be simplified in some interesting special cases,

as shown in Section 5.2.
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5.1 Statement of the main result

We are now in position to state our main theorem, which generalizes Theorem

1.1 to the case in which ❢❞ has a nonlinear component ❢ NL

❞
.

THEOREM 5.3. Let ❳ ❉ ✳①✶❀ ✿ ✿ ✿ ❀①♥✴
T ✷ R

♥✂❞ with

✳①✐ ✴✐✷➀♥➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴ and ❶ ❉ ✳✒✶❀ ✿ ✿ ✿✒◆ ✴

T ✷ R
◆✂❞

with ✳✒❛✴❛✷➀◆ ➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴ independently. Let the activation function ✛

satisfy Assumption 1, and consider proportional asymptotics ◆❂❞ ✦ ✥✶, ♥❂❞ ✦
✥✷, as per Assumption 2. Finally, let the regression function ❢❢❞ ❣❞✕✶ and the

response variables ✳②✐ ✴✐✷➀♥➁ satisfy Assumption 3.

Then for any value of the regularization parameter ✕ ❃ ✵, the asymptotic pre-

diction error of random features ridge regression satisfies

(5.13)

E❳ ❀❶❀✧❀❢ NL
❞

☞☞❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴

� ✂
❋ ✷
✶ B✳✏❀ ✥✶❀ ✥✷❀ ✕❂✖

✷
❄✴

❈ ✳✜✷ ❈ ❋ ✷
❄ ✴V ✳✏❀ ✥✶❀ ✥✷❀ ✕❂✖

✷
❄✴❈ ❋ ✷

❄

✄☞☞ ❉ ♦❞ ✳✶✴❀

where E❳ ❀❶❀✧❀❢ NL
❞

denotes expectation with respect to data covariates ❳ , feature

vectors❶, data noise ✧, and ❢ NL

❞
the nonlinear part of the true regression function

(as a Gaussian process), as per Assumption 3. The functions B and V are given

in Definition 5.2.

Remark 5.4. If the regression function ❢❞ ✳①✴ is linear (i.e., ❢ NL

❞
✳①✴ ❉ ✵), we

recover Theorem 1.1, where R is defined as per equation (5.12). Numerical exper-

iments suggest that equation (5.13) holds for any deterministic nonlinear functions

❢❞ as well, and that the convergence in equation (5.13) is uniform over ✕ in com-

pacts. We defer the study of these stronger properties to future work.

Remark 5.5. Note that the formula for a nonlinear truth (cf. equation (5.13)) is

almost identical to the one for a linear truth in equation (1.4). In fact, the only

difference is that the the prediction error increases by a term ❋ ✷
❄ , and the noise

level ✜✷ is replaced by ✜✷ ❈ ❋ ✷
❄ .

Recall that the parameter❋ ✷
❄ is the variance of the nonlinear part E✳❢ NL

❞
✳①✴✷✴✦

❋ ✷
❄ . Hence, these changes can be interpreted by saying that random features regres-

sion (in the ◆❀ ♥❀ ❞ proportional regime) only estimates the linear component of

❢❞ , and the nonlinear component behaves similarly to random noise. This finding

is consistent with the results of [34] that imply, in particular, ❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ✕
❋ ✷
❄ ❈ ♦❞❀P✳✶✴ for any ♥ and for ◆ ❉ ♦❞ ✳❞

✷�✍✴ for any ✍ ❃ ✵.

Figure 5.1 illustrates the last remark. We report the simulated and predicted test

error as a function of ✥✶❂✥✷ ❉ ◆❂♥ for three different choices of the function ❢❞
and noise level ✜✷. In all the settings, the total power of nonlinearity and noise is
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FIGURE 5.1. Random features regression with ReLU activation (✛ ❉
max❢①❀ ✵❣). Data are generated according to one of three settings: ✳✶✴

❢❞ ✳①✴ ❉ ①✶ and E➀✧✷➁ ❉ ✵✿✺; ✳✷✴ ❢❞ ✳①✴ ❉ ①✶ ❈ ✳①✷
✶
� ✶✴❂✷ and

E➀✧✷➁ ❉ ✵; ✳✸✴ ❢❞ ✳①✴ ❉ ①✶ ❈ ①✶①✷❂
♣
✷ and E➀✧✷➁ ❉ ✵. Within any of

these settings, the total power of nonlinearity and noise is ❋ ✷
❄❈✜✷ ❉ ✵✿✺,

while the power of the linear part is ❋ ✷
✶
❉ ✶. Left frame: ✕ ❉ ✶✵�✽.

Right frame: ✕ ❉ ✶✵�✸. Here ♥ ❉ ✸✵✵, ❞ ❉ ✶✵✵. The continuous black

line is our theoretical prediction, and the colored symbols are numerical

results. Symbols are averages over ✷✵ instances and the error bars report

the standard error of the means over these ✷✵ instances.

❋ ✷
❄ ❈ ✜✷ ❉ ✵✿✺, while the power of the linear component is ❋ ✷

✶ ❉ ✶. The test

errors in these three settings appear to be very close, as predicted by our theory.

Remark 5.6. The terms B and V in equation (5.13) correspond to the limits of the

bias and variance of the estimated function ❢ ✳①■❜❛✳✕✴❀❶✴ when the ground truth

function ❢❞ is linear. That is, for ❢❞ to be a linear function, we have

E①

✟✂
❢❞ ✳①✴ � E✧❢ ✳①■❜❛✳✕✴❀❶✴✄✷✠ ❉ B✳✏❀ ✥✶❀ ✥✷❀ ✕❂✖

✷
❄✴❋

✷
✶ ❈ ♦❞❀P✳✶✴❀

E①Var✧
�
❢ ✳①■❜❛✳✕✴❀❶✴✁ ❉ V ✳✏❀ ✥✶❀ ✥✷❀ ✕❂✖

✷
❄✴✜

✷ ❈ ♦❞❀P✳✶✴✿
5.2 Simplifying the asymptotic risk in special cases

In order to gain further insight into the formula for the asymptotic risk R✳✚❀ ✏❀

✥✶❀ ✥✷❀ ✕✴, we consider here three special cases that are particularly interesting:

(1) the ridgeless limit ✕✦ ✵❈,

(2) the highly overparametrized regime ✥✶ ✦ ✶ (recall that ✥✶ ❉
lim❞✦✶◆❂❞ ),

(3) the large sample limit ✥✷ ✦✶ (recall that ✥✷ ❉ lim❞✦✶ ♥❂❞ ).

Let us emphasize that these limits are taken after the limit ◆❀ ♥❀ ❞ ✦ ✶ with

◆❂❞ ✦ ✶ and ♥❂❞ ✦ ✶. Hence, the correct interpretation of the highly over-

parametrized regime is not that the width ◆ is infinite, but rather much larger

than ❞ (more precisely, larger than any constant times ❞ ). Analogously, the large
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sample limit does not coincide with infinite sample size ♥, but instead sample size

that is much larger than ❞ .

Ridgeless limit

The ridgeless limit ✕ ✦ ✵❈ is important because it captures the asymptotic

behavior the min-norm interpolation predictor (see also Remark 1.2.)

THEOREM 5.7. Under the assumptions of Theorem 5.3, set ✥ ✑ min❢✥✶❀ ✥✷❣ and

define

✤ ✑ � ➀✳✥✏
✷ � ✏✷ � ✶✴✷ ❈ ✹✏✷✥➁✶❂✷ ❈ ✳✥✏✷ � ✏✷ � ✶✴

✷✏✷
❀(5.14)

and

(5.15)

E✵❀rless✳✏❀ ✥✶❀ ✥✷✴ ✑ �✤✺✏✻ ❈ ✸✤✹✏✹ ❈ ✳✥✶✥✷ � ✥✷ � ✥✶ ❈ ✶✴✤✸✏✻

� ✷✤✸✏✹ � ✸✤✸✏✷ ❈ ✳✥✶ ❈ ✥✷ � ✸✥✶✥✷ ❈ ✶✴✤✷✏✹

❈ ✷✤✷✏✷ ❈ ✤✷ ❈ ✸✥✶✥✷✤✏✷ � ✥✶✥✷❀
E✶❀rless✳✏❀ ✥✶❀ ✥✷✴ ✑ ✥✷✤

✸✏✹ � ✥✷✤✷✏✷ ❈ ✥✶✥✷✤✏✷ � ✥✶✥✷❀
E✷❀rless✳✏❀ ✥✶❀ ✥✷✴ ✑ ✤✺✏✻ � ✸✤✹✏✹ ❈ ✳✥✶ � ✶✴✤✸✏✻

❈ ✷✤✸✏✹ ❈ ✸✤✸✏✷ ❈ ✳�✥✶ � ✶✴✤✷✏✹ � ✷✤✷✏✷ � ✤✷❀
and

Brless✳✏❀ ✥✶❀ ✥✷✴ ✑ E✶❀rless❂E✵❀rless❀(5.16)

Vrless✳✏❀ ✥✶❀ ✥✷✴ ✑ E✷❀rless❂E✵❀rless✿(5.17)

Then the asymptotic prediction error of random features ridgeless regression is

given by

lim
✕✦✵

lim
❞✦✶

E➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁

❉ ❋ ✷✶Brless✳✏❀ ✥✶❀ ✥✷✴❈ ✳✜✷ ❈ ❋ ✷❄ ✴Vrless✳✏❀ ✥✶❀ ✥✷✴❈ ❋ ✷❄ ✿
The proof of this result can be found in Section 12.

The next proposition establishes the main qualitative properties of the ridgeless

limit.

PROPOSITION 5.8. Recall the bias and variance functions Brless and Vrless defined

in equation (5.16) and (5.17). Then, for any ✏ ✷ ✳✵❀✶✴ and fixed ✥✷ ✷ ✳✵❀✶✴, we

have

(1) Small width limit ✥✶ ✦ ✵:

lim
✥✶✦✵

Brless✳✏❀ ✥✶❀ ✥✷✴ ❉ ✶❀ lim
✥✶✦✵

Vrless✳✏❀ ✥✶❀ ✥✷✴ ❉ ✵✿(5.18)

(2) Divergence at the interpolation threshold ✥✶ ❉ ✥✷:

Brless✳✏❀ ✥✷❀ ✥✷✴ ❉✶❀ Vrless✳✏❀ ✥✷❀ ✥✷✴ ❉✶✿(5.19)
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(3) Large width limit ✥✶ ✦✶ (here ✤ is defined as per equation (5.14)):

(5.20)

lim
✥✶✦✶

Brless✳✏❀ ✥✶❀ ✥✷✴ ❉
✥✷✤✏

✷ � ✥✷
✳✥✷ � ✶✴✤✸✏✻ ❈ ✳✶ � ✸✥✷✴✤✷✏✹ ❈ ✸✥✷✤✏✷ � ✥✷

❀

lim
✥✶✦✶

Vrless✳✏❀ ✥✶❀ ✥✷✴ ❉
✤✸✏✻ � ✤✷✏✹

✳✥✷ � ✶✴✤✸✏✻ ❈ ✳✶ � ✸✥✷✴✤✷✏✹ ❈ ✸✥✷✤✏✷ � ✥✷
✿

(4) Above the interpolation threshold (i.e., for✥✶ ✕ ✥✷), the functions Brless✳✏❀

✥✶❀ ✥✷✴ and Vrless✳✏❀ ✥✶❀ ✥✷✴ are strictly decreasing in the rescaled number

of neurons ✥✶.

The proof of this proposition is presented in Section 13.1.

As anticipated, point ✷ establishes an important difference with respect to the

random covariates linear regression model of [1, 14, 35]. While in those models

the peak in prediction error is entirely due to a variance divergence, in the present

setting both variance and bias diverge.

Another important difference is established in point ✹: both bias and variance are

monotonically decreasing above the interpolation threshold. This, again, contrasts

with the behavior of simpler models, in which bias increases after the interpola-

tion threshold or after a somewhat larger point in the number of parameters per

dimension (if misspecification is added).

This monotone decrease of the bias is crucial and is at the origin of the ob-

servation that highly overparametrized models outperform underparametrized or

moderately overparametrized ones. See Figure 5.2 for an illustration.
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FIGURE 5.2. Analytical predictions of learning a linear function

❢❞ ✳①✴ ❉ ❤①❀☞✶✐ with ReLU activation (✛ ❉ max❢①❀ ✵❣) in the ridgeless

limit (✕✦ ✵). We take ❦☞✶❦✷✷ ❉ ✶ and E➀✧✷➁ ❉ ✶ . We fix ✥✷ ❉ ✷ and

plot the bias, variance, and the test error as functions of ✥✶❂✥✷. Both

the bias and the variance term diverge when ✥✶ ❉ ✥✷ and decrease in

✥✶ when ✥✶ ❃ ✥✷.
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Highly overparametrized regime

As the number of neurons ◆ diverges (for fixed dimension ❞ ), random features

ridge regression is known to approach kernel ridge regression with respect to the

kernel (3.1). It is therefore interesting what happens when ◆ and ❞ diverge to-

gether, but ◆ is larger than any constant times ❞ .

THEOREM 5.9. Under the assumptions of Theorem 5.3, define

✦ ✑ � ➀✳✥✷✏
✷ � ✏✷ � ✕✥✷ � ✶✴✷ ❈ ✹✥✷✏✷✳✕✥✷ ❈ ✶✴➁✶❂✷ ❈ ✳✥✷✏✷ � ✏✷ � ✕✥✷ � ✶✴

✷✳✕✥✷ ❈ ✶✴
and

Bwide✳✏❀ ✥✷❀ ✕✴ ❉
✥✷✦ � ✥✷

✳✥✷ � ✶✴✦✸ ❈ ✳✶ � ✸✥✷✴✦✷ ❈ ✸✥✷✦ � ✥✷
❀(5.21)

Vwide✳✏❀ ✥✷❀ ✕✴ ❉
✦✸ � ✦✷

✳✥✷ � ✶✴✦✸ ❈ ✳✶ � ✸✥✷✴✦✷ ❈ ✸✥✷✦ � ✥✷
✿(5.22)

Then the asymptotic prediction error of random features ridge regression in the

large width limit is given by

(5.23) lim
✥✶✦✶

lim
❞✦✶

E➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁ ❉

❋ ✷✶Bwide

�
✏❀ ✥✷❀ ✕❂✖

✷
❄

✁❈ �
✜✷ ❈ ❋ ✷❄

✁
Vwide

�
✏❀ ✥✷❀ ✕❂✖

✷
❄

✁❈ ❋ ✷❄ ✿
The proof of this result can be found in Section 12. Note that, as expected,

the risk remains lower-bounded by ❋ ✷❄ , even in the limit ✥✶ ✦ ✶. Naively one

could have expected to recover kernel ridge regression in this limit, and hence

a method that can fit nonlinear functions. However, as shown in [34], random

features methods can only learn linear functions for ◆ ❉ ❖❞ ✳❞
✷�✍✴.

As observed in Figures 2.1 to 2.3 (which have been obtained by applying The-

orem 5.3), the minimum prediction error is often achieved by highly overparame-

trized networks ✥✶ ✦✶. It is natural to ask what is the effect of regularization on

such networks. Somewhat surprisingly (and as anticipated in Section 2), we find

that regularization does not always help. Namely, there exists a critical value ✚❄ of

the signal-to-noise ratio such that vanishing regularization is optimal for ✚ ❃ ✚❄
and is not optimal for ✚ ❁ ✚❄.

In order to state formally this result, we define the quantities

(5.24)

Rwide✳✚❀ ✏❀ ✥✷❀ ✕✴ ✑
✚

✶❈ ✚Bwide✳✏❀ ✥✷❀ ✕✴❈
✶

✶❈ ✚Vwide✳✏❀ ✥✷❀ ✕✴❀

✦✵✳✏❀ ✥✷✴ ✑ �
➀✳✥✷✏

✷ � ✏✷ � ✶✴✷ ❈ ✹✥✷✏✷➁✶❂✷ ❈ ✳✥✷✏✷ � ✏✷ � ✶✴
✷

❀

✚❄✳✏❀ ✥✷✴ ✑
✦✷✵ � ✦✵

✳✶ � ✥✷✴✦✵ ❈ ✥✷
✿
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Notice in particular that Rwide✳✚❀ ✏❀ ✥✷❀ ✕❂✖
✷
❄✴ is the limiting value of the prediction

error (right-hand side of (5.23)) up to an additive constant and an multiplicative

constant.

PROPOSITION 5.10. Fix ✏❀ ✥✷ ✷ ✳✵❀✶✴ and ✚ ✷ ✳✵❀✶✴. Then the function ✕ ✼✦
Rwide✳✚❀ ✏❀ ✥✷❀ ✕✴ is either strictly increasing in ✕, or strictly decreasing first and

then strictly increasing.

Moreover, we have

✚ ❁ ✚❄✳✏❀ ✥✷✴ ✮ arg min
◆✕✕✵

Rwide✳✚❀ ✏❀ ✥✷❀ ✕✴ ❉ ✵❀(5.25)

✚ ❃ ✚❄✳✏❀ ✥✷✴ ✮ arg min
◆✕✕✵

Rwide✳✚❀ ✏❀ ✥✷❀ ✕✴ ❉ ✕❄✳✏❀ ✥✷❀ ✚✴ ❃ ✵✿(5.26)

The proof of this proposition is presented in Section 13.2, which also provides

further information about this phase transition (and, in particular, an explicit ex-

pression for ✕❄✳✏❀ ✥✷❀ ✚✴).

Large sample limit

As the number of sample ♥ goes to infinity, both training error (minus ✜✷) and

test error2 converge to the approximation error using random features class to fit

the true function ❢❞ . It is therefore interesting what happens when ♥ and ❞ diverge

together, but ♥ is larger than any constant times ❞ .

THEOREM 5.11. Under the assumptions of Theorem 5.3, define

✦ ✑ � ➀✳✥✶✏
✷ � ✏✷ � ✕✥✶ � ✶✴✷ ❈ ✹✥✶✏✷✳✕✥✶ ❈ ✶✴➁✶❂✷ ❈ ✳✥✶✏✷ � ✏✷ � ✕✥✶ � ✶✴

✷✳✕✥✶ ❈ ✶✴
❀

and

Blsamp✳✏❀ ✥✶❀ ✕✴ ❉
✳✦✸ � ✦✷✴❂✏✷ ❈ ✥✶✦ � ✥✶

✳✥✶ � ✶✴✦✸ ❈ ✳✶ � ✸✥✶✴✦✷ ❈ ✸✥✶✦ � ✥✶
✿

Then the asymptotic prediction error of random features ridge regression in the

large width limit is given by

lim
✥✷✦✶

lim
❞✦✶

E➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁ ❉ ❋ ✷✶Blsamp

�
✏❀ ✥✷❀ ✕❂✖

✷
❄

✁❈ ❋ ✷❄ ✿(5.27)

The proof of this result can be found in Section 12.

6 Asymptotics of the Training Error

Theorem 5.3 establishes the exact asymptotics of the test error in the random

features model. However, the technical results obtained in the proofs allow us to

characterize several other quantities of interest. Here we consider the behavior of

2 The difference between training error and test error is due to the fact that we define the former

as❜E♥❢✳② �❜❢ ✳①✴✴✷❣ and the latter as E❢✳❢ ✳①✴ �❜❢ ✳①✴✴✷❣.
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the training error and of the norm of the parameters. We define the regularized

training error by

(6.1) ▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉

min
❛

✭
✶

♥

♥❳
✐❉✶

✥
②✐ �

◆❳
❥❉✶

❛❥✛✳❤✒❥ ❀①✐ ✐❂
♣
❞✴

✦✷

❈ ◆✕

❞
❦❛❦✷✷

✮
✿

We also recall that ❜❛✳✕✴ denotes the minimizer in the last expression (cf. equa-

tion (1.2)). The next definition presents the asymptotic formulas for these quanti-

ties.

DEFINITION 6.1 (Asymptotic formula for training error of random features regres-

sion). Let the functions ✗✶❀ ✗✷ ❲ C❈ ✦ C❈ be uniquely defined by the following

conditions: (i) ✗✶, ✗✷ are analytic on C❈; (ii) for Im✳✘✴ ❃ ✵, ✗✶✳✘✴ and ✗✷✳✘✴

satisfy the equations

(6.2)

✗✶ ❉ ✥✶

✒
�✘ � ✗✷ �

✏✷✗✷

✶ � ✏✷✗✶✗✷

✓�✶
❀

✗✷ ❉ ✥✷

✒
�✘ � ✗✶ �

✏✷✗✶

✶ � ✏✷✗✶✗✷

✓�✶
■

(iii) ✳✗✶✳✘✴❀ ✗✷✳✘✴✴ is the unique solution of these equations with

❥✗✶✳✘✴❥ ✔ ✥✶❂ Im✳✘✴❀ ❥✗✷✳✘✴❥ ✔ ✥✷❂ Im✳✘✴❀

for Im✳✘✴ ❃ ❈❀ with ❈ a sufficiently large constant.

Let

(6.3) ✤ ✑ ✗✶✳i✳✥✶✥✷✕✴
✶❂✷✴ ✁ ✗✷✳i✳✥✶✥✷✕✴

✶❂✷✴

and

(6.4)

L ❉ �i✗✷✳i✳✥✶✥✷✕✴
✶❂✷✴ ✁

✒
✕✥✶

✥✷

✓✶❂✷
✁
✔

✚

✶❈ ✚
✁ ✶

✶ � ✤✏✷ ❈
✶

✶❈ ✚

✕
❀

A✶ ❉
✚

✶❈ ✚

✂�✤✷✳✤✏✹ � ✤✏✷ ❈ ✥✷✏
✷ ❈ ✏✷ � ✤✥✷✏

✹ ❈ ✶✴
✄

❈ ✶

✶❈ ✚

✂
✤✷✳✤✏✷ � ✶✴✳✤✷✏✹ � ✷✤✏✷ ❈ ✏✷ ❈ ✶✴

✄
❀

A✵ ❉ �✤✺✏✻ ❈ ✸✤✹✏✹ ❈ ✳✥✶✥✷ � ✥✷ � ✥✶ ❈ ✶✴✤✸✏✻ � ✷✤✸✏✹ � ✸✤✸✏✷

❈ ✳✥✶ ❈ ✥✷ � ✸✥✶✥✷ ❈ ✶✴✤✷✏✹ ❈ ✷✤✷✏✷ ❈ ✤✷ ❈ ✸✥✶✥✷✤✏
✷ � ✥✶✥✷❀

A ❉ A✶❂A✵✿

We next state our asymptotic characterization of ▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴ and ❦❜❛✳✕✴❦✷✷.

THEOREM 6.2. Let ❳ ❉ ✳①✶❀ ✿ ✿ ✿ ❀①♥✴
T ✷ R

♥✂❞ with

✳①✐ ✴✐✷➀♥➁ ✘iid Unif✳S❞�✶✳
♣
❞✴ and ❶ ❉ ✳✒✶❀ ✿ ✿ ✿ ❀✒◆ ✴

T ✷ R
◆✂❞
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with ✳✒❛✴❛✷➀◆ ➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴ independently. Let the activation function ✛

satisfy Assumption 1, and consider proportional asymptotics ◆❂❞ ✦ ✥✶, ◆❂❞ ✦
✥✷, as per Assumption 2. Finally, let the regression function ❢❢❞ ❣❞✕✶ and the

response variables ✳②✐ ✴✐✷➀♥➁ satisfy Assumption 3.

Then for any value of the regularization parameter ✕ ❃ ✵, the asymptotic regu-

larized training error and norm square of its minimizer satisfy

(6.5)
E❳ ❀❶❀✧❀❢ NL

❞

☞☞▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴ �
�
❋ ✷
✶ ❈ ❋ ✷

❄ ❈ ✜✷
✁
L

☞☞ ❉ ♦❞ ✳✶✴❀

E❳ ❀❶❀✧❀❢ NL
❞

☞☞✖✷
❄❦❜❛✳✕✴❦✷✷ � �

❋ ✷
✶ ❈ ❋ ✷

❄ ❈ ✜✷
✁
A

☞☞ ❉ ♦❞ ✳✶✴❀

where E❳ ❀❶❀✧❀❢ NL
❞

denotes expectation with respect to data covariates ❳ , feature

vectors❶, data noise ✧, and ❢ NL

❞
the nonlinear part of the true regression function

(as a Gaussian process), as per Assumption 3. The functions L and A are given

in Definition 6.1.

The proof of Theorem 6.2 is similar to the proof of Theorem 5.3. We will give

a sketch of proof of Theorem 6.2 in Section E.

6.1 Numerical illustrations

In this section, we illustrate Theorem 6.2 through numerical simulations. Fig-

ure 6.1 reports the theoretical prediction and numerical results for the regularized

training error, the test error, and the norm of the coefficients❜❛✳✕✴. We use a small
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FIGURE 6.1. Analytical predictions and numerical simulations for the

test error and regularized training error. Data are generated according to

②✐ ❉ ❤☞✶❀①✐ ✐ ❈ ✧✐ with ❦☞✶❦✷✷ ❉ ✶ and ✧✐ ✘ N✳✵❀ ✜✷✴, ✜✷ ❉ ✵✿✺. We

fit a random features model with ReLU activations (✛✳①✴ ❉ max❢①❀ ✵❣)
and ridge regularization parameter ✕ ❉ ✶✵�✸. In simulations we use

❞ ❉ ✶✵✵ and ♥ ❉ ✸✵✵. We add ✜✷ ❉ ✵✿✺ to the test error to make it

comparable with training error. Symbols are averages over ✷✵ instances.
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nonzero value of the regularization parameter ✕ ❉ ✶✵�✸, fix the number of sam-

ples per dimension ✥✷ ❉ ♥❂❞ , and follow these quantities as a function of the

overparametrization ratio ✥✶❂✥✷ ❉ ◆❂♥.

As expected, the behavior of the training error is strikingly different from the one

of the test error. The training error is monotone decreasing in the overparametriza-

tion ratio ◆❂♥ and is close to zero in the overparametrized regime ◆❂♥ ❃ ✶ (it

is not exactly vanishing because we use a small ✕ ❃ ✵). In other words, the fit-

ted model is nearly interpolating the data, and the peak in test error matches the

interpolation threshold.

On the other hand, the penalty term ✥✶❦❜❛✳✕✴❦✷✷ is nonmonotone: it increases up

to the interpolation threshold, then decreases for ◆❂♥ ❃ ✶ and converges to a con-

stant as ✥✶ ✦✶. If we take this as a proxy for the model complexity, the behavior

of ✥✶❦❜❛✳✕✴❦✷✷ provides useful intuition about the descent of the generalization er-

ror. As the number of parameters increases beyond the interpolation threshold, the

model complexity decreases instead of increasing.

We can confirm the intuition that the double descent of the test error is driven by

the behavior of the model complexity ✥✶❦❜❛✳✕✴❦✷✷ by selecting ✕ in an optimal way.

Following [35], we expect that the optimal regularization should produce a smaller

value of ✥✶❦❜❛✳✕✴❦✷✷, and hence eliminate or reduce the double descent phenome-

non. Indeed, this is illustrated in Figure 6.2, which demonstrates the prediction of
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FIGURE 6.2. Analytical predictions and numerical simulations results

for the test error and the regularized training error. Data are generated

according to ②✐ ❉ ❤☞✶❀①✐ ✐ ❈ ✧✐ with ❦☞✶❦✷✷ ❉ ✶ and ✧✐ ✘ N✳✵❀ ✜✷✴,

✜✷ ❉ ✵✿✷. We fit a random features model with ReLU activations

(✛✳①✴ ❉ max❢①❀ ✵❣). We fix ✥✷ ❉ ♥❂❞ ❉ ✶✵. We add ✜✷ ❉ ✵✿✷ to

the test error to make it comparable with the training error. In the opti-

mal ridge setting, we choose ✕ for each value of ✥✶ as to minimize the

asymptotic test error.
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the regularized training error and the test error for two choices of ✕: ✕ ❉ ✵ and an

optimal ✕ such that the test error is minimized. When we choose an optimal ✕, the

test error becomes strictly decreasing as ✥✶ ❉ ◆❂❞ increases. We expect this to

be a generic phenomenon that also holds in other interesting models.

7 An Equivalent Gaussian Covariates Model

An examination of the proof of our main result (Theorem 5.3) reveals an interest-

ing phenomenon. The random features model has the same asymptotic prediction

error as a simpler model with Gaussian covariates and response that is linear in

these covariates, provided we use a special covariance and signal structure.

The construction of the Gaussian covariates model proceeds as follows. Fix

☞✶ ✷ R
❞ , ❦☞✶❦✷✷ ❉ ❋ ✷

✶ and

❶ ❉ ✳✒✶❀ ✿ ✿ ✿ ❀✒◆ ✴
T with ✳✒❥ ✴❥✷➀◆ ➁ ✘iid Unif✳S❞�✶✳

♣
❞✴✴✿

The joint distribution of ✳②❀①❀✉✴ ✷ R ✂ R
❞ ✂ R

◆ conditional on ❶ is defined by

the following procedure:

(1) Draw ① ✘ N✳✵❀ I❞ ✴, ✧ ✘ N✳✵❀ ✜✷✴, and ✇ ✘ N✳✵❀ I◆ ✴ independently,

conditional on ❶.

(2) Let ② ❉ ❤☞✶❀①✐ ❈ ✧.

(3) Let ✉ ❉ ✳✉✶❀ ✿ ✿ ✿ ❀ ✉◆ ✴
T, ✉❥ ❉ ✖✵ ❈ ✖✶❤✒❥ ❀①✐❂

♣
❞ ❈ ✖❄✇❥ , for some

✵ ❁ ❥✖✵❥❀ ❥✖✶❥❀ ❥✖❄❥ ❁✶.

We will denote by P②❀①❀✉❥❶ the probability distribution thus defined. As antic-

ipated, this is a Gaussian covariates model. Indeed, the covariates vector ✉ ✘
N✳✵❀❺✴ is Gaussian, with covariance ❺ ❉ ✖✷

✵11T ❈ ✖✷
✶❶❶

T❂❞ ❈ ✖✷
❄I◆ . Also

✳②❀✉✴ are jointly Gaussian, and we can therefore write ② ❉ ❤③☞✶❀✉✐ ❈ ③✧ for some

new vector of coefficients ③☞✶ and noise ③✧ that is independent of ✉.

Let ➀❢✳②✐ ❀①✐ ❀✉✐ ✴❣✐✷➀♥➁❥❶➁ ✘iid P②❀①❀✉❥❶. By performing the ridge regression

❜❛✳✕✴ ❉ arg min
❛✷R◆

✭
✶

♥

♥❳
✐❉✶

✳②✐ � ❤✉✐ ❀ ❛✐✴✷ ❈
◆✕

❞
❦❛❦✷✷

✮
❀(7.1)

we obtain a regression function ❜❢ ✳①■ ❛❀❶✴ ❉ ❤✉❀ ❛✐.
The prediction error is defined by

❘GC✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉ E①❀➫❥❶➀✳❢❞ ✳①✴ � ❤✉❀❜❛✳✕✴✐✴✷➁✿(7.2)

Remarkably, in the proportional asymptotics ◆❀ ♥❀ ❞ ✦ ✶ with ◆❂❞ ✦ ✥✶❀

♥❂❞ ✦ ✥✷, the behavior of this model is the same as the one of the nonlinear

random features model studied in the rest of the paper. In particular, the asymptotic

prediction error R is given by the same formula as in Definition 5.2.

THEOREM 7.1 (Gaussian covariates prediction model)). Define ✏ and the signal-

to-noise ratio ✚ ✷ ➀✵❀✶➁ as

✏ ✑ ✖✷
✶❂✖

✷
❄❀ ✚ ✑ ❋ ✷

✶ ❂✜
✷❀(7.3)
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FIGURE 7.1. Predictions and numerical simulations for the test error

of the Gaussian covariates model. We fit ②✐ ❉ ❤☞✶❀①✐ ✐ ❈ ✧✐ with

❦☞✶❦✷✷ ❉ ✶ and ✜✷ ❉ E➀✧✷
✐
➁ ❉ ✵✿✺, and parameters ✖✶ ❉ ✵✿✺,

✖❄ ❉
♣
✳✙ � ✷✴❂✳✹✙✴, and ✕ ❉ ✶✵�✸. This choice of parameters

✖✶ and ✖❄ matches the corresponding parameters for ReLU activations.

Here ♥ ❉ ✸✵✵, ❞ ❉ ✶✵✵. The continuous black line is our theoretical

prediction, and the colored symbols are numerical results. Symbols are

averages over ✷✵ instances and the error bars report the standard error of

the means over ✷✵ instances.

and assume ✖✵❀ ✖✶❀ ✖❄ ↕ ✵. Then, in the Gaussian covariates model described

above, for any ✕ ❃ ✵, we have

❘GC✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉
�
❋ ✷
✶ ❈ ✜✷

✁
R

�
✚❀ ✏❀ ✥✶❀ ✥✷❀ ✕❂✖

✷
❄

✁❈ ♦❞❀P✳✶✴❀(7.4)

where R✳✚❀ ✏❀ ✥✶❀ ✥✷❀ ✕✴ is explicitly given in Definition 5.2.

The proof of Theorem 7.1 is almost the same as the one of Theorem 5.3 (with

several simplifications, because of the greater amount of independence). To avoid

repetitions, we will not present a proof here.

Figure 7.1 illustrates the content of Theorem 7.1 via numerical simulations. We

report the simulated and predicted test error as a function of ✥✶❂✥✷ ❉ ◆❂♥. The

theoretical prediction here is exactly the same as the one reported in Figure 5.1.

However, numerical simulations were carried out with the Gaussian covariates

model instead of random features. The agreement is excellent, as predicted by

Theorem 7.1.

Why do the RF and GC models result in the same asymptotic prediction er-

ror? It is useful to provide a heuristic explanation of this interesting phenomenon.

Consider an activation function ✛ ❲ R ✦ R, with ✖❦ ❉ E➀He❦✳●✴✛✳●✴➁ and

✖✷❄ ❉ E➀✛✷✳●✴➁ � ✖✷✵ � ✖✷✶ for ● ✘ N✳✵❀ ✶✴. Define the nonlinear component of
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the activation function by ✛❄✳①✴ ✑ ✛✳①✴ � ✖✵ � ✖✶①. Note that we have

✛
�❤①✐ ❀✒❥ ✐❂

♣
❞
✁ ❉ ✖✵ ❈ ✖✶❤①✐ ❀✒❥ ✐❂

♣
❞ ❈ ✖❄ ③✇✐❥ ❀

③✇✐❥ ✑
✶

✖❄
✛❄

�❤①✐ ❀✒❥ ✐❂
♣
❞
✁
❀

✉❥ ❉ ✖✵ ❈ ✖✶❤①✐ ❀✒❥ ✐❂
♣
❞ ❈ ✖❄✇✐❥ ❀

where ✳✇✐❥ ✴✐✷➀♥➁❀❥✷➀◆ ➁ ✘iid N✳✵❀ ✶✴ is independent of ❳ and ❶. Note that the first

two moments of ③✇✐❥ match those of ✇✐❥ , i.e., E①❥❶ ③✇✐❥ ❉ ✵, E①❥❶✳ ③✇✷
✐❥ ✴ ❉ ✶.

Further, for ✐ ↕ ❧ , ③✇✐❥ , ③✇✐❧ are nearly uncorrelated:

E①❥❶❢ ③✇✐❥ ③✇✐❧❣ ❉ ❖✳✳❤✒❥ ❀✒ ❧✐❂❞✴✷✴ ❉ ❖P✳✶❂❞✴✿

It is therefore not unreasonable to imagine that they should behave independently.

The same intuition also appears in the analysis of the spectrum of kernel random

matrices in [17, 56].

8 Proof of Theorem 5.3

This section presents the proof strategy of Theorem 5.3, deferring a detailed

proof of technical propositions to the later sections. Throughout the proof, we

let ❳ ❉ ✳①✶❀ ✿ ✿ ✿ ❀①♥✴
T ✷ R

♥✂❞ with ✳①✐ ✴✐✷➀♥➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴, ❶ ❉

✳✒✶❀ ✿ ✿ ✿ ❀✒♥✴
T ✷ R

◆✂❞ with ✳✒❛✴❛✷➀◆ ➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴ independently of

❳ . Furthermore, we let Assumptions 1, 2, and 3 hold, and ✕ ❃ ✵ is kept fixed.

We begin by observing that the minimizer of the training error (1.2) is given by

❜❛✳✕✴ ❉ ✶♣
❞

�
❩T❩ ❈ ✕✥✶❀❞✥✷❀❞ I◆

✁�✶
❩T②✿

It is useful to introduce the resolvent matrix ❸ ✷ R
◆✂◆ :

❸ ✑ �
❩T❩ ❈ ✕✥✶❀❞✥✷❀❞ I◆

✁�✶
✿(8.1)

Then ❜❛✳✕✴ can be written in a simpler form ❜❛✳✕✴ ❉ ❸❩T②❂
♣
❞ . After a simple

calculation, we obtain

(8.2)
❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉ E①➀❢❞ ✳①✴

✷➁ � ✷②T❩❸❱ ❂
♣
❞

❈ ②T❩❸❯❸❩T②❂❞✿

Here

✛ ✳①✴ ❉ ✳✛✳❤✒✶❀①✐❂
♣
❞✴❀ ✿ ✿ ✿ ❀ ✛✳❤✒◆ ❀①✐❂

♣
❞✴✴T ✷ R

◆ ❀

② ❉ ✳②✶❀ ✿ ✿ ✿ ❀ ②♥✴
T ❉ ❢ ❈ ✧ ✷ R

♥❀

❢ ❉ ✳❢❞ ✳①✶✴❀ ✿ ✿ ✿ ❀ ❢❞ ✳①♥✴✴
T ✷ R

♥❀

✧ ❉ ✳✧✶❀ ✿ ✿ ✿ ❀ ✧♥✴
T ✷ R

♥❀
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and ❱ ❉ ✳❱✶❀ ✿ ✿ ✿ ❀ ❱◆ ✴T ✷ R
◆ , ❯ ❉ ✳❯✐❥ ✴✐❥✷➀◆ ➁ ✷ R

◆✂◆ , are defined by

(8.3)
❱✐ ❉ E①➀❢❞ ✳①✴✛✳❤✒ ✐ ❀①✐❂

♣
❞✴➁❀

❯✐❥ ❉ E①➀✛✳❤✒ ✐ ❀①✐❂
♣
❞✴✛✳❤✒❥ ❀①✐❂

♣
❞✴➁✿

Our first step is to replace the exact expression (8.2) by a simpler one involving

traces of combinations of ❸ and the following four random matrices:

(8.4)

◗ ❉ ✶

❞
❶❶T❀ ❍ ❉ ✶

❞
❳❳T❀

❩ ❉ ✶♣
❞
✛

✒
✶♣
❞
❳❶T

✓
❀ ❩✶ ❉

✖✶

❞
❳❶T✿

PROPOSITION 8.1 (Decomposition). We have

E❳ ❀❶❀✧❀❢ NL
❞

☞☞❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴

� ✂
❋ ✷
✶ ✳✶ � ✷❽✶ ❈❽✷✴❈

�
❋ ✷
❄ ❈ ✜✷

✁
❽✸ ❈ ❋ ✷

❄

✄☞☞ ❉ ♦❞ ✳✶✴❀
(8.5)

where

(8.6)

❽✶ ❉
✶

❞
Tr➀❩T

✶❩❸➁❀

❽✷ ❉
✶

❞
Tr➀❸✳✖✷

✶◗❈ ✖✷
❄I◆ ✴❸❩T❍❩ ➁❀

❽✸ ❉
✶

❞
Tr➀❸✳✖✷

✶◗❈ ✖✷
❄I◆ ✴❸❩T❩ ➁✿

The proof of this proposition is deferred to Section 9 and is based on the follow-

ing main steps:

✎ As a preliminary remark, we show that by invariance of the distributions of

✳✒❥ ✴❥✔◆ and ✳①✐ ✴✐✔♥ under rotations in R
❞ , we can replace the determin-

istic vector ☞❞❀✶ by a uniformly random vector on the sphere with radius

❦☞❞❀✶❦✷ ❉ ❋❞❀✶.

✎ Second, we compute the expectation E☞❀✧➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁ and simplify

this expression, in particular by proving that a negligible error is incurred

by replacing the kernel matrix ❯ by ✖✷
✶◗❈ ✖✷

❄I◆ .

✎ Finally, we show that ❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ concentrates around its expecta-

tion with respect to ❢❞ (i.e., the coefficients ❢☞❞❀❦❣❦✕✶) and ✧.

In order to compute the traces ❽❥ appearing in the last proposition, we intro-

duce a block-structured matrix ❆ ✷ R
▼✂▼ , ▼ ❉ ◆ ❈ ♥, as follows. For

q ❉ ✳s✶❀ s✷❀ t✶❀ t✷❀ ♣✴ ✷ R
✺, we define

❆ ❉ ❆✳q✴ ❲❉
✔
s✶I◆ ❈ s✷◗ ❩T ❈ ♣❩T

✶

❩ ❈ ♣❩✶ t✶I♥ ❈ t✷❍

✕
✿(8.7)
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For ✘ ✷ C❈ and q ✷ R
✺, we define the Stieltjes transform of ❆ (denoted by ♠❞ )

and its log-determinant (denoted by ●❞ ) via

(8.8)

♠❞ ✳✘■ q✴ ❉ E➀▼❞ ✳✘■ q✴➁❀ ▼❞ ✳✘■ q✴ ❉
✶

❞
Tr➀✳❆ � ✘I▼ ✴

�✶➁❀

●❞ ✳✘■ q✴ ❉
✶

❞

▼❳
✐❉✶

Log✳✕✐ ✳❆✳q✴✴ � ✘✴✿

Here Log is the complex logarithm with branch cut on the negative real axis, and

❢✕✐ ✳❆✴❣✐✷➀▼➁ is the set of eigenvalues of ❆ in nonincreasing order.

The next proposition connects the quantities ❽❥ to the transforms ●❞ and ▼❞ .

PROPOSITION 8.2. For ✘ ✷ C❈ and q ✷ R
✺, we have

(8.9)
d

d✘
●❞ ✳✘■ q✴ ❉ � ✶

❞

▼❳
✐❉✶

✳✕✐ ✳❆✴ � ✘✴�✶ ❉ �▼❞ ✳✘■ q✴❀

and

(8.10)

❽✶ ❉
✶

✷
❅♣●❞ ✳i✳✥✶✥✷✕✴

✶❂✷■ ✵✴❀
❽✷ ❉ �✖✷

❄ ❅s✶❀t✷●❞ ✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴ � ✖✷

✶ ❅s✷❀t✷●❞ ✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴❀

❽✸ ❉ �✖✷
❄ ❅s✶❀t✶●❞ ✳i✳✥✶✥✷✕✴

✶❂✷■ ✵✴ � ✖✷
✶ ❅s✷❀t✶●❞ ✳i✳✥✶✥✷✕✴

✶❂✷■ ✵✴✿
The proof of Proposition 8.2 follows by basic calculus and linear algebra, and

we defer its proof to Appendix B. Despite its simplicity, this statement provides the

basic scheme of our proof. We will determine the asymptotics of▼❞ ✳✘■ q✴ using a

leave-one-out argument; then extract the behavior of●❞ ✳✘■ q✴ using equation (8.9);

finally we characterize the test error using equation (8.10) and Proposition 8.1.

Remark 8.3. The construction of the matrix ❆✳q✴ is related to the linear pencil

method in free probability; see [38]. A significantly simpler construction was used

in [35, sec. 8] to calculate the variance part of the risk ❘RF in the limit ✕ ✦ ✵ (in

special cases). The approach of [35] amounts to computing the Stieltjes transform

of ❆ for ♣ ❉ t✶ ❉ t✷ ❉ ✵ in the limit ✘ ✦ ✵: unfortunately, this quantity

is not sufficient to extract the prediction error. We overcome this difficulty by

considering a more complex block-structured matrix and expressing the risk in

terms of derivatives of the log determinant ●❞ ✳✘■ q✴.
In order to compute the Stieltjes transform of❆, we derive a set of two nonlinear

equations for the partial transform ♠✶❀❞ ✳✘■ q✴ ❉ ✳◆❂❞✴E❢➀✳❆ � ✘I▼ ✴
�✶➁◆❀◆ ❣,

♠✷❀❞ ✳✘■ q✴ ❉ ✳♥❂❞✴E❢➀✳❆�✘I▼ ✴
�✶➁▼❀▼ ❣, corresponding to the two blocks in the

definition of ❆. The starting point is the Schur complement formula with respect

to entry ✳◆❀◆ ✴ of matrix ❆ � ✘I▼ ,

(8.11) ♠✶❀❞ ❉
◆

❞
E
✟��✘ ❈ s✶ ❈ s✷❦✒◆ ❦✷✷❂❞ �❆T

✁❀◆ ✳❇ � ✘I▼�✶✴�✶❆✁❀◆
✁�✶✠

✿
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An analogous formula for ♠✷❀❞ is obtained by taking the complement of entry

✳▼❀▼✴. Here ❆✁❀◆ ✷ R
▼�✶ is the ◆ th column of ❆, with the ◆ th entry re-

moved, and ❇ ✷ R
✳▼�✶✴✂✳▼�✶✴ is the matrix obtained from ❆ by removing the

◆ th column and ◆ th row. As usual in random matrix theory, we aim to express the

right-hand side as an explicit deterministic function of ♠✶❀❞ and ♠✷❀❞ plus a small

error. Unlike in more standard random matrix models, the matrix ❇ is not inde-

pendent of the vector ❆✁❀◆ : both are functions of ✳✒❛✴❛❁◆ and ✳①✐ ✴✐✔♥. In order

to overcome this difficulty, we decompose these vectors in the components along

✒◆ and the ones orthogonal to ✒◆ : the first one carries most of the dependence

and can be treated explicitly, while for the second we can leverage independence.

Unfortunately, even conditional on ✒◆ , the projections of ✳✒❛✴❛❁◆ and ✳①✐ ✴✐✔♥
along ✒◆ and orthogonal to it are not independent (because of the sphere con-

straint). To overcome this problem we replace these by Gaussian vectors ✳①✒❛✴❛❁◆
and ✳①①✐ ✴✐✔♥ and prove that the two distributions yield the same asymptotics of the

Stieltjes transform. The decomposition of these Gaussian vectors takes the form

①✒❛ ❉ ✑❛
①✒◆

❦①✒◆ ❦✷
❈ ③✒❛❀ ❤①✒◆ ❀ ③✒❛✐ ❉ ✵❀ ❛ ✷ ➀◆ � ✶➁❀

①①✐ ❉ ✉✐
①✒◆
❦①✒◆ ❦

❈ ③①✐ ❀ ❤①✒◆ ❀ ③①✐ ✐ ❉ ✵❀ ✐ ✷ ➀♥➁✿

Note that ❢✑❛❣❛✷➀◆�✶➁❀ ❢✉✐❣✐✷➀♥➁ ✘iid N✳✵❀ ✶✴ are independent of ①✒◆ ❂❦①✒◆ ❦✷,

❢③✒❛❣❛✷➀◆�✶➁, and ❢③①✐❣✐✷➀♥➁. Further, the vector ①❆✁❀◆ (the equivalent of ❆✁❀◆ for

the Gaussian model) ①❇ only depends on the ✑❛’s and ✉✐ ’s. While the matrix ①❇ (the

equivalent of ❇) depends on all of the ✑❛’s, ✉✐ ’s, ③✒❛’s, and ③①✐ ’s, we show it can be

approximated by ③❇ ❈⑩ where ③❇ only depends on the ③✒❛’s and ③①✐ ’s, and ⑩ is a

low-rank matrix depending only on the ✑❛’s and ✉✐ ’s. We thus get

(8.12)
♠✶❀❞ ❉ ◆

❞
E
✟��✘ ❈ s✶ ❈ s✷ � ①❆T

✁❀◆ ✳ ③❇ ❈⑩ � ✘I▼�✶✴�✶ ①❆✁❀◆
✁�✶✠

❈ err✳❞✴✿

At this point independence can be exploited to obtain concentration results on the

right-hand side. Let us emphasize that, while these paragraphs outline the main el-

ements of the leave-one-out argument, several technical subtleties make the actual

proof significantly longer; see Section 10 for details.

We next state the asymptotic characterization of the Stieltjes transform, which

is obtained by this argument. Define Q ✒ R
✺ via

(8.13) Q ❉ ✟
✳s✶❀ s✷❀ t✶❀ t✷❀ ♣✴ ❲ ❥s✷t✷❥ ✔ ✖✷

✶✳✶❈ ♣✴✷❂✷
✠
❀
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and two functions F✶✳ ✁ ❀ ✁ ■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴❀F✷✳ ✁ ❀ ✁ ■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴ ❲
C ✂ C✦ C via

(8.14)

F✶✳♠✶❀ ♠✷■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴

✑ ✥✶

✒
�✘ ❈ s✶ � ✖✷❄♠✷ ❈

✳✶❈ t✷♠✷✴s✷ � ✖✷✶✳✶❈ ♣✴✷♠✷

✳✶❈ s✷♠✶✴✳✶❈ t✷♠✷✴ � ✖✷✶✳✶❈ ♣✴✷♠✶♠✷

✓�✶
❀

F✷✳♠✶❀ ♠✷■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴

✑ ✥✷

✒
�✘ ❈ t✶ � ✖✷❄♠✶ ❈

✳✶❈ s✷♠✶✴t✷ � ✖✷✶✳✶❈ ♣✴✷♠✶

✳✶❈ t✷♠✷✴✳✶❈ s✷♠✶✴ � ✖✷✶✳✶❈ ♣✴✷♠✶♠✷

✓�✶
✿

PROPOSITION 8.4 (Stieltjes transform). Let ♠✶✳ ✁ ■ q✴ ♠✷✳ ✁ ■ q✴ ❲ C❈ ✦ C❈ be

defined, for Im✳✘✴ ✕ ❈ a sufficiently large constant, as the unique solution of the

equations

(8.15)
♠✶ ❉ F✶✳♠✶❀ ♠✷■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴❀
♠✷ ❉ F✷✳♠✶❀ ♠✷■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴❀

subject to the condition ❥♠✶❥ ✔ ✥✶❂ Im✳✘✴, ❥♠✷❥ ✔ ✥✷❂ Im✳✘✴. Extend this def-

inition to Im✳✘✴ ❃ ✵ by requiring ♠✶❀ ♠✷ to be analytic functions in C❈. Define

♠✳✘■ q✴ ❉ ♠✶✳✘■ q✴ ❈ ♠✷✳✘■ q✴. Then for any ✘ ✷ C❈ with Im ✘ ❃ ✵, and any

compact set ⑧ ✒ C❈, we have

lim
❞✦✶

E➀❥▼❞ ✳✘■ q✴ �♠✳✘■ q✴❥➁ ❉ ✵❀(8.16)

lim
❞✦✶

E
✂

sup
✘✷⑧

❥▼❞ ✳✘■ q✴ �♠✳✘■ q✴❥
✄ ❉ ✵✿(8.17)

The proof of Proposition 8.4 is presented in Section 10. The fixed point equa-

tions (8.15) arise as a consequence of equation (8.11) (and the analogous equation

for ♠✷❀❞ ). Indeed, the proof also shows that the solution ✳♠✶❀ ♠✷✴ of these equa-

tions gives the limit of ✳♠✶❀❞ ❀ ♠✷❀❞ ✴ as ♥❀◆❀ ❞ ✦✶.

Recall that, by Proposition 8.2, we have ▼❞ ✳✘■ q✴ ❉ �d●❞ ✳✘■ q✴❂d✘ . We can

therefore derive an asymptotic formula for ●❞ ✳✘■ q✴ by integrating the expression

for ♠✳✘■ q✴ in Proposition 8.4 over a path in the ✘-plane. Namely, we integrate

over a path in C❈ between ✘ and i❑, and let ❑ ✦ ✶. A priori, one could expect

this integral not to have a closed form. Instead, we obtain a relatively explicit

expression given below.

PROPOSITION 8.5. Define

(8.18)

❸✳✘❀ ➫✶❀ ➫✷■ q✴ ✑ log
✂
✳s✷➫✶ ❈ ✶✴✳t✷➫✷ ❈ ✶✴ � ✖✷✶✳✶❈ ♣✴✷➫✶➫✷

✄
� ✖✷❄➫✶➫✷ ❈ s✶➫✶ ❈ t✶➫✷ � ✥✶ log✳➫✶❂✥✶✴

� ✥✷ log✳➫✷❂✥✷✴ � ✘✳➫✶ ❈ ➫✷✴ � ✥✶ � ✥✷✿
For ✘ ✷ C❈ and q ✷ Q (cf. equation (8.13)), let ♠✶✳✘■ q✴❀♠✷✳✘■ q✴ be defined as

the analytic continuation of solution of equation (8.15) as defined in Proposition
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8.4. Define

(8.19) ❣✳✘■ q✴ ❉ ❸✳✘❀♠✶✳✘■ q✴❀♠✷✳✘■ q✴■ q✴✿

Consider proportional asymptotics ◆❂❞ ✦ ✥✶ and ◆❂❞ ✦ ✥✷, as per Assump-

tion 2. Then for any fixed ✘ ✷ C❈ and q ✷ Q, we have

(8.20) lim
❞✦✶

E➀❥●❞ ✳✘■ q✴ � ❣✳✘■ q✴❥➁ ❉ ✵✿

Moreover, for any fixed ✉ ✷ R❈, we have

lim
❞✦✶

E➀❦❅q●❞ ✳i✉■ ✵✴ � ❅q❣✳i✉■ ✵✴❦✷➁ ❉ ✵❀(8.21)

lim
❞✦✶

E➀❦r✷
q●❞ ✳i✉■ ✵✴ � r✷

q❣✳i✉■ ✵✴❦op➁ ❉ ✵✿(8.22)

For a complete proof of this proposition we refer to Section 11.

We can now use equations (8.21), (8.22), and (8.10) in Proposition 8.1 to get

(8.23) E❳ ❀❶❀✧❀❢ NL
❞

☞☞❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ � ❙R
☞☞ ❉ ♦❞ ✳✶✴❀

where

❙R ❉ ❋ ✷
✶ B ❈ �

❋ ✷
❄ ❈ ✜✷

✁
V ❈ ❋ ✷

❄ ❀(8.24)

B ❉ ✶ � ❅♣❣✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴ � ✖✷

❄ ❅s✶❀t✷❣✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴(8.25)

� ✖✷
✶ ❅s✷❀t✷❣✳i✳✥✶✥✷✕✴

✶❂✷■ ✵✴❀
V ❉ �✖✷

❄ ❅s✶❀t✶❣✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴ � ✖✷

✶ ❅s✷❀t✶❣✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴✿(8.26)

The last display provides the desired asymptotics of bias and variance. However,

these expressions involve derivatives of ❣ that are very inconvenient to evaluate.

We conclude by proving more explicit expressions for these quantities. The key

remark here is that the expression ❣✳✘■ q✴ in Proposition 8.5 has a special property:

the fixed point equations (8.15) imply that ✳♠✶✳✘■ q✴❀♠✷✳✘■ q✴✴ is a stationary point

of the function ❸✳✘❀ ✁ ❀ ✁ ■ q✴. This simplifies the calculation of derivatives with

respect to q. In particular, the first derivative is obtained by computing the partial

derivative of ❸ with respect to q and evaluating it at ♠✶❀ ♠✷.

LEMMA 8.6 (Formula for derivatives of ❣). For fixed ✘ ✷ C❈ and q ✷ R
✺, let

♠✶✳✘■ q✴❀♠✷✳✘■ q✴ be defined as the analytic continuation of the solution of equa-

tion (8.15) as defined in Proposition 8.4. Recall the definition of ❸ and ❣ given in

equation (8.18) and (8.19). Defining

♠✵ ❉ ♠✵✳✘✴ ✑ ♠✶✳✘■ ✵✴ ✁♠✷✳✘■ ✵✴❀(8.27)
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we have

(8.28)

❅♣❣✳✘■ ✵✴ ❉ ✷♠✵✖
✷
✶❂✳♠✵✖

✷
✶ � ✶✴❀

❅✷s✶❀t✶❣✳✘■ ✵✴ ❉
♠✺
✵✖

✻
✶✖

✷
❄ � ✸♠✹

✵✖
✹
✶✖

✷
❄ ❈♠✸

✵✖
✹
✶ ❈ ✸♠✸

✵✖
✷
✶✖

✷
❄ �♠✷

✵✖
✷
✶ �♠✷

✵✖
✷
❄

❙
❀

❅✷s✶❀t✷❣✳✘■ ✵✴ ❉
✳✥✷ � ✶✴♠✸

✵✖
✹
✶ ❈♠✸

✵✖
✷
✶✖

✷
❄ ❈ ✳�✥✷ � ✶✴♠✷

✵✖
✷
✶ �♠✷

✵✖
✷
❄

❙
❀

❅✷s✷❀t✶❣✳✘■ ✵✴ ❉
✳✥✶ � ✶✴♠✸

✵✖
✹
✶ ❈♠✸

✵✖
✷
✶✖

✷
❄ ❈ ✳�✥✶ � ✶✴♠✷

✵✖
✷
✶ �♠✷

✵✖
✷
❄

❙
❀

❅✷s✷❀t✷❣✳✘■ ✵✴ ❉
✂�♠✻

✵✖
✻
✶✖

✹
❄ ❈ ✷♠✺

✵✖
✹
✶✖

✹
❄ ❈ ✳✥✶✥✷ � ✥✷ � ✥✶ ❈ ✶✴♠✹

✵✖
✻
✶

�♠✹
✵✖

✹
✶✖

✷
❄ �♠✹

✵✖
✷
✶✖

✹
❄ ❈ ✳✷ � ✷✥✶✥✷✴♠

✸
✵✖

✹
✶

❈ ✳✥✶ ❈ ✥✷ ❈ ✥✶✥✷ ❈ ✶✴♠✷
✵✖

✷
✶ ❈♠✷

✵✖
✷
❄

✄
❂➀✳♠✵✖

✷
✶ � ✶✴❙➁❀

where

(8.29)

❙ ❉ ♠✺
✵✖

✻
✶✖

✹
❄ � ✸♠✹

✵✖
✹
✶✖

✹
❄ ❈ ✳✥✶ ❈ ✥✷ � ✥✶✥✷ � ✶✴♠✸

✵✖
✻
✶

❈ ✷♠✸
✵✖

✹
✶✖

✷
❄ ❈ ✸♠✸

✵✖
✷
✶✖

✹
❄ ❈ ✳✸✥✶✥✷ � ✥✷ � ✥✶ � ✶✴♠✷

✵✖
✹
✶

� ✷♠✷
✵✖

✷
✶✖

✷
❄ �♠✷

✵✖
✹
❄ � ✸✥✶✥✷♠✵✖

✷
✶ ❈ ✥✶✥✷✿

The proof of this lemma follows by simple calculus and can be found in Appen-

dix D.

Define

(8.30) ✗✶✳i✘✴ ✑ ♠✶✳i✘✖❄■ ✵✴ ✁ ✖❄❀ ✗✷✳i✘✴ ✑ ♠✷✳i✘✖❄■ ✵✴ ✁ ✖❄✿

By the definition of analytic functions ♠✶ and ♠✷ (satisfying equation (8.15) and

(8.14) with q ❉ ✵ as defined in Proposition 8.4), the definition of ✗✶ and ✗✷ in

equation (8.30) above is equivalent to its definition in Definition 1.1 (as per equa-

tion (5.7)). Moreover, for ✤ defined in equation (5.8) with ✕ ❉ ✕❂✖✷
❄ and ♠✵

defined in equation (8.27), we have

(8.31)

✤ ❉ ✗✶✳i✳✥✶✥✷✕❂✖
✷
❄✴

✶❂✷✴✗✷✳i✳✥✶✥✷✕❂✖
✷
❄✴

✶❂✷✴

❉ ♠✶✳i✳✥✶✥✷✕✴
✶❂✷■ ✵✴♠✷✳i✳✥✶✥✷✕✴

✶❂✷■ ✵✴ ✁ ✖✷
❄

❉ ♠✵✳i✳✥✶✥✷✕✴
✶❂✷✴ ✁ ✖✷

❄✿

Plugging in equation (8.28) and (8.29) into equation (8.25) and (8.26) and using

equation (8.31), we can see that the expressions for B and V defined in equations

(8.25) and (8.26) coincide with equations (5.10) and (5.11) where E✵, E✶, and E✷

are provided in equation (5.9). Combining this with equation (8.23) and (8.24)

proves the theorem.

9 Proof of Proposition 8.1

Throughout the proof of Proposition 8.1, we write that ✥✶ ❉ ✥✶❀❞ ❉ ◆❂❞

and ✥✷ ❉ ✥✷❀❞ ❉ ♥❂❞ for notation simplicity. Throughout this section, we will

denote by ❇✳❞❀ ❦✴ the dimension of the space of spherical harmonics of degree ❦
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on S
❞�✶✳

♣
❞✴, and by ✳❨

✳❞✴

❦❧
✴❧✔❇✳❞❀❦✴ a basis for this space. We refer to Appendix

A for further background.

As a useful preliminary remark, we note that the Gaussian process ❢ NL

❞
defined

in Assumption 3 can be explicitly represented as a sum of spherical harmonics with

Gaussian coefficients. The following lemma is standard (see, e.g., [46, prop. 6.11]).

For the reader’s convenience, we present a simple proof in Appendix C.

LEMMA 9.1. For any kernel function ❺❞ satisfying Assumption 3, we can al-

ways find a sequence ✳❋ ✷
❞❀❦

✷ R❈✴❦✕✷ satisfying: ✳✶✴
P

❦✕✷ ❋ ✷
❞❀❦

❉ ❺❞ ✳✶✴,

lim❞✦✶
P

❦✕✷ ❋ ✷
❞❀❦

❉ ❋ ✷
❄ ; ✳✷✴ there exists a sequence of independent random

vectors ☞❞❀❦ ✘ N✳✵❀ ➀❋ ✷
❞❀❦
❂❇✳❞❀ ❦✴➁I❇✳❞❀❦✴✴ such that

❢ NL

❞ ✳①✴ ❉
❳
❦✕✷

❳
❧✷➀❇✳❞❀❦✴➁

✳☞❞❀❦✴❧❨
✳❞✴

❦❧
✳①✴✿(9.1)

By exploiting the symmetry in the problem, the next lemma shows that, to show

equation (8.5), instead of considering a fixed sequence of ❢☞❞❀✶❣❞✕✷, we can con-

sider taking ❢☞❞❀✶ ✘ Unif✳S❞�✶✳❋❞❀✶✴✴❣❞✕✷. We defer the proof of this lemma to

Section C.

LEMMA 9.2. Let us write the random variable in the left-hand side of equation

(8.5) as a function of ☞❞❀✶ and de-emphasize its dependence on other variables,

i.e.,

E✳☞❞❀✶✴ ✑
☞☞❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ �

✂
❋ ✷
✶ ✳✶ � ✷❽✶ ❈❽✷✴❈ ✳❋ ✷

❄ ❈ ✜✷✴❽✸ ❈ ❋ ✷
❄

✄☞☞✿
Let ❳ , ❶, ✧, and ❢ NL

❞
be distributed as in the statement of Proposition 8.1. Then,

for any fixed ☞❞❀✶ ✷ S
❞�✶✳❋❞❀✶✴, we have

E❳ ❀❶❀✧❀❢ NL
❞
➀E✳☞❞❀✶✴➁ ❉ E③☞❞❀✶✘Unif✳S❞�✶✳❋❞❀✶✴✴

E❳ ❀❶❀✧❀❢ NL
❞
➀E✳③☞❞❀✶✴➁✿

By Lemma 9.1, we can represent the Gaussian process ❢ NL

❞
as per equation (9.1).

By Lemma 9.2, we can replace the expectation over ❢ NL

❞
by expectation over

☞❞❀✶ ✘ Unif✳S❞�✶✳❋❞❀✶✴✴ and the Gaussian vectors✟
☞❞❀❦ ✘ N

�
✵❀
✂
❋ ✷
❞❀❦❂❇✳❞❀ ❦✴

✄
I❇✳❞❀❦✴

✁✠
❦✕✷✿

In the remainder of this section, we write E☞ as a shorthand for this expectation.

To simplify our expressions, we sometimes write ☞❦ ✑ ☞❞❀❦ . It is furthermore

useful to introduce two resolvent matrices ❸ ✷ R
◆✂◆ and ❹ ✷ R

♥✂♥ (❸ is the

same as defined in equation (8.1) except that we are keeping ✥✶❀❞ and ✥✷❀❞ fixed

here)

(9.2) ❸ ✑ ✳❩T❩ ❈ ✥✶✥✷✕I◆ ✴
�✶❀ ❹ ✑ ✳❩❩T ❈ ✥✶✥✷✕I♥✴

�✶✿

Next, we state three lemmas that are used in the proof of Proposition 8.1.
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LEMMA 9.3 (Decomposition). Let ✕❞❀❦✳✛✴ be the Gegenbauer coefficients of the

function ✛ , i.e., we have

(9.3) ✛✳①✴ ❉
✶❳
❦❉✵

✕❞❀❦✳✛✴❇✳❞❀ ❦✴◗❦✳
♣
❞ ✁ ①✴✿

Under the assumptions of Proposition 8.1, for any ✕ ❃ ✵, we have

E☞❀✧➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁ ❉
✶❳
❦❉✵

❋ ✷
❞❀❦✳✶ � ✷❙✶❦ ❈ ❙✷❦✴❈ ✜✷❙✸❀(9.4)

where

(9.5)

❙✶❦ ❉
✶♣
❞
✕❞❀❦✳✛✴Tr➀◗❦✳❶❳

T✴❩❸➁❀

❙✷❦ ❉
✶

❞
Tr➀❸❯❸❩T◗❦✳❳❳

T✴❩ ➁❀

❙✸ ❉
✶

❞
Tr➀❸❯❸❩T❩ ➁❀

where ❯ ❉ ✳❯✐❥ ✴✐❀❥✷➀◆ ➁ ✷ R
◆✂◆ is a matrix whose elements are as defined in

equation (8.3), ❩ is given by equation (8.4), and ❸ is given by equation (9.2).

LEMMA 9.4. Under the same definitions and assumptions of Proposition 8.1 and

Lemma 9.3, for any ✕ ❃ ✵, we have (E is the expectation taken with respect to the

randomness in ❳ and❶)

E❥✶ � ✷❙✶✵ ❈ ❙✷✵❥ ❉ ♦❞ ✳✶✴❀(9.6)

E
✂

sup
❦✕✷

❥❙✶❦❥
✄ ❉ ♦❞ ✳✶✴❀(9.7)

E
✂

sup
❦✕✷

❥❙✷❦ � ❙✸❥
✄ ❉ ♦❞ ✳✶✴❀(9.8)

E❥❙✶✶ �❽✶❥ ❉ ♦❞ ✳✶✴❀(9.9)

E❥❙✷✶ �❽✷❥ ❉ ♦❞ ✳✶✴❀(9.10)

E❥❙✸ �❽✸❥ ❉ ♦❞ ✳✶✴❀(9.11)

where ❙✶❦❀ ❙✷❦❀ ❙✸ are given by equation (9.5), and ❽✶❀ ❽✷❀ ❽✸ are given by equa-

tion (8.6).

LEMMA 9.5. Under the assumptions of Proposition 8.1, we have

(9.12) E❳ ❀❶

✂
Var☞❀✧

�
❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴

☞☞❳ ❀❶
✁✶❂✷✄ ❉ ♦❞ ✳✶✴✿
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We defer the proofs of these three lemmas to the following subsections and show

here that they imply Proposition 8.1. We have

E❳ ❀❶

☞☞☞☞☞E✧❀☞➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁

�
✧
❋ ✷
❞❀✶✳✶ � ✷❽✶ ❈❽✷✴❈

✥
✜✷ ❈

✶❳
❦❉✷

❋ ✷
❞❀❦

✦
❽✸ ❈

✶❳
❦❉✷

❋ ✷
❞❀❦

★☞☞☞☞☞
✳a✴✔ ❋ ✷

❞❀✵ ✁ E❥✶ � ✷❙✶✵ ❈ ❙✷✵❥ ❈ ❋ ✷
❞❀✶ ✁

✂
E❥❙✶✶ �❽✶❥ ❈ E❥❙✷✶ �❽✷❥

✄
❈
✒ ✶❳
❦❉✷

❋ ✷
❞❀❦

✓
✁ sup
❦✕✷

✂
✷E❥❙✶❦❥ ❈ E❥❙✷❦ �❽✸❥

✄❈ ✜✷E❥❙✸ �❽✸❥

✳b✴❉ ♦❞ ✳✶✴✿

where (a) follows by Lemma 9.3 and the triangular inequality, and (b) from Lemma

9.4.

Combining this with Lemma 9.5 (and E➀❽✶➁❀E➀❽✷➁❀E➀❽✸➁ ❉ ❖❞ ✳✶✴) and Lem-

ma 9.2 concludes the proof of Proposition 8.1. In the remainder of this section, we

will prove Lemma 9.3, 9.4, and 9.5.

9.1 Proof of Lemma 9.3

Recall the expression (8.2) for the risk. Taking expectation with respect to ☞

and ✧, we get

E☞❀✧➀❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁ ❉
❳
❦✕✵

❋ ✷
❞❀❦ � ✷❚✶ ❈ ❚✷ ❈ ❚✸❀

where

❚✶ ❉
✶♣
❞
E☞➀❢

T❩❸❱ ➁❀ ❚✷ ❉
✶

❞
E☞➀❢

T❩❸❯❸❩T❢ ➁❀

❚✸ ❉
✶

❞
E✧➀✧

T❩❸❯❸❩T✧➁✿

The proof of the lemma follows by evaluating each of these three terms. It is

useful to introduce the matrices ❨ ❦❀① and ❨ ❦❀✒ , which denotes the evaluations of

spherical harmonics of degree ❦ at the points ❢①✐❣✐✔♥ and ❢✒❛❣❛✔◆ (cf. Appendix

A):

(9.13)
❨ ❦❀① ❉ ✳❨❦❧ ✳①✐ ✴✴✐✷➀♥➁❀❧✷➀❇✳❞❀❦✴➁ ✷ R

♥✂❇✳❞❀❦✴❀

❨ ❦❀✒ ❉ ✳❨❦❧ ✳✒❛✴✴❛✷➀◆ ➁❀❧✷➀❇✳❞❀❦✴➁ ✷ R
◆✂❇✳❞❀❦✴✿

With these notations we have

(9.14) ❢ ❉
✶❳
❦❉✵

❨ ❦❀①☞❦ ✷ R
♥❀ ❱ ❉

✶❳
❦❉✵

✕❞❀❦✳✛✴❨ ❦❀✒☞❦ ✷ R
◆ ✿
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Since ☞❦ ✘ N✳✵❀ ❋ ✷
❞❀❦

I❇✳❞❀❦✴❂❇✳❞❀ ❦✴✴ for ❦ ✕ ✷ and ☞✶ ✘ Unif✳S❞�✶✳❋❞❀✶✴✴

independently, we have

E☞➀❱ ❢
T➁ ❉

✶❳
❦❉✵

❋ ✷
❞❀❦✕❞❀❦✳✛✴◗❦✳❶❳

T✴❀ E☞➀❢ ❢
T➁✶ ❉

✶❳
❦❉✵

❋ ✷
❞❀❦◗❦✳❳❳

T✴✿

Using these expressions, we can evaluate terms ❚✶ and ❚✷:

❚✶ ❉
✶♣
❞

✶❳
❦❉✵

❋ ✷
❞❀❦✕❞❀❦✳✛✴ ✁ Tr

✂
◗❦✳❶❳

T✴❩❸
✄
❀

❚✷ ❉
✶

❞

✶❳
❦❉✵

❋ ✷
❞❀❦ ✁ Tr

✂
❸❯❸❩T◗❦✳❳❳

T✴❩
✄
✿

We proceed analogously for term ❚✸. By the assumption ✧✐ ✘iid P✧ with E✧✳✧✴ ❉ ✵

and E✧✳✧
✷
✶✴ ❉ ✜✷, we have

❚✸ ❉
✶

❞
E✧➀Tr✳✧✧T❸❯❸❩T❩ ✴➁ ❉ ✜✷

❞
✁ Tr➀❸❯❸❩T❩ ➁✿

Combining the above formulas for ❚✶, ❚✷, and ❚✸ proves Lemma 9.3.

9.2 Proof of Lemma 9.4

The next two lemmas will be used in the proofs of Lemma 9.4 and Lemma 9.5,

and hold under the same assumptions. The first of these lemmas will be used to

establish equation (9.6) (but notice that its statement does not coincide with that

equation), and the second will be used to control several terms in those proofs. The

proofs of these lemmas are given in Section C.2.

LEMMA 9.6. Define

❆✶ ✑
✕❞❀✵✳✛✴♣

❞
Tr
✂
✶◆ ✶

T

♥❩❸
✄
❀(9.15)

❆✷ ✑
✕❞❀✵✳✛✴

✷

❞
Tr
✂
❸✶◆ ✶

T

◆❸❩
T✶♥✶

T

♥❩
✄
✿(9.16)

Then for any ✕ ❃ ✵, we have

E❥✶ � ✷❆✶ ❈ ❆✷❥ ❉ ♦❞ ✳✶✴✿

LEMMA 9.7. Let ✳❙▼☛✴☛✷A ✷ R
♥✂♥ be a collection of symmetric random matrices

with E➀sup☛✷A ❦ ❙▼☛❦✷op➁
✶❂✷ ❉ ❖❞ ✳✶✴. Define

❇☛ ✑
✕❞❀✵✳✛✴

✷

❞
Tr
✂
❸✶◆ ✶

T

◆❸❩
T ❙▼☛❩

✄
✿(9.17)

Then for any ✕ ❃ ✵, we have

E

❤
sup
☛✷A

❥❇☛❥
✐
❉ ♦❞ ✳✶✴✿
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We will now use these lemmas to prove Lemma 9.4. We begin by recalling a few

facts that are used several times in the proof. Since ✕ ❃ ✵, there exists a constant

❈ ❁✶ depending on ✳✕❀ ✥✶❀ ✥✷✴ such that deterministically

(9.18)
❦❩❸❦op ❉

✌✌❩�❩T❩ ❈ ✥✶✥✷✕I◆
✁�✶❦op ✔ ❈❀

❦❸❦op ❉
✌✌�❩T❩ ❈ ✥✶✥✷✕I◆

✁�✶✌✌
op
✔ ❈✿

By operator norm bounds on Wishart matrices [5], we have (the definition of these

matrices are given in equation (8.4))

(9.19) E
✂✌✌❍ ✌✌✷

op

✄
❀E
✂✌✌◗✌✌✷

op

✄
❀E
✂✌✌❩✶

✌✌✷
op

✄ ❉ ❖❞ ✳✶✴✿

Finally, we need some simple operator norm bounds on the matrices

◗❦✳❳❳
T✴ � I♥❀ ◗❦✳❶❶

T✴ � I◆ ❀ ◗❦✳❶❳
T✴✿

Notice that◗❦✳❳❳
T✴✐ ✐ ❉ ✶ (by the normalization condition of Gegenbauer poly-

nomials) and the out-of-diagonal entries of ◗❦✳❳❳
T✴ have zero mean and typical

size of order ✶❂❞❦❂✷ (see Appendix A). This suggests the following estimates,

which are formalized in Lemma C.6,

(9.20)

E

❤
sup
❦✕✷

❦◗❦✳❳❳
T✴ � I♥❦✷op

✐
❉ ♦❞ ✳✶✴❀

E

❤
sup
❦✕✷

❦◗❦✳❶❶
T✴ � I◆ ❦✷op

✐
❉ ♦❞ ✳✶✴❀

E

❤
sup
❦✕✷

❦◗❦✳❶❳
T✴❦✷op

✐
❉ ♦❞ ✳✶✴✿

As a consequence of these estimates, we obtain a useful approximation result for

the matrix ❯ ✷ R
◆ as defined in equation (8.3). In words, ❯ is well approximated

by a term that is linear in the weights covariance matrix ❶❶T plus a term that is

proportional to the identity. To see this, by the decomposition of ✛ into Gegenbauer

polynomials as in equation (9.3) and the properties of Gegenbauer polynomials as

in Appendix A, we have

❯ ❉
✶❳

❦❀❧❉✵
✕❞❀❦✳✛✴✕❞❀❧✳✛✴❇✳❞❀ ❦✴❇✳❞❀ ❧✴E❳ ➀◗❦✳❶❳

T✴◗❧✳❳❶
T✴➁

❉
✶❳
❦❉✵

✕❞❀❦✳✛✴
✷❇✳❞❀ ❦✴◗❦✳❶❶

T✴✿

Since ✕❞❀❦✳✛✴
✷❇✳❞❀ ❦✴❦❾✦ ✖❦✳✛✴

✷ as ❞ ✦✶ (see equation (A.14)), we have

❯ ❉ ✕✷❞❀✵✶◆ ✶
T

◆ ❈ ✖✷
✶◗❈ ✖✷

❄✳I◆ ❈⑩✴❀ E➀❦⑩❦✷op➁ ❉ ♦❞ ✳✶✴✿(9.21)

(This estimate is stated formally in the appendices as Lemma C.7.) It is also useful

to introduce the matrix

▼ ✑ ✖✷
✶◗❈ ✖✷

❄✳I◆ ❈⑩✴❀
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for which the above implies ❯ ❉ ✕✷
❞❀✵
✶◆ ✶

T

◆ ❈▼ and E➀❦▼❦✷op➁ ❉ ❖❞ ✳✶✴.

Having presented our preliminary estimates, we can now prove Lemma 9.4.

We begin by considering equation (9.6), where ❙✶✵ and ❙✷✵ are defined in equa-

tion (9.5). By the approximate linearization of ❯ in equation (9.21), we have

❙✶✵ ❉
✕❞❀✵✳✛✴♣

❞
Tr
�
✶◆ ✶

T

♥❩❸
✁
❀

❙✷✵ ❉
✕❞❀✵✳✛✴

✷

❞
Tr
�
❸✶◆ ✶

T

◆❸❩
T✶♥✶

T

♥❩
✁❈ ✶

❞
Tr
�
❩❸▼❸❩T✶♥✶

T

♥

✁
✿

Now recall the definitions of ❆✶ and ❆✷ in equations (9.15) and (9.16), and the

definitions of ❸ and❹ as in equation (9.2). We define

❇ ✑ ✶

❞
Tr
�
❩❸▼❸❩T✶♥✶

T

♥

✁ ❉ ✶

❞
Tr
�
❩▼❩T❹✶♥✶

T

♥❹
✁
✿

Then we have ❙✶✵ ❉ ❆✶ and ❙✷✵ ❉ ❆✷ ❈ ❇ , and by Lemma 9.6 we have

(9.22)

E➀❥✶ � ✷❙✶✵ ❈ ❙✷✵❥➁ ❉ E➀❥✶ � ✷❆✶ ❈ ❆✷ ❈ ❇❥➁
✔ E➀❥✶ � ✷❆✶ ❈ ❆✷❥➁❈ E➀❥❇❥➁
✔ E➀❥❇❥➁❈ ♦❞ ✳✶✴✿

By Lemma 9.7 and the fact that E➀❦▼❦✷op➁ ❉ ❖❞ ✳✶✴ as in equation (9.21),3 we

have

E➀❥❇❥➁ ❉ ♦❞ ✳✶✴✿

Plugging these bounds into equation (9.22), we get E➀❥✶ � ✷❙✶✵ ❈ ❙✷✵❥➁ ❉ ♦❞ ✳✶✴

as claimed.

We next consider equation (9.7), which requires controlling ❙✶❦ , defined in

equation (9.5)). By equation (9.18), we have

(9.23)

sup
❦✕✷

❥❙✶❦❥ ✔ sup
❦✕✷

✂❥♣❞✕❞❀❦✳✛✴❥ ✁ ❦◗❦✳❶❳
T✴❩❸❦op

✄
✔ sup

❦✕✷

✂
❈ ✁ ❥

♣
❞✕❞❀❦✳✛✴❥ ✁ ❦◗❦✳❶❳

T✴❦op

✄
✿

Further note that ❦✛❦✷
▲✷✳✜❞ ✴

❉ P
❦✕✵ ✕❞❀❦✳✛✴✷❇✳❞❀ ❦✴ ❉ ❖❞ ✳✶✴, ❇✳❞❀ ❦✴ ❉

❶✳❞❦✴, and for fixed ❞ , ❇✳❞❀ ❦✴ is nondecreasing in ❦ [34, lemma 1]. Therefore

sup
❦✕✷

❥✕❞❀❦✳✛✴❥ ✔ sup
❦✕✷

✂❦✛❦▲✷✳✜❞ ✴
❂
♣
❇✳❞❀ ❦✴

✄ ❉ ❖❞ ✳✶❂❞✴✿

Combining this with equations (9.20) and (9.23), we get E➀sup❦✕✷ ❥❙✶❦❥➁ ❉ ♦❞ ✳✶✴.

We next consider equation (9.8), whereby ❙✷❦ and ❙✸ are defined as per equa-

tion (9.5). Recall that, by equation (9.21), we have ❯ ❉ ✕✷
❞❀✵
✶◆ ✶

T

◆ ❈▼ , where

3 When applying Lemma 9.7 we change the roles of ◆ and ♥, the roles of❸ and❹, and the roles

of❶ and ❳ ; this can be done because the roles of❶ and ❳ are symmetric.
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E➀❦▼❦✷op➁ ❉ ❖❞ ✳✶✴. We have therefore

(9.24) sup
❦✕✷

❥❙✷❦ � ❙✸❥ ✔ ■✶ ❈ ■✷❀

where

I✶ ❉ sup
❦✕✷

☞☞☞☞✕✷❞❀✵❞
Tr

✂
❸✶◆ ✶

T

◆❸❩
T
�
◗❦✳❳❳

T✴ � I♥
✁
❩

✄☞☞☞☞❀
I✷ ❉ sup

❦✕✷

☞☞☞☞ ✶❞ Tr
✂
❸▼❸❩T

�
◗❦✳❳❳

T✴ � I♥
✁
❩

✄☞☞☞☞✿
By Lemma 9.7 (with ❙▼❦ ❉ ◗❦✳❳❳

T✴ � I♥) and equation (9.20), we get

E➀■✶➁ ❉ ♦❞ ✳✶✴✿

Moreover, by equations (9.18) and (9.19), we have

E➀I✷➁ ✔ E

❤
sup
❦✕✷

✕✷❞❀✵❦❩❸❦op❦▼❦op❦❸❩T❦op❦◗❦✳❳❳
T✴ � I♥❦op

✐
✔ ❖❞ ✳✶✴ ✁ E➀❦▼❦✷op➁

✶❂✷ ✁ E
❤

sup
❦✕✷

❦◗❦✳❳❳
T✴ � I♥❦✷op

✐✶❂✷
❉ ♦❞ ✳✶✴✿

Plugging these bounds into equation (9.24), we get the desired bound

E➀sup
❦✕✷

❥❙✷❦ � ❙✸❥➁ ❉ ♦❞ ✳✶✴✿

We next consider equation (9.9), where we recall the definition of ❙✶✶ in equa-

tion (9.5) and the definition of ❽✶ in equation (8.6). By observing that

lim
❞✦✶

♣
❞✕✶❀❞ ✳✛✴ ❉ ✖✶

(see equation (A.14)) and that ✖✶◗✶✳❳❶
T✴ ❉ ✖✶❳❶

T❂❞ ❉ ❩✶, we immedi-

ately get

E❥❙✶✶ �❽✶❥ ❉ ♦❞ ✳✶✴ ✁ E➀❥❽✶❥➁ ❉ ♦❞ ✳✶✴✿

In order to prove equation (9.10), recall the definition of ❙✷✶ in equation (9.5)

and the definition of ❽✷ in equation (8.6). By the decomposition of ❯ in equation

(9.21) and recalling that ◗✶✳❳❳
T✴ ❉ ❍ , we have

(9.25) ❥❙✷✶ �❽✷❥ ✔ I✸ ❈ I✹❀

where

I✸ ❉
☞☞☞☞✕❞❀✵✳✛✴✷❞

Tr
✂
❸✶◆ ✶

T

◆❸❩
T❍❩

✄☞☞☞☞❀
I✹ ❉

☞☞☞☞✖✷
❄

❞
Tr

✂
❸⑩❸❩T❍❩

✄☞☞☞☞✿
By Lemma 9.7 and equation (9.19), we get

E➀■✸➁ ❉ ♦❞ ✳✶✴✿
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Moreover, by equation (9.18) and (9.19), we have

E➀I✹➁ ✔ E
✂
✖✷
❄❦❩❸❦op❦⑩❦op❦❸❩T❦op❦❍ ❦op

✄
✔ ❖❞ ✳✶✴ ✁ E➀❦⑩❦✷op➁ ✁ E➀❦❍ ❦✷op➁ ❉ ♦❞ ✳✶✴✿

Plugging these bounds into equation (9.25), we get the desired bound

E❥❙✷✶ �❽✷❥ ❉ ♦❞ ✳✶✴✿

Finally, equation (9.11) is proved analogously to equation (9.10): this completes

the proof of the lemma.

9.3 Proof of Lemma 9.5

Instead of taking ☞❞❀✶ ✘ Unif✳S❞�✶✳❋❞❀✶✴✴, in the proof we will assume ☞❞❀✶ ✘
N✳✵❀ ➀❋ ✷

❞❀✶
❂❞➁I❞ ✴. Note for ☞❞❀✶ ✘ N✳✵❀ ➀❋ ✷

❞❀✶
❂❞➁I❞ ✴, we have

❋❞❀✶☞❞❀✶❂❦☞❞❀✶❦✷ ✘ Unif✳S❞�✶✳❋❞❀✶✴✴✿

Moreover, in high dimensions, ❦☞❞❀✶❦✷ concentrates tightly around ❋❞❀✶. Using

these properties, it is not hard to translate the proof from Gaussian ☞❞❀✶ to spherical

☞❞❀✶.

To prove Lemma 9.5, we begin by rewriting the prediction risk—cf. equation

(8.2)—-as (note that ② ❉ ❢ ❈ ✧)

❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉
❳
❦✕✵

❋ ✷
❞❀❦ � ✷⑨✶ ❈ ⑨✷ ❈ ⑨✸ � ✷⑨✹ ❈ ✷⑨✺❀

where

⑨✶ ❉ ❢ T❩❸❱ ❂
♣
❞❀ ⑨✷ ❉ ❢ T❩❸❯❸❩T❢ ❂❞❀ ⑨✸ ❉ ✧T❩❸❯❸❩T✧❂❞❀

⑨✹ ❉ ✧T❩❸❱ ❂
♣
❞❀ ⑨✺ ❉ ✧T❩❸❯❸❩T❢ ❂❞❀

and ❱ ✷ R
◆ and ❯ ✷ R

◆✂◆ given in equation (8.3). We will regard ⑨✶❀ ✿ ✿ ✿ ❀ ⑨✺
as quadratic forms in the vectors ☞ and ✧, and bound their variances individually.

Namely, we claim that

E❳ ❀❶➀Var☞❀✧✳⑨❦✴➁ ❉ ♦❞ ✳✶✴ ✽❦ ✔ ✺✿

This obviously implies the claims of the lemma. In the rest of this proof, we show

the variance bound for ⑨✶, as the other bounds are very similar.

Recall the definition of ❨ ❦❀① and ❨ ❦❀✒ in equation (9.13), the definition of

Gegenbauer coefficients ✕❞❀❧ ✑ ✕❞❀❧✳✛✴ in equation (9.3), and the expansion of

❢ and ❱ vectors in equation (9.14). We rewrite ⑨✶ as

⑨✶ ❉
✶♣
❞

✒ ✶❳
❦❉✵

❨ ❦❀①☞❞❀❦

✓T

❩❸

✒ ✶❳
❧❉✵

✕❞❀❧❨ ❧❀✒☞❞❀❧

✓
✿
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Calculating the variance of ⑨✶ with respect to ☞❞❀❦ ✘ N✳✵❀ ✳❋ ✷
❞❀❦

❂❇✳❞❀ ❦✴✴I✴

for ❦ ✕ ✶ using Lemma C.8 (which follows from direct calculation), we get

Var☞✳⑨✶✴ ❉
❳
❧↕❦

✕✷
❞❀❧

❞
Var☞

�
☞T

❞❀❦❨
T

❦❀①❩❸❨ ❧❀✒☞❞❀❧
✁

❈
❳
❦✕✶

✕✷
❞❀❦

❞
Var☞

�
☞T

❞❀❦❨
T

❦❀①❩❸❨ ❦❀✒☞❞❀❦
✁

❉
❳
❧↕❦

❋ ✷
❞❀❧❋

✷
❞❀❦

✕✷
❞❀❧

❞
Tr
�
❸❩T◗❦✳❳❳

T✴❩❸◗❧✳❶❶
T✴
✁

❈
❳
❦✕✶

❋ ✹
❞❀❦

✕✷
❞❀❦

❞

✂
Tr
�
❸❩T◗❦✳❳❳

T✴❩❸◗❦✳❶❶
T✴
✁

❈ Tr
�
❩❸◗❦✳❶❳

T✴❩❸◗❦✳❶❳
T✴
✁✄
✿

Notice that we have ❦❩❸❦op ✔ ❈ almost surely for some constant ❈ , and recall

the bounds (9.20), which imply

E❢sup
❦✕✶

❦◗❦✳❳❳
T✴❦✷❣ ❉ ❖❞ ✳✶✴❀ E❢sup

❦✕✶
❦◗❦✳❶❳

T✴❦✷❣ ❉ ♦❞ ✳✶✴❀

E❢sup
❦✕✶

❦◗❦✳❶❶
T✴❦✷❣ ❉ ❖❞ ✳✶✴

(the case ❦ ❉ ✶ corresponds to standard Wishart matrices).

By taking the expectation in the above expression, using ❞�✶Tr✳❆✴ ✔ ❈❦❆❦op

for ❆ ✷ R
♥✂♥ or ❆ ✷ R

◆✂◆ , and using Cauchy-Schwarz, we obtain

E❳ ❀❶

✂
Var☞✳⑨✶✴

✄
✔
❳
❦✕✶

❋ ✷
❞❀✵❋

✷
❞❀❦

✕✷
❞❀✵

❞
E❳ ❀❶Tr

�
❸❩T◗❦✳❳❳

T✴❩❸✶◆ ✶
T

◆

✁
❈
❳
❧❃✶

❋ ✷
❞❀❧❋

✷
❞❀✵

✕✷
❞❀❧

❞
E❳ ❀❶Tr

�
❸❩T✶♥✶

T

♥❩❸◗❧ ✳❶❶
T✴
✁

❈ ❈
❳

❧↕❦✕✶
❋ ✷
❞❀❧❋

✷
❞❀❦✕

✷
❞❀❧ ❈ ❈

❳
❦✕✶

❋ ✹
❞❀❦✕

✷
❞❀❦ ✿

Further note that

❦✛❦✷
▲✷✳✜❞ ✴

❉
❳
❦✕✵

✕✷❞❀❦❇✳❞❀ ❦✴ ❉ ❖❞ ✳✶✴❀ ❇✳❞❀ ❦✴ ❉ ❶✳❞❦✴❀

and for fixed ❞ , ❇✳❞❀ ❦✴ is nondecreasing in ❦ [34, lemma 1]. Therefore

sup
❦✕✶

❥✕❞❀❦✳✛✴❥ ✔ sup
❦✕✶

✂❦✛❦▲✷✳✜❞ ✴
❂
♣
❇✳❞❀ ❦✴

✄ ❉ ❖❞ ✳✶❂
♣
❞✴✿
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Substituting above we obtain, and using the fact that
P

❦✕✶ ❋ ✷
❞❀❦

❉ ❖❞ ✳✶✴ by

construction, we have

(9.26)

E❳ ❀❶

✂
Var☞✳⑨✶✴

✄
✔
❳
❦✕✶

❋ ✷
❞❀✵❋

✷
❞❀❦

✕✷
❞❀✵

❞
E❳ ❀❶Tr

�
❸❩T◗❦✳❳❳

T✴❩❸✶◆ ✶
T

◆

✁
❈
❳
❧❃✶

❋ ✷
❞❀❧❋

✷
❞❀✵

✕✷
❞❀❧

❞
E❳ ❀❶Tr

�
❸❩T✶♥✶

T

♥❩❸◗❧✳❶❶
T✴
✁❈ ♦❞ ✳✶✴✿

To bound the remaining two terms in this expression, note that

sup
❦✕✶

E❳ ❀❶

☞☞☞☞ ✶❞ Tr
�
❸❩T✶♥✶

T

♥❩❸◗❦✳❶❶
T✴
✁☞☞☞☞

❉ sup
❦✕✶

E❳ ❀❶

☞☞☞☞ ✶❞ Tr
�
❹✶♥✶

T

♥❹❩◗❦✳❶❶
T✴❩T

✁☞☞☞☞ ❉ ♦❞ ✳✶✴❀

where the bound is implied by Lemma 9.7 (when applying Lemma 9.7, we change

the roles of ◆ and ♥, the roles of ❸ and ❹, and the roles of ❶ and ❳ ; this can

be done because the role of ❶ and ❳ is symmetric), and by equation (9.19) and

✕❞❀✵✳✛✴ ❉ ❶❞ ✳✶✴ (by Assumption 1 and note that ✖✵✳✛✴ ❉ lim❞✦✶ ✕❞❀✵✳✛✴ by

equation (A.14)). This proves that❳
❧❃✶

❋ ✷
❞❀❧❋

✷
❞❀✵

✕✷
❞❀❧

❞
E❳ ❀❶Tr

�
❸❩T✶♥✶

T

♥❩❸◗❧✳❶❶
T✴
✁ ❉ ♦❞ ✳✶✴✿

The bound on the first term in equation (9.26) is obtained analogously, and we omit

it for brevity.

10 Proof of Proposition 8.4

This section is organized as follows. We collect the elements to prove Proposi-

tion 8.4 in Sections 10.1, 10.2, 10.3, and 10.4, and prove the proposition in Section

10.5.

More specifically, in Section 10.1 we state the key Lemma 10.1: the partial

Stieltjes transforms of ❆ approximately satisfy the fixed point equation, when ①✐
and ✒❛ are Gaussian vectors and the activation function ✬ is a polynomial with

E●✘N✳✵❀✶✴➀✬✳●✴➁ ❉ ✵. In Section 10.2 and Section 10.3, we first establish some

useful properties of the fixed point equations and then prove Lemma 10.1. Finally,

in Section 10.4, we show that the Stieltjes transform does not change significantly

when changing the distribution of ①✐ ❀✒❛ from uniform on the sphere to Gaussian.

10.1 The key lemma: partial Stieltjes transforms are approximate fixed point

In this subsection, we state Lemma 10.1, which is the key lemma that is used

to prove Proposition 8.4. Lemma 10.1 studies ①♠✶❀❞ and ①♠✷❀❞ , the partial Stieltjes
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transforms of the Gaussian counterparts of the matrix ❆ as defined in equation

(8.7). This lemma shows that these partial Stieltjes transforms ①♠✶❀❞ and ①♠✷❀❞

approximately satisfy the fixed point equation that involves functions F✶ and F✷ as

defined in equation (8.14). We will prove Lemma 10.1 in Section 10.3. Later in

Section 10.4, we will show that the Gaussian counterpart of the Stieltjes transform

shares the same asymptotics with its spherical version.

First let us define the Gaussian counterparts of the partial Stieltjes transforms.

Let ✳①✒❛✴❛✷➀◆ ➁ ✘iid N✳✵❀ I❞ ✴ and ✳①①✐ ✴✐✷➀♥➁ ✘iid N✳✵❀ I❞ ✴. We denote by ❙❶ ✷ R
◆✂❞

the matrix whose ❛th row is given by ①✒❛, and by ①❳ ✷ R
♥✂❞ the matrix whose ✐ th

row is given by ①①✐ . We consider a polynomial activation functions ✬ ❲ R ✦ R.

Denote ✖❦ ❉ E➀✬✳●✴He❦✳●✴➁ and ✖✷
❄ ❉

P
❦✕✷ ✖✷

❦
❂❦❾. We define the following

matrices:

①◗ ❉ ✶

❞
①❶ ①❶T

❀ ❙❍ ❉ ✶

❞
①❳ ①❳T

❀(10.1)

①❏ ❉ ✶♣
❞
✬

✒
✶♣
❞
①❳ ①❶T

✓
❀ ①❏ ✶ ❉

✖✶

❞
①❳ ①❶T

❀(10.2)

as well as the block matrix ①❆ ✷ R
▼✂▼ , ▼ ❉ ◆ ❈ ♥, defined by

①❆ ❉
✧
s✶I◆ ❈ s✷ ①◗ ①❏ T ❈ ♣①❏ T

✶

①❏ ❈ ♣①❏ ✶ t✶I♥ ❈ t✷❙❍

★
✿(10.3)

The matrix ①❆ is in parallel with its spherical version matrix ❆ defined as in equa-

tion (8.7).

In what follows, we will write q ❉ ✳s✶❀ s✷❀ t✶❀ t✷❀ ♣✴. We would like to calculate

the asymptotic behavior of the following partial Stieltjes transforms:

(10.4)
①♠✶❀❞ ✳✘■ q✴ ❉

◆

❞
E❢✳ ①❆ � ✘I▼ ✴�✶✶✶ ❣ ❉ E➀ ❙▼✶❀❞ ✳✘■ q✴➁❀

①♠✷❀❞ ✳✘■ q✴ ❉
♥

❞
E❢✳ ①❆ � ✘I▼ ✴�✶◆❈✶❀◆❈✶❣ ❉ E➀ ❙▼✷❀❞ ✳✘■ q✴➁❀

where

(10.5)

❙▼✶❀❞ ✳✘■ q✴ ❉
✶

❞
Tr➀✶❀◆ ➁➀✳ ①❆ � ✘I▼ ✴�✶➁❀

❙▼✷❀❞ ✳✘■ q✴ ❉
✶

❞
Tr➀◆❈✶❀◆❈♥➁➀✳ ①❆ � ✘I▼ ✴�✶➁✿

Here, the partial trace notation Tr➀ ✁ ❀✁ ➁ is defined as follows: for a matrix ❑ ✷
C
▼✂▼ and ✶ ✔ ❛ ✔ ❜ ✔▼ , define

Tr➀❛❀❜➁✳❑ ✴ ❉
❜❳

✐❉❛
❑✐ ✐ ✿

The crucial step is showing that the expected Stieltjes transforms ①♠✶❀❞ ❀ ①♠✷❀❞ are

approximate solutions of the fixed point equations (8.15).



46 S. MEI AND A. MONTANARI

LEMMA 10.1. Assume that ✬ is a polynomial with E➀✬✳●✴➁ ❉ ✵ and ✖✶ ✑
E➀✬✳●✴●➁ ↕ ✵. Consider the linear regime Assumption 2. Then for any q ✷ Q and

for any ✘✵ ❃ ✵, there exists a ❈ ❉ ❈✳✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴ that is uniformly bounded

when ✳q❀ ✥✶❀ ✥✷✴ is in a compact set, and a function err✳❞✴with lim❞✦✶ err✳❞✴✦
✵ such that for all ✘ ✷ C❈ with Im✳✘✴ ❃ ✘✵, we have☞☞ ①♠✶❀❞ � F✶✳ ①♠✶❀❞ ❀ ①♠✷❀❞ ■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴

☞☞ ✔ ❈ ✁ err✳❞✴❀(10.6) ☞☞ ①♠✷❀❞ � F✷✳ ①♠✶❀❞ ❀ ①♠✷❀❞ ■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴
☞☞ ✔ ❈ ✁ err✳❞✴✿(10.7)

The proof of Lemma 10.1 uses a leave-one-out argument in deriving the fixed

point equation for Stieltjes transform of random matrices, e.g., [11, chap. 3.3] and

[17]. We will prove Lemma 10.1 in Section 10.3. In the next subsection, we will

collect some lemmas that are used in this proof.

10.2 Preliminaries of the proof of Lemma 10.1: Stieltjes transforms and the

fixed point equation

First we establish some useful properties of the fixed point characterization

(8.15), where F✶ and F✷ are defined via equation (8.14). For the sake of simplicity,

we will write♠ ❉ ✳♠✶❀ ♠✷✴ and introduce the function F✳ ✁ ■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴ ❲
C ✂ C✦ C ✂ C via

F✳♠■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴ ❉
✔

F✶✳♠✶❀ ♠✷■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴

F✷✳♠✶❀ ♠✷■ ✘■ q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴

✕
✿(10.8)

In the following lemma, we fix a q ✷ Q (as defined in equation (8.13)) and fix

✵ ❁ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄ ❁ ✶. Since the parameters q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄ are fixed, we

will drop them from the argument of F unless they are necessary. In these notations,

equation (8.15) reads

♠ ❉ F✳♠■ ✘✴✿(10.9)

The following lemma shows that there exists a unique fixed point of the equation

above in a certain domain provided Im ✘ is large enough.

LEMMA 10.2. Let D✳r✴ ❉ ❢➫ ❲ ❥➫❥ ❁ r❣ be the disk of radius r in the complex

plane. There exists ✘✵ ❉ ✘✵✳q❀ ✥✶❀ ✥✷❀ ✖✶❀ ✖❄✴ ❃ ✵ such that, for any ✘ ✷ C❈
with Im✳✘✴ ✕ ✘✵, F✳ ✁ ■ ✘✴ maps domain D✳✷✥✶❂✘✵✴ ✂ D✳✷✥✷❂✘✵✴ into itself and is

✶❂✷-Lipschitz continuous. As a result, equation (8.15) admits a unique solution in

D✳✷✥✶❂✘✵✴ ✂ D✳✷✥✷❂✘✵✴.

PROOF OF LEMMA 10.2. We rewrite the first equation in equation (8.14) as

F✶✳♠✶❀ ♠✷■ ✘✴ ❉
✥✶

�✘ ❈ s✶ ❈ H✶✳♠✶❀ ♠✷✴
❀(10.10)

H✶✳♠✶❀ ♠✷✴ ❉ �✖✷❄♠✷ ❈
✶

♠✶ ❈ ✶❈t✷♠✷

s✷❈✳t✷s✷�✖✷
✶
✳✶❈♣✴✷✴♠✷

✿(10.11)

It is easy to see that, for r✵ ❉ r✵✳q❀ ✖✶❀ ✖❄✴ small enough, ❥H✶✳♠✴❥ ✔ ✷❈✷❥s✷❥ for

any♠ ✷ D✳r✵✴✂D✳r✵✴. Therefore ❥F✶✳♠■ ✘✴❥ ✔ ✥✶❂✳Im✳✘✴�✷�✷❥s✷❥✴ ❁ ✷✥✶❂✘✵
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provided Im ✘ ✕ ✘✵ ❃ ✹❈✹❥s✷❥. Similarly, we have ❥F✷✳♠■ ✘✴❥ ❁ ✷✥✷❂✘✵ provided

Im ✘ ✕ ✘✵ ❃ ✹❈ ✹❥t✷❥. We enlarge ✘✵ so that ✷max❢✥✶❀ ✥✷❣❂✘✵ ✔ r✵. This shows

that F maps domain D✳✷✥✶❂✘✵✴ ✂ D✳✷✥✷❂✘✵✴ into itself.

In order to prove the Lipschitz continuity of F in this domain, notice that F✶ is

differentiable and

r♠F✶✳♠■ ✘✴ ❉
✥✶

✳�✘ ❈ s✶ ❈ H✶✳♠✴✴✷
r♠H✶✳♠✴✿(10.12)

By enlarging ✘✵, we can ensure

❦r♠H✶✳♠✴❦✷ ✔ ❈✳q❀ ✖✶❀ ✖❄✴ for all ♠ ✷ D✳✷✥✶❂✘✵✴ ✂ D✳✷✥✷❂✘✵✴❀

whence in the same domain

❦r♠F✶✳♠■ ✘✴❦✷ ✔ ❈✳q❀ ✖✶❀ ✖❄✴✥✶❂✳Im✳✘✴ � ✷ � ✷❥s✷❥✴✷✿
This result similarly holds for F✷. Therefore, by enlarging ✘✵, we get F is ✶

✷
-

Lipschitz on D✳✷✥✶❂✘✵✴ ✂ D✳✷✥✷❂✘✵✴.

As a consequence, we have that F is a contraction on domain D✳✷✥✶❂✘✵✴ ✂
D✳✷✥✷❂✘✵✴. The existence of a unique fixed point follows by the Banach fixed

point theorem. �

Next, we establish some properties of the Stieltjes transforms as in equation

(10.4). Notice that the functions ✘ ✼✦ ①♠✐❀❞ ✳✘■ q✴❂✥✐❀❞ , ✐ ✷ ❢✶❀ ✷❣, can be shown to

be Stieltjes transforms of certain probability measures on the real line R [35]. As

such, they enjoy several useful properties (see, e.g., [5]). The next three lemmas

are standard and have already been stated in [35]. For the reader’s convenience, we

reproduce them here without proof: although the present definition of the matrix
①❆ is slightly more general, the proofs are unchanged.

LEMMA 10.3 (Lemma 7 in [35]). The functions ✘ ✼✦ ①♠✶❀❞ ✳✘✴ and ✘ ✼✦ ①♠✷❀❞ ✳✘✴

have the following properties:

(a) For ✘ ✷ C❈, we have ①♠✐❀❞ ✳✘✴ ✔ ✥✐❂ Im✳✘✴ for ✐ ✷ ❢✶❀ ✷❣.
(b) ①♠✶❀❞ , ①♠✷❀❞ are analytic on C❈ and map C❈ into C❈.

(c) Let ⑧ ✒ C❈ be a set with an accumulation point. If ①♠✐❀❞ ✳✘✴ ✦ ♠✐ ✳✘✴

for all ✘ ✷ ⑧, then ♠✐ ✳✘✴ has a unique analytic continuation to C❈ and

①♠✐❀❞ ✳✘✴ ✦ ♠✐ ✳✘✴ for all ✘ ✷ C❈. Moreover, the convergence is uniform

over compact sets ⑧ ✒ C❈.

LEMMA 10.4 (Lemma 8 in [35]). Let ❲ ✷ R
▼✂▼ be a symmetric matrix, and

denote by ✇✐ its ✐ th column, with the ✐ th entry set to ✵. Let ❲ ✳✐✴ ✑ ❲ � ✇✐❡
T

✐ �
❡✐✇

T

✐ , where ❡✐ is the ✐ th element of the canonical basis (in other words, ❲ ✳✐✴

is obtained from ❲ by zeroing all elements in the ✐ th row and column except on

the diagonal). Finally, let ✘ ✷ C❈ with Im✳✘✴ ✕ ✘✵ ❃ ✵. Then for any subset

❙ ✒ ➀▼ ➁, we have☞☞Tr❙
✂
✳❲ � ✘I▼ ✴

�✶✄ � Tr❙
✂
✳❲ ✳✐✴ � ✘I▼ ✴

�✶✄☞☞ ✔ ✸

✘✵
✿(10.13)
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The next lemma establishes the concentration of Stieltjes transforms to its mean,

whose proof is the same as the proof of lemma 9 in [35].

LEMMA 10.5 (Concentration). Let Im✳✘✴ ✕ ✘✵ ❃ ✵ and consider the partial Stielt-

jes transforms ❙▼✐❀❞ ✳✘■ q✴ as per equation (10.5). Then there exists ❝✵ ❉ ❝✵✳✘✵✴

such that, for ✐ ✷ ❢✶❀ ✷❣,
P
�☞☞ ❙▼✐❀❞ ✳✘■ q✴ � E ❙▼✐❀❞ ✳✘■ q✴

☞☞ ✕ ✉✁ ✔ ✷ ❡�❝✵❞✉✷ ❀(10.14)

In particular, if Im✳✘✴ ❃ ✵, then ❥ ❙▼✐❀❞ ✳✘■ q✴ � E ①▼✐❀❞ ✳✘■ q✴❥ ✦ ✵ almost surely

and in ▲✶.

LEMMA 10.6 (Lemma 5 in [34]). Assume ✛ is an activation function with ✛✳✉✴✷ ✔
❝✵ exp✳❝✶ ✉

✷❂✷✴ for some constants ❝✵ ❃ ✵ and ❝✶ ❁ ✶ (this is implied by Assump-

tion 1). Then

(a) E●✘N✳✵❀✶✴➀✛✳●✴
✷➁ ❁✶.

(b) Let ❦✇❦✷ ❉ ✶. Then there exists ❞✵ ❉ ❞✵✳❝✶✴ such that, for ① ✘
Unif✳S❞�✶✳

♣
❞✴✴,

sup
❞✕❞✵

E①➀✛✳❤✇❀①✐✴✷➁ ❁✶✿(10.15)

(c) Let ❦✇❦✷ ❉ ✶. Then there exists a coupling of ● ✘ N✳✵❀ ✶✴ and ① ✘
Unif✳S❞�✶✳

♣
❞✴✴ such that

lim
❞✦✶

E①❀● ➀✳✛✳❤✇❀①✐✴ � ✛✳●✴✴✷➁ ❉ ✵✿(10.16)

10.3 Proof of Lemma 10.1: Leave-one-out argument

Throughout the proof, we write ❋✳❞✴ ❉ ❖❞ ✳●✳❞✴✴ if there exists a constant

❈ ❉ ❈✳✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴ that is uniformly bounded when ✳✘✵❀ q❀ ✥✶❀ ✥✷✴ is in a

compact set such that ❥❋✳❞✴❥ ✔ ❈ ✁ ❥●✳❞✴❥. We write ❋✳❞✴ ❉ ♦❞ ✳●✳❞✴✴ if for

any ✧ ❃ ✵, there exists a constant ❈ ❉ ❈✳✧❀ ✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴ that is uniformly

bounded when ✳✘✵❀ q❀ ✥✶❀ ✥✷✴ is in a compact set such that ❥❋✳❞✴❥ ✔ ✧ ✁ ❥●✳❞✴❥ for

any ❞ ✕ ❈ . We use ❈ to denote generically such a constant that can change from

line to line.

We write ❋✳❞✴ ❉ ❖❞❀P✳●✳❞✴✴ if for any ✍ ❃ ✵, there exist constants

❑ ❉ ❑✳✍❀ ✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴ and ❞✵ ❉ ❞✵✳✍❀ ✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴

that are uniformly bounded when ✳✘✵❀ q❀ ✥✶❀ ✥✷✴ is in a compact set such that

P✳❥❋✳❞✴❥ ❃ ❑❥●✳❞✴❥✴ ✔ ✍ for any ❞ ✕ ❞✵. We write ❋✳❞✴ ❉ ♦❞❀P✳●✳❞✴✴ if

for any ✧❀ ✍ ❃ ✵, there exists a constant ❞✵ ❉ ❞✵✳✧❀ ✍❀ ✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴ that is uni-

formly bounded when ✳✘✵❀ q❀ ✥✶❀ ✥✷✴ is in a compact set such that P✳❥❋✳❞✴❥ ❃
✧❥●✳❞✴❥✴ ✔ ✍ for any ❞ ✕ ❞✵.

We will assume ♣ ❉ ✵ throughout the proof. For ♣ ↕ ✵, the lemma holds by

viewing ①❏ ❈ ♣①❏ ✶ ❉ ✬❄✳❳❶
T❂
♣
❞✴❂

♣
❞ as a new kernel inner product matrix

with ✬❄✳①✴ ❉ ✬✳①✴❈ ♣✖✶①.
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Step 1. Calculate the Schur complement and define some notations.

Let ①❆✁❀◆ ✷ R
▼�✶ be the ◆ th column of ①❆, with the ◆ th entry removed. We

further denote by ①❇ ✷ R
✳▼�✶✴✂✳▼�✶✴ the matrix obtained from ①❆ by removing

the◆ th column and◆ th row. Applying the Schur complement formula with respect

to element ✳◆❀◆ ✴, we get

①♠✶❀❞ ❉ ✥✶❀❞E
✟��✘ ❈ s✶ ❈ s✷❦①✒◆ ❦✷✷❂❞ � ①❆T

✁❀◆ ✳ ①❇ � ✘I▼�✶✴�✶ ①❆✁❀◆
✁�✶✠

✿

We decompose the vectors ①✒❛❀ ①①✐ in the components along ①✒◆ and the orthogonal

component:

①✒❛ ❉ ✑❛
①✒◆

❦①✒◆ ❦✷
❈ ③✒❛❀ ❤①✒◆ ❀ ③✒❛✐ ❉ ✵❀ ❛ ✷ ➀◆ � ✶➁❀

①①✐ ❉ ✉✐
①✒◆
❦①✒◆ ❦

❈ ③①✐ ❀ ❤①✒◆ ❀ ③①✐ ✐ ❉ ✵❀ ✐ ✷ ➀♥➁✿

Note that ❢✑❛❣❛✷➀◆�✶➁❀ ❢✉✐❣✐✷➀♥➁ ✘iid N✳✵❀ ✶✴ are independent of all the other ran-

dom variables, and ❢③✒❛❣❛✷➀◆�✶➁❀ ❢③①✐❣✐✷➀♥➁ are conditionally independent given

①✒◆ , with ③✒❛❀ ③①✐ ✘ N✳✵❀P❄✴, where P❄ is the projector orthogonal to ①✒◆ .

With this decomposition we have

①◗❛❀❜ ❉
✶

❞

�
✑❛✑❜ ❈ ❤③✒❛❀ ③✒❜✐

✁
❀ ❛❀ ❜ ✷ ➀◆ � ✶➁❀(10.17)

①❏✐❀❛ ❉
✶♣
❞
✬

✒
✶♣
❞
❤③①✐ ❀ ③✒❛✐ ❈

✶♣
❞
✉✐✑❛

✓
❀ ❛ ✷ ➀◆ � ✶➁❀ ✐ ✷ ➀♥➁❀(10.18)

①❍✐❥ ❉
✶

❞

�
✉✐✉❥ ❈ ❤③①✐ ❀ ③①❥ ✐

✁
❀ ✐❀ ❥ ✷ ➀♥➁✿(10.19)

In addition, we have ①❆✁❀◆ ❉ ✳ ①❆✶❀◆ ❀ ✿ ✿ ✿ ❀ ①❆▼�✶❀◆ ✴T ✷ R
▼�✶ with

①❆✐❀◆ ❉
✽❁✿

✶
❞
s✷✑✐❦①✒◆ ❦✷ if ✐ ✔ ◆ � ✶,

✶♣
❞
✬
�

✶♣
❞
✉✐❦①✒◆ ❦✷

✁
if ✐ ✕ ◆ .

(10.20)

We next write ①❇ as the sum of three terms:

①❇ ❉ ③❇ ❈⑩❈❊✵ ✷ R
✳▼�✶✴✂✳▼�✶✴❀(10.21)

where

(10.22)

③❇ ❉
✧
s✶I◆�✶ ❈ s✷ ③◗ ③❏ T

③❏ t✶I♥ ❈ t✷ ③❍

★
❀

⑩ ❉
✧

s✷
❞
✑✑T ✖✶

❞
✑✉T

✖✶

❞
✉✑T t✷

❞
✉✉T

★
❀ ❊✵ ❉

✧
✵ ❊T

✶

❊✶ ✵

★
❀
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and ✑ ❉ ✳✑✶❀ ✿ ✿ ✿ ❀ ✑◆�✶✴T, ✉ ❉ ✳✉✶❀ ✿ ✿ ✿ ❀ ✉♥✴
T, and

③◗❛❀❜ ❉
✶

❞
❤③✒❛❀ ③✒❜✐❀ ❛❀ ❜ ✷ ➀◆ � ✶➁❀(10.23)

③❏✐❀❛ ❉
✶♣
❞
✬

✒
✶♣
❞
❤③①✐ ❀ ③✒❛✐

✓
❀ ❛ ✷ ➀◆ � ✶➁❀ ✐ ✷ ➀♥➁❀(10.24)

⑩❍✐❥ ❉
✶

❞
❤③①✐ ❀ ③①❥ ✐❀ ✐❀ ❥ ✷ ➀♥➁✿(10.25)

In addition, we have ❊✶ ❉ ✳❊✶❀✐❛✴✐✷➀♥➁❀❛✷➀◆�✶➁ ✷ R
♥✂◆ , where

❊✶❀✐❛ ❉
✶♣
❞

✔
✬

✒
✶♣
❞
❤③①✐ ❀ ③✒❛✐ ❈

✶♣
❞
✉✐✑❛

✓
� ✬

✒
✶♣
❞
❤③①✐ ❀ ③✒❛✐

✓
� ✖✶♣

❞
✉✐✑❛

✕
❉ ✶♣

❞

✔
✬❄

✒
✶♣
❞
❤③①✐ ❀ ③✒❛✐ ❈

✶♣
❞
✉✐✑❛

✓
� ✬❄

✒
✶♣
❞
❤③①✐ ❀ ③✒❛✐

✓✕
❀

where ✬❄✳①✴ ✑ ✬✳①✴ � ✖✶①.

Step 2. Perturbation bound for the Schur complement.

Denote

✦✶ ❉
��✘ ❈ s✶ ❈ s✷❦①✒◆ ❦✷✷❂❞ � ①❆T

✁❀◆ ✳ ①❇ � ✘I▼�✶✴�✶ ①❆✁❀◆
✁�✶

❀(10.26)

✦✷ ❉
��✘ ❈ s✶ ❈ s✷ � ①❆T

✁❀◆ ✳ ③❇ ❈⑩ � ✘I▼�✶✴�✶ ①❆✁❀◆
✁�✶

✿(10.27)

Note that we have ①♠✶❀❞ ❉ ✥✶❀❞E➀✦✶➁. Combining Lemmas 10.7, 10.8, and 10.9

below, we have

❥✦✶ � ✦✷❥ ✔ ❖❞ ✳✶✴ ✁
☞☞❦①✒◆ ❦✷✷❂❞ � ✶☞☞❈❖❞ ✳✶✴ ✁ ❦ ①❆✁❀◆ ❦✷✷ ✁ ❦❊✶❦op ❉ ♦❞❀P✳✶✴✿

Moreover, by Lemma 10.7, ❥✦✶ � ✦✷❥ is deterministically bounded by ✷❂✘✵. This

gives

(10.28) ❥ ①♠✶❀❞ � ✥✶❀❞E➀✦✷➁❥ ✔ ✥✶❀❞E➀❥✦✶ � ✦✷❥➁ ❉ ♦❞ ✳✶✴✿

LEMMA 10.7. Using the definitions of ✦✶ and ✦✷ as in equation (10.26) and

(10.27), for Im ✘ ✕ ✘✵ we have

❥✦✶ � ✦✷❥ ✔
✂
s✷❥❦①✒◆ ❦✷✷❂❞ � ✶❥❂✘✷✵ ❈ ✷❦ ①❆✁ ❀◆ ❦✷✷❦❊✶❦op❂✘

✹
✵

✄ ❫ ➀✷❂✘✵➁✿
PROOF OF LEMMA 10.7. Note that

Im✳�✦�✶✶ ✴ ✕ Im ✘ ❈ Im✳ ①❆T

✁ ❀◆ ✳ ①❇ � ✘I▼�✶✴�✶ ①❆✁ ❀◆ ✴ ✕ Im ✘ ❃ ✘✵✿

Hence we have ❥✦✶❥ ✔ ✶❂✘✵, and, using a similar argument, ❥✦✷❥ ✔ ✶❂✘✵. Hence

we get the bound ❥✦✶ � ✦✷❥ ✔ ✷❂✘✵.

Denote

✦✶✿✺ ❉
��✘ ❈ s✶ ❈ s✷ � ①❆T

✁ ❀◆ ✳ ①❇ � ✘I▼�✶✴�✶ ①❆✁ ❀◆
✁�✶

❀

we get

❥✦✶ � ✦✶✿✺❥ ❉ s✷
☞☞✦✶✳❦①✒◆ ❦✷✷❂❞ � ✶✴✦✶✿✺☞☞ ✔ s✷☞☞❦①✒◆ ❦✷✷❂❞ � ✶☞☞❂✘✷✵ ✿
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Moreover, we have

❥✦✶✿✺ � ✦✷❥
❉ ❥✦✶✿✺✦✷

①❆T

✁ ❀◆ ➀✳ ③❇ ❈⑩ � ✘I▼�✶✴�✶ � ✳ ③❇ ❈⑩❈❊✵ � ✘I▼�✶✴�✶➁ ①❆ ✁ ❀◆ ❥
❉ ❥✦✶✿✺✦✷

①❆T

✁ ❀◆ ✳ ③❇ ❈⑩ � ✘I▼�✶✴�✶❊✵✳ ③❇ ❈⑩❈❊✵ � ✘I▼�✶✴�✶ ①❆ ✁ ❀◆ ❥
✔ ✳✶❂✘✷✵ ✴ ✁ ❦ ①❆ ✁ ❀◆ ❦✷✷✳✶❂✘✷✵ ✴❦❊✵❦op ✔ ✷❦❊✶❦op❦ ①❆ ✁ ❀◆ ❦✷✷❂✘✹✵ ✿

This proves the lemma. �

LEMMA 10.8. Under the assumptions of Lemma 10.1, we have

❦❊✶❦op ❉ ❖❞❀P✳Poly✳log ❞✴❂❞✶❂✷✴✿(10.29)

PROOF. Define ➫✐ ❉ ③✒ ✐ for ✐ ✷ ➀◆ � ✶➁, ➫✐ ❉ ③①✐�◆❈✶ for ◆ ✔ ✐ ✔ ▼ � ✶,

✏✐ ❉ ✑✐ for ✐ ✷ ➀◆ � ✶➁, and ✏✐ ❉ ✉✐�◆❈✶ for ◆ ✔ ✐ ✔ ▼ � ✶. Consider the

symmetric matrix ❊ ✷ R
✳▼�✶✴✂✳▼�✶✴ with ❊✐ ✐ ❉ ✵, and

❊✐❥ ❉
✶♣
❞

✔
✬❄

✒
✶♣
❞
❤➫✐ ❀ ➫❥ ✐ ❈

✶♣
❞
✏✐✏❥

✓
� ✬❄

✒
✶♣
❞
❤➫✐ ❀ ➫❥ ✐

✓✕
✿(10.30)

Since ❊✶ is a submatrix of ❊ , we have ❦❊✶❦op ✔ ❦❊❦op. By the intermediate

value theorem

❊ ❉ ✶♣
❞
❸❋ ✶❸❈ ✶

✷❞
❸✷❋ ✷❸

✷❀

❸ ✑ diag✳✏✶❀ ✿ ✿ ✿ ❀ ✏▼�✶✴❀

❋✶❀✐❥ ✑
✶♣
❞
✬✵❄

✒
✶♣
❞
❤➫✐ ❀ ➫❥ ✐

✓
1✐↕❥ ❀

❋✷❀✐❥ ✑
✶♣
❞
✬✵✵❄

�③➫✐❥ ✁ 1✐↕❥ ❀ ③➫✐❥ ✷
✔

✶♣
❞
❤➫✐ ❀ ➫❥ ✐❀

✶♣
❞
❤➫✐ ❀ ➫❥ ✐ ❈

✶♣
❞
✏✐✏❥

✕
✿

Hence we get

❦❊❦op ✔ ✳❦❋ ✶❦op❂
♣
❞✴❦❸❦✷op ❈ ✳❦❋ ✷❦op❂❞✴❦❸❦✹op✿

Note that ✬✵✵❄✳①✴ ❉ ✬✵✵✳①✴ is a polynomial with some fixed degree ①❦. Therefore we

have

E❢❦❋ ✷❦✷❋ ❣ ❉ ➀▼✳▼ � ✶✴❂❞ ➁ ✁ E➀✬✵✵❄✳③➫✶✷✴✷➁ ✔ ❖❞ ✳❞✴ ✁ E➀✳✶❈ ❥③➫✶✷❥✴✷①❦➁
✔ ❖❞ ✳❞✴ ✁

♥
E
✂
✳✶❈ ❥❤➫✐ ❀ ➫❥ ✐❂

♣
❞ ❥✴✷①❦✄

❈ E
✂
✳✶❈ ❥❤➫✐ ❀ ➫❥ ✐ ❈ ✏✐✏❥ ❂

♣
❞ ❥✴✷①❦✄♦ ❉ ❖❞ ✳❞✴✿

Moreover, by the fact that ✬✵❄ is a polynomial with E➀✬✵❄✳●✴➁ ❉ ✵, and by theorem

1.7 in [31], we have ❦❋ ✶❦op ❉ ❖❞❀P✳✶✴. By the concentration bound for the
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✤-squared random variable, we get ❦❸❦op ❉ ❖❞❀P✳
♣

log ❞✴. Therefore, we have

❦❊❦op ✔ ❖❞❀P✳❞
�✶❂✷✴❖❞❀P✳Poly✳log ❞✴✴❈❖❞❀P✳❞

�✶❂✷✴❖❞❀P✳Poly✳log ❞✴✴

❉ ❖❞❀P✳Poly✳log ❞✴❂❞�✶❂✷✴✿

This proves the lemma. �

LEMMA 10.9. Under the assumptions of Lemma 10.1, we have

❦ ①❆✁ ❀◆ ❦✷ ❉ ❖❞❀P✳✶✴✿(10.31)

PROOF. Recall the definition of ①❆✁ ❀◆ as in equation (10.20). Denote ❛✶ ❉
s✷✑❦①✒◆ ❦✷❂❞ ✷ R

◆�✶ and ❛✷ ❉ ✬✳✉❦①✒◆ ❦✷❂
♣
❞✴❂

♣
❞ ✷ R

♥, where ✑ ✘
N✳✵❀ I◆�✶✴ and ✉ ✘ N✳✵❀ I♥✴. Then ①❆✁ ❀◆ ❉ ✳❛✶■ ❛✷✴ ✷ R

♥❈◆�✶.

For ❛✶, note we have ❦❛✶❦✷ ❉ ❥s✷❥ ✁ ❦✑❦✷❦①✒◆ ❦✷❂❞ where ✑ ✘ N✳✵❀ I◆�✶✴ and
①✒◆ ✘ N✳✵❀ I❞ ✴ are independent. Hence we have

E➀❦❛✶❦✷✷➁ ❉ s✷✷E➀❦✑❦✷✷❦①✒◆ ❦✷✷➁❂❞✷ ❉ ❖❞ ✳✶✴✿

For ❛✷, note that ✬ is a polynomial with some fixed degree ①❦; hence we have

E
✂❦❛✷❦✷✷✄ ❉ E➀✬✳✉✐❦①✒◆ ❦✷❂

♣
❞✴✷➁ ❉ ❖❞ ✳✶✴✿

This proves the lemma. �

Step 3. Simplification using Sherman-Morrison-Woodbury.

Notice that ⑩ is a matrix with rank at most 2. Indeed

(10.32)

⑩ ❉ ❯▼❯ T ✷ R
✳▼�✶✴✂✳▼�✶✴❀ ❯ ❉ ✶♣

❞

✔
✑ ✵

✵ ✉

✕
✷ R

✳▼�✶✴✂✷❀

▼ ❉
✔
s✷ ✖✶

✖✶ t✷

✕
✷ R

✷✂✷✿

Since we assumed q ✷ Q so that ❥s✷t✷❥ ✔ ✖✷
✶❂✷, the matrix ▼ is invertible with

❦▼�✶❦op ✔ ❈ .

Recall the definition of ✦✷ in equation (10.27). By the Sherman-Morrison-

Woodbury formula, we get

✦✷ ❉
��✘ ❈ s✶ ❈ s✷ � ✈✶ ❈ ✈T

✷✳▼
�✶ ❈ ❱ ✸✴

�✶✈✷
✁�✶

❀(10.33)

where

(10.34)
✈✶ ❉ ①❆T

✁ ❀◆ ✳ ③❇ � ✘I▼�✶✴�✶ ①❆ ✁ ❀◆ ❀ ✈✷ ❉ ❯ T✳ ③❇ � ✘I▼�✶✴�✶ ①❆ ✁ ❀◆ ❀

❱ ✸ ❉ ❯ T✳ ③❇ � ✘I▼�✶✴�✶❯ ✿

We define

(10.35)

①✈✶ ❉ s✷✷ ①♠✶❀❞ ❈ ✳✖✷
✶ ❈ ✖✷

❄✴ ①♠✷❀❞ ❀ ①✈✷ ❉
✔
s✷ ①♠✶❀❞

✖✶ ①♠✷❀❞

✕
❀ ①❱ ✸ ❉

✔ ①♠✶❀❞ ✵

✵ ①♠✷❀❞

✕
❀
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and

✦✸ ❉
��✘ ❈ s✶ ❈ s✷ � ①✈✶ ❈ ①✈T

✷✳▼
�✶ ❈ ❙❱ ✸✴

�✶①✈✷
✁�✶

✿(10.36)

By auxiliary Lemmas 10.10, 10.11, and 10.12 below, we get

E➀❥✦✷ � ✦✸❥➁ ❉ ♦❞ ✳✶✴❀

Combining with equation (10.28) we get

❥ ①♠✶❀❞ � ✥✶❀❞✦✸❥ ❉ ♦❞ ✳✶✴✿

Elementary algebra simplifying equation (10.36) gives

✥✶❀❞✦✸ ❉ F✶✳ ①♠✶❀❞ ❀ ①♠✷❀❞ ■ ✘■ q❀ ✥✶❀❞ ❀ ✥✷❀❞ ❀ ✖✶❀ ✖❄✴✿

This proves equation (10.6) in Lemma 10.1. Equation (10.7) follows by the same

argument (exchanging ◆ and ♥). In the rest of this section, we prove auxiliary

Lemmas 10.10, 10.11, and 10.12.

LEMMA 10.10. Using the formulas for ✦✷ and ✦✸ as in equation (10.33) and

(10.36) for Im ✘ ✕ ✘✵, we have

❥✦✷ � ✦✸❥ ✔ ❖❞ ✳✶✴ ✁
✟✂❥✈✶ � ①✈✶❥
❈ ❦①✈✷❦✷✷❦✳▼�✶ ❈ ❱ ✸✴

�✶❦op❦✳▼�✶ ❈ ❙❱ ✸✴
�✶❦op❦❱ ✸ � ❙❱ ✸❦op

❈ ✳❦✈✷❦✷ ❈ ❦①✈✷❦✷✴❦✳▼�✶ ❈ ❱ ✸✴
�✶❦op❦✈✷ � ①✈✷❦✷

✄ ❫ ✶✠✿
PROOF. Denote

✦✷✿✺ ❉
��✘ ❈ s✶ ❈ s✷ � ①✈✶ ❈ ✈T

✷✳▼
�✶ ❈ ❱ ✸✴

�✶✈✷
✁�✶

✿

We have

❥✦✷ � ✦✷✿✺❥ ❉ ❥✦✷✳✈✶ � ①✈✶✴✦✷✿✺❥ ✔ ❥✈✶ � ①✈✶❥❂✘✷✵ ✿
Moreover, we have

❥✦✷✿✺ � ✦✸❥ ✔
�
✶❂✘✷✵

✁☞☞✈T

✷

�
▼�✶ ❈ ❱ ✸

✁�✶
✈✷ � ①✈T

✷

�
▼�✶ ❈ ❙❱ ✸

✁�✶①✈✷☞☞
✔ �

✶❂✘✷✵
✁✟
✳❦✈✷❦✷ ❈ ❦①✈✷❦✷✴

✌✌�▼�✶ ❈ ❱ ✸

✁�✶❦op❦✈✷ � ①✈✷
✌✌
✷

❈ ❦①✈✷❦✷✷❦
�
▼�✶ ❈ ❱ ✸

✁�✶❦op

✌✌�▼�✶ ❈ ❙❱ ✸

✁�✶✌✌
op
❦❱ ✸ � ❙❱ ✸❦op

✠
✿

Combining this with ❥✦✷ � ✦✸❥ ✔ ❥✦✷❥ ❈ ❥✦✸❥ ✔ ❖❞ ✳✶✴ proves the lemma. �

LEMMA 10.11. Under the assumptions of Lemma 10.1, we have (following the

notations of equation (10.34) and (10.35))

❦①✈✷❦✷ ❉ ❖❞ ✳✶✴❀

❥✈✶ � ①✈✶❥ ❉ ♦❞❀P✳✶✴❀(10.37)

❦✈✷ � ①✈✷❦✷ ❉ ♦❞❀P✳✶✴❀(10.38)

❦❱ ✸ � ❙❱ ✸❦op ❉ ♦❞❀P✳✶✴✿(10.39)
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PROOF OF LEMMA 10.11. The first bound is because (see Lemma 10.3 for the

boundedness of ①♠✶❀❞ and ①♠✷❀❞ )

❦①✈✷❦✷ ✔ ❥s✷❥ ✁ ❥ ①♠✶❀❞ ❥ ❈ ❥✖✶❥ ✁ ❥ ①♠✷❀❞ ❥ ✔ ✳✥✶ ❈ ✥✷✴✳❥s✷❥ ❈ ❥✖✶❥✴❂✘✵ ❉ ❖❞ ✳✶✴✿

In the following, we limit ourselves to proving equation (10.37), since equations

(10.38) and (10.39) follow by similar arguments.

Recall the definition of ③❇ as in equation (10.22). Let ❘ ✑ ✳ ③❇ � ✘I▼�✶✴�✶.

Then we have ❦❘❦op ✔ ✶❂✘✵. Define ❛ and ❤ as

❛ ❉ ①❆ ✁ ❀◆ ❉
✔
✶

❞
s✷✑

T❦①✒◆ ❦✷❀
✶♣
❞
✬

✒
✶♣
❞
✉T❦①✒◆ ❦✷

✓✕T

❀

❤ ❉
✔
✶♣
❞
s✷✑

T❀
✶♣
❞
✬✳✉T✴

✕T

✿

Then by the definition of ✈✶ in equation (10.34), we have ✈✶ ❉ ❛T❘❛. Note we

have

❦❤ � ❛❦✷ ✔ ✳s✷❦✑❦✷ ❈ ❦✬✵✳✉☞ ✘✴❦✷✴ ✁ ❥❦①✒◆ ❦✷❂
♣
❞ � ✶❥❂

♣
❞

for some ✘ ❉ ✳✘✶❀ ✿ ✿ ✿ ❀ ✘♥✴
T with ✘✐ between ❦①✒◆ ❦✷❂

♣
❞ and ✶. Since

❥❦①✒◆ ❦✷❂
♣
❞ � ✶❥ ❉ ❖❞❀P✳

♣
log ❞❂

♣
❞✴❀ ❦✑❦✷ ❉ ❖❞❀P✳

♣
❞✴❀

and ❦✬✵✳✉ ✁ ✘✴❦✷ ❉ ❖❞❀P✳Poly✳log ❞✴ ✁
♣
❞✴❀

we have

❦❤ � ❛❦✷ ❉ ♦❞❀P✳✶✴✿

By Lemma 10.9 we have ❦❛❦✷ ❉ ❖❞❀P✳✶✴ and hence ❦❤❦✷ ❉ ❖❞❀P✳✶✴. Combining

all these bounds, we have

(10.40)
❥✈✶ � ❤T❘❤❥ ❉ ❥❛T❘❛ � ❤T❘❤❥

✔ ✳❦❛❦✷ ❈ ❦❤❦✷✴❦❤ � ❛❦✷❦❘❦op ❉ ♦❞❀P✳✶✴✿

Denote by ❉ the covariance matrix of ❤. Since ❤ has independent elements, ❉

is a diagonal matrix with max✐ ❉✐ ✐ ❉ max✐ Var✳❤✐ ✴ ✔ ❈❂❞ . Since E➀❤➁ ❉ ✵, we

have

E❢❤T❘❤❥❘❣ ❉ Tr✳❉❘✴✿(10.41)

We next compute Var✳❤T❘❤❥❘✴. By a similar calculation of Lemma C.8, we have

(for a complex matrix, denote by ❘T the transpose of ❘, and ❘✄ the conjugate

transpose of ❘)

Var✳❤T❘❤❥❘✴

❉
▼�✶❳
✐❉✶

❥❘✐ ✐ ❥✷
�
E
✂
❤✹✐
✄ � ✸E✂❤✷✐ ✄✷✴❈ Tr✳❉❘T❉❘✄✴❈ Tr✳❉❘❉❘✄✴✿
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Note that we have max✐ ➀E➀❤
✹
✐ ➁ � ✸E➀❤✷✐ ➁

✷➁ ❉ ❖❞ ✳✶❂❞
✷✴, so that

▼�✶❳
✐❉✶

❥❘✐ ✐ ❥✷✳E➀❤✹✐ ➁ � ✸E➀❤✷✐ ➁
✷✴ ✔ ❖❞ ✳✶❂❞

✷✴ ✁ ❦❘❦✷❋

✔ ❖❞ ✳✶❂❞✴❦❘❦✷op ❉ ❖❞ ✳✶❂❞✴✿

Moreover, we have

❥Tr✳❉❘T❉❘✄✴❈ Tr✳❉❘❉❘✄✴❥ ✔ ❦❉❘❦✷❋ ❈ ❦❉❘❦❋ ❦❉❘✄❦❋
✔ ✷❦❉❦✷op❦❘❦✷❋ ❉ ❖❞ ✳✶❂❞✴❀

which gives

Var✳❤T❘❤❥❘✴ ❉ ❖❞ ✳✶❂❞✴❀

and therefore

❥❤T❘❤ � Tr✳❉❘✴❥ ❉ ❖❞❀P✳❞
�✶❂✷✴✿(10.42)

Combining equations (10.42) and (10.40), we obtain

(10.43) ❥✈✶ � Tr✳❉❘✴❥ ✔ ❥❛T❘❛ � ❤T❘❤❥ ❈ ❥❤T❘❤ � Tr✳❉❘✴❥ ❉ ♦❞❀P✳✶✴✿

Finally, notice that

Tr✳❉❘✴ ❉ s✷✷
❞

Tr➀✶❀◆�✶➁✳✳ ③❇ � ✘I▼�✶✴�✶✴❈
✖✷
✶ ❈ ✖✷

❄

❞
Tr➀◆❀▼�✶➁✳✳ ③❇ � ✘I▼�✶✴�✶✴✿

By Lemma 10.4, partial Stieltjes transforms are stable with respect to deleting one

row and one column of the same index. By Lemma 10.13 (which will be stated and

proved later), partial Stieltjes transforms are stable with respect to small changes

of the dimension ❞ . Moreover, by Lemma 10.5, partial Stieltjes transforms con-

centrate tightly around their mean. As a consequence of all these lemmas (Lemma

10.4, 10.13, and 10.5), we have☞☞Tr➀✶❀◆�✶➁
�� ③❇ � ✘I▼�✶

✁�✶✁
❂❞ � ①♠✶❀❞ ❥ ❉ ♦❞❀P✳✶✴❀☞☞Tr➀◆❀▼�✶➁

�� ③❇ � ✘I▼�✶
✁�✶✁

❂❞ � ①♠✷❀❞

☞☞ ❉ ♦❞❀P✳✶✴❀

so that

❥Tr✳❉❘✴ � ①✈✶❥ ❉ ♦❞❀P✳✶✴✿

Combining these with equation (10.43) proves equation (10.37). �

The following lemma is the analogue of lemmas B.7 and B.8 in [17].

LEMMA 10.12. Under the assumptions of Lemma 10.1, we have (using the defini-

tions in equation (10.32), (10.34) and (10.35))✌✌�▼�✶ ❈ ❱ ✸

✁�✶✌✌
op
❉ ❖❞❀P✳✶✴❀(10.44) ✌✌�▼�✶ ❈ ❙❱ ✸

✁�✶✌✌
op
❉ ❖❞ ✳✶✴✿(10.45)

PROOF.
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Step 1. Bounding
✌✌�▼�✶ ❈ ❱ ✸

✁�✶✌✌
op

.

By the Sherman-Morrison-Woodbury formula, we have�
▼�✶ ❈ ❱ ✸

✁�✶ ❉ �
▼�✶ ❈ ❯ T✳ ③❇ � ✘I▼�✶✴�✶❯

✁�✶
❉▼ �▼❯ T✳ ③❇ � ✘I▼�✶ ❈ ❯▼❯ T✴�✶❯▼ ✿

Note that we have ❦▼❦op ❉ ❖❞ ✳✶✴ and✌✌� ③❇ � ✘I▼�✶ ❈ ❯▼❯ T
✁�✶✌✌

op
✔ ✶❂✘✵ ❉ ❖❞ ✳✶✴✿

Therefore, by the concentration of ❦✑❦✷❂
♣
❞ and ❦✉❦✷❂

♣
❞ , we have�

▼�✶ ❈ ❱ ✸

✁�✶ ❉ ❖❞ ✳✶✴ ✁
�
✶❈ ❦❯ ❦✷op

✁
❉ ❖❞ ✳✶✴✳✶❈ ❦✑❦✷❂

♣
❞ ❈ ❦✉❦✷❂

♣
❞✴ ❉ ❖❞❀P✳✶✴✿

Step 2. Bounding ❦✳▼�✶ ❈ ❙❱ ✸✴
�✶❦op.

Define ● ❉ ▼✶❂✷❱ ✸▼
✶❂✷ and ❙● ❉ ▼✶❂✷❙❱ ✸▼

✶❂✷. By Lemma 10.11, we

have

❦● � ❙●❦op ❉ ♦❞❀P✳✶✴✿(10.46)

By the bound ❦✳▼�✶ ❈ ❱ ✸✴
�✶❦op ❉ ❖❞❀P✳✶✴, we get

(10.47)

✌✌✳I✷ ❈● ✴�✶
✌✌

op
❉

✌✌▼�✶❂✷�▼�✶ ❈ ❱ ✸

✁�✶
▼�✶❂✷✌✌

op

✔
✌✌�▼�✶ ❈ ❱ ✸

✁�✶✌✌ ✁ ❦▼�✶❂✷❦✷op ❉ ❖❞❀P✳✶✴✿

Note that we have�
I✷ ❈ ❙●✁�✶ � ✳I✷ ❈● ✴�✶ ❉ ✳I✷ ❈ ❙● ✴�✶✳● � ❙● ✴✳I✷ ❈● ✴�✶❀

so that �
I✷ ❈ ❙●✁�✶ ❉ ✟

I✷ � ✳● � ❙● ✴✳I✷ ❈● ✴�✶
✠
✳I✷ ❈● ✴�✶✿

Combining this with equation (10.46) and (10.47), we get✌✌�I✷ ❈ ❙●✁�✶✌✌
op
✔

✌✌I✷ � ✳● � ❙● ✴✳I✷ ❈● ✴�✶
✌✌

op

✌✌✳I✷ ❈● ✴�✶
✌✌

op

❉ ❖❞❀P✳✶✴ ❉ ❖❞ ✳✶✴✿

The last equality holds because ❦✳I✷ ❈ ❙● ✴�✶❦op is deterministic. Hence we have✌✌�▼�✶ ❈ ❙❱ ✸

✁�✶✌✌
op
❉

✌✌▼✶❂✷✳I✷ ❈ ❙● ✴�✶▼✶❂✷
✌✌

op

✔
✌✌✳I✷ ❈ ❙● ✴�✶

✌✌
op
❦▼✶❂✷❦✷op ❉ ❖❞ ✳✶✴✿

This proves the lemma. �

The following lemma shows that the partial resolvents are stable with respect to

small changes to the dimension ❞ .
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LEMMA 10.13. Under the assumptions of Lemma 10.1, let ①❏ , ①❏ ✶, ❙◗, ❙❍ , and ①❆
be defined as in equations (10.1) and (10.2). Denote by ❏ , ❏ ✶, ◗, ❍ , and ❆ the

same matrices, with dimension ❞ replaced by ❞ � ✶. Then for any ✘ ✷ C❈ with

Im ✘ ✕ ✘✵ ❃ ✵, we have

✶

❞
E
☞☞Tr➀✶❀◆ ➁

✂� ①❆ � ✘I▼
✁�✶✄ � Tr➀✶❀◆ ➁

✂
✳❆ � ✘I▼ ✴�✶

✄☞☞ ❉ ♦❞ ✳✶✴❀(10.48)

✶

❞
E
☞☞Tr➀◆❈✶❀▼➁

✂
✳ ①❆ � ✘I▼ ✴�✶ � Tr➀◆❈✶❀▼➁

✂
✳❆ � ✘I▼ ✴�✶

✄☞☞ ❉ ♦❞ ✳✶✴✿(10.49)

PROOF.

Step 1. The Schur complement.

We denote by ①❆✐❥ and ❆✐❥ for ✐❀ ❥ ✷ ➀✷➁ the following:

①❆ ❉
✔ ①❆✶✶

①❆✶✷
①❆✷✶

①❆✷✷

✕
❉

✧
s✶I◆ ❈ s✷ ①◗ ①❏ T

①❏ t✶I♥ ❈ t✷❙❍

★
❀

❆ ❉
✔
❆✶✶ ❆✶✷

❆✷✶ ❆✷✷

✕
❉

✔
s✶I◆ ❈ s✷◗ ❏ T

❏ t✶I♥ ❈ t✷❍

✕
✿

Define

①✦ ❉ ✶

❞
Tr➀✶❀◆ ➁

✂� ①❆ � ✘I▼
✁�✶✄

❀ ✦ ❉ ✶

❞
Tr➀✶❀◆ ➁

✂
✳❆ � ✘I▼ ✴�✶

✄
❀

and
❙⑧ ❉ � ①❆✶✶ � ✘I◆ � ①❆✶✷✳ ①❆✷✷ � ✘I♥✴

�✶ ①❆✷✶

✁�✶
❀

⑧ ❉ �
❆✶✶ � ✘I◆ �❆✶✷✳❆✷✷ � ✘I♥✴

�✶❆✷✶

✁�✶
✿

Then we have

①✦ ❉ ✶

❞
Tr✳❙⑧✴❀ ✦ ❉ ✶

❞
Tr✳⑧✴✿

Define

⑧✶ ❉
�
❆✶✶ � ✘I◆ � ①❆✶✷✳ ①❆✷✷ � ✘I♥✴

�✶ ①❆✷✶

✁�✶
❀

⑧✷ ❉
�
❆✶✶ � ✘I◆ �❆✶✷✳

①❆✷✷ � ✘I♥✴
�✶ ①❆✷✶

✁�✶
❀

⑧✸ ❉
�
❆✶✶ � ✘I◆ �❆✶✷✳

①❆✷✷ � ✘I♥✴
�✶❆✷✶

✁�✶
❀

Then it’s easy to see that ❦❙⑧❦op❀ ❦⑧✶❦op❀ ❦⑧✷❦op❀ ❦⑧✸❦op❀ ❦⑧❦op ✔ ✶❂✘✵.

Calculating the differences between ①⑧,⑧✶,⑧✷,⑧✸, and⑧, we have☞☞☞☞ ✶❞ Tr✳❙⑧✴ � ✶

❞
Tr✳⑧✶✴

☞☞☞☞ ❉ ☞☞☞☞ ✶❞ Tr✳❙⑧✳❆✶✶ � ①❆✶✶✴⑧✴

☞☞☞☞
✔ ❖❞ ✳✶✴ ✁

✶

❞
❦❆✶✶ � ①❆✶✶❦❄❀☞☞☞☞ ✶❞ Tr✳⑧✶✴ �

✶

❞
Tr✳⑧✷✴

☞☞☞☞ ✔ ❖❞ ✳✶✴ ✁
✶

❞
❦✳❆✶✷ � ①❆✶✷✴✳ ①❆✷✷ � ✘I♥✴

�✶ ①❆✷✶❦❄❀
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✶

❞
Tr✳⑧✸✴

☞☞☞☞ ✔ ❖❞ ✳✶✴ ✁
✶

❞
❦✳❆✶✷ � ①❆✶✷✴✳ ①❆✷✷ � ✘I♥✴

�✶❆✷✶❦❄❀

☞☞☞☞ ✶❞ Tr✳⑧✸✴ �
✶

❞
Tr✳⑧✴

☞☞☞☞
✔ ❖❞ ✳✶✴ ✁

✶

❞
❦❆✶✷✳

①❆✷✷ � ✘I♥✴
�✶✳ ①❆✷✷ �❆✷✷✴✳❆✷✷ � ✘I♥✴

�✶❆✷✶❦❄✿

Step 2. Bounding the differences.

First, we have

①❆✶✶ �❆✶✶ ❉ s✷✳ ①◗ �◗✴ ❉ s✷✳①✒❛❞ ①✒❜❞❂❞✴❛❀❜✷➀◆ ➁ ❉ s✷✑✑❂❞❀

where ✑ ❉ ✳①✒✶❞ ❀ ✿ ✿ ✿ ❀ ①✒◆❞ ✴
T ✘ N✳✵❀ I◆ ✴. This gives✌✌ ①❆✶✶ �❆✶✶

✌✌
❄
❂❞ ❉ s✷❦✑❦✷✷❂❞✷ ❉ ♦❞❀P✳✶✴❀

and therefore ☞☞☞☞ ✶❞ Tr✳❙⑧✴ � ✶

❞
Tr✳⑧✶✴

☞☞☞☞ ❉ ♦❞❀P✳✶✴✿

By theorem 1.7 in [31] and by the fact that ✬ is a polynomial with E➀✬✳●✴➁ ❉ ✵,

we have

❦ ①❆✶✷❦op ❉ ❦①❏❦op ❉ ❖❞❀P✳✶✴❀ ❦❆✶✷❦op ❉ ❖❞❀P✳✶✴✿

It is also easy to see that✌✌� ①❆✷✷ � ✘I♥
✁�✶✌✌

op
❀

✌✌✳❆✷✷ � ✘I♥✴
�✶✌✌

op
✔ ✶❂✘✵ ❉ ❖❞ ✳✶✴✿

Moreover, we have

①❆✷✷ �❆✷✷ ❉ t✷✳❙❍ �❍ ✴ ❉ t✷✳①①✐❞ ①①❥❞❂❞✴✐❀❥✷➀♥➁ ❉ t✷✉✉❂❞❀

where ✉ ❉ ✳①①✶❞ ❀ ✿ ✿ ✿ ❀ ①①♥❞ ✴T ✘ N✳✵❀ I♥✴. This gives✌✌❆✶✷

� ①❆✷✷ � ✘I♥
✁�✶� ①❆✷✷ �❆✷✷

✁
✳❆✷✷ � ✘I♥✴

�✶❆✷✶

✌✌
❄
❂❞

✔ t✷
✌✌❆✶✷

� ①❆✷✷ � ✘I♥
✁�✶

✉
✌✌
✷

✌✌❆✶✷✳❆✷✷ � ✘I♥✴
�✶✉

✌✌
✷
❂❞✷

✔ t✷❦❆✶✷❦✷op

✌✌� ①❆✷✷ � ✘I♥
✁�✶✌✌✷

op
❦✉

✌✌✷
✷
❂❞✷

❉ ❖❞❀P✳✶✴ ✁ ❦✉❦✷✷❂❞✷ ❉ ♦❞❀P✳✶✴❀

and therefore ☞☞☞☞ ✶❞ Tr✳⑧✸✴ �
✶

❞
Tr✳⑧✴

☞☞☞☞ ❉ ♦❞❀P✳✶✴✿

By Lemma 10.8, defining

❊ ❉ ①❆✶✷ �❆✶✷ � ✖✶✉✑
T❂❞❀
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we have ❦❊❦op ❉ ❖❞ ✳Poly✳log ❞✴❂
♣
❞✴. Therefore, we get✌✌�❆✶✷ � ①❆✶✷

✁� ①❆✷✷ � ✘I♥
✁�✶ ①❆✷✶

✌✌
❄
❂❞

✔
✌✌�✖✶✉✑

T❂❞
✁� ①❆✷✷ � ✘I♥

✁�✶ ①❆✷✶

✌✌
❄
❂❞ ❈

✌✌❊✳ ①❆✷✷ � ✘I♥
✁�✶ ①❆✷✶

✌✌
❄
❂❞

✔ ✖✶❦✑❦✷
✌✌� ①❆✷✷ � ✘I♥

✁�✶✌✌
op
❦ ①❆✷✶❦op❦✉❦✷❂❞✷

❈ ❦❊❦op

✌✌� ①❆✷✷ � ✘I♥
✁�✶✌✌

op

✌✌ ①❆✷✶

✌✌
op
❉ ♦❞❀P✳✶✴❀

and therefore☞☞☞☞ ✶❞ Tr✳⑧✶✴ �
✶

❞
Tr✳⑧✷✴

☞☞☞☞❀ ☞☞☞☞ ✶❞ Tr✳⑧✷✴ �
✶

❞
Tr✳⑧✸✴

☞☞☞☞ ❉ ♦❞❀P✳✶✴✿

Combining all these bounds establishes equation (10.48). Finally, equation (10.49)

can be shown using the same argument. �

10.4 Equivalence between Gaussian and sphere version of Stieltjes trans-

forms

In this subsection, we show that the Stieltjes transform of matrix ❆ as defined

in equation (8.7) and that of matrix ①❆ as defined in equation (10.3) share the same

asymptotics. For the reader’s convenience, we restate the definitions of these two

matrices here.

Let ✳①✒❛✴❛✷➀◆ ➁ ✘iid N✳✵❀ I❞ ✴, ✳①①✐ ✴✐✷➀♥➁ ✘iid N✳✵❀ I❞ ✴. We denote by ①❶ ✷ R
◆✂❞

the matrix whose ❛th row is given by ①✒❛, and by ①✄❳ ✷ R
♥✂❞ the matrix whose

✐ th row is given by ①①✐ . We denote by ❶ ✷ R
◆✂❞ the matrix whose ❛th row is

given by ✒❛ ❉
♣
❞ ✁ ①✒❛❂❦①✒❛❦✷, and by ❳ ✷ R

♥✂❞ the matrix whose ✐ th row is

given by ①✐ ❉
♣
❞ ✁ ①①✐❂❦①①✐❦✷. Then we have ✳①✐ ✴✐✷➀♥➁ ✘iid Unif✳S❞�✶✳

♣
❞✴✴ and

✳✒❛✴❛✷➀◆ ➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴ independently.

We consider activation functions ✛❀ ✬ ❲ R✦ R with

✬✳①✴ ❉ ✛✳①✴ � E●✘N✳✵❀✶✴➀✛✳●✴➁✿

We define the following matrices where ✖✶ is the first Hermite coefficient of ✛ :

①❏ ✑ ✶♣
❞
✬

✒
✶♣
❞
①✄❳ ①❶T

✓
❀ ❩ ✑ ✶♣

❞
✛

✒
✶♣
❞
❳❶T

✓
❀

①❏ ✶ ✑
✖✶

❞
①❳ ①❶T

❀ ❩✶ ✑
✖✶

❞
❳❶T❀

❙◗ ✑ ✶

❞
①❶ ①❶T

❀ ◗ ✑ ✶

❞
❶❶T❀

❙❍ ✑ ✶

❞
①❳ ①❳T

❀ ❍ ✑ ✶

❞
❳❳T❀

as well as the block matrices ①❆❀❆ ✷ R
▼✂▼ , ▼ ❉ ◆ ❈ ♥, defined by

①❆ ❉
✧
s✶I◆ ❈ s✷ ①◗ ①❏ T ❈ ♣①❏ T

✶①❏ ❈ ♣①❏ ✶ t✶I♥ ❈ t✷❙❍

★
❀
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❆ ❉
✔
s✶I◆ ❈ s✷◗ ❩T ❈ ♣❩T

✶

❩ ❈ ♣❩✶ t✶I♥ ❈ t✷❍

✕
❀

and the Stieltjes transforms ❙▼❞ ✳✘■ q✴ and ▼❞ ✳✘■ q✴, defined by

❙▼❞ ✳✘■ q✴ ❉
✶

❞
Tr➀✳ ①❆ � ✘I▼ ✴

�✶➁❀ ▼❞ ✳✘■ q✴ ❉
✶

❞
Tr➀✳❆ � ✘I▼ ✴

�✶➁✿(10.50)

The readers could keep in mind: a quantity with an overline corresponds to the

case when features and data are Gaussian, while a quantity without overline usually

corresponds to the case when features and data are on the sphere.

LEMMA 10.14. Let ✛ be a fixed polynomial. Let ✬✳①✴ ❉ ✛✳①✴�E●✘N✳✵❀✶✴➀✛✳●✴➁.

Consider the linear regime of Assumption 2. For any fixed q ✷ Q and for any

✘✵ ❃ ✵, we have

E

❤
sup

Im ✘✕✘✵
❥ ❙▼❞ ✳✘■ q✴ �▼❞ ✳✘■ q✴❥

✐
❉ ♦❞ ✳✶✴✿

PROOF.

Step 1. Show that the resolvent is stable with respect to nuclear norm perturba-

tion.

We define

⑩✳❆❀ ①❆❀ ✘✴ ❉▼❞ ✳✘■ q✴ � ❙▼❞ ✳✘■ q✴✿
Then we have deterministically

❥⑩✳❆❀ ①❆❀ ✘✴❥ ✔ ❥▼❞ ✳✘■ q✴❥ ❈ ❥ ❙▼❞ ✳✘■ q✴❥ ✔ ✹✳✥✶ ❈ ✥✷✴❂ Im ✘✿

Moreover, we have

❥⑩✳❆❀ ①❆❀ ✘✴❥ ❉ ❥Tr✳✳❆ � ✘I✴�✶✳❆ � ①❆✴✳ ①❆ � ✘I✴�✶✴❥❂❞
✔ ❦✳❆ � ✘I✴�✶✳ ①❆ � ✘I✴�✶❦op❦❆ � ①❆❦❄❂❞
✔ ❦❆ � ①❆❦❄❂✳❞✳Im ✘✴✷✴✿

Therefore, if we can show ❦❆ � ①❆❦❄❂❞ ❉ ♦❞❀P✳✶✴, then

E➀ sup
Im ✘✕✘✵

❥⑩✳❆❀ ①❆❀ ✘✴❥➁ ❉ ♦❞ ✳✶✴✿

Step 2. Show that ❦❆ � ①❆❦❄❂❞ ❉ ♦❞❀P✳✶✴.

Denote ❩✵ ❉ E●✘N✳✵❀✶✴➀✛✳●✴➁✶♥✶
T

◆ ❂
♣
❞ and ❩❄ ❉ ✬✳❳❶T❂

♣
❞✴❂

♣
❞ .

Then we have ❩ ❉ ❩✵ ❈❩❄, and

❆ � ①❆ ❉ s✷

✔
◗ � ①◗ ✵

✵ ✵

✕
❈ t✷

✔
✵ ✵

✵ ❍ � ❙❍
✕
❈ ♣

✧
✵ ❩T

✶ � ①❏ T

✶

❩✶ � ①❏ ✶ ✵

★

❈
✧

✵ ❩T

❄ � ①❏ T

❩❄ � ①❏ ✵

★
❈
✔
✵ ❩T

✵

❩✵ ✵

✕
✿
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Since q ❉ ✳s✶❀ s✷❀ t✶❀ t✷❀ ♣✴ is fixed, we have

✶

❞
❦❆ � ①❆❦❄ ✔ ❈

✔
✶♣
❞
❦ ①◗ �◗❦❋ ❈ ✶♣

❞
❦❙❍ �❍ ❦❋ ❈ ✶♣

❞
❦①❏ ✶ �❩✶❦❋

❈ ✶♣
❞
❦①❏ �❩❄❦❋ ❈ ✶

❞

✌✌✌✌✔ ✵ ❩T

✵

❩✵ ✵

✕✌✌✌✌
❄

✕
✿

✶

❞
❦❆ � ①❆❦❄ ✔ ❈

✔
✶♣
❞
❦ ①◗ �◗❦❋ ❈ ✶♣

❞
❦❙❍ �❍ ❦❋ ❈ ✶♣

❞
❦①❏ ✶ �❩✶❦❋

❈ ✶♣
❞
❦①❏ �❩❄❦❋ ❈ ✶

❞

✌✌✌✌✔ ✵ ❩T

✵

❩✵ ✵

✕✌✌✌✌
❄

✕
✿

The nuclear norm of the term involving ❩✵ can be easily bounded by

✶

❞

✌✌✌✌✔ ✵ ❩T

✵

❩✵ ✵

✕✌✌✌✌
❄

❉ ✶

❞✸❂✷
❥E●✘N✳✵❀✶✴➀✛✳●✴➁❥ ✁

✌✌✌✌✔ ✵ ✶◆ ✶
T

♥

✶♥✶
T

◆ ✵

✕✌✌✌✌
❄

❉ ♦❞ ✳✶✴✿

For the term ❙❍ �❍ , denoting❉① ❉ diag✳
♣
❞❂❦①①✶❦✷❀ ✿ ✿ ✿ ❀

♣
❞❂❦①①♥❦✷✴, we have

❦❙❍ �❍ ❦❋ ❂
♣
❞ ✔ ❦❙❍ �❍ ❦op ✔ ❦I♥ �❉①❦op❦❙❍ ❦op✳✶❈❦❉①❦op✴ ❉ ♦❞❀P✳✶✴❀

where we used the fact that ❦❉① � I♥❦op ❉ ♦❞❀P✳✶✴ and ❦❍ ❦op ❉ ❖❞❀P✳✶✴.

A similar argument shows that

❦ ①◗ �◗❦❋ ❂
♣
❞ ❉ ♦❞❀P✳✶✴❀ ❦①❏ ✶ �❩✶❦❋ ❂

♣
❞ ❉ ♦❞❀P✳✶✴✿

Step 3. Bound for ❦①❏ �❩❄❦❋ ❂
♣
❞ .

Define ①❩❄ ❉ ✬✳❉①
①❳ ①❶T

❂
♣
❞✴❂

♣
❞ . Define r✐ ❉

♣
❞❂❦①①✐❦✷. We have (for

✏✐❛ between r✐ and ✶)

①❩❄ � ①❏ ❉ �
✬✳r✐ ❤①①✐ ❀ ①✒❛✐❂

♣
❞✴❂

♣
❞ � ✬✳❤①①✐ ❀ ①✒❛✐❂

♣
❞✴❂

♣
❞
✁
✐✷➀♥➁❀❛✷➀◆ ➁

❉ �
✳r✐ � ✶✴✳❤①①✐ ❀ ①✒❛✐❂

♣
❞✴✬✵✳✏✐❛❤①①✐ ❀ ①✒❛✐❂

♣
❞✴❂

♣
❞
✁
✐✷➀♥➁❀❛✷➀◆ ➁

❉ ✳❉① � I♥✴①✬✳❸☞ ✳ ①❳ ①❶T
❂
♣
❞✴✴❂

♣
❞❀

where ❸ ❉ ✳✏✐❛✴✐✷➀♥➁❀❛✷➀◆ ➁ and ①✬✳①✴ ❉ ①✬✵✳①✴ (so ①✬ is a polynomial). It is easy

to see that

❦❉① � I♥❦op ❉ max
✐
❥r✐ � ✶❥ ❉ ❖❞❀P✳

♣
log ❞❂

♣
❞✴❀ ❦❸❦max ❉ ❖❞❀P✳✶✴❀

❦ ①❳ ①❶T
❂
♣
❞❦max ❉ ❖❞❀P✳

♣
log ❞✴✿
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Therefore, we have (denoting deg✳✬✴ to be the degree of the polynomial ✬, and

❈✳✬✴ to be a constant that only depends on ✬)

❦ ①❩❄ � ①❏❦❋ ❂
♣
❞ ❉ ❦✳❉① � I♥✴①✬✳❸☞ ✳ ①❳ ①❶T

❂
♣
❞✴✴❦❋ ❂❞

✔ ❦❉① � I♥❦op❦①✬✳❸☞ ✳ ①❳ ①❶T
❂
♣
❞✴✴❦❋ ❂❞

✔ ❈✳✬✴ ✁ ❦❉① � I♥❦op✳✶❈ ❦❸❦max❦ ①❳ ①❶T
❂
♣
❞❦max✴

deg✳✬✴

❉ ❖❞❀P✳✳log ❞✴deg✳✬✴❈✶❂
♣
❞✴ ❉ ♦❞❀P✳✶✴✿

This proves the lemma. �

10.5 Proof of Proposition 8.4

Step 1. Polynomial activation function ✛ .

First we consider the case when ✛ is a fixed polynomial with

E●✘N✳✵❀✶✴➀✛✳●✴●➁ ↕ ✵✿

Let ✬✳✉✴ ❉ ✛✳✉✴ � E➀✛✳●✴➁, and let ①♠❞ ✑ ✳ ①♠✶❀❞ ❀ ①♠✷❀❞ ✴ (whose definition is

given by equation (10.4) and (10.5)), and recall that ✥✶❀❞ ✦ ✥✶ and ✥✷❀❞ ✦ ✥✷
as ❞ ✦ ✶. By Lemma 10.1, together with the continuity of F✶❀F✷ with respect

to ✥✶❀ ✥✷, we have, for any ✘✵ ❃ ✵, that there exists ❈ ❉ ❈✳✘✵❀ q❀ ✥✶❀ ✥✷❀ ✬✴ and

err✳❞✴✦ ✵ such that for all ✘ ✷ C❈ with Im ✘ ✕ ✘✵,

❦ ①♠❞ � F✳ ①♠❞ ■ ✘✴❦✷ ✔ ❈ ✁ err✳❞✴✿(10.51)

By Lemma 10.2, there exists ✘✵ ❉ ✘✵✳q❀ ✥✶❀ ✥✷❀ ✬✴ ❃ ✵ such that for any ✘ ✷
C❈ with Im ✘ ✕ ✘✵, F✳ ✁ ■ ✘✴ is a continuous mapping from D✳✷✥✶❂✘✵✴✂D✳✷✥✷❂✘✵✴
to itself and has a unique fixed point♠✳✘✴ in the same domain. By Lemma 10.3(a),

we have ①♠❞ ✳✘✴ ✷ D✳✥✶❂✘✵✴✂D✳✥✷❂✘✵✴. Combining the above facts with equation

(10.51), we have

❦ ①♠❞ ✳✘✴ �♠✳✘✴❦✷ ❉ ♦❞ ✳✶✴ ✽✘ ✷ C❈❀ Im ✘ ✕ ✘✵✿
By the property of Stieltjes transform as in Lemma 10.3(c), we have

❦ ①♠❞ ✳✘✴ �♠✳✘✴❦✷ ❉ ♦❞ ✳✶✴ ✽✘ ✷ C❈✿

By the concentration result of Lemma 10.5, for ❙▼❞ ✳✘✴ ❉ ❞�✶Tr➀✳ ①❆ � ✘I▼ ✴
�✶➁

we also have

(10.52) E❥ ❙▼❞ ✳✘✴ �♠✳✘✴❥ ❉ ♦❞ ✳✶✴ ✽✘ ✷ C❈✿

Then we use Lemma 10.14 to transfer this property from ❙▼❞ to ▼❞ . Recall

the definition of the resolvent ▼❞ ✳✘■ q✴ in the case of a sphere in equation (8.8).

Combining Lemma 10.14 with equation (10.52), we have

(10.53) E❥▼❞ ✳✘✴ �♠✳✘✴❥ ❉ ♦❞ ✳✶✴ ✽✘ ✷ C❈✿
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Step 2. General activation function ✛ satisfying Assumption 1.

Next consider the case of a general function ✛ as in the theorem statement

satisfying Assumption 1. Fix ✧ ❃ ✵ and let ③✛ be a polynomial such that ❦✛ �
③✛❦▲✷✳✜❞ ✴ ✔ ✧, where ✜❞ is the marginal distribution of ❤①❀✒✐❂

♣
❞ for ①❀✒ ✘iid

Unif✳S❞�✶✳
♣
❞✴✴. In order to construct such a polynomial, consider the expansion

of ✛ in the orthogonal basis of Hermite polynomials

✛✳①✴ ❉
✶❳
❦❉✵

✖❦

❦❾
He❦✳①✴✿(10.54)

Since this series converges in ▲✷✳✖●✴, we can choose ①❦ ❁ ✶ such that, letting

③✛✳①✴ ❉ P①❦
❦❉✵✳✖❦❂❦❾✴He❦✳①✴, we have ❦✛ � ③✛❦✷

▲✷✳✖●✴
✔ ✧❂✷. By Lemma 10.6

(cf. equation (10.16)) we therefore have ❦✛ � ③✛❦✷
▲✷✳✜❞ ✴

✔ ✧ for all ❞ large enough.

Write ✖❦✳③✛✴ ❉ E➀③✛✳●✴He❦✳●✴➁ and ✖❄✳③✛✴✷ ❉
P①❦

❦❉✷ ✖✷
❦
❂❦❾. Notice that, by

construction we have ✖✵✳③✛✴ ❉ ✖✵✳✛✴, ✖✶✳③✛✴ ❉ ✖✶✳✛✴ and ❥✖❄✳③✛✴✷ �✖❄✳✛✴
✷❥ ✔

✧. Let ③♠✶❀❞ ❀ ③♠✷❀❞ be the Stieltjes transforms associated to activation ③✛ , and ③♠✶❀ ③♠✷

be the solution of the corresponding fixed point equation (8.15) (with ✖❄ ❉ ✖❄✳③✛✴
and ✖✶ ❉ ✖✶✳③✛✴), and ③♠ ❉ ③♠✶ ❈ ③♠✷. Denoting by ③❆ the matrix obtained by

replacing the ✛ in ❆ by ③✛ , and ③▼❞ ✳✘✴ ❉ ✳✶❂❞✴Tr➀✳ ③❆ � ✘I✴�✶➁. Step 1 of this

proof implies

E
☞☞ ③▼❞ ✳✘✴ � ③♠✳✘✴

☞☞ ❉ ♦❞ ✳✶✴ ✽✘ ✷ C❈✿(10.55)

Furthermore, by continuity of the solution of the fixed point equation with respect

to ✖❄❀ ✖✶ when Im ✘ ✕ ✘✵ for some large ✘✵ (as stated in Lemma 10.2), we have

for Im ✘ ✕ ✘✵,

❥ ③♠✳✘✴ �♠✳✘✴❥ ✔ ❈✳✘❀ q✴✧■(10.56)

equation (10.56) also holds for any ✘ ✷ C❈ by the property of the Stieltjes trans-

form as in Lemma 10.3 ✳❝✴.

Moreover, we have (for ❈ independent of ❞ , ✛ , ③✛ , and ✧ but dependent on ✘

and q)

E
✂☞☞▼❞ ✳✘✴ � ③▼❞ ✳✘✴

☞☞✄ ✔ ✶

❞
E
✂☞☞Tr➀✳❆ � ✘I✴�✶✳ ③❆ �❆✴✳ ③❆ � ✘I✴�✶➁

☞☞✄
✔ ✶

❞
E
✂❦✳ ③❆ � ✘I✴�✶✳❆ � ✘I✴�✶❦op❦ ③❆ �❆❦❄

✄
✔ ✂

✶❂
�
✘✷✵❞

✁✄ ✁ E➀❦ ③❆ �❆❦❄➁ ✔
✂
✶❂✳✘✷✵

♣
❞✴
✄ ✁ E❢❦ ③❆ �❆❦✷❋ ❣✶❂✷

✔ ❈✳✘❀ q✴ ✁ ❦✛ � ③✛❦▲✷✳✜❞ ✴✿
Therefore

lim sup
❞✦✶

E➀❥▼❞ ✳✘✴ � ③▼❞ ✳✘✴❥➁ ✔ ❈✳✘❀ q✴✧ ✽✘ ✷ C❈✿(10.57)
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Combining equation (10.55), (10.56), and (10.57), we obtain

lim sup
❞✦✶

E❥▼❞ ✳✘✴ �♠✳✘✴❥ ✔ ❈✳✘❀ q✴✧ ✽✘ ✷ C❈✿

Taking ✧✦ ✵ proves equation (8.16).

Step 3. Uniform convergence in compact sets (equation (8.17)).

Note ♠❞ ✳✘■ q✴ ❉ E➀▼❞ ✳✘■ q✴➁ is an analytic function on C❈. By Lemma

10.3(c), for any compact set ⑧ ✒ C❈, we have

lim
❞✦✶

✔
sup
✘✷⑧

❥E➀▼❞ ✳✘■ q✴➁ �♠✳✘■ q✴❥
✕
❉ ✵✿(10.58)

In the following, we show the concentration of ▼❞ ✳✘■ q✴ around its expectation

uniformly in the compact set ⑧ ✚ C❈. Define ▲ ❉ sup✘✷⑧✳✶❂✳Im ✘✴✷✴. Since

⑧ ✚ C❈ is a compact set, we have ▲ ❁ ✶, and ▼❞ ✳✘■ q✴ (as a function of ✘) is

▲-Lipschitz on ⑧. Moreover, for any ✧ ❃ ✵, there exists a finite set N ✳✧❀⑧✴ ✒ C❈
that is an ✧❂▲-covering of ⑧. That is, for any ✘ ✷ ⑧, there exists ✘❄ ✷ N ✳✧❀⑧✴

such that ❥✘ � ✘❄❥ ✔ ✧❂▲. Since ▼❞ ✳✘■ q✴ (as a function of ✘) is ▲-Lipschitz on ⑧,

we have

(10.59)

sup
✘✷⑧

inf
✘❄✷N ✳✧❀⑧✴

❥▼❞ ✳✘■ q✴ �▼❞ ✳✘❄■ q✴❥ ✔ ✧❀

sup
✘✷⑧

inf
✘❄✷N ✳✧❀⑧✴

❥E➀▼❞ ✳✘■ q✴➁ � E➀▼❞ ✳✘❄■ q✴➁❥ ✔ ✧✿

By the concentration of ▼❞ ✳✘❄■ q✴ to its expectation (which is the spherical version

of Lemma 10.5), we have

❥▼❞ ✳✘❄■ q✴ � E➀▼❞ ✳✘❄■ q✴➁❥ ❉ ♦❞❀P✳✶✴❀

and since N ✳✧❀⑧✴ is a finite set, we have

sup
✘❄✷N ✳✧❀⑧✴

❥▼❞ ✳✘❄■ q✴ � E➀▼❞ ✳✘❄■ q✴➁❥ ❉ ♦❞❀P✳✶✴✿(10.60)

This high probability bound will become an expectation bound by the uniform

boundedness of ▼❞ ✳✘■ q✴ for ✘ in any compact domain. That is, we have

E

✔
sup

✘❄✷N ✳✧❀⑧✴

❥▼❞ ✳✘❄■ q✴ � E➀▼❞ ✳✘❄■ q✴➁❥
✕
❉ ♦❞ ✳✶✴✿(10.61)

Combining equations (10.58), (10.59), and (10.61), we have

E

✔
sup
✘✷⑧

❥▼❞ ✳✘■ q✴ �♠✳✘■ q✴❥
✕
✔ ✧❈ ♦❞ ✳✶✴✿

Letting ✧✦ ✵ proves equation (8.17). This concludes the proof of Proposition 8.4.

11 Proof of Proposition 8.5

In Section 11.1 we state and prove some lemmas that are used in the proof of

Proposition 8.5. We prove Proposition 8.5 in Section 11.2.
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11.1 Properties of the Stieltjes transforms and the log determinant

The first lemma concerns the behavior of the partial Stieltjes transforms♠✶ and

♠✷ when Im ✘ ✦✶.

LEMMA 11.1. For ✘ ✷ C❈ and q ✷ Q (cf. equation (8.13), let ♠✶✳✘■ q✴❀♠✷✳✘■ q✴
be defined as the analytic continuation of a solution to equation (8.15) as defined

in Proposition 8.4. Denote ✘ ❉ ✘r ❈ i❑ for some fixed ✘r ✷ R. Then we have

lim
❑✦✶

❥♠✶✳✘■ q✴✘ ❈ ✥✶❥ ❉ ✵❀ lim
❑✦✶

❥♠✷✳✘■ q✴✘ ❈ ✥✷❥ ❉ ✵✿

PROOF. Define ①♠✶ ❉ �✥✶❂✘, ①♠✷ ❉ �✥✷❂✘, ①♠ ❉ ✳ ①♠✶❀ ①♠✷✴
T, and ♠ ❉

✳♠✶❀ ♠✷✴
T. Let F✶❀F✷ be defined as in equation (8.14), F be defined as in equation

(10.8), and H✶ defined as in equation (10.11). By simple calculus we can see that

lim
❑✦✶

H✶✳ ①♠✴ ❉ s✷✿

This gives

✘➀ ①♠✶ � F✶✳ ①♠■ ✘✴➁ ❉ ✥✶
s✶ ❈ H✶✳ ①♠✴

✘ � s✶ � H✶✳ ①♠✴
✦ ✵ as ❑ ✦✶✿

As a result, we have ✘❦ ①♠ � F✳ ①♠■ ✘✴❦✷ ✦ ✵ as ❑ ✦ ✶. Moreover, by Lemma

10.2, there exists sufficiently large ✘✵ so that for any Im ✘ ❉ ❑ ✕ ✘✵, F✳♠■ ✘✴ is
✶
✷

-Lipschitz on domain♠ ✷ D✳✷✥✶❂✘✵✴✂D✳✷✥✷❂✘✵✴. Therefore, for Im ✘ ❉ ❑ ✕
✘✵, we have (note we have ♠ ❉ F✳♠■ ✘✴)

❦ ①♠ �♠❦✷ ❉ ❦F✳ ①♠■ ✘✴ � F✳♠■ ✘✴❈ ①♠ � F✳ ①♠■ ✘✴❦✷
✔ ❦F✳ ①♠■ ✘✴ � F✳♠■ ✘✴❦✷ ❈ ❦①♠ � F✳ ①♠■ ✘✴❦✷
✔ ❦①♠ �♠❦✷❂✷❈ ❦①♠ � F✳ ①♠■ ✘✴❦✷❀

so that

✘❦ ①♠ �♠❦✷ ✔ ✷✘❦ ①♠ � F✳ ①♠■ ✘✴❦✷ ✦ ✵ as ❑ ✦✶✿
This proves the lemma. �

The next lemma concerns the behavior of the log-determinants when Im ✘ ✦✶.

LEMMA 11.2. Follow the notations and settings of Proposition 8.5. For any fixed q,

we have

(11.1)

lim
❑✦✶

sup
❞✕✶

E❥●❞ ✳i❑■ q✴ � ✳✥✶ ❈ ✥✷✴Log✳�i❑✴❥ ❉ ✵❀

lim
❑✦✶

❥❣✳i❑■ q✴ � ✳✥✶ ❈ ✥✷✴Log✳�i❑✴❥ ❉ ✵✿

PROOF.

Step 1. Asymptotics of ●❞ ✳i❑■ q✴. First we look at the real part. We have
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✔
✶

▼

▼❳
✐❉✶

Log✳✕✐ ✳❆✴ � i❑✴ � Log✳�i❑✴

✕☞☞☞☞
❉ ✶

✷▼

▼❳
✐❉✶

log✳✶❈ ✕✐ ✳❆✴
✷❂❑✷✴ ✔ ✶

✷▼❑✷

▼❳
✐❉✶

✕✐ ✳❆✴
✷ ❉ ❦❆❦✷❋

✷▼❑✷
✿

For the imaginary part, we have☞☞☞☞ Im

✔
✶

▼

▼❳
✐❉✶

Log✳✕✐ ✳❆✴ � i❑✴ � Log✳�i❑✴

✕☞☞☞☞
❉
☞☞☞☞ ✶▼

▼❳
✐❉✶

arctan✳✕✐ ✳❆✴❂❑✴

☞☞☞☞ ✔ ✶

▼❑

▼❳
✐❉✶

❥✕✐ ✳❆✴❥ ✔
❦❆❦❋
▼ ✶❂✷❑

✿

Combining the bound of the real part and the imaginary part, we have

E

☞☞☞☞ ✶▼
▼❳
✐❉✶

Log✳✕✐ ✳❆✴ � i❑✴ � Log✳�i❑✴

☞☞☞☞ ✔ E➀❦❆❦✷❋ ➁
✷▼❑✷

❈ E➀❦❆❦✷❋ ➁✶❂✷
▼ ✶❂✷❑

✿

Note that

✶

▼
E➀❦❆❦✷❋ ➁ ✔

✶

▼

�
E❦s✶I◆ ❈ s✷◗❦✷❋ ❈ E❦t✶I♥ ❈ t✷❍ ❦✷❋
❈ ✷E➀❦❩ ❈ ♣❩✶❦✷❋ ➁

✁ ❉ ❖❞ ✳✶✴✿

This proves equation (11.1).

Step 2. Asymptotics of ❣✳i❑■ q✴.
Recall the definition of ❸ as given in equation (8.18). Define

(11.2)

❸✶✳➫✶❀ ➫✷■ q✴ ✑ log➀✳s✷➫✶ ❈ ✶✴✳t✷➫✷ ❈ ✶✴ � ✖✷✶✳✶❈ ♣✴✷➫✶➫✷➁

� ✖✷❄➫✶➫✷ ❈ s✶➫✶ ❈ t✶➫✷❀

❸✷✳✘❀ ➫✶❀ ➫✷✴ ✑ �✥✶ log✳➫✶❂✥✶✴ � ✥✷ log✳➫✷❂✥✷✴ � ✘✳➫✶ ❈ ➫✷✴

� ✥✶ � ✥✷✿
Then we have

(11.3) ❸✳✘❀ ➫✶❀ ➫✷■ q✴ ❉ ❸✶✳➫✶❀ ➫✷■ q✴❈❸✷✳✘❀ ➫✶❀ ➫✷✴✿

It is easy to see that for any fixed q, we have

lim
➫✶❀➫✷✦✵

❸✶✳➫✶❀ ➫✷❀ q✴ ❉ ✵✿

By Lemma 11.1, we have lim❑✦✶♠✶✳i❑✴ ❉ ✵ and lim❑✦✶♠✷✳i❑✴ ❉ ✵ (for

notational simplicity, here and below, we suppressed the argument q in ♠✶ and

♠✷), which gives

(11.4) lim
❑✦✶

❸✶✳♠✶✳i❑✴❀♠✷✳i❑✴❀ q✴ ❉ ✵✿
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Moreover, we have

❥❸✷✳i❑❀♠✶✳i❑✴❀♠✷✳i❑✴✴ �❸✷✳i❑❀ i✥✶❂❑❀ i✥✷❂❑✴❥
✔ ✥✶❥ log✳�i❑♠✶✳i❑✴❂✥✶✴❥ ❈ ✥✷❥ log✳�i❑♠✷✳i❑✴❂✥✷✴❥
❈ ❥i❑♠✶✳i❑✴❈ ✥✶❥ ❈ ❥i❑♠✷✳i❑✴❈ ✥✷❥✿

By Lemma 11.1 again, we have

lim
❑✦✶

❥i❑♠✶✳i❑✴❈ ✥✶❥ ❉ lim
❑✦✶

❥i❑♠✷✳i❑✴❈ ✥✷❥ ❉ ✵❀

and hence

(11.5) lim
❑✦✶

❥❸✷✳i❑❀♠✶✳i❑✴❀♠✷✳i❑✴✴ �❸✷✳i❑❀ i✥✶❂❑❀ i✥✷❂❑✴❥ ❉ ✵✿

Combining equation (11.3), (11.4), and (11.5), we get

lim
❑✦✶

❥❸✳✘❀♠✶✳i❑✴❀♠✷✳i❑✴■ q✴ �❸✷✳i❑❀ i✥✶❂❑❀ i✥✷❂❑✴❥ ❉ ✵✿

Finally, by the definition of ❣ as in equation (8.19) and noting that we have

❸✷✳i❑❀ i✥✶❂❑❀ i✥✷❂❑✴ ❉ ✳✥✶ ❈ ✥✷✴Log✳�i❑✴, this proves the lemma. �

Next, we give some uniform upper bounds on the difference of derivatives of

●❞ and ❣.

LEMMA 11.3. Follow the notations and settings of Proposition 8.5. For fixed ✉ ✷
R❈, we have

lim sup
❞✦✶

sup
q✷R✺

E❦rq●❞ ✳i✉■ q✴ � rq❣✳i✉■ q✴❦✷ ❁✶❀

lim sup
❞✦✶

sup
q✷R✺

E❦r✷
q●❞ ✳i✉■ q✴ � r✷

q❣✳i✉■ q✴❦op ❁✶❀

lim sup
❞✦✶

sup
q✷R✺

E❦r✸
q●❞ ✳i✉■ q✴ � r✸

q❣✳i✉■ q✴❦op ❁✶✿

PROOF. Define q ❉ ✳s✶❀ s✷❀ t✶❀ t✷❀ ♣✴ ✑ ✳q✶❀ q✷❀ q✸❀ q✹❀ q✺✴, and

❙ ✶ ❉
✔

I◆ ✵

✵ ✵

✕
❀ ❙ ✷ ❉

✔
◗ ✵

✵ ✵

✕
❀ ❙ ✸ ❉

✔
✵ ✵

✵ I♥

✕
❙ ✹ ❉

✔
✵ ✵

✵ ❍

✕
❀ ❙ ✺ ❉

✔
✵ ❩T

✶

❩✶ ✵

✕
✿

Then by the bound on the operator norm of Wishart matrix [5], for any fixed ❦ ✷ N,

we have

lim sup
❞✦✶

sup
✐✷➀✺➁

E➀❦❙ ✐❦✷❦op ➁ ❁✶✿

Moreover, define ❘ ❉ ✳❆ � i✉I▼ ✴
�✶. Then we have almost surely supq ❦❘❦op ✔

✶❂✉.
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Therefore

sup
q

E❥❅q✐●❞ ✳i✉■ q✴❥ ❉ sup
q

✶

❞
E❥Tr✳❘❙ ✐ ✴❥ ✔ sup

q

✶

✉
E➀❦❙ ✐❦op➁ ❉ ❖❞ ✳✶✴❀

sup
q

E❥❅✷q✐ ❀q❥●❞ ✳i✉■ q✴❥ ❉ sup
q

✶

❞
E❥Tr✳❘❙ ✐❘❙❥ ✴❥

✔ sup
q

✶

✉✷
✳E➀❦❙ ✐❦✷op➁E❦❙❥ ❦✷op➁✴

✶❂✷ ❉ ❖❞ ✳✶✴❀

sup
q

E❥❅✸q✐ ❀q❥ ❀q❧●❞ ✳i✉■ q✴❥ ❉ sup
q

✶

❞

✂
E❥Tr✳❘❙ ✐❘❙❥❘❙ ❧ ✴❥ ❈ E❥Tr✳❘❙ ✐❘❙ ❧❘❙❥ ✴❥

✄
✔ ✷ sup

q

✶

✉✸

✂
E➀❦❙ ✐❦✹op➁E➀❦❙❥ ❦✹op➁E➀❦❙ ❧❦✹op➁

✄✶❂✹ ❉ ❖❞ ✳✶✴✿

Similarly, we can show that for fixed ✉ ❃ ✵, we have supq✷R✺ ❦r❥
q❣✳i✉■ q✴❦ ❁✶

for ❥ ❉ ✶❀ ✷❀ ✸. The lemma holds by the following inequality:

lim sup
❞✦✶

sup
q✷R✺

E❦r❥
q●❞ ✳i✉■ q✴ � r❥

q❣✳i✉■ q✴❦

✔ lim sup
❞✦✶

sup
q✷R✺

✂
E❦r❥

q●❞ ✳i✉■ q✴❦ ❈ ❦r❥
q❣✳i✉■ q✴❦

✄
❁✶

for ❥ ❉ ✶❀ ✷❀ ✸. �

Finally, we show that the derivatives of a function in a region can be upper-

bounded by the function value and the second derivatives of the function in the

region.

LEMMA 11.4. Let ❢ ✷ ❈ ✷✳➀❛❀ ❜➁✴. Then we have

sup
①✷➀❛❀❜➁

❥❢ ✵✳①✴❥ ✔
☞☞☞☞❢ ✳❛✴ � ❢ ✳❜✴❛ � ❜

☞☞☞☞❈ ✶

✷
sup

①✷➀❛❀❜➁
❥❢ ✵✵✳①✴❥ ✁ ❥❛ � ❜❥✿

As a consequence, letting ❢ ✷ ❈ ✷✳B❞ ✳✵❀ ✷r✴✴ where B
❞ ✳✵❀ r✴ ❉ ❢① ✷ R

❞ ❲
❦①❦✷ ✔ r❣, we have

sup
①✷B✳✵❀r✴

❦r❢ ✳①✴❦✷ ✔ r�✶ sup
①✷B✳✵❀✷r✴

❥❢ ✳①✴❥ ❈ ✷r sup
①✷B✳✵❀✷r✴

❦r✷❢ ✳①✴❦op✿

The proof of Lemma 11.4 is elementary and simply follows from Taylor expan-

sion.

11.2 Proof of Proposition 8.5

By the expression of ❸ in equation (8.18), we have

❅➫✶❸✳✘❀ ➫✶❀ ➫✷■ q✴ ❉
s✷✳t✷➫✷ ❈ ✶✴ � ✖✷

✶✳✶❈ ♣✴✷➫✷

✳s✷➫✶ ❈ ✶✴✳t✷➫✷ ❈ ✶✴ � ✖✷
✶✳✶❈ ♣✴✷➫✶➫✷

� ✖✷
❄➫✷ ❈ s✶ � ✥✶❂➫✶ � ✘❀
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❅➫✷❸✳✘❀ ➫✶❀ ➫✷■ q✴ ❉
t✷✳s✷➫✶ ❈ ✶✴ � ✖✷✶✳✶❈ ♣✴✷➫✶

✳s✷➫✶ ❈ ✶✴✳t✷➫✷ ❈ ✶✴ � ✖✷✶✳✶❈ ♣✴✷➫✶➫✷

� ✖✷❄➫✶ ❈ s✷ � ✥✷❂➫✷ � ✘✿
By fixed point equation (8.15) with F✶❀F✷ defined in (8.14), we obtain that

r✳➫✶❀➫✷✴❸✳✘❀ ➫✶❀ ➫✷■ q✴❥✳➫✶❀➫✷✴❉✳♠✶✳✘■q✴❀♠✷✳✘■q✴✴ ❉ ✵✿

As a result, by the definition of ❣ given in equation (8.19), and by formula for

implicit differentiation, we have

d

d✘
❣✳✘■ q✴ ❉ �♠✳✘■ q✴✿

Hence, for any ✘ ✷ C❈ and ❑ ✷ R and compact continuous path ✣✳✘❀ i❑✴ that

connects ✘ and i❑, we have

❣✳✘■ q✴ � ❣✳i❑■ q✴ ❉
❩
✣✳✘❀i❑✴

♠✳✑■ q✴d✑✿(11.6)

By Proposition 8.2, for any ✘ ✷ C❈ and ❑ ✷ R, we have

●❞ ✳✘■ q✴ �●❞ ✳i❑■ q✴ ❉
❩
✣✳✘❀i❑✴

▼❞ ✳✑■ q✴d✑✿(11.7)

Combining equation (11.7) with equation (11.6), we get

(11.8)

E➀❥●❞ ✳✘■ q✴ � ❣✳✘■ q✴❥➁

✔
❩
✣✳✘❀i❑✴

E❥▼❞ ✳✑■ q✴ �♠✳✑■ q✴❥d✑❈ E❥●❞ ✳i❑■ q✴ � ❣✳i❑■ q✴❥✿

By Proposition 8.4, we have

lim
❞✦✶

❩
✣✳✘❀i❑✴

E❥▼❞ ✳✑■ q✴ �♠✳✑■ q✴❥d✑ ❉ ✵✿(11.9)

By Lemma 11.2, we have

lim
❑✦✶

sup
❞✕❞✵

E❥●❞ ✳i❑■ q✴ � ❣✳i❑■ q✴❥ ❉ ✵✿(11.10)

Combining equations (11.8), (11.9), and (11.10), we get equation (8.20).

For fixed ✘ ✷ C❈, define ❊❞ ✳q✴ ❉ ●❞ ✳✘❀ q✴ � ❣✳✘■ q✴. By Lemma 11.4, we

have

sup
q✷B✳✵❀✧✴

❦r❊❞ ✳q✴❦✷

✔ ✧�✶ sup
q✷B✳✵❀✷✧✴

❥❊❞ ✳q✴❥ ❈ ✷✧ sup
q✷B✳✵❀✷✧✴

❦r✷❊❞ ✳q✴❦op✿
(11.11)

By equation (8.20), Lemma 11.3, and the covering number argument (similar to

Step 3 in Section 10.5), we get that for any compact region Q❄, there is

lim
❞✦✶

E

❤
sup
q✷Q❄

❥❊❞ ✳q✴❥
✐
❉ ✵✿
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Taking Q❄ ❉ B✳✵❀ ✷✧✴, by equation (11.11) and Lemma 11.3 again, there exists

some constant ❈ such that

lim sup
❞✦✶

E

❤
sup

q✷B✳✵❀✧✴

❦r❊❞ ✳q✴❦✷
✐
✔ ❈✧✿

Sending ✧ ✦ ✵ gives equation (8.21). By a similar argument we get equation

(8.22). This finishes the proof of Proposition 8.5.

12 Proof of Theorem 5.7, 5.9, and 5.11

12.1 Proof of Theorem 5.7

To prove this theorem, we just need to show that

lim
◆✕✦✵

B✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ❉ Brless✳✏❀ ✥✶❀ ✥✷✴❀

lim
◆✕✦✵

V ✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ❉ Vrless✳✏❀ ✥✶❀ ✥✷✴✿

More specifically, we just need to show that the formula for ✤ defined in equation

(5.8) as ✕ ✦ ✵ coincides with the formula for ✤ defined in equation (5.14). By

the relationship of ✤ and ♠✶♠✷ as per equation (8.31), we just need to show the

lemma below.

LEMMA 12.1. Let Assumptions 1 and 2 hold. For fixed ✘ ✷ C❈, let ♠✶✳✘■✥✶❀ ✥✷✴
and ♠✷✳✘■✥✶❀ ✥✷✴ be defined by

(12.1)

♠✶✳✘■✥✶❀ ✥✷✴

❉ lim
❞✦✶❀◆❂❞✦✥✶❀♥❂❞✦✥✷

✶

❞
E❢Tr➀✶❀◆ ➁➀✳➀✵❀❩

T■❩ ❀ ✵➁ � ✘I▼ ✴
�✶➁❣❀

♠✷✳✘■✥✶❀ ✥✷✴

❉ lim
❞✦✶❀◆❂❞✦✥✶❀♥❂❞✦✥✷

✶

❞
E❢Tr➀◆❈✶❀▼➁➀✳➀✵❀❩

T■❩ ❀ ✵➁ � ✘I▼ ✴
�✶➁❣✿

By Proposition 8.4 this is equivalent to♠✶✳✘■✥✶❀ ✥✷✴ and♠✷✳✘■✥✶❀ ✥✷✴ being the

analytic continuation of the solution to equation (8.15) as defined in Proposition

8.4, when q ❉ ✵. Defining ✥ ❉ min✳✥✶❀ ✥✷✴, we have

(12.2)

lim
✉✦✵

➀♠✶✳i✉■✥✶❀ ✥✷✴♠✷✳i✉■✥✶❀ ✥✷✴➁

❉ � ➀✳✥✏
✷ � ✏✷ � ✶✴✷ ❈ ✹✏✷✥➁✶❂✷ ❈ ✳✥✏✷ � ✏✷ � ✶✴

✷✖✷❄✏
✷

✿

PROOF. In the following, we consider the case ✥✷ ❃ ✥✶. The proof for the

case ✥✷ ❁ ✥✶ is the same, and the case ✥✶ ❉ ✥✷ is simpler. By Proposition 8.4,

♠✶ ❉ ♠✶✳i✉✴ ❉ ♠✶✳i✉■✥✶❀ ✥✷✴ and ♠✷ ❉ ♠✷✳i✉✴ ❉ ♠✷✳i✉■✥✶❀ ✥✷✴ must satisfy
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equation (8.15) for ✘ ❉ i✉ and q ❉ ✵. A reformulation for equation (8.15) for

q ❉ ✵ yields

�✖✷✶♠✶♠✷
✶ � ✖✷✶♠✶♠✷

� ✖✷❄♠✶♠✷ � ✥✶ � i✉ ✁♠✶ ❉ ✵❀(12.3)

�✖✷✶♠✶♠✷
✶ � ✖✷✶♠✶♠✷

� ✖✷❄♠✶♠✷ � ✥✷ � i✉ ✁♠✷ ❉ ✵✿(12.4)

Defining ♠✵✳i✉✴ ❉ ♠✶✳i✉✴♠✷✳i✉✴. Then ♠✵ must satisfy the equation

�✉✷♠✵ ❉
✒ �✖✷✶♠✵
✶ � ✖✷✶♠✵

� ✖✷❄♠✵ � ✥✶
✓✒ �✖✷✶♠✵

✶ � ✖✷✶♠✵
� ✖✷❄♠✵ � ✥✷

✓
✿

Note that we must have ❥♠✵✳i✉✴❥ ✔ ❥♠✶✳i✉✴❥ ✁ ❥♠✷✳i✉✴❥ ✔ ✥✶✥✷❂✉
✷, and hence

❥✉✷♠✵❥ ❉ ❖✉✳✶✴ (as ✉✦ ✵). This implies that

�✖✷✶♠✵
✶ � ✖✷✶♠✵

� ✖✷❄♠✵ ❉ ❖✉✳✶✴❀

and hence♠✵ ❉ ❖✉✳✶✴. Taking the difference between equation (12.3) and (12.4),

we get

(12.5) ♠✷ �♠✶ ❉ �✳✥✷ � ✥✶✴❂✳i✉✴✿
This implies one of♠✶ and♠✷ should be of order ✶❂✉ and the other one should be

of order ✉ as ✉✦ ✵.

By definition of ♠✶ and ♠✷ in equation (12.1), we have

♠✶✳i✉✴ ❉ i✉ lim
❞✦✶❀◆❂❞✦✥✶❀♥❂❞✦✥✷

✶

❞
E❢Tr➀✳❩T❩ ❈ ✉✷I◆ ✴

�✶➁❣❀

♠✷✳i✉✴ ❉ i✉ lim
❞✦✶❀◆❂❞✦✥✶❀♥❂❞✦✥✷

✶

❞
E❢Tr➀✳❩❩T ❈ ✉✷I◆ ✴

�✶➁❣✿

When ✥✷ ❃ ✥✶ (i.e., ♥ ❃ ◆ ), ✳❩❩T ❈ ✉✷I◆ ✴ has ✳♥ � ◆✴ eigenvalues that are

✉✷, and therefore we must have ♠✷✳i✉✴ ❉ ⑧✉✳✶❂✉✴. Hence ♠✶✳i✉✴ ❉ ❖✉✳✉✴.

Moreover, when ✉ ❃ ✵, ♠✶✳i✉✴ and ♠✷✳i✉✴ are purely imaginary, and

Im♠✶✳i✉✴❀ Im♠✷✳i✉✴ ❃ ✵✿

This implies that ♠✵✳i✉✴ must be a real number that is nonpositive.

By equation (12.3) and lim✉✦✵ i✉ ✁ ♠✶✳i✉✴ ❉ ✵, all the accumulation points of

♠✶✳i✉✴♠✷✳i✉✴ as ✉✦ ✵ should satisfy the quadratic equation

�✖✷✶♠❄
✶ � ✖✷✶♠❄

� ✖✷❄♠❄ � ✥✶ ❉ ✵✿

Note that the above equation has only one nonpositive solution, and♠✵✳i✉✴ for any

✉ ❃ ✵ must be nonpositive. Therefore lim✉✦✵♠✶✳i✉✴♠✷✳i✉✴ must exist and be

the nonpositive solution of the above quadratic equation. The right-hand side of

equation (12.2) gives the nonpositive solution of the above quadratic equation. �



72 S. MEI AND A. MONTANARI

12.2 Proof of Theorem 5.9

To prove this theorem, we just need to show that

lim
✥✶✦✶

B✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ❉ Bwide✳✏❀ ✥✷❀ ✕✴❀

lim
✥✶✦✶

V ✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ❉ Vwide✳✏❀ ✥✷❀ ✕✴✿

This follows by simple calculus and the lemma below.

LEMMA 12.2. Under the same condition of Lemma 12.1, we have

lim
✥✶✦✶

➀♠✶✳i✳✥✶✥✷✖
✷
❄✕✴

✶❂✷■✥✶❀ ✥✷✴♠✷✳i✳✥✶✥✷✖✷❄✕✴✶❂✷■✥✶❀ ✥✷✴➁

❉ � ➀✳✥✷✏
✷ � ✏✷ � ✳✕✥✷ ❈ ✶✴✴✷ ❈ ✹✏✷✥✷✳✕✥✷ ❈ ✶✴➁✶❂✷ ❈ ✳✥✷✏✷ � ✏✷ � ✳✕✥✷ ❈ ✶✴✴

✷✖✷❄✏
✷✳✕✥✷ ❈ ✶✴

✿

The proof of this lemma is similar to the proof of Lemma 12.1.

12.3 Proof of Theorem 5.11

To prove this theorem, we just need to show that

lim
✥✷✦✶

B✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ❉ Blsamp✳✏❀ ✥✶❀ ✕✴❀

lim
✥✷✦✶

V ✳✏❀ ✥✶❀ ✥✷❀ ✕✴ ❉ ✵✿

This follows by simple calculus and the lemma below (the statement of this lemma

is almost the same as that of Lemma 12.2, except that the roles of ✥✶ and ✥✷ are

exchanged).

LEMMA 12.3. Under the same condition of Lemma 12.1, we have

lim
✥✷✦✶

➀♠✶✳i✳✥✶✥✷✖
✷
❄✕✴

✶❂✷■✥✶❀ ✥✷✴♠✷✳i✳✥✶✥✷✖✷❄✕✴✶❂✷■✥✶❀ ✥✷✴➁

❉ � ➀✳✥✶✏
✷ � ✏✷ � ✳✕✥✶ ❈ ✶✴✴✷ ❈ ✹✏✷✥✶✳✕✥✶ ❈ ✶✴➁✶❂✷ ❈ ✳✥✶✏✷ � ✏✷ � ✳✕✥✶ ❈ ✶✴✴

✷✖✷❄✏
✷✳✕✥✶ ❈ ✶✴

✿

13 Proofs of Propositions 5.8 and 5.10

13.1 Proof of Proposition 5.8

Point (1). When ✥✶ ✦ ✵, we have ✤ ❉ ❖✳✥✶✴, so that E✶❀rless ❉ �✥✶✥✷ ❈
❖✳✥✷✶ ✴, E✷❀rless ❉ ❖✳✥✷✶ ✴ and E✵❀rless ❉ �✥✶✥✷ ❈❖✳✥✷✶ ✴.

Point (2). When ✥✶ ❉ ✥✷, substituting the expression for ✤ into E✵❀rless, we

can see that E✵❀rless✳✏❀ ✥✷❀ ✥✷✴ ❉ ✵. We also see that E✶❀rless✳✏❀ ✥✷❀ ✥✷✴ ↕ ✵ and

E✷❀rless✳✏❀ ✥✷❀ ✥✷✴ ↕ ✵.
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Point (3). When ✥✶ ❃ ✥✷, we have

lim
✥✶✦✶

E✵❀rless✳✏❀ ✥✶❀ ✥✷✴❂✥✶ ❉ ✳✥✷ � ✶✴✤✸✏✻ ❈ ✳✶ � ✸✥✷✴✤✷✏✹ ❈ ✸✥✷✤✏✷ � ✥✷❀

lim
✥✶✦✶

E✶❀rless✳✏❀ ✥✶❀ ✥✷✴❂✥✶ ❉ ✥✷✤✏
✷ � ✥✷❀

lim
✥✶✦✶

E✷❀rless✳✏❀ ✥✶❀ ✥✷✴❂✥✶ ❉ ✤✸✏✻ � ✤✷✏✹✿

Point (4). For ✥✶ ❃ ✥✷, taking the derivative of Brless and Vrless with respect to

✥✶, we have

❅✥✶Brless✳✏❀ ✥✶❀ ✥✷✴ ❉ ✳❅✥✶E✶❀rless ✁ E✵❀rless � ❅✥✶E✵❀rless ✁ E✶❀rless✴❂E
✷
✵❀rless❀

❅✥✶Vrless✳✏❀ ✥✶❀ ✥✷✴ ❉ ✳❅✥✶E✷❀rless ✁ E✵❀rless � ❅✥✶E✵❀rless ✁ E✷❀rless✴❂E
✷
✵❀rless✿

When ✥✶ ❃ ✥✷, the functions ❅✥✶E✶❀rless ✁E✵❀rless�❅✥✶E✵❀rless ✁E✶❀rless and ❅✥✶E✷❀rless ✁
E✵❀rless � ❅✥✶E✵❀rless ✁ E✷❀rless are functions of ✏ and ✥✷ and are independent of

✥✶ (note when ✥✶ ❃ ✥✷, ✤ is a function of ✥✷ and doesn’t depend on ✥✶).

Therefore, Brless✳✏❀ ✁ ❀ ✥✷✴ and Vrless✳✏❀ ✁ ❀ ✥✷✴ as functions of ✥✶ must be strictly

increasing, strictly decreasing, or constant on the interval ✥✶ ✷ ✳✥✷❀✶✴. How-

ever, we know Brless✳✏❀ ✥✷❀ ✥✷✴ ❉ Vrless✳✏❀ ✥✷❀ ✥✷✴ ❉✶, and Brless✳✏❀✶❀ ✥✷✴ and

Vrless✳✏❀✶❀ ✥✷✴ are finite. Therefore we must have that Brless and Vrless are strictly

decreasing on ✥✶ ✷ ✳✥✷❀✶✴.

13.2 Proof of Proposition 5.10

In Proposition 13.1 below, we give a more precise description of the behavior of

Rwide, which is stronger than Proposition 5.10.

PROPOSITION 13.1. Denote

❙Rwide✳✉❀ ✚❀ ✥✷✴ ❉
✥✷✚❈ ✉✷

✳✶❈ ✚✴✳✥✷ � ✷✉✥✷ ❈ ✉✷✥✷ � ✉✷✴
❀

✓✶✳✕❀ ✥✷❀ ✏✴ ❉ ✥✷✏
✷ � ✏✷ � ✕✥✷ � ✶❀

✓✷✳✕❀ ✥✷✴ ❉ ✕✥✷ ❈ ✶❀

✦✳✕❀ ✏❀ ✥✷✴ ❉ � ➀✓✶✳✕❀ ✥✷❀ ✏✴
✷ ❈ ✹✥✷✏✷✓✷✳✕❀ ✥✷✴➁✶❂✷ ❈ ✓✶✳✕❀ ✥✷❀ ✏✴

✷✓✷✳✕❀ ✥✷✴
❀

✦✵✳✏❀ ✥✷✴ ❉ � ➀✳✥✷✏
✷ � ✏✷ � ✶✴✷ ❈ ✹✥✷✏✷➁✶❂✷ ❈ ✳✥✷✏✷ � ✏✷ � ✶✴

✷
❀

✦✶✳✚❀ ✥✷✴ ❉ �✳✥✷✚ � ✚ � ✶✴❈ ➀✳✥✷✚ � ✚ � ✶✴
✷ ❈ ✹✥✷✚➁✶❂✷

✷
❀

✚❄✳✏❀ ✥✷✴ ❉
✦✷✵ � ✦✵

✳✶ � ✥✷✴✦✵ ❈ ✥✷
❀
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✏✷❄✳✚❀ ✥✷✴ ❉
✦✷
✶ � ✦✶

✦✶ � ✥✷✦✶ ❈ ✥✷
❀

✕❄✳✏❀ ✥✷❀ ✚✴ ❉
✏✷✥✷ � ✏✷✦✶✥✷ ❈ ✏✷✦✶ ❈ ✦✶ � ✦✷

✶

✳✦✷
✶ � ✦✶✴✥✷

✿

Fix ✏❀ ✥✷ ✷ ✳✵❀✶✴ and ✚ ✷ ✳✵❀✶✴. Then the function ✕ ✼✦ Rwide✳✚❀ ✏❀ ✥✷❀ ✕✴ is

either strictly increasing in ✕ or strictly decreasing first and then strictly increas-

ing.

Moreover, For any ✚ ❁ ✚❄✳✏❀ ✥✷✴, we have

arg min
◆✕✕✵

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ✵❀

min
◆✕✕✵

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ❙Rwide✳✦✵✳✏❀ ✥✷✴❀ ✚❀ ✥✷✴✿

For any ✚ ✕ ✚❄✳✏❀ ✥✷✴, we have

arg min
◆✕✕✵

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ✕❄✳✏❀ ✥✷❀ ✚✴❀

min
◆✕✕✵

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ❙Rwide✳✦✶✳✚❀ ✥✷✴❀ ✚❀ ✥✷✴✿

Minimizing over ✕ and ✏, we have

min
✏❀ ◆✕✕✵

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ❙Rwide✳✦✶✳✚❀ ✥✷✴❀ ✚❀ ✥✷✴✿

The minimizer is achieved for any ✏✷ ✕ ✏✷❄✳✚❀ ✥✷✴, and ✕ ❉ ✕❄✳✏❀ ✥✷❀ ✚✴.

In the following, we prove Proposition 13.1. It is easy to see that

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ①Rwide✳✦✳✕❀ ✏❀ ✥✷✴❀ ✚❀ ✥✷✴✿

Hence we study the properties of ❙Rwide first.

Step 1. Properties of the function ❙Rwide.

Calculating the derivative of ❙Rwide with respect to ✉, we have

❅✉ ❙Rwide✳✉❀ ✚❀ ✥✷✴ ❉ �✷✥✷
✉✷ ❈ ✳✥✷✚ � ✚ � ✶✴✉ � ✥✷✚

✳✶❈ ✚✴✳✥✷ � ✷✉✥✷ ❈ ✉✷✥✷ � ✉✷✴✷
✿

Note the equation

✉✷ ❈ ✳✥✷✚ � ✚ � ✶✴✉ � ✥✷✚ ❉ ✵

has one negative and one positive solution, and ✦✶ is the negative solution of the

above equation. Therefore, when ✉ ✔ ✦✶, ❙Rwide will be strictly decreasing in ✉;

when ✵ ✕ ✉ ✕ ✦✶, ❙Rwide will be strictly increasing in ✉. Therefore, we have

arg min
✉✷✳�✶❀✵➁

❙Rwide✳✉❀ ✚❀ ✥✷✴ ❉ ✦✶✳✚❀ ✥✷✴✿
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Step 2. Properties of the function Rwide.

For fixed ✳✏❀ ✚❀ ✥✷✴, we look at the minimizer over ✕ of the function

Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ ❉ ①Rwide✳✦✳ ◆✕❀ ✏❀ ✥✷✴❀ ✚❀ ✥✷✴✿

The minimum min ◆✕✕✵ Rwide✳✚❀ ✏❀ ◆✕❀✥✷✴ could differ from

min
✉✷✳�✶❀✵➁

❙Rwide✳✉❀ ✚❀ ✥✷✴❀

since

arg min
✉✷✳�✶❀✵➁

❙Rwide✳✉❀ ✚❀ ✥✷✴ ❉ ✦✶✳✚❀ ✥✷✴

may not be achievable by ✦✳✕❀ ✏❀ ✥✷✴ when ✕ ✕ ✵.

One observation is that ✦✳ ✁ ❀ ✥✷❀ ✏✴ as a function of ✕ is always negative and

increasing.

LEMMA 13.2. Let

✓✶✳✕❀ ✥✷❀ ✏✴ ❉ ✥✷✏
✷ � ✏✷ � ✕✥✷ � ✶❀ ✓✷✳✕❀ ✥✷✴ ❉ ✕✥✷ ❈ ✶❀

✦✳✕❀ ✏❀ ✥✷✴ ❉ � ➀✓✶✳✕❀ ✥✷❀ ✏✴
✷ ❈ ✹✥✷✏

✷✓✷✳✕❀ ✥✷✴➁
✶❂✷ ❈ ✓✶✳✕❀ ✥✷❀ ✏✴

✷✓✷✳✕❀ ✥✷✴
❀

Then for any ✥✷ ✷ ✳✵❀✶✴, ✏ ✷ ✳✵❀✶✴, and ✕ ❃ ✵, we have

✦✳✕❀✥✷❀ ✏✴ ❁ ✵❀ ❅ ◆✕✦✳✕❀✥✷❀ ✏✴ ❃ ✵✿

Let us for now assume that this lemma holds. When ✚ is such that ✦✶ ❃ ✦✵
(i.e., ✚ ❁ ✚❄✳✏❀ ✥✷✴), we can choose ✕ ❉ ✕❄✳✏❀ ✥✷❀ ✚✴ ❃ ✵ such that ✦✳✕❀ ✏❀ ✥✷✴ ❉
✦✳✕❄❀ ✏❀ ✥✷✴ ❉ ✦✶✳✚❀ ✥✷✴, and then

Rwide✳✚❀ ✏❀ ✕❄✳✏❀ ✥✷❀ ✚✴❀ ✥✷✴ ❉ ❙Rwide✳✦✶✳✚❀ ✥✷✴❀ ✚❀ ✥✷✴

gives the minimum of Rwide optimizing over ✕ ✷ ➀✵❀✶✴. When ✚ is such that

✦✶ ❁ ✦✵ (i.e., ✚ ❃ ✚❄✳✏❀ ✥✷✴), there is not a ✕ such that ✦✳✕❀ ✏❀ ✥✷✴ ❉ ✦✶✳✚❀ ✥✷✴

holds. Therefore, the best we can do is to take ✕ ❉ ✵, and then Rwide✳✚❀ ✏❀ ✵❀ ✥✷✴ ❉
①Rwide✳✦✵✳✚❀ ✥✷✴❀ ✚❀ ✥✷✴ gives the minimum of Rwide optimizing over ✕ ✷ ➀✵❀✶✴.

Finally, when we minimize Rwide✳✚❀ ✏❀ ✕❀ ✥✷✴ jointly over ✏ and ✕, note that as

long as ✏✷ ✕ ✏✷❄, we can choose ✕ ❉ ✕❄✳✏❀ ✥✷❀ ✚✴ ❃ ✵ such that ✦✳✕❀ ✏❀ ✥✷✴ ❉
✦✳✕❄❀ ✏❀ ✥✷✴ ❉ ✦✶✳✚❀ ✥✷✴, and then

Rwide✳✚❀ ✏❀ ✕❄✳✏❀ ✥✷❀ ✚✴❀ ✥✷✴ ❉ ❙Rwide✳✦✶✳✚❀ ✥✷✴❀ ✚❀ ✥✷✴

gives the minimum of Rwide optimizing over ✕ ✷ ➀✵❀✶✴ and ✏ ✷ ✳✵❀✶✴. This

proves Proposition 13.1.

In the following, we prove Lemma 13.2.

PROOF OF LEMMA 13.2. It is easy to see that ✦✳✕❀✥✷❀ ✏✴ ❁ ✵. In the follow-

ing, we show ❅ ◆✕✦✳✕❀✥✷❀ ✏✴ ❃ ✵.



76 S. MEI AND A. MONTANARI

Step 1. When ✥✷ ✕ ✶.

We have

❅ ◆✕✦ ❉ ✳✥✷ � ✶✴➀✓✷✶ ❈ ✹✥✷✏
✷✓✷➁

✶❂✷ ❈ ✳✕✥✷
✷ ❈ ✕✥✷ ❈ ✳✥✷ � ✶✴✷✏✷ ❈ ✥✷ ❈ ✶✴

✷✥✷
✷✕➀✕

✷✥✷
✷ ✓

✷
✶ ❈ ✹✕✷✥✸

✷ ✏
✷✓✷➁✶❂✷✓

✷
✷

✿

It is easy to see that when ✕ ❃ ✵ and ✥✷ ❃ ✶, both the denominator and numerator

are positive, so that ❅ ◆✕✦ ❃ ✵.

Step 2. When ✥✷ ❁ ✶.

Note ✦ is the negative solution of the quadratic equation

✳✕✥✷ ❈ ✶✴✦✷ ❈ ✳✥✷✏
✷ � ✏✷ � ✕✥✷ � ✶✴✦ � ✥✷✏

✷ ❉ ✵✿

Differentiating the quadratic equation with respect to ✕, we have

✥✷✦
✷ ❈ ✷✳✕✥✷ ❈ ✶✴✦❅ ◆✕✦ � ✥✷✦ ❈ ✳✥✷✏

✷ � ✏✷ � ✕✥✷ � ✶✴❅ ◆✕✦ ❉ ✵❀

which gives

❅ ◆✕✦ ❉ ✳✥✷✦ � ✥✷✦
✷✴❂➀✷✳✕✥✷ ❈ ✶✴✦ ❈ ✥✷✏

✷ � ✏✷ � ✕✥✷ � ✶➁
❉ ✳✥✷✦ � ✥✷✦

✷✴❂➀✳✕✥✷ ❈ ✶✴✳✷✦ � ✶✴❈ ✳✥✷ � ✶✴✏✷➁✿
We can see that, since ✦ ❁ ✵ when ✥✷ ❁ ✶, both the denominator and numerator

are negative. This proves ❅ ◆✕✦ ❃ ✵ when ✥✷ ❁ ✶. �

Appendix A Technical Background

In this section we introduce the technical background that will be useful for the

proofs in the sections below. In particular, we will use decompositions in (hyper-

)spherical harmonics on the S
❞�✶✳

♣
❞✴ and in orthogonal polynomials on the real

line. All of the properties listed below are classical: we will, however, prove a few

facts that are slightly less standard. We refer the reader to [18, 29, 34, 63] for more

information on these topics. Expansions in spherical harmonics have been used in

the past in the statistics literature, for instance in [9, 25].

A.1 Functional spaces over the sphere

For ❞ ✕ ✶, we let S❞�✶✳r✴ ❉ ❢① ✷ R
❞ ❲ ❦①❦✷ ❉ r❣ denote the sphere with

radius r in R
❞ . We will mostly work with the sphere of radius

♣
❞ , S❞�✶✳

♣
❞✴, and

will denote by ✌❞ the uniform probability measure on S
❞�✶✳

♣
❞✴. All functions

in the following are assumed to be elements of ▲✷✳S❞�✶✳
♣
❞✴❀ ✌❞ ✴, with scalar

product and norm denoted as ❤ ✁ ❀ ✁ ✐▲✷ and ❦✁❦▲✷ :

❤❢❀ ❣✐▲✷ ✑
❩
S❞�✶✳

♣
❞✴

❢ ✳①✴ ❣✳①✴ ✌❞ ✳d①✴✿(A.1)

For ❵ ✷ N✕✵, let ③❱❞❀❵ be the space of homogeneous harmonic polynomials of

degree ❵ on R
❞ (i.e., homogeneous polynomials q✳①✴ satisfying ⑩q✳①✴ ❉ ✵), and

denote by ❱❞❀❵ the linear space of functions obtained by restricting the polynomials
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in ③❱❞❀❵ to S
❞�✶✳

♣
❞✴. With these definitions, we have the orthogonal decomposi-

tion

▲✷✳S❞�✶✳
♣
❞✴❀ ✌❞ ✴ ❉

✶▼
❵❉✵

❱❞❀❵✿(A.2)

The dimension of each subspace is given by

dim✳❱❞❀❵✴ ❉ ❇✳❞❀ ❵✴ ❉ ✷❵❈ ❞ � ✷

❵

✥
❵❈ ❞ � ✸

❵ � ✶

✦
✿(A.3)

For each ❵ ✷ N✕✵, the spherical harmonics ❢❨ ✳❞✴

❵❥
❣✶✔❥✔❇✳❞❀❵✴ form an orthonormal

basis of ❱❞❀❵: ✡
❨

✳❞✴

❦✐
❀ ❨

✳❞✴
s❥

☛
▲✷ ❉ ✍✐❥ ✍❦s✿

Note that our convention is different from the more standard one, which defines

the spherical harmonics as functions on S
❞�✶✳✶✴. It is immediate to pass from one

convention to the other by a simple scaling. We will drop the superscript ❞ and

write ❨❵❀❥ ❉ ❨
✳❞✴

❵❀❥
whenever clear from the context.

We denote by P❦ the orthogonal projections to ❱❞❀❦ in ▲✷✳S❞�✶✳
♣
❞✴❀ ✌❞ ✴. This

can be written in terms of spherical harmonics as

P❦❢ ✳①✴ ✑
❇✳❞❀❦✴❳
❧❉✶

❤❢❀ ❨❦❧✐▲✷❨❦❧ ✳①✴✿(A.4)

Then for a function ❢ ✷ ▲✷✳S❞�✶✳
♣
❞✴✴, we have

❢ ✳①✴ ❉
✶❳
❦❉✵

P❦❢ ✳①✴ ❉
✶❳
❦❉✵

❇✳❞❀❦✴❳
❧❉✶

❤❢❀ ❨❦❧✐▲✷❨❦❧ ✳①✴✿

A.2 Gegenbauer polynomials

The ❵th Gegenbauer polynomial ◗
✳❞✴

❵
is a polynomial of degree ❵. Consistent

with our convention for spherical harmonics, we view ◗
✳❞✴

❵
as a function ◗

✳❞✴

❵
❲

➀�❞❀ ❞ ➁ ✦ R. The set ❢◗✳❞✴

❵
❣❵✕✵ forms an orthogonal basis on ▲✷✳➀�❞❀ ❞ ➁❀ ③✜❞ ✴

(where ③✜❞ is the distribution of ❤①✶❀①✷✐ when ①✶❀①✷ ✘i.i.d. Unif✳S❞�✶✳
♣
❞✴✴),

satisfying the normalization condition✡
◗

✳❞✴

❦
❀◗

✳❞✴
❥

☛
▲✷✳③✜❞ ✴ ❉

✶

❇✳❞❀ ❦✴
✍❥❦ ✿(A.5)

In particular, these polynomials are normalized so that ◗
✳❞✴

❵
✳❞✴ ❉ ✶. As above,

we will omit the superscript ❞ when clear from the context and write it as ◗❵ for

notational simplicity.

Gegenbauer polynomials are directly related to spherical harmonics as follows.

Fix ✈ ✷ S
❞�✶✳

♣
❞✴ and consider the subspace of ❱❵ formed by all functions that
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are invariant under rotations in R
❞ that keep ✈ unchanged. It is not hard to see

that this subspace has dimension 1, and coincides with the span of the function

◗
✳❞✴

❵
✳❤✈❀ ✁ ✐✴.

We will use the following properties of Gegenbauer polynomials

(1) For ①❀② ✷ S
❞�✶✳

♣
❞✴✡

◗
✳❞✴
❥ ✳❤①❀ ✁ ☛✴❀◗✳❞✴

❦
✳❤②❀ ✁ ✐✴✐

▲✷✳S❞�✶✳
♣
❞✴❀✌❞ ✴

❉ ✶

❇✳❞❀ ❦✴
✍❥❦◗

✳❞✴

❦
✳❤①❀②✐✴✿(A.6)

(2) For ①❀② ✷ S
❞�✶✳

♣
❞✴

◗
✳❞✴

❦
✳❤①❀②✐✴ ❉ ✶

❇✳❞❀ ❦✴

❇✳❞❀❦✴❳
✐❉✶

❨
✳❞✴

❦✐
✳①✴❨

✳❞✴

❦✐
✳②✴✿(A.7)

Note in particular that property 2 implies that, up to a constant, ◗
✳❞✴

❦
✳❤①❀②✐✴ is a

representation of the projector onto the subspace of degree-❦ spherical harmonics

✳P❦❢ ✴✳①✴ ❉ ❇✳❞❀ ❦✴

❩
S❞�✶✳

♣
❞✴

◗
✳❞✴

❦
✳❤①❀②✐✴ ❢ ✳②✴ ✌❞ ✳d②✴✿(A.8)

For a function ✛ ✷ ▲✷✳➀�
♣
❞❀
♣
❞➁❀ ✜❞ ✴ (where ✜❞ is the law of ❤①✶❀①✷✐❂

♣
❞

when ①✶❀①✷ ✘iid Unif✳S❞�✶✳
♣
❞✴✴), denoting its spherical harmonics coefficients

✕❞❀❦✳✛✴ by

✕❞❀❦✳✛✴ ❉
❩
➀�
♣
❞❀
♣
❞➁

✛✳①✴◗
✳❞✴

❦
✳
♣
❞①✴✜❞ ✳①✴❀(A.9)

we have that the following equation holds in the ▲✷✳➀�
♣
❞❀
♣
❞➁❀ ✜❞ ✴ sense:

(A.10) ✛✳①✴ ❉
✶❳
❦❉✵

✕❞❀❦✳✛✴❇✳❞❀ ❦✴◗
✳❞✴

❦
✳
♣
❞①✴✿

A.3 Hermite polynomials

The Hermite polynomials ❢He❦❣❦✕✵ form an orthogonal basis of ▲✷✳R❀ ✖●✴,

where ✖●✳d①✴ ❉ ❡�①✷❂✷d①❂
♣
✷✙ is the standard Gaussian measure, and He❦ has

degree ❦. We will follow the classical normalization (here and below, expectation

is with respect to ● ✘ N✳✵❀ ✶✴):

E
✟
He❥ ✳●✴He❦✳●✴

✠ ❉ ❦❾ ✍❥❦ ✿(A.11)

As a consequence, for any function ✛ ✷ ▲✷✳R❀ ✖●✴, we have the decomposition

✛✳①✴ ❉
✶❳
❦❉✶

✖❦✳✛✴

❦❾
He❦✳①✴❀ ✖❦✳✛✴ ✑ E

✟
✛✳●✴He❦✳●✴❣✿(A.12)
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The Hermite polynomials can be obtained as high-dimensional limits of the

Gegenbauer polynomials introduced in the previous section. Indeed, the Gegen-

bauer polynomials (up to a
♣
❞ scaling in domain) are constructed by Gram-

Schmidt orthogonalization of the monomials ❢①❦❣❦✕✵ with respect to the measure

✜❞ , while Hermite polynomials are obtained by Gram-Schmidt orthogonalization

with respect to ✖● . Since ✜❞ ✮ ✖● (here ✮ denotes weak convergence), it is

immediate to show that, for any fixed integer ❦,

lim
❞✦✶

Coeff❢◗✳❞✴

❦
✳
♣
❞①✴❇✳❞❀ ❦✴✶❂✷❣ ❉ Coeff

✚
✶

✳❦❾✴✶❂✷
He❦✳①✴

✛
✿(A.13)

Here and below, for P a polynomial, Coeff❢P✳①✴❣ is the vector of the coefficients

of P . As a consequence, for any fixed integer ❦, we have

✖❦✳✛✴ ❉ lim
❞✦✶

✕❞❀❦✳✛✴✳❇✳❞❀ ❦✴❦❾✴
✶❂✷❀(A.14)

where ✖❦✳✛✴ and ✕❞❀❦✳✛✴ are given in equations (A.12) and (A.9).

Appendix B Proof of Proposition 8.2

We can see equation (8.9) is trivially implied by the definition of ●❞ and ▼❞

as in equation (8.8). To prove equation (8.10), it is enough to prove the following

equations: for ✉ ✷ R, we have

(B.1)

❅♣●❞ ✳i✉■ ✵✴ ❉
✷

❞
Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✶❩T

✶❩
✁
❀

❅✷s✶❀t✶●❞ ✳i✉■ ✵✴ ❉ � ✶

❞
Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✷❩T❩

✁
❀

❅✷s✶❀t✷●❞ ✳i✉■ ✵✴ ❉ � ✶

❞
Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✷❩T❍❩

✁
❀

❅✷s✷❀t✶●❞ ✳i✉■ ✵✴ ❉ � ✶

❞
Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✶◗✳✉✷I◆ ❈❩T❩ ✴�✶❩T❩

✁
❀

❅✷s✷❀t✷●❞ ✳i✉■ ✵✴ ❉ � ✶

❞
Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✶◗✳✉✷I◆ ❈❩T❩ ✴�✶❩T❍❩

✁
✿

Now we prove equation (B.1). For any fixed q ✷ R
✺, ✘ ✷ C❈, and a fixed

instance ❆✳q✴, the determinant can be represented as

det✳❆✳q✴ � ✘I▼ ✴ ❉ r✳q❀ ✘✴ exp✳i✒✳q❀ ✘✴✴ for ✒✳q❀ ✘✴ ✷ ✳�✙❀ ✙➁✿
Without loss of generality, we assume for this fixed q and ✘ that ✒✳q❀ ✘✴ ↕ ✙ , and

then Log✳det✳❆✳q✴ � ✘I▼ ✴✴ ❉ log r✳q❀ ✘✴❈ i✒✳q❀ ✘✴ (when ✒✳q❀ ✘✴ ❉ ✙ , we use

another definition of Log notation, and the proof is the same). For this q, ✘ , and

❆✳q✴, there exists some integer ❦ ❉ ❦✳q❀ ✘✴ ✷ N such that

▼❳
✐❉✶

Log✳✕✐ ✳❆✳q✴✴ � ✘✴ ❉ Log det✳❆✳q✴ � ✘I▼ ✴❈ ✷✙ i❦✳q❀ ✘✴✿
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Moreover, the set of eigenvalues of ❆✳q✴� ✘I▼ and det✳❆✳q✴� ✘I▼ ✴ are contin-

uous with respect to q. Therefore, for any perturbation ⑩q with ❦⑩q❦✷ ✔ ✧ and ✧

small enough, we have ❦✳q ❈⑩q❀ ✘✴ ❉ ❦✳q❀ ✘✴. As a result, we have

❅q✐

✔ ▼❳
✐❉✶

Log✳✕✐ ✳❆✳q✴✴ � ✘✴

★
❉ ❅q✐Log➀det✳❆✳q✴ � ✘I▼ ✴➁

❉ Tr
✂
✳❆✳q✴ � ✘I▼ ✴�✶❅q✐❆✳q✴

✄
✿

Moreover, ❆✳q✴ (defined as in equation (8.7)) is a linear matrix function of q,

which gives ❅q✐ ❀q❥❆✳q✴ ❉ ✵. Hence we have

❅✷q✐ ❀q❥

✧
▼❳
✐❉✶

Log✳✕✐ ✳❆✳q✴✴ � ✘✴

★
❉ ❅✷q✐ ❀q❥ Log➀det✳❆✳q✴ � ✘I▼ ✴➁ ❉ ❅q❥ Tr

✂
✳❆✳q✴ � ✘I▼ ✴�✶❅q✐❆✳q✴

✄
❉ �Tr

✂
✳❆✳q✴ � ✘I▼ ✴�✶❅q❥❆✳q✴✳❆✳q✴ � ✘I▼ ✴�✶❅q✐❆✳q✴

✄
✿

Note that

❅s✶❆✳✵✴ ❉
✔

I◆ ✵

✵ ✵

✕
❀ ❅s✷❆✳✵✴ ❉

✔
◗ ✵

✵ ✵

✕
❀

❅t✶❆✳✵✴ ❉
✔
✵ ✵

✵ I♥

✕
❀ ❅t✷❆✳✵✴ ❉

✔
✵ ✵

✵ ❍

✕
❀ ❅♣❆✳✵✴ ❉

✔
✵ ❩T

✶

❩✶ ✵

✕
❀

and using the formula for block matrix inversion, we have

✳❆✳✵✴ � i✉I▼ ✴�✶ ❉
✔
✳�i✉I◆ � i❩T❩❂✉✴�✶ ✳✉✷I◆ ❈❩T❩ ✴�✶❩T

❩ ✳✉✷I◆ ❈❩T❩ ✴�✶ ✳�i✉I♥ � i❩❩T❂✉✴�✶

✕
✿

With simple algebra, we can show that equation (B.1) holds.

Appendix C Additional Proofs in Section 9

C.1 Proofs of Lemmas 9.1 and 9.2

PROOF OF LEMMA 9.1. We define the sequence ✳❋ ✷
❞❀❦

✴❦✕✷ to be the coeffi-

cients of Gegenbauer expansion of ❺❞ :

❺❞ ✳①❂
♣
❞✴ ❉

✶❳
❦❉✷

❋ ✷
❞❀❦◗

✳❞✴

❦
✳
♣
❞①✴✿

In the expansion, the zeroth- and first-order coefficients are ✵, because, according

to Assumption 3,

E
①✘Unif✳S❞�✶✳

♣
❞✴✴

➀❺❞ ✳①✶❂
♣
❞✴➁ ❉ E

①✘Unif✳S❞�✶✳
♣
❞✴✴

➀❺❞ ✳①✶❂
♣
❞✴①✶➁ ❉ ✵✿
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To check point (1) in the statement of Lemma 9.1 we have

❺❞ ✳✶✴ ❉
✶❳
❦❉✷

❋ ✷
❞❀❦◗

✳❞✴

❦
✳❞✴ ❉

✶❳
❦❉✷

❋ ✷
❞❀❦❀

and by Assumption 3 we have lim❞✦✶❺❞ ✳✶✴ ❉ ❋ ✷
❄ , so that (1) holds.

To check point (2) in the statement of Lemma 9.1, defining ✳☞❞❀❦✴❦✕✷ and

❣NL

❞
✳①✴ accordingly, we have

E☞➀❣
NL

❞ ✳①✶✴❣
NL

❞ ✳①✷✴➁

❉ E☞

✔✒❳
❦✕✷

❳
❧✷➀❇✳❞❀❦✴➁

✳☞❞❀❦✴❧❨
✳❞✴

❦❧
✳①✶✴

✓✒❳
❦✕✷

❳
❧✷➀❇✳❞❀❦✴➁

✳☞❞❀❦✴❧❨
✳❞✴

❦❧
✳①✷✴

✓✕
❉

❳
❦✕✷

❋ ✷
❞❀❦❨

✳❞✴

❦❧
✳①✶✴❨

✳❞✴

❦❧
✳①✷✴❂❇✳❞❀ ❦✴

❉
❳
❦✕✷

❋ ✷
❞❀❦◗

✳❞✴

❦
✳❤①✶❀①✷✐✴ ❉ ❺❞ ✳❤①✶❀①✷✐❂❞✴✿

This proves Lemma 9.1. �

PROOF OF LEMMA 9.2. With a little abuse of notations, let us define

E✳☞❞❀✶❀ ❢
NL

❞ ❀❳ ❀❶❀ ✧✴

✑
☞☞❘RF✳❢❞ ❀❳ ❀❶❀ ✕✴ � ✂

❋ ✷
✶ ✳✶ � ✷❽✶ ❈❽✷✴❈ ✳❋ ✷

❄ ❈ ✜✷✴❽✸ ❈ ❋ ✷
❄

✄☞☞✿
For any orthogonal matrix O ✷ R

❞✂❞ , it is easy to see that there exists a transfor-

mation TO that acts on ❢ NL

❞
with ❢ NL

❞

❞❉ TO➀❢
NL

❞
➁ such that for any fixed ☞❞❀✶, ❳ ,

❶, ✧, and ❢ NL

❞
, we have

E
�
☞❞❀✶❀ ❢

NL

❞ ❀❳ ❀❶❀ ✧
✁ ❉ E

�
O☞❞❀✶❀ TO➀❢

NL

❞ ➁❀❳OT❀❶OT❀ ✧
✁
✿

Moreover, note that ❳ , ❶, ✧, and ❢ NL

❞
are mutually independent, ❳

❞❉ ❳OT,

❶
❞❉ ❶OT, and ❢ NL

❞

❞❉ TO➀❢
NL

❞
➁. Then, for any fixed ☞❞❀✶, we have

E
�
O☞❞❀✶❀ TO

✂
❢ NL

❞

✄
❀❳OT❀❶OT❀ ✧

✁ ❞❉ E
�
O☞❞❀✶❀ ❢

NL

❞ ❀❳ ❀❶❀ ✧
✁

where the randomness is given by ✳❳ ❀❶❀ ✧❀ ❢ NL

❞
✴. As a result, for any ☞❞❀✶ ✷

S
❞�✶✳❋❞❀✶✴ and O orthogonal matrix, we have

E❳ ❀❶❀✧❀❢ NL
❞

➀E✳☞❞❀✶✴➁ ❉ E❳ ❀❶❀✧❀❢ NL
❞

➀E✳O☞❞❀✶✴➁✿

This immediately proves the lemma. �
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C.2 Proofs of Lemmas 9.6 and 9.7

To prove Lemmas 9.6 and 9.7, first we state a lemma that reformulates ❆✶❀ ❆✷

and ❇☛ using the Sherman-Morrison-Woodbury formula.

LEMMA C.1 (Simplifications using the Sherman-Morrison-Woodbury formula).

Use the same definitions and assumptions as in Proposition 8.1 and Lemma 9.3.

For▼ ✷ R
◆✂◆ , define

▲✶ ❉
✶♣
❞
✕❞❀✵✳✛✴Tr➀✶◆ ✶

T

♥❩❸➁❀(C.1)

▲✷✳▼ ✴ ❉ ✶

❞
Tr
✂
❸▼❸❩T✶♥✶

T

♥❩
✄
✿(C.2)

We then have

(C.3) ▲✶ ❉ ✶ � ❑✶✷ ❈ ✶
❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷

❀

(C.4)

▲✷✳▼ ✴ ❉ ✥✷
●✶✶✳✶ �❑✷✷✴

✷ ❈●✷✷✳❑✶✷ ❈ ✶✴✷ ❈ ✷●✶✷✳❑✶✷ ❈ ✶✴✳✶ �❑✷✷✴

✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷
❀

where

❑✶✶ ❉ ❚ T

✶❊
�✶
✵ ❚ ✶❀ ❑✶✷ ❉ ❚ T

✶❊
�✶
✵ ❚ ✷❀ ❑✷✷ ❉ ❚ T

✷❊
�✶
✵ ❚ ✷❀

●✶✶ ❉ ❚ T

✶❊
�✶
✵ ▼❊�✶✵ ❚ ✶❀ ●✶✷ ❉ ❚ T

✶❊
�✶
✵ ▼❊�✶✵ ❚ ✷❀ ●✷✷ ❉ ❚ T

✷❊
�✶
✵ ▼❊�✶✵ ❚ ✷❀

and

✬❞ ✳①✴ ❉ ✛✳①✴ � ✕❞❀✵✳✛✴❀

❏ ❉ ✶♣
❞
✬❞

✒
✶♣
❞
❳❶T

✓
❀ ❊✵ ❉ ❏ T❏ ❈ ✥✶✥✷✕I◆ ❀

❚ ✶ ❉ ✥
✶❂✷
✷ ✕❞❀✵✳✛✴✶◆ ❀ ❚ ✷ ❉

✶♣
♥
❏ T✶♥✿

PROOF OF LEMMA C.1.

Step 1. Term ▲✶. Note we have (denoting ✕❞❀✵ ❉ ✕❞❀✵✳✛✴)

❩ ❉ ✕❞❀✵✶♥✶
T

◆ ❂
♣
❞ ❈ ❏ ✿

Hence we have (denoting ❚ ✷ ❉ ❏ T✶♥❂
♣
♥)

▲✶ ❉ Tr
✂
✕❞❀✵✶◆ ✶

T

♥✳✕❞❀✵✶♥✶
T

◆ ❂
♣
❞ ❈ ❏ ✴➀✳✕❞❀✵✶♥✶T

◆ ❂
♣
❞ ❈ ❏ ✴T

✂ ✳✕❞❀✵✶♥✶T

◆ ❂
♣
❞ ❈ ❏ ✴❈ ✥✶✥✷✕I◆ ➁

�✶✄❂♣❞
❉ Tr

✂
✳✥✷✕

✷
❞❀✵✶◆ ✶

T

◆ ❈ ✥✶❂✷
✷ ✕❞❀✵✶◆❚

T

✷✴

✂ ✥✷✕✷❞❀✵✶T

◆ ✶
T

◆ ❈ ✥✶❂✷
✷ ✕❞❀✵✶◆❚

T

✷ ❈ ✥✶❂✷
✷ ✕❞❀✵❚ ✷✶

T

◆ ❈ ❏ T❏ ❈ ✥✶✥✷✕I◆ ➁
�✶✄✿
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Define

❊ ❉ ❩T❩ ❈ ✥✶✥✷✕I◆ ❉ ❊✵ ❈ ❋ ✶❋
T

✷❀ ❊✵ ❉ ❏ T❏ ❈ ✥✶✥✷✕I◆ ❀

❋ ✶ ❉ ✳❚ ✶❀❚ ✶❀❚ ✷✴❀ ❋ ✷ ❉ ✳❚ ✶❀❚ ✷❀❚ ✶✴❀

❚ ✶ ❉ ✥
✶❂✷
✷ ✕❞❀✵✶◆ ❀ ❚ ✷ ❉ ❏ T✶♥❂

♣
♥✿

By the Sherman-Morrison-Woodbury formula, we have

❊�✶ ❉ ❊�✶✵ �❊�✶✵ ❋ ✶✳I✸ ❈ ❋ T

✷❊
�✶
✵ ❋ ✶✴

�✶❋ T

✷❊
�✶
✵ ✿

Then we have

▲✶ ❉ Tr
✂�
❚ ✶❚

T

✶ ❈ ❚ ✶❚
T

✷

✁�
❊�✶✵ �❊�✶✵ ❋ ✶

�
I✸ ❈ ❋ T

✷❊
�✶
✵ ❋ ✶

✁�✶
❋ T

✷❊
�✶
✵

✁✄
❉ �

❚ T

✶❊
�✶
✵ ❚ ✶ � ❚ T

✶❊
�✶
✵ ❋ ✶

�
I✸ ❈ ❋ T

✷❊
�✶
✵ ❋ ✶

✁�✶
❋ T

✷❊
�✶
✵ ❚ ✶

✁
❈ �

❚ T

✷❊
�✶
✵ ❚ ✶ � ❚ T

✷❊
�✶
✵ ❋ ✶

�
I✸ ❈ ❋ T

✷❊
�✶
✵ ❋ ✶

✁�✶
❋ T

✷❊
�✶
✵ ❚ ✶

✁
❉ �

❑✶✶ � ➀❑✶✶❀ ❑✶✶❀ ❑✶✷➁
�
I✸ ❈❑

✁�✶
➀❑✶✶❀ ❑✶✷❀ ❑✶✶➁

T
✁

❈ �
❑✶✷ � ➀❑✶✷❀ ❑✶✷❀ ❑✷✷➁✳I✸ ❈❑ ✴�✶➀❑✶✶❀ ❑✶✷❀ ❑✶✶➁

T
✁

❉ ➀❑✶✶❀ ❑✶✶❀ ❑✶✷➁✳I✸ ❈❑ ✴�✶➀✶❀ ✵❀ ✵➁T

❈ ➀❑✶✷❀ ❑✶✷❀ ❑✷✷➁✳I✸ ❈❑ ✴�✶➀✶❀ ✵❀ ✵➁T

❉ �
❑✷
✶✷ ❈❑✶✷ ❈❑✶✶ �❑✶✶❑✷✷

✁
❂
�
❑✷
✶✷ ❈ ✷❑✶✷ ❈❑✶✶ �❑✶✶❑✷✷ ❈ ✶

✁
❉ ✶ � ✳❑✶✷ ❈ ✶✴❂➀❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷➁❀

where

❑✶✶ ❉ ❚ T

✶❊
�✶
✵ ❚ ✶ ❉ ✥✷✕

✷
❞❀✵✶

T

◆

�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
✶◆ ❀

❑✶✷ ❉ ❚ T

✶❊
�✶
✵ ❚ ✷ ❉ ✕❞❀✵✶

T

◆

�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T✶♥❂

♣
❞❀

❑✷✷ ❉ ❚ T

✷❊
�✶
✵ ❚ ✷ ❉ ✶T

♥❏
�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T✶♥❂♥❀

❑ ❉
✷✹❑✶✶ ❑✶✶ ❑✶✷

❑✶✷ ❑✶✷ ❑✷✷

❑✶✶ ❑✶✶ ❑✶✷

✸✺✿
This proves equation (C.3).

Step 2. Term ▲✷✳▼ ✴.

We have

❩T✶♥✶
T

♥❩❂❞ ❉
�
✕❞❀✵✶♥✶

T

◆ ❂
♣
❞ ❈ ❏ ✁T

✶♥✶
T

♥

�
✕❞❀✵✶♥✶

T

◆ ❂
♣
❞ ❈ ❏ ✁❂❞

❉ ✥✷
✷✕

✷
❞❀✵✶◆ ✶

T

◆ ❈ ✥✷❚ ✷ ✁
♣
✥✷✕❞❀✵✶

T

◆

❈ ✥✷
♣
✥✷✕❞❀✵✶◆❚

T

✷ ❈ ✥✷❚ ✷❚
T

✷ ❉ ✥✷✳❚ ✶ ❈ ❚ ✷✴✳❚ ✶ ❈ ❚ ✷✴
T✿

As a result, we have

▲✷✳▼ ✴ ❉ ✥✷ ✁ ✳❚ ✶ ❈ ❚ ✷✴
T❊�✶▼❊�✶✳❚ ✶ ❈ ❚ ✷✴
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❉ ✥✷ ✁ ✳❚ ✶ ❈ ❚ ✷✴
T
�
I◆ �❊�✶✵ ❋ ✶

�
I✸ ❈ ❋ T

✷❊
�✶
✵ ❋ ✶

✁�✶
❋ T

✷

✁
✁ �❊�✶✵ ▼❊�✶✵

✁�
I◆ � ❋ ✷✳I✸ ❈ ❋ T

✶❊
�✶
✵ ❋ ✷✴

�✶❋ T

✶❊
�✶
✵

✁
✳❚ ✶ ❈ ❚ ✷✴✿

Simplifying this formula using simple algebra proves equation (C.4). �

PROOF OF LEMMA 9.6.

Step 1. Term ❆✶.

By Lemma C.1, we get

❆✶ ❉ ✶ � ✳❑✶✷ ❈ ✶✴❂
�
❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷

✁
❀(C.5)

where

❑✶✶ ❉ ❚ T

✶❊
�✶
✵ ❚ ✶ ❉ ✥✷✕

✷
❞❀✵✶

T

◆

�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
✶◆ ❀

❑✶✷ ❉ ❚ T

✶❊
�✶
✵ ❚ ✷ ❉ ✕❞❀✵✶

T

◆

�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T✶♥❂

♣
❞❀

❑✷✷ ❉ ❚ T

✷❊
�✶
✵ ❚ ✷ ❉ ✶T

♥❏
�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T✶♥❂♥✿

Step 2. Term ❆✷.

Note that we have

❆✷ ❉ Tr
��
❩T❩ ❈ ✥✶✥✷✕I◆

✁�✶
❯ ✵

�
❩T❩ ❈ ✥✶✥✷✕I◆

✁�✶
❩T✶♥✶

T

♥❩
✁
❂❞❀

where

(C.6) ❯ ✵ ❉ ✕❞❀✵✳✛✴
✷✶◆ ✶

T

◆ ❉ ❚ ✶❚
T

✶❂✥✷✿

By Lemma C.1, we have

(C.7)
❆✷ ❉ ✥✷➀●✶✶✳✶ �❑✷✷✴

✷ ❈●✷✷✳❑✶✷ ❈ ✶✴✷

❈ ✷●✶✷✳❑✶✷ ❈ ✶✴✳✶ �❑✷✷✴➁❂✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷❀
where

●✶✶ ❉ ❚ T

✶❊
�✶
✵ ❯ ✵❊

�✶
✵ ❚ ✶ ❉ ❑✷

✶✶❂✥✷❀

●✶✷ ❉ ❚ T

✶❊
�✶
✵ ❯ ✵❊

�✶
✵ ❚ ✷ ❉ ❑✶✶❑✶✷❂✥✷❀

●✷✷ ❉ ❚ T

✷❊
�✶
✵ ❯ ✵❊

�✶
✵ ❚ ✷ ❉ ❑✷

✶✷❂✥✷✿

We can simplify ❙✷✵ in equation (C.7) further, and get

❆✷ ❉
�
❑✶✶✳✶ �❑✷✷✴❈❑✷

✶✷ ❈❑✶✷

✁✷
❂
�
❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷

✁✷
✿(C.8)

Step 3. Combining ❆✶ and ❆✷.

By equation (C.5) and (C.8), we have

❆ ❉ ✶ � ✷❆✶ ❈ ❆✷ ❉ ✳❑✶✷ ❈ ✶✴✷❂
�
❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷

✁✷ ✕ ✵✿
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For term ❑✶✷, we have

❥❑✶✷❥ ✔ ✕❞❀✵
✌✌�❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T❦op❦✶♥✶T

◆ ❂
♣
❞❦op ❉ ❖❞ ✳

♣
❞✴✿

For term ❑✶✶, we have

❑✶✶ ✕ ✥✷✕
✷
❞❀✵◆✕min

��
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶✁ ❉ ⑧❞ ✳❞✴❂
�❦❏ T❏❦op ❈ ✥✶✥✷✕

✁
✿

For term ❑✷✷, we have

✶ ✕ ✶ �❑✷✷ ❉ ✶T

♥

�
I♥ � ❏

�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T

✁
✶♥❂♥

✕ ✶ � ✕max

�
❏
�
❏ T❏ ❈ ✥✶✥✷✕I◆

✁�✶
❏ T

✁
✕ ✥✶✥✷✕❂

�
✥✶✥✷✕❈ ❦❏ T❏❦op

✁
❃ ✵✿

As a result, we have

✶❂✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷ ❉ ❖❞ ✳❞
�✷✴ ✁ ✳✶❈ ❦❏❦✽op✴❀

and hence

❆ ❉ ❖❞ ✳✶❂❞✴ ✁
�
✶❈ ❦❏❦✽op

✁
✿

Lemma C.5 in Section C.4 provides an upper bound on the operator norm of ❦❏❦op,

which gives ❦❏❦op ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴ (note that ❏ can be regarded as a

submatrix of❑ in Lemma C.5, so that ❦❏❦op ✔ ❦❑❦op). Using this bound, we get

❆ ❉ ♦❞❀P✳✶✴✿

It is easy to see that ✵ ✔ ❆ ✔ ✶. Hence the high probability bound translates to an

expectation bound. This proves the lemma. �

PROOF OF LEMMA 9.7. For notation simplicity, we prove this lemma under the

case when A ❉ ❢☛❣ which is a singleton. We denote ❇ ❉ ❇☛. The proof can be

directly generalized to the case for arbitrary set A.

By Lemma C.1 (when applying Lemma C.1, we change the role of◆ and ♥, and

the role of❶ and ❳ ; this can be done because the role of❶ and ❳ is symmetric),

we have

(C.9) ❇ ❉ ✥✷
●✶✶✳✶ �❑✷✷✴

✷ ❈●✷✷✳❑✶✷ ❈ ✶✴✷ ❈ ✷●✶✷✳❑✶✷ ❈ ✶✴✳✶ �❑✷✷✴

✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷
❀

where

❑✶✶ ❉ ❚ T

✶❊
�✶
✵ ❚ ✶ ❉ ✥✷✕❞❀✵✳✛✴

✷✶T

◆ ✳❏
T❏ ❈ ✥✶✥✷✕I◆ ✴

�✶✶◆ ❀

❑✶✷ ❉ ❚ T

✶❊
�✶
✵ ❚ ✷ ❉ ✕❞❀✵✳✛✴✶

T

◆ ✳❏
T❏ ❈ ✥✶✥✷✕I◆ ✴

�✶❏ T✶♥❂
♣
❞❀

❑✷✷ ❉ ❚ T

✷❊
�✶
✵ ❚ ✷ ❉ ✶T

♥❏ ✳❏
T❏ ❈ ✥✶✥✷✕I◆ ✴

�✶❏ T✶♥❂♥❀

●✶✶ ❉ ❚ T

✶❊
�✶
✵ ▼❊�✶✵ ❚ ✶

❉ ✥✷✕❞❀✵✳✛✴
✷✶T

◆ ✳❏
T❏ ❈ ✥✶✥✷✕I◆ ✴

�✶▼ ✳❏ T❏ ❈ ✥✶✥✷✕I◆ ✴
�✶✶◆ ❀

●✶✷ ❉ ❚ T

✶❊
�✶
✵ ▼❊�✶✵ ❚ ✷
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❉ ✕❞❀✵✳✛✴✶
T

◆ ✳❏
T❏ ❈ ✥✶✥✷✕I◆ ✴

�✶▼ ✳❏ T❏ ❈ ✥✶✥✷✕I◆ ✴
�✶❏ T✶♥❂

♣
❞❀

●✷✷ ❉ ❚ T

✷❊
�✶
✵ ▼❊�✶✵ ❚ ✷

❉ ✶T

♥❏ ✳❏
T❏ ❈ ✥✶✥✷✕I◆ ✴

�✶▼ ✳❏ T❏ ❈ ✥✶✥✷✕I◆ ✴
�✶❏ T✶♥❂♥✿

Note we have shown in the proof of Lemma 9.6 that

❑✶✶ ❉ ⑧❞ ✳❞✴❂✳✥✶✥✷✕❈ ❦❏❦✷op✴❀ ❑✶✷ ❉ ❖❞ ✳
♣
❞✴❀

✶ ✕ ✶ �❑✷✷ ✕ ✥✶✥✷✕❂✳✥✶✥✷✕❈ ❦❏❦✷op✴❀

✶❂✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷ ❉ ❖❞ ✳❞
�✷✴ ✁ ✳✶ ❴ ❦❏❦✽op✴✿

Lemma C.5 provides an upper bound on the operator norm of ❦❏❦op, which gives

❦❏❦op ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴. Using this bound, we get for any ✧ ❃ ✵

✳✶ �❑✷✷✴
✷❂✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷ ❉ ❖❞❀P✳❞

�✷❈✧✴❀

✳❑✶✷ ❈ ✶✴✷❂✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷ ❉ ❖❞❀P✳❞
�✶❈✧✴❀

❥✳❑✶✷ ❈ ✶✴✳✶ �❑✷✷✴❥❂✳❑✶✶✳✶ �❑✷✷✴❈ ✳❑✶✷ ❈ ✶✴✷✴✷ ❉ ❖❞❀P✳❞
�✸❂✷❈✧✴✿

Since all the quantities above are deterministically bounded by a constant, these

high probability bounds translate to expectation bounds.

Moreover, we have

E
✂
●✷
✶✶

✄✶❂✷ ✔ ✥✷✕❞❀✵✳✛✴✷✳✥✶✥✷✕✴�✷E✂❦▼❦✷op

✄✶❂✷✌✌✶◆ ✶T

◆

✌✌
op
❉ ❖❞ ✳❞✴❀

E
✂
●✷
✷✷

✄✶❂✷ ✔ ❖❞ ✳✶✴ ✁ E
✂❦▼❦✷op

✄✶❂✷✌✌✶♥✶T

♥❂♥
✌✌

op
❉ ❖❞ ✳✶✴❀

E
✂
●✷
✶✷

✄✶❂✷ ✔ ❖❞ ✳✶✴ ✁ ✕❞❀✵✳✛✴E
✂❦▼❦✷op

✄✶❂✷✌✌✶♥✶T

◆ ❂
♣
❞
✌✌

op
❉ ❖❞ ✳❞

✶❂✷✴✿

Plugging the above bounds into Equation (C.9), we have

E➀❥❇❥➁ ❉ ♦❞ ✳✶✴✿

This proves the lemma. �

C.3 Some auxiliary lemmas

We denote the probability law of ❤①✶❀①✷✐❂
♣
❞ when ①✶❀①✷ ✘iid N✳✵❀ I❞ ✴ by

✖❞ . Note that ✖❞ is symmetric, and
❘
①✷✖❞ ✳d①✴ ❉ ✶. By the central limit theo-

rem, ✖❞ converges weakly to ✖● as ❞ ✦ ✶, where ✖● is the standard Gaussian

measure. In fact, we have the following stronger convergence result.

LEMMA C.2. For any ✕ ✷ ➀�
♣
❞❂✷❀

♣
❞❂✷➁, we have❩

❡✕①✖❞ ✳d①✴ ✔ ❡✕
✷

✿(C.10)

Furthermore, let ❢ ❲ R ✦ R be a continuous function such that ❥❢ ✳①✴❥ ✔
❝✵ exp✳❝✶❥①❥✴ for some constants ❝✵❀ ❝✶ ❁✶. Then

lim
❞✦✶

❩
❢ ✳①✴✖❞ ✳d①✴ ❉

❩
❢ ✳①✴✖●✳d①✴✿(C.11)
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PROOF. In order to prove equation (C.10), we note that the left-hand side is

given by

E❢❡✕❤①✶❀①✷✐❂
♣
❞ ❣

❉ ✶

✳✷✙✴❞

❩
exp

✚
�✶

✷
❦①✶❦✷✷ �

✶

✷
❦①✷❦✷✷ ❈

✕♣
❞
❤①✶❀①✷✐

✛
d①✶d①✷

❉
✔

det

✒
✶ �✕❂

♣
❞

�✕❂
♣
❞ ✶

✓✕�❞❂✷
❉

✒
✶ � ✕✷

❞

✓�❞❂✷
✔ ❡✕

✷

❀

where the last inequality holds for ❥✕❥ ✔
♣
❞❂✷ using the fact that ✳✶�①✴�✶ ✔ ❡✷①

for ① ✷ ➀✵❀ ✶
✹
➁.

In order to prove (C.11), let ❳❞ ✘ ✖❞ and ● ✘ N✳✵❀ ✶✴. Since ✖❞ converges

weakly to N✳✵❀ ✶✴, we can construct such random variables so that ❳❞ ✦ ●

almost surely. Hence ❢ ✳❳❞ ✴ ✦ ❢ ✳●✴ almost surely. However, ❥❢ ✳❳❞ ✴❥ ✔
❝✵ exp✳❝✶❥❳❞ ❥✴, which is a uniformly integrable family by the previous point, im-

plying E❢ ✳❳❞ ✴✦ E❢ ✳●✴ as claimed. �

The next several lemmas establish general bounds on the operator norm of ran-

dom kernel matrices, which is of independent interest.

LEMMA C.3. Let ✛ ❲ R ✦ R be an activation function satisfying Assumption 1,

i.e., ❥✛✳✉✴❥❀ ❥✛ ✵✳✉✴❥ ✔ ❝✵❡
❝✶❥✉❥ for some constants ❝✵❀ ❝✶ ✷ ✳✵❀✶✴. Let

✳①➫✐ ✴✐✷➀▼➁ ✘iid N✳✵❀ I❞ ✴✿

Assume ✵ ❁ ✶❂❝✷ ✔ ▼❂❞ ✔ ❝✷ ❁ ✶ for some constant ❝✷ ✷ ✳✵❀✶✴. Consider

the random matrix ①❘ ✷ R
▼✂▼ defined by

(C.12) ①❘✐❥ ❉ ✶✐↕❥ ✁ ✛✳❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴❂

♣
❞✿

Then there exists a constant ❈ depending uniquely on ❝✵❀ ❝✶❀ ❝✷ and a sequence of

numbers ✳①✑❞ ✴❞✕✶ with ❥①✑❞ ❥ ✔ ❈ exp❢❈✳log ❞✴✶❂✷❣ such that

(C.13)
✌✌①❘ � ①✑❞✶▼✶T

▼❂
♣
❞
✌✌

op
❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿

PROOF. By Lemma C.2 and the Markov inequality, we have, for any ✐ ↕ ❥ and

all ✵ ✔ t ✔
♣
❞ ,

P
�❤①➫✐ ❀ ①➫❥ ✐❂♣❞ ✕ t

✁ ✔ ❡�t
✷❂✹✿(C.14)

Hence

(C.15)

P

✒
max

✶✔✐❁❥✔▼

☞☞☞☞ ✶♣
❞
❤①➫✐ ❀ ①➫❥ ✐

☞☞☞☞ ✕ ✶✻
♣

log▼

✓
✔ ▼ ✷

✷
max

✶✔✐❁❥✔▼
P

✒☞☞☞☞ ✶♣
❞
❤①➫✐ ❀ ①➫❥ ✐

☞☞☞☞ ✕ ✶✻
♣

log▼

✓
✔▼ ✷ exp❢�✹✳log▼✴❣ ✔ ✶

▼ ✷
✿
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We define ③✛ ❲ R ✦ R as follows: for ❥✉❥ ✔ ①① ✑ ✶✻
♣

log ❞ , define ③✛✳✉✴ ✑
✛✳✉✴❡�❝✶❥①①❥❂❝✵; for ✉ ❃ ①①, define ③✛✳✉✴ ❉ ③✛✳①①✴; for ✉ ❁ �①①, define ③✛✳✉✴ ❉
③✛✳�①①✴. Then ③✛ is a ✶-bounded-Lipschitz function on R. Define

③✑❞ ❉ E①①❀①②✘N✳✵❀①②I❞ ✴➀③✛✳❤①①❀ ①②✐❂
♣
❞✴➁ and ①✑❞ ❉ ③✑❞❝✵❡❝✶❥①①❥✿

Since we have ❥③✑❞ ❥ ✔ max✉ ❥③✛✳✉✴❥ ✔ ✶, we have

❥①✑❞ ❥ ❉ ❖❞ ✳exp❢❈✳log ❞✴✶❂✷❣✴✿(C.16)

Moreover, we define ①❑ ❀ ③❑ ✷ R
▼✂▼ by

(C.17)
③❑✐❥ ❉ ✶✐↕❥ ✁ ✳③✛✳❤①➫✐ ❀ ①➫❥ ✐❂

♣
❞✴ � ③✑❞ ✴❂

♣
❞❀

❙❑✐❥ ❉ ✶✐↕❥ ✁ ✳✛✳❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴ � ①✑❞ ✴❂

♣
❞✿

By [23, lemma 20], there exists a constant ❈ such that

P✳❦ ③❑❦op ✕ ❈✴ ✔ ❈❡�❞❂❈ ✿

Note that [23, lemma 20] considers one specific choice of ③✛ , but the proof applies

unchanged to any ✶-Lipschitz function with zero expectation under the measure

✖❞ , where ✖❞ is the distribution of ❤①①❀ ①②✐❂
♣
❞ for ①①❀ ①② ✘ N✳✵❀ I❞ ✴.

Defining the event G ✑ ❢❥❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞ ❥ ✔ ✶✻

♣
log ❞❀✽✶ ✔ ✐ ❁ ❥ ✔ ▼ ❣, we

have

(C.18)

P
�❦ ①❑❦op ✕ ❈❝✵❡

❝✶❥①①❥✁
✔ P

�❦ ①❑❦op ✕ ❈❝✵❡
❝✶❥①①❥■G✁❈ P✳G❝✴ ✔ P✳❦ ③❑❦op ✕ ❈✴❈ ✶

▼ ✷

❉ ♦❞ ✳✶✴✿

By equation (C.12) and (C.17), we have

①❘ ❉ ①❑ � ①✑❞ I▼❂
♣
❞ ❈ ①✑❞✶▼✶T

▼❂
♣
❞✿

By equation (C.18) and (C.16), we have

❦ ①❘ � ①✑❞✶▼✶T

▼❂
♣
❞❦op ❉ ❦ ①❑ � ①✑❞ I▼❂

♣
❞❦op

✔ ❦ ①❑❦op ❈ ①✑❞❂
♣
❞ ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿

This completes the proof. �

LEMMA C.4. Let ✛ ❲ R ✦ R be an activation function satisfying Assumption 1,

i.e., ❥✛✳✉✴❥❀ ❥✛ ✵✳✉✴❥ ✔ ❝✵❡
❝✶❥✉❥ for some constants ❝✵❀ ❝✶ ✷ ✳✵❀✶✴. Let

✳①➫✐ ✴✐✷➀▼➁ ✘iid N✳✵❀ I❞ ✴✿

Assume ✵ ❁ ✶❂❝✷ ✔ ▼❂❞ ✔ ❝✷ ❁ ✶ for some constant ❝✷ ✷ ✳✵❀✶✴. Define

➫✐ ❉
♣
❞ ✁ ①➫✐❂❦①➫✐❦✷. Consider two random matrices ❘❀ ①❘ ✷ R

▼✂▼ defined by

①❘✐❥ ❉ ✶✐↕❥ ✁ ✛✳❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴❂

♣
❞❀ ❘✐❥ ❉ ✶✐↕❥ ✁ ✛✳❤➫✐ ❀ ➫❥ ✐❂

♣
❞✴❂

♣
❞✿
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Then there exists a constant ❈ depending uniquely on ❝✵❀ ❝✶❀ ❝✷ such that

❦ ①❘ �❘❦op ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿
PROOF. In this proof, we assume ✛ has continuous derivatives. In the case when

✛ is only weakly differentiable, the proof is the same except that we need to express

the mean value theorem in its integral form.

Define r✐ ❉
♣
❞❂❦①➫✐❦✷, and

③❘✐❥ ❉ ✶✐↕❥ ✁ ✛✳r✐ ❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴❂

♣
❞✿

By the concentration of the ✤-squared distribution, it is easy to see that

max
✐✷➀▼➁

❥r✐ � ✶❥ ❉ ❖❞❀P✳✳log ❞✴✶❂✷❂❞✶❂✷✴✿

Moreover, we have (for ✏✐ between r✐ and ✶)☞☞ ①❘✐❥ � ③❘✐❥

☞☞ ✔ ❥✛ ✵✳✏✐ ❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴❥ ✁ ❥❤①➫✐ ❀ ①➫❥ ✐❂

♣
❞ ❥ ✁ ❥r✐ � ✶❥❂

♣
❞✿

By equation (C.15), we have

max
✐↕❥✷➀▼➁

➀❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞➁ ❉ ❖❞❀P✳✳log ❞✴✶❂✷✴❀

max
✐↕❥✷➀▼➁

➀✏✐ ❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞➁ ❉ ❖❞❀P✳✳log ❞✴✶❂✷✴✿

Moreover, by the assumption that ❥✛ ✵✳✉✴❥ ✔ ❝✵❡
❝✶❥✉❥, we have

max
✐↕❥✷➀▼➁

❥✛ ✵✳✏✐ ❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴❥ ✁ ❥❤①➫✐ ❀ ①➫❥ ✐❂

♣
❞ ❥ ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿

This gives

max
✐↕❥✷➀▼➁

☞☞ ①❘✐❥ � ③❘✐❥

☞☞
❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣❂❞✴✿

Using a similar argument, we can show that

max
✐↕❥✷➀▼➁

❥❘✐❥ � ③❘✐❥ ❥ ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣❂❞✴❀

which gives

max
✐↕❥✷➀▼➁

❥❘✐❥ � ①❘✐❥ ❥ ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣❂❞✴✿

This gives

❦❘ � ①❘❦op ✔ ❦❘ � ①❘❦❋ ✔ ❞ ✁ max
✐↕❥✷➀▼➁

❥❘✐❥ � ①❘✐❥ ❥ ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿

This proves the lemma. �



90 S. MEI AND A. MONTANARI

LEMMA C.5. Let ✛ ❲ R ✦ R be an activation function satisfying Assumption 1,

i.e., ❥✛✳✉✴❥❀ ❥✛ ✵✳✉✴❥ ✔ ❝✵❡
❝✶❥✉❥ for some constants ❝✵❀ ❝✶ ✷ ✳✵❀✶✴. Let

✳➫✐ ✴✐✷➀▼➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴✿

Assume ✵ ❁ ✶❂❝✷ ✔ ▼❂❞ ✔ ❝✷ ❁ ✶ for some constant ❝✷ ✷ ✳✵❀✶✴. De-

fine ✕❞❀✵ ❉ E
➫✐ ❀➫✷✘Unif✳S❞�✶✳

♣
❞✴✴

➀✛✳❤➫✶❀ ➫✷✐❂
♣
❞✴➁, and ✬❞ ✳✉✴ ❉ ✛✳✉✴ � ✕❞❀✵.

Consider the random matrix ❑ ✷ R
▼✂▼ with

❑✐❥ ❉ ✶✐↕❥ ✁
✶♣
❞
✬❞

✒
✶♣
❞
❤➫✐ ❀ ➫❥ ✐

✓
✿

Then there exists a constant ❈ depending uniquely on ❝✵❀ ❝✶❀ ❝✷, such that

❦❑❦op ✔ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿
PROOF OF LEMMA C.5. We construct ✳➫✐ ✴✐✷➀▼➁ by normalizing a collection of

independent Gaussian random vectors. Let ✳①➫✐ ✴✐✷➀▼➁ ✘iid N✳✵❀ I❞ ✴ and denote

➫✐ ❉
♣
❞ ✁ ①➫✐❂❦①➫✐❦✷ for ✐ ✷ ➀▼ ➁. Then we have ✳➫✐ ✴✐✷➀▼➁ ✘iid Unif✳S❞�✶✳

♣
❞✴✴.

Consider two random matrices ①❘❀❘ ✷ R
▼✂▼ defined by

①❘✐❥ ❉ ✶✐↕❥ ✁ ✛✳❤①➫✐ ❀ ①➫❥ ✐❂
♣
❞✴❂

♣
❞❀

❘✐❥ ❉ ✶✐↕❥ ✁ ✛✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴❂

♣
❞✿

By Lemma C.3, there exists a sequence ✳①✑❞ ✴❞✕✵ with ❥①✑❞ ❥ ✔ ❈ exp❢❈✳log ❞✴✶❂✷❣,
such that ✌✌①❘ � ①✑❞✶▼✶T

▼❂
♣
❞
✌✌

op
❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿

Moreover, by Lemma C.4, we have

❦ ①❘ �❘❦op ✔ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴❀
which gives,

❦❘ � ①✑❞✶▼✶T

▼❂
♣
❞❦op ❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿

Note we have

❘ ❉ ❑ ❈ ✕❞❀✵✶▼✶T

▼❂
♣
❞ � ✕❞❀✵I▼❂

♣
❞✿

Moreover, note that lim❞✦✶ ✕❞❀✵ ❉ E●✘N✳✵❀✶✴➀✛✳●✴➁ so that sup❞ ❥✕❞❀✵❥ ✔ ❈ .

Therefore, denoting ✔❞ ❉ ✕❞❀✵ � ①✑❞ , we have

(C.19)

✌✌❑ ❈ ✔❞✶▼✶T

▼❂
♣
❞
✌✌

op
❉
✌✌❘ � ①✑❞✶▼✶T

▼❂
♣
❞ ❈ ✕❞❀✵I▼❂

♣
❞
✌✌

op

✔
✌✌❘ � ①✑❞✶▼✶T

▼❂
♣
❞
✌✌

op
❈ ✕❞❀✵❂

♣
❞

❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿
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Notice that☞☞✶T

▼❑✶▼❂▼
☞☞ ✔ ❈

▼ ✸❂✷

☞☞☞❳
✐↕❥

✬❞ ✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴

☞☞☞
✔ ❈

▼

▼❳
✐❉✶

☞☞☞ ❳
❥ ❲❥↕✐

✬❞ ✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴❂

♣
▼

☞☞☞ ✑ ❈

▼

▼❳
✐❉✶

❥❱✐ ❥❀

where

❱✐ ❉
✶♣
▼

❳
❥ ❲❥↕✐

✬❞ ✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴✿

Note that E➀✬❞ ✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴➁ ❉ ✵ for ✐ ↕ ❥ so that

E➀✬❞ ✳❤➫✐ ❀ ➫❥✶✐❂
♣
❞✴✬❞ ✳❤➫✐ ❀ ➫❥✷✐❂

♣
❞✴➁ ❉ ✵

for ✐❀ ❥✶❀ ❥✷ distinct. Calculating the second moment, we have

sup
✐✷➀▼➁

E
✂
❱ ✷
✐

✄ ❉ sup
✐✷➀▼➁

E

❤✏ ❳
❥ ❲❥↕✐

✬❞ ✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴❂

♣
▼

✑✷✐
❉ sup

✐✷➀▼➁

✶

▼

❳
❥ ❲❥↕✐

E➀✬❞ ✳❤➫✐ ❀ ➫❥ ✐❂
♣
❞✴✷➁ ❉ ❖❞ ✳✶✴✿

Therefore, we have

E
✂�
✶T

▼❑✶▼❂▼
✁✷✄ ✔ ❈ ✷

▼ ✷

▼❳
✐❀❥❉✶

E➀❥❱✐ ❥ ✁ ❥❱❥ ❥➁

✔ ❈ ✷

▼ ✷

▼❳
✐❀❥❉✶

E
✂�
❱ ✷
✐ ❈ ❱ ✷

❥

✁
❂✷

✄ ✔ ❈ ✷ sup
✐✷➀▼➁

E
✂
❱ ✷
✐

✄ ❉ ❖❞ ✳✶✴✿

This gives ☞☞✶T

▼❑✶▼❂▼
☞☞ ❉ ❖❞❀P✳✶✴✿

Combining this equation with equation (C.19), we get✌✌✔❞✶▼✶T

▼❂
♣
❞
✌✌

op
❉

☞☞✡✶▼ ❀
�
✔❞✶▼✶T

▼❂
♣
❞
✁
✶▼

☛
❂▼

☞☞
✔

☞☞✡✶▼ ❀
�
❑ ❈ ✔❞✶▼✶T

▼❂
♣
❞
✁
✶▼

☛
❂▼

☞☞❈ ☞☞✶T

▼❑✶▼❂▼
☞☞

✔
✌✌❑ ❈ ✔❞✶▼✶T

▼❂
♣
❞
✌✌

op
❈

☞☞✶T

▼❑✶▼❂▼
☞☞

❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴❀
and hence

❦❑❦op ✔
✌✌❑ ❈ ✔❞✶▼✶T

▼❂
♣
❞
✌✌

op
❈

✌✌✔❞✶▼✶T

▼❂
♣
❞
✌✌

op

❉ ❖❞❀P✳exp❢❈✳log ❞✴✶❂✷❣✴✿
This proves the lemma. �
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C.4 The decomposition of kernel inner product matrices

The next lemma is a reformulation of proposition 3 in [34]. We present it in a

stronger form, but it can be easily derived from the proof of proposition 3 in [34].

This lemma was first proved in [30] in the Gaussian case. (Notice that the second

estimate, on ◗❦✳❶❳
T✴, follows by applying the first one, whereby ❶ is replaced

by ❲ ❉ ➀❶T❥❳T➁T.

LEMMA C.6. Let

❶ ❉ ✳✒✶❀ ✿ ✿ ✿ ❀✒◆ ✴T ✷ R
◆✂❞ with ✳✒❛✴❛✷➀◆ ➁ ✘iid Unif✳S❞�✶✳

♣
❞✴✴

and

❳ ❉ ✳①✶❀ ✿ ✿ ✿ ❀①♥✴
T ✷ R

♥✂❞ with ✳①✐ ✴✐✷➀♥➁ ✘iid Unif✳S❞�✶✳
♣
❞✴✴✿

Assume ✶❂❝ ✔ ♥❂❞ and ◆❂❞ ✔ ❝ for some constant ❝ ✷ ✳✵❀✶✴. Then

E

❤
sup
❦✕✷

❦◗❦✳❶❶
T✴ � I◆ ❦✷op

✐
❉ ♦❞ ✳✶✴❀(C.20)

E

❤
sup
❦✕✷

❦◗❦✳❶❳
T✴❦✷op

✐
❉ ♦❞ ✳✶✴✿(C.21)

Notice that the second estimate, on ◗❦✳❶❳
T✴, follows by applying the first

one, equation (C.20), whereby ❶ is replaced by ❲ ❉ ➀❶T❥❳T➁T, and we use

❦◗❦✳❶❳
T✴❦op ✔ ❦◗❦✳❲ ❲ T✴ � I◆❈♥❦op.

The next lemma can be easily derived from Lemma C.6. Again, this lemma was

first proved in [30] in the Gaussian case.

LEMMA C.7. Let

❶ ❉ ✳✒✶❀ ✿ ✿ ✿ ❀✒◆ ✴T ✷ R
◆✂❞ with ✳✒❛✴❛✷➀◆ ➁ ✘iid Unif✳S❞�✶✳

♣
❞✴✴✿

Let the activation function ✛ satisfy Assumption 1. Assume ✶❂❝ ✔ ◆❂❞ ✔ ❝ for

some constant ❝ ✷ ✳✵❀✶✴. Denote

❯ ❉ �
E
①✘Unif✳S❞�✶✳

♣
❞✴✴

➀✛✳❤✒❛❀①✐❂
♣
❞✴✛✳❤✒❜❀①✐❂

♣
❞✴➁

✁
❛❀❜✷➀◆ ➁

✷ R
◆✂◆ ✿

Then we can rewrite the matrix ❯ to be

❯ ❉ ✕❞❀✵✳✛✴
✷✶◆ ✶

T

◆ ❈ ✖✷
✶◗❈ ✖✷

❄✳I◆ ❈⑩✴❀

with ◗ ❉ ❶❶T❂❞ and E➀❦⑩❦✷op➁ ❉ ♦❞ ✳✶✴.

C.5 A lemma on the variance of the quadratic form

LEMMA C.8. Let ❆ ✷ R
♥✂◆ and ❇ ✷ R

♥✂♥. Let ❣ ❉ ✳❣✶❀ ✿ ✿ ✿ ❀ ❣♥✴
T with

❣✐ ✘iid P❣ , E❣ ➀❣➁ ❉ ✵, and E❣ ➀❣
✷➁ ❉ ✶. Let ❤ ❉ ✳❤✶❀ ✿ ✿ ✿ ❀ ❤◆ ✴T with ❤✐ ✘iid P❤,

E❤➀❤➁ ❉ ✵, and E❤➀❤
✷➁ ❉ ✶. We also assume that ❤ is independent of ❣. Then we

have
Var✳❣T❆❤✴ ❉ ❦❆❦✷❋ ❀

Var✳❣T❇❣✴ ❉
♥❳

✐❉✶

❇✷
✐ ✐ ✳E➀❣

✹➁ � ✸✴❈ ❦❇❦✷❋ ❈ Tr✳❇✷✴✿
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PROOF.

Step 1. Term ❣T❆❤.

Calculating the expectation, we have

E➀❣T❆❤➁ ❉ ✵✿

Hence we have

Var✳❣T❆❤✴ ❉ E➀❣T❆❤❤T❆T❣➁ ❉ E➀Tr✳❣❣T❆❤❤T❆T✴➁ ❉ Tr✳❆❆T✴ ❉ ❦❆❦✷❋ ✿

Step 2. Term ❣T❇❣.

Calculating the expectation, we have

E➀❣T❇❣➁ ❉ E➀Tr✳❇❣❣T✴➁ ❉ Tr✳❇✴✿

Hence we have

Var✳❣T❇❣✴

❉
♥ ❳
✐✶❀✐✷❀✐✸❀✐✹

E➀❣✐✶❇✐✶✐✷❣✐✷❣✐✸❇✐✸✐✹❣✐✹ ➁
♦
� Tr✳❇✴✷

❉
♥✏ ❳

✐✶❉✐✷❉✐✸❉✐✹

❈
❳

✐✶❉✐✷↕✐✸❉✐✹

❈
❳

✐✶❉✐✸↕✐✷❉✐✹

❈
❳

✐✶❉✐✹↕✐✷❉✐✸

✑
E➀❣✐✶❇✐✶✐✷❣✐✷❣✐✸❇✐✸✐✹❣✐✹ ➁

♦
� Tr✳❇✴✷

❉
♥❳

✐❉✶

❇✷
✐ ✐E➀❣

✹➁❈
❳
✐↕❥

❇✐ ✐❇❥❥ ❈
❳
✐↕❥

✳❇✐❥❇✐❥ ❈ ❇✐❥❇❥ ✐ ✴ � Tr✳❇✴✷

❉
♥❳

✐❉✶

❇✷
✐ ✐ ✳E➀❣

✹➁ � ✸✴❈ Tr✳❇T❇✴❈ Tr✳❇✷✴✿

This proves the lemma. �

Appendix D Proof of Lemma 8.6

PROOF OF LEMMA 8.6. For fixed ✘ ✷ C❈ and q ✷ R
✺, by the fixed point

equation satisfied by ♠✶❀ ♠✷ (cf. equation (8.15)), we see that ✳♠✶✳✘■ q✴❀♠✷✳✘■ q✴✴
is a stationary point of the function ❸✳✘❀ ✁ ❀ ✁ ■ q✴. Using the formula for implicit

differentiation, we have

❅♣❣✳✘■ q✴ ❉ ❅♣❸✳✘❀ ➫✶❀ ➫✷■ q✴❥✳➫✶❀➫✷✴❉✳♠✶✳✘■q✴❀♠✷✳✘■q✴✴❀

❅✷s✶❀t✶❣✳✘■ q✴ ❉ ❍ ✶❀✸ �❍ ✶❀➀✺❀✻➁❍
�✶
➀✺❀✻➁❀➀✺❀✻➁❍ ➀✺❀✻➁❀✸❀

❅✷s✶❀t✷❣✳✘■ q✴ ❉ ❍ ✶❀✹ �❍ ✶❀➀✺❀✻➁❍
�✶
➀✺❀✻➁❀➀✺❀✻➁❍ ➀✺❀✻➁❀✹❀

❅✷s✷❀t✶❣✳✘■ q✴ ❉ ❍ ✷❀✸ �❍ ✷❀➀✺❀✻➁❍
�✶
➀✺❀✻➁❀➀✺❀✻➁❍ ➀✺❀✻➁❀✸❀

❅✷s✷❀t✷❣✳✘■ q✴ ❉ ❍ ✷❀✹ �❍ ✷❀➀✺❀✻➁❍
�✶
➀✺❀✻➁❀➀✺❀✻➁❍ ➀✺❀✻➁❀✹❀

where we have, for ✉ ❉ ✳s✶❀ s✷❀ t✶❀ t✷❀ ➫✶❀ ➫✷✴
T,

❍ ❉ r✷
✉❸✳✘❀ ➫✶❀ ➫✷■ q✴❥✳➫✶❀➫✷✴❉✳♠✶✳✘■q✴❀♠✷✳✘■q✴✴✿
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Basic algebra completes the proof. �

Appendix E Sketch of Proof for Theorem 6.2

In this section, we sketch the calculations of Theorem 6.2. We assume ✥✶❀❞ ✑
◆❂❞ ❉ ✥✶ and ✥✷❀❞ ✑ ♥❂❞ ❉ ✥✷ are constants independent of ❞ . Recall that

the definitions of two useful resolvent matrices ❸ and ❹ are

❸ ❉ �
❩T❩ ❈ ✕✥✶✥✷I◆

✁�✶
❀ ❹ ❉ �

❩❩T ❈ ✕✥✶✥✷I♥
✁�✶

✿

Step 1. The expectation of regularized training error.

By equation (6.1), the regularized training error of random features regression

gives

▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴ ❉ min
❛

✧
✶

♥

♥❳
✐❉✶

�
②✐ �

◆❳
❥❉✶

❛❥✛✳❤✒❥ ❀①✐ ✐❂
♣
❞✴
✁✷ ❈ ✕✥✶❦❛❦✷✷

★

❉ min
❛

✔
✶

♥
❦② �

♣
❞❩❛❦✷ ❈ ✕✥✶❦❛❦✷✷

✕
❉ ✶

♥
❦② �❩❸❩T②❦✷ ❈ ✕✥✶❦❸❩T②❦✷✷❂❞

❉ ✶

♥

✂❦②❦✷✷ � ②T❩❸❩T②
✄
✿

Its expectation with respect to ❢ NL

❞
(that satisfies Assumption 3), ✧, and ☞✶ ✘

Unif✳S❞�✶✳❋❞❀✶✴✴ gives

E☞❀✧➀▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁

❉ ✶

♥

✂
E☞❀✧

✂❦②❦✷✷✄ � E☞❀✧➀②
T❩❸❩T②➁

✄
❉ E☞

✂✌✌❢❞✌✌✷▲✷

✄❈ ✜✷ � ✶

♥
E☞

✂
❢ T❩❸❩T❢

✄ � ✶

♥
E✧

✂
✧T❩❸❩T✧

✄
❉ E☞

✂✌✌❢❞✌✌✷▲✷

✄❈ ✜✷ � ✶

♥
E☞

✧✥ ✶❳
❦❉✵

❨ ①❀❦☞❦

✦T

❩❸❩T

✥ ✶❳
❦❉✵

❨ ①❀❦☞❦

✦★

� ✜✷

♥
Tr
�
❸❩T❩

✁
❉

✶❳
❦❉✵

❋ ✷
❦ ❈ ✜✷ � ✶

♥

✶❳
❦❉✵

❋ ✷
❦ Tr

�
❸❩T◗❦✳❳❳

T✴❩
✁ � ✜✷

♥
Tr
�
❸❩T❩

✁
✿
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It can be shown that the coefficients before ❋ ✷
✵ are asymptotically vanishing, and

by Lemma C.6, we have E➀sup❦✕✷ ❦◗❦✳❳❳
T✴ � I♥❦✷op➁ ❉ ♦❞ ✳✶✴. Hence we get

E☞❀✧➀▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁ ❉ ❋ ✷
✶

✚
✶ � ✶

♥
Tr
�
❸❩T❍❩

✁✛
❈ �

❋ ✷
❄ ❈ ✜✷

✁ ✁ ✚✶ � ✶

♥
Tr
�
❸❩T❩

✁✛❈ ♦❞❀P✳✶✴✿

Using the fact that

❸❩T ❉ ❩T❹❀

we have

E☞❀✧➀▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁

P❉❋ ✷
✶ ✁ ✥✶✕

❞
Tr✳❹❍ ✴❈ �

❋ ✷
❄ ❈ ✜✷

✁ ✁ ✥✶✕
❞

Tr✳❹✴❈ ♦❞❀P✳✶✴✿

Step 2. The norm square of minimizers.

We have

❦❛❦✷✷ ❉ ❦②T❩❸❦✷✷❂❞ ❉ ②T❩❸✷❩T②❂❞❀

so that

E☞❀✧➀❦❛❦✷✷➁ ❉ E☞➀❢
T❩❸✷❩T❢ ➁❂❞ ❈ ✥✶E✧➀✧

T❩❸✷❩T✧➁❂❞

❉ E☞

✧✥ ✶❳
❦❉✵

❨ ①❀❦☞❦

✦T

❩❸✷❩T

✥ ✶❳
❦❉✵

❨ ①❀❦☞❦

✦★
❂❞

❈ ✜✷Tr
�
❸✷❩T❩

✁
❂❞

❉
✶❳
❦❉✵

❋ ✷
❦ ✁ Tr

�
❸✷❩T◗❦✳❳❳

T✴❩
✁
❂❞ ❈ ✜✷Tr

�
❸✷❩T❩

✁
❂❞

❉ ❋ ✷
✶ Tr✳❸✷❩T❍❩ ✴❂❞ ❈ �

❋ ✷
❄ ❈ ✜✷

✁ ✁ Tr✳❸✷❩T❩ ✴❂❞ ❈ ♦❞❀P✳✶✴✿

Step 3. The derivatives of the log determinant.

Define q ❉ ✳s✶❀ s✷❀ t✶❀ t✷❀ ♣✴ ✷ R
✺ and introduce a block matrix ❆ ✷ R

▼✂▼
with ▼ ❉ ◆ ❈ ♥, defined by

❆ ❉
✔
s✶I◆ ❈ s✷◗ ❩T ❈ ♣❩T

✶

❩ ❈ ♣❩✶ t✶I♥ ❈ t✷❍

✕
✿(E.1)

For any ✘ ✷ C❈, we consider the quantity

●❞ ✳✘■ q✴ ❉
✶

❞

▼❳
✐❉✶

log✳✕✐ ✳❆✳q✴✴ � ✘✴✿
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With simple algebra, we can show that

(E.2)

❅t✶●❞ ✳i✉■ ✵✴ ❉
i✉

❞
Tr
�
✳✉✷I♥ ❈❩❩T✴�✶

✁
❀

❅t✷●❞ ✳i✉■ ✵✴ ❉
i✉

❞
Tr
�
✳✉✷I♥ ❈❩❩T✴�✶❍

✁
❀

❅✷s✶❀t✶●❞ ✳i✉■ ✵✴ ❉ � ✶
❞

Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✷❩T❩

✁
❀

❅✷s✶❀t✷●❞ ✳i✉■ ✵✴ ❉ � ✶
❞

Tr
�
✳✉✷I◆ ❈❩T❩ ✴�✷❩T❍❩

✁
✿

Hence we have

E➀▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁

❉ �❋ ✷
✶ ✁ i

✒
✥✶✕

✥✷

✓✶❂✷

❅t✷E➀●❞ ✳i✳✕✥✶✥✷✴
✶❂✷■ ✵✴➁

� ✳❋ ✷
❄ ❈ ✜✷✴ ✁ i

✒
✥✶✕

✥✷

✓✶❂✷

❅t✶E➀●❞ ✳i✳✕✥✶✥✷✴
✶❂✷■ ✵✴➁❈ ♦❞ ✳✶✴

and

E➀❦❛❦✷✷➁ ❉ �❋ ✷
✶ ❅

✷
s✶❀t✷

E➀●❞ ✳i✳✕✥✶✥✷✴
✶❂✷■ ✵✴➁

� ✳❋ ✷
❄ ❈ ✜✷✴ ✁ ❅✷s✶❀t✶E➀●❞ ✳i✳✕✥✶✥✷✴

✶❂✷■ ✵✴➁❈ ♦❞ ✳✶✴✿

By Lemma 11.3, we get

E➀▲RF✳❢❞ ❀❳ ❀❶❀ ✕✴➁

❉ �❋ ✷
✶ ✁ i

✒
✥✶✕

✥✷

✓✶❂✷

❅t✷❣✳i✳✕✥✶✥✷✴
✶❂✷■ ✵✴

� ✳❋ ✷
❄ ❈ ✜✷✴ ✁ i

✒
✥✶✕

✥✷

✓✶❂✷

❅t✶❣✳i✳✕✥✶✥✷✴
✶❂✷■ ✵✴❈ ♦❞ ✳✶✴

and

E☞❀✧➀❦❛❦✷✷➁ ❉ �❋ ✷
✶ ❅

✷
s✶❀t✷

❣✳i✳✕✥✶✥✷✴
✶❂✷■ ✵✴

� ✳❋ ✷
❄ ❈ ✜✷✴ ✁ ❅✷s✶❀t✶❣✳i✳✕✥✶✥✷✴

✶❂✷■ ✵✴❈ ♦❞❀P✳✶✴❀

where ❣ is given in equation (8.19). The derivatives of ❣ can be obtained by differ-

entiating equation (8.18) and using Daskin’s theorem. The theorem then follows

by simple calculus.
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