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Abstract

Deep learning methods operate in regimes that defy the traditional statistical
mindset. Neural network architectures often contain more parameters than train-
ing samples, and are so rich that they can interpolate the observed labels, even
if the latter are replaced by pure noise. Despite their huge complexity, the same
architectures achieve small generalization error on real data.

This phenomenon has been rationalized in terms of a so-called ‘double de-
scent’ curve. As the model complexity increases, the test error follows the usual
U-shaped curve at the beginning, first decreasing and then peaking around the in-
terpolation threshold (when the model achieves vanishing training error). How-
ever, it descends again as model complexity exceeds this threshold. The global
minimum of the test error is found above the interpolation threshold, often in
the extreme overparametrization regime in which the number of parameters is
much larger than the number of samples. Far from being a peculiar property of
deep neural networks, elements of this behavior have been demonstrated in much
simpler settings, including linear regression with random covariates.

In this paper we consider the problem of learning an unknown function over
the d-dimensional sphere S4=1 from n iid. samples (x;, y;) € S4-1 x R,
i < n. We perform ridge regression on N random features of the form U(w;x),
a < N. This can be equivalently described as a two-layer neural network with
random first-layer weights. We compute the precise asymptotics of the test error,
in the limit N,n,d — oo with N/d and n/d fixed. This provides the first
analytically tractable model that captures all the features of the double descent
phenomenon without assuming ad hoc misspecification structures. In particular,
above a critical value of the signal-to-noise ratio, minimum test error is achieved
by extremely overparametrized interpolators, i.e., networks that have a number
of parameters much larger than the sample size, and vanishing training error.
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1 Introduction

Statistical lore recommends not to use models that have too many parameters,
since this will lead to ‘overfitting’” and poor generalization. Indeed, a plot of the test
error as a function of the model complexity often reveals a U-shaped curve. The test
error first decreases because the model is less and less biased, but then increases
because of a variance explosion [36]. In particular, the interpolation threshold, i.e.,
the threshold in model complexity above which the training error vanishes (the
model completely interpolates the data) corresponds to a large test error. It seems
wise to keep the model complexity well below this threshold in order to obtain a
small generalization error.

These classical prescriptions are in stark contrast with the current practice in
deep learning. The number of parameters of modern neural networks can be much
larger than the number of training samples, and the resulting models are often
so complex that they can perfectly interpolate the data. Even more surprisingly,
they can interpolate the data when the actual labels are replaced by pure noise
[67]. Despite such a large complexity, these models have small test error and can
outperform others trained in the classical underparametrized regime.
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FIGURE 1.1. Random features ridge regression with ReLU activation
(0 = max{x,0}). Data are generated via y; = (B, x;) (zero noise)
with |8, = 1, and y¥» = n/d = 3. Left frame: regularization
A = 1078 (we didn’t set A = 0 exactly for numerical stability). Right
frame: A = 1073. The continuous black line is our theoretical predic-
tion, and the colored symbols are numerical results for several dimen-
sions d. Symbols are averages over 20 instances and the error bars report
the standard error of the means over these 20 instances.

This behavior has been rationalized in terms of a so-called ‘double-descent’
curve [13,15]. A plot of the test error as a function of the model complexity fol-
lows the traditional U-shaped curve until the interpolation threshold. However,
after a peak at the interpolation threshold, the test error decreases and attains a
global minimum in the overparametrized regime. In fact, the minimum error of-
ten appears to be ‘at infinite complexity’: the more overparametrized is the model,
the smaller is the error. It is conjectured that the good generalization behavior in
this highly overparametrized regime is due to the implicit regularization induced
by gradient descent learning: among all interpolating models, gradient descent se-
lects the simplest one, in a suitable sense. An example of a double descent curve
is plotted in Figure 1.1. The main contribution of this paper is to describe a natu-
ral, analytically tractable model leading to this generalization curve and to derive
precise formulae for the same curve in a suitable asymptotic regime.

The double-descent scenario is far from being specific to neural networks and
was instead demonstrated empirically in a variety of models including random
forests and random features models [13]. Recently several elements of this sce-
nario were established analytically in simple least square regression, with certain
probabilistic models for the random covariates [1, 14,35]. These papers consider a
setting in which we are given i.i.d. samples (y;,x;) € R x R?,i < n, where Vi
is a response variable that depends on covariates x; via y; = (B, x;) + &;, with
E(g;) = 0 and E(siz) = 2, or in matrix notation, y = X # + &. The authors study
the test error of ‘ridgeless least square regression’ ﬁ =4 y (where X T stands
for the pseudoinverse of X), and use random matrix theory to derive its precise
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asymptotics in the limit #,d — oo with d/n = y fixed, when x; = X /22, with
z; a vector with i.i.d. entries.

Despite its simplicity, this random covariates model captures several features
of the double descent scenario. In particular, the asymptotic generalization curve
is U-shaped for y < 1, diverging at the interpolation threshold y = 1, and de-
scends again exceeding that threshold. The divergence at y = 1 is explained by
an explosion in the variance, which is in turn related to a divergence of the condi-
tion number of the random matrix X. At the same time, this simple model misses
some interesting features that are observed in more complex settings: (i) In the
Gaussian covariates model, the global minimum of the test error is achieved in the
underparametrized regime y < 1, unless ad hoc misspecification structure is as-
sumed; (ii) The number of parameters is tied to the covariates dimension ¢ and
hence the effects of overparametrization are not isolated from the effects of the
ambient dimensions; (iii) Ridge regression, with some regularization A > 0, is al-
ways found to outperform the ridgeless limit A — 0. Moreover, this linear model
is not directly connected to actual neural networks, which are highly nonlinear in
the covariates x;.

In this paper, we study the random features model of Rahimi and Recht [57].
The random features model can be viewed either as a randomized approximation
to kernel ridge regression or as two-layer neural networks with random first-layer
weights. We compute the precise asymptotics of the test error and show that it
reproduces all the qualitative features of the double-descent scenario.

More precisely, we consider the problem of learning a function

fa € L2(S771(Va))

on the d-dimensional sphere. (Here and below S?~1(r) denotes the sphere of
radius r in d dimensions, and we set r = +/d without loss of generality.) We
are given i.i.d. data {(x;, yi)}i<n ~iid Px,y, Where x; ~iiq Unif(Sd_l(«/g)) and
vi = fa(xi) + e, with g; ~jiq P, independent of x;. The noise distribution
satisfies E¢(e1) = 0, ES(S%) = 72, and Eg(s‘l‘) < oo. We fit these training data
using the random features (RF) model, which is defined as the function class

N
(1.1) Fre(®) =< f(x;a,0) = Zaia(wi,x)/x/g):ai eR Vi € [N];.
i=1

Here, ® € RY*4 is a matrix whose i row is the vector 0 ;, which is chosen ran-

domly and independently of the data. In order to simplify some of the calculations
below, we will assume the normalization ||@; |l = +/d, which justifies the factor
1/+/d in the above expression, yielding (8;, x i)/ Vd of order 1. As mentioned
above, the functions in Frr(@®) are two-layers neural networks, except that the first
layer is kept constant. A substantial literature draws connections between random
features models, fully trained neural networks, and kernel methods. We refer to
Section 3 for a summary of this line of work.
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We learn the coefficients @ = (a;); <y by performing ridge regression

1 & N > Na
(12) @(}) = argmin ;Z(yj—zaio«oi,xj)/ﬁ)) +— llall3

acrN =1 i=1

The choice of ridge penalty is motivated by the connection to kernel ridge regres-
sion, of which this method can be regarded as a finite-rank approximation. Further,
the ridge regularization path is naturally connected to the path of gradient flow with
respect to the mean square error » ; _, (yi — f(xi;a, ®))?, starting ata = 0. In
particular, gradient flow converges to the ridgeless limit (A — 0) of @(1), and there
is a correspondence between positive A, and early stopping in gradient descent [66].

We are interested in the ‘prediction’ or ‘test’ error (which we will also call ‘gen-
eralization error’, with a slight abuse of terminology), that is, the mean square
error on predicting £ (x) for x ~ Unif(S?~1(+/d)), a fresh sample independent
of the training data X = (x;);<p, noise & = (&;);i<n, and the random features
O = (0a)a<n:

(1.3) Rer(fg, X.©, 1) = Ex[(fa(x) — f(x:@(1), ©))°].

Notice that we do not take expectation with respect to the training data X, the
random features @, or the data noise €. This is not very important, because we will
show that Rgrr(f4z, X, @, ) concentrates around the expectation ERF( fa,A) =
Ex 0.6Rrr(fq, X, 0O, A). We study the following setting:

e The random features are uniformly distributed on a sphere: (0;); <y ~iid
Unif(S¢~1(Vd)).

e N,n,d lie in a proportional asymptotics regime. Namely, N,n,d — o0
with N/d — 1, n/d — > for some ¥, 2 € (0, 00).

e We consider two models for the regression function f: (1) A linear model:
fa(x) = Bao + (Bgy.x), where B, € R? is arbitrary with | B4 3 =
F{ and (2) a nonlinear model: fz(x) = B0+ (Bg.1.X)+ £ (x), where
the nonlinear component f é“ (x) is a centered isotropic Gaussian process
indexed by x € S?=1(/d). (Note that the linear model is a special case
of the nonlinear one, but we prefer to keep the former distinct since it is
purely deterministic.)

Within this setting, we are able to determine the precise asymptotics of the pre-
diction error as an explicit function of the dimension parameters /1, ¥», the noise
level 72, the activation function o, the regularization parameter A, and the power
of linear and nonlinear components of f;: F 12 and F? = limg_, o E{f;L(x)z}.
The resulting formulae are somewhat complicated, and we defer them to Section
5, limiting ourselves to give the general form of our result for the linear model.

THEOREM 1.1 (Linear truth, formulas omitted). Lef 0 : R — R be weakly dif-
ferentiable, with o' a weak derivative of 0. Assume |o(u)|, |0’ (u)] < coect!
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for some constants cg,c1 < oo. Define the parameters Lo, (1, U« {, and the
signal-to-noise ratio p € [0, o] via

po =Elo(G)]. u1 =E[Go(G)]. ui =E[o(G)’]—ug —ui.
{=pi/ui. p=FET
where expectation is taken with respect to G ~ N(0, 1). Assume o, pi1, Ls 7 O.

Then, for linear fy4 in the setting described above, for any A > 0, the prediction
risk converges in probability

p
(1.4) Rre(fa. X.©.4) = (Ff + %) Z(p. £ V1. ¥2. A/ 1),
where Z(p, £, W1, Wa, A) is explicitly given in Definition 5.2.
Section 5.1 also contains an analogous statement for the nonlinear model.

Remark 1.2. Theorem 1.1 and its generalizations stated below require A > 0 fixed
as N,n,d — oo. We can then consider the ridgeless limit by taking A — 0. Let
us stress that this does not necessarily yield the prediction risk of the min-norm
least square estimator that is also given by the limit @(0+) = lim;_,¢a(}) at
N, n,d fixed. Denotingby Z = o(X @7 /+/d)/~/d the design matrix, the latter is
given by @(0+) = (Z7Z)Z"y/v/d. While we conjecture that indeed this is the
same as taking A — 0 in the asymptotic expression of Theorem 1.1, establishing
this rigorously would require proving that the limits A — 0 and d — oo can be
exchanged. We leave this to future work.

Remark 1.3. As usual, we can decompose the risk

Ree(fa. X.0©,2) = |l fa = £}
(where ?(x) = f(x;a()), ®)) into a variance component ||? —Ee (?)Hiz and a

bias component || f; — E¢ (?)Hiz. The asymptotics of the variance component
in the A — O+ limit was concurrently computed in [35, sec. 8]. Notice that
the variance calculation only requires us to consider a pure noise model in which
y = & ~ N(0, 721,,), and indeed [35] does not mention the nonparametric model
vi = fq(x;) + &;. The pure noise ridgeless (A — 0) setting captures the diver-
gence of the risk at N = n but misses most phenomena that are interesting from
a statistical viewpoint: the optimality of vanishing regularization, the optimality of
large overparametrization, and the disappearance of double descent for optimally
regularized models.

Our work is the first one to provide a complete treatment of the nonparametric
model in the proportional asymptotics and to establish those phenomena. From a
mathematical viewpoint, the calculation of the test error can be reduced to studying
a block-structured kernel random matrix, with a more intricate structure than the
one of [35]. The reduction itself is novel in the present context and goes through
the log determinant of this random matrix, while the variance computation of [35]
is directly connected to the resolvent.



THE GENERALIZATION ERROR OF RANDOM FEATURES REGRESSION 7

Figure 1.1 reports numerical results for learning a linear function f;(x) =
(B1,x), 1B ||% = 1 with E[¢?] = 0 using the ReLU activation function o (x) =
max{x,0} and ¥, = n/d = 3. We use minimum £,-norm least squares (the
A — 0 limit of equation (1.2), left figure) and regularized least squares with
A = 1073 (right figure), and plot the prediction error as a function of the num-
ber of parameters per dimension ¥; = N/d. We compare the numerical results
with the asymptotic formula Z(c0, ¢, V1, ¥, A/ M%). The agreement is excellent
and displays all the key features of the double descent phenomenon, as discussed
in the next section.

The proof of Theorem 1.1 builds on ideas from random matrix theory. A careful
look at these arguments unveils an interesting phenomenon. While the random
features {0 ({0;.x)/vd )}i<q are highly non-Gaussian, it is possible to construct
a Gaussian covariates model with the same asymptotic prediction error as for the
random features model. Apart from being mathematically interesting, this finding
provides additional intuition for the behavior of random features models, and opens
the way to some interesting future directions. In particular, [50] uses this Gaussian
covariates proxy to analyze maximum margin classification using random features.

The rest of the paper is organized as follows:

e In Section 2 we summarize the main insights that can be extracted from
the asymptotic theory and illustrate them through plots.

e Section 3 provides a succinct overview of related work.

e Section 4 introduces the notations that are used in this paper.

e Section 5 contains formal statements of our main results, which is the
asymptotics of prediction error as in Theorem 5.3. It also presents some
special cases of the asymptotic formula.

e Section 6 contains the statements of the asymptotics of the training error
as in Theorem 6.2.

e Section 7 presents an interesting phenomenon which is that the random
features model has the same asymptotic prediction error as a simpler model
with Gaussian covariates.

e In Section 8 we present the proof of main results. The main results will
use several propositions that are proved in the following sections and in
the appendices.

2 Results and Insights: An Informal Overview

Before explaining in detail our technical results—which we will do in Section
5—it is useful to pause and describe some consequences of the exact asymptotic
formulae that we prove. Our focus here will be on insights that have a chance to
hold more generally, beyond the specific setting studied here.

Bias term also exhibits a singularity at the interpolation threshold. A prominent
feature of the double descent curve is the peak in test error at the interpolation
threshold which, in the present case, is located at {1 = y». In the linear regression
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FIGURE 2.1. Analytical predictions for the test error of learning a linear
function fy(x) = (B;.x) with |8;]3 = 1 using random features with
ReLU activation function ¢ (x) = max{x, 0}. Here we perform ridgeless
regression (A — 0). The signal-to-noise ratio is ||B,]3/7> = p = 2.

In the left figure, we plot the test error as a function of ¥y = N/d, and
different curves correspond to different sample sizes (Y, = n/d). In
the right figure, we plot the test error as a function of ¥, = n/d, and
different curves correspond to different number of features (y; = N/d).

model of [1,14,35], this phenomenon is entirely explained by a peak in the variance
of the estimator (that diverges in the ridgeless limit A — 0), while its bias is
monotone increasing across to this threshold.

In contrast, in the random features model studied here, both variance and bias
have a peak at the interpolation threshold, diverging there when A — 0. This is
apparent from Figure 1.1, which was obtained for 2> = 0, and therefore in a setting
in which the error is entirely due to bias. The fact that the double descent scenario
persists in the noiseless limit is particularly important, especially in view of the
fact that many machine learning tasks are usually considered nearly noiseless.

Optimal prediction error is achieved in the highly overparametrized regime. Figure
2.1 (left) reports the predicted test error in the ridgeless limit A — O (for a case
with nonvanishing noise, 72 > 0) as a function of ¥; = N/d for several values of
Yo = n/d. Figure 2.2 plots the predicted test error as a function of ¥; /¢¥» = N/n
for fixed v, several values of A > 0, and two values of the SNR. We repeatedly
observe that: (i) For a fixed A, the minimum of test error (over 1) is in the highly
overparametrized regime {1 — oo. (ii) The global minimum (over A and 1) of
test error is achieved at a value of A that depends on the SNR, but always at | —
oo. (iii) In the ridgeless limit A — 0, the generalization curve is monotonically
decreasing in Y1 when ¥; > 5.

To the best of our knowledge, this is the first natural and analytically tractable
model that satisfies the following requirements: (1) large overparametrization is
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FIGURE 2.2. Analytical predictions for the test error of learning a linear
function fz(x) = (B,,x) with |,]3 = 1 using random features with
ReLU activation function o(x) = max{x, 0}. The rescaled sample size
is fixed to n/d = ¥, = 10. Different curves are for different values of
the regularization A. On the left: high SNR [|B;5/72 = p = 5. On the
right: low SNR p = 1/5.

necessary to achieve optimal prediction, and (2) no special misspecification struc-
ture needs to be postulated.

Optimal regularization eliminated the double-descent. Figure 2.2 reports the as-
ymptotic prediction for the test error as a function of the overparametrization ratio
N/n for various values of the regularization parameter A. The peak at the inter-
polation threshold N = r is apparent, but it becomes less prominent as the reg-
ularization increases. In particular, if we consider the optimal regularization (the
lower envelope of these curves), the test error becomes monotone decreasing in the
number of parameters: regularization compensates overparametrization.

Nonvanishing regularization can hurt (at high SNR). Figure 2.3 plots the predicted
test error as a function of A for several values of yr; with v, fixed. The lower
envelope of these curves is given by the curve at {1 — 00, confirming that the
optimal error is achieved in the highly overparametrized regime. However, the
dependence of this lower envelope on A changes qualitatively, depending on the
SNR. For small SNR, the global minimum is achieved as some A > 0: regulariza-
tion helps. However, for a large SNR the minimum error is achieved as A — 0.
The optimal regularization is vanishingly small.

These two noise regimes are separated by a phase transition at a critical SNR,
which we denote by p.. A characterization of this critical value is given in Section
5.2.

Note that, in the overparametrized regime, the training error vanishes as A — 0,
and the resulting model is a ‘near-interpolator’. We therefore conclude that highly
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FIGURE 2.3. Analytical predictions for the test error of learning a linear
function fz(x) = (By,x) with ||B,]5 = 1 using random features with
the ReLU activation function o (x) = max{x,0}. The rescaled sample
size is fixed to ¥, = n/d = 10. Different curves are for different
values of the number of neurons ¥y = N/d. On the left: high SNR
181113/ = p = 5. On the right: low SNR p = 1/10.

overparametrized (near) interpolators' are statistically optimal when the SNR is
above the critical value p,.

Self-induced regularization. What is the mechanism underlying the optimality of
the ridgeless limit A — 0? An intuitive explanation can be obtained by considering
the (random) kernel associated to the ridge regression (1.2), namely,

N
QO NG = 1 Y ol 00)/ VDo (', 00/ V),

i=1

The diagonal elements of the empirical kernel Hy,, = (Hn(xi,Xj))i,j<n €
R™ " concentrate around the value

EHn (xi,x;) ~ E{o(G)?}

(here G ~ N(0, 1)), while the terms that are out-of-diagonal are equal to a constant
E{o(G)}? plus fluctuations of order 1/+/N. One would naively expect that these
diagonal elements are equivalent to a regularization (that we call ‘self-induced’)
Ao of order Var(c(G)). The reality is more complicated because out-of-diagonals
are random and not negligible. However, this intuition is essentially correct in the
wide limit N/d — oo (after N,n,d — o0); see Section 5.2.

!'We cannot prove it is an exact interpolator because here we take A — 0 after d — oo. Following
Remark 1.2, we expect the minimum £, norm interpolator also to achieve asymptotically minimum
error.



THE GENERALIZATION ERROR OF RANDOM FEATURES REGRESSION 11

3 Related Literature

3.1 Learning via interpolation

A recent stream of papers studied the generalization behavior of machine learn-
ing models in the interpolation regime. An incomplete list of references includes
[13,15,16,44,58]. The starting point of this line of work were the experimental
results in [15,67], which showed that deep neural networks as well as kernel meth-
ods can generalize even if the prediction function interpolates all the data. It was
proved that several machine learning models including kernel regression [16] and
kernel ridgeless regression [44] can generalize under certain conditions.

The double descent phenomenon, which is our focus in this paper, was first
discussed in general terms in [13]. The same phenomenon was also observed in
[1,33]. The paper [41] observes that the optimal amount of ridge regularization
is sometimes vanishing and provides an explanation in terms of noisy features.
Analytical predictions confirming this scenario were obtained, within the linear
regression model, in two concurrent papers [14,35]. In particular, [35] derives the
precise high-dimensional asymptotics of the prediction error, for a general model
with correlated covariates. On the other hand, [14] gives an exact formula for any
finite dimension, for a model with i.i.d. Gaussian covariates. The same papers also
compute the double descent curve within other models, including an overspecified
linear model [35] and a Fourier series model [14].

As mentioned in the introduction, [35, sec. 8] also calculates the variance term of
the prediction error in the random features model in the ridgeless limit A — 0. Both
the simple linear regression models of [14,35] and the variance calculation of [35,
sec. 8] capture the peak of the test error at the interpolation threshold. However,
these calculations do not elucidate several crucial statistical phenomena, which
are instead the main contribution of our work (see Section 2): optimality of large
overparametrization, optimality of interpolators at high SNR (A — 0 limit), the
role of self-induced regularization, and the disappearance of the double descent at
optimal overparametrization.

Rate-optimal bounds on the generalization error of overparametrized linear mod-
els were recently derived in [12] (see also [51] for a different perspective).

3.2 Random features and kernels

The random features model has been studied in considerable depth since the
original work in [57]. A classical viewpoint suggests that Frp(®) should be re-
garded as a random approximation of the reproducing kernel Hilbert space Fg
defined by the kernel

G Hxx) =By i1 yaylo (x.0)/Vd)a(x',8)/Vd)].

Indeed, Frr(®) is an RKHS defined by the finite-rank approximation of this kernel
defined in equation (2.1). The paper [57] showed the pointwise convergence of the
empirical kernel Hpy to H. Subsequent work [10] showed the convergence of the
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empirical kernel matrix to the population kernel in terms of operator norm and
derived bound on the approximation error (see also [2, 8,61] for related work).

The setting in the present paper is quite different, since we take the limit of a
large number of neurons N — o0, together with a large dimension d — oo. Our
focus on this high-dimensional regime is partially motivated by [58], which em-
phasizes that optimality of interpolators is somewhat un-natural in low dimension.

It is well-known that approximation using a two-layer network suffers from the
curse of dimensionality, in particular when first-layer weights are not trained [9,
24,34, 64]. The recent paper [34] studies random features regression in a setting
similar to ours by considering two different regimes: (1) the population limit n =
oo, with N scaling as a polynomial of d, and (2) the wide limit N = oo, with
n scaling as a polynomial of d. In particular, [34] proves that, if d ktd < N <
d¥+1=8 and n = oo or gk+8 <n < dk¥+1=8 and N = oo, then a random
features model can only fit the projection of the true function f; onto degree-k
polynomials.

Here we consider N,n = ©®,4(d), and therefore [34] only implies that the test
error of the random feature model is (asymptotically) lower-bounded by the norm
of the nonlinear component of the target function F? = limg_,o, E(f ;L(x)z).
The present results are of course much more precise: we confirm this lower bound,
which is achieved in the limit N/d,n/d — oo, but also derive the precise asymp-
totics of the test error for finite n/d, N/d. The connection between neural net-
works and random features models was pointed out originally in [52,65] and has at-
tracted significant attention recently [32,37,42,47,54]. The papers [21,22] showed
that, for a certain initialization, gradient descent training of overparametrized neu-
ral networks learns a function in an RKHS, which corresponds to the random
features kernel. A recent line of work [3,4,7,27,28,39,43,55, 68] studied the
training dynamics of overparametrized neural networks under a second type of
initialization, and showed that it learns a function in a different but comparable
RKHS, which corresponds to the ‘neural tangent kernel’. A concurrent approach
[6,20,40,49,53,59,60,62] studies the training dynamics of overparametrized neu-
ral networks under a third type of initialization, and showed that the dynamics
of empirical distribution of weights follows a Wasserstein gradient flow of a risk
functional. The connection between neural tangent theory and Wasserstein gradi-
ent flow was studied in [19,26,48].

3.3 Technical contribution

We use methods from random matrix theory. The general class of matrices we
need to consider are kernel inner product random matrices, namely, matrices of the
form o (W W7 /+/d), where W is a random matrix with i.i.d. entries, or similar
(0 : R — R is a scalar function and for a matrix 4 € R™", g(A) € R™" is a
matrix that is formed by applying o to A elementwise). The paper [30] studied the
spectrum of random kernel matrices when o can be well approximated by a linear
function, and hence the spectrum converges to a scaled Marchenko-Pastur law. In
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the nonlinear regime, the spectrum was shown to converge to the free convolution
of a Marchenko-Pastur and a scaled semicircular law [17]. The extreme eigenval-
ues of the same random matrix were studied in [31]. The random matrix we need
to consider is an asymmetric kernel matrix Z = o(X®'/+/d)/~/d, whose as-
ymptotic singular values distribution was calculated in [56] (see also [45] for X
deterministic).

The asymptotic singular values distribution of Z is not sufficient to compute
the asymptotic prediction error, which also depends on the singular vectors of Z.
The paper [35] addresses this challenge for what concerns the variance term of the
error, and only in the limit A — 0. Notice that the variance term is given (up to
constants) by Tr((Z"Z)TX). It is quite straightforward to express this quantity in
terms of the Stieltjes transform of a certain block random matrix, and [35] use the
leave-one-out method to characterize the asymptotics of this Stieltjes transform.

Unfortunately, the approach of [35] cannot be pushed to compute the full test
error (i.e., both the bias and variance terms): the latter cannot be expressed in terms
of the Stieltjes transform of the same matrix. A key observation of the present
paper is that the full prediction error can be expressed in terms of derivatives of
the log-determinant of a different block-structured random matrix. In order to
compute the asymptotics of this log-determinant, we use leave-one-out arguments
(e.g., [11, chap. 3.3]) to derive fixed point equations for the Stieltjes transform of
this random matrix, and then integrate this Stieltjes transform.

Another difference from [35] is that we consider the full nonparametric model
v;i = fq(x;) + &, while [35] does not model the target function. As mentioned
above, our setting is similar to the one of [34]. However, the main technical content
of [34] is to prove that, under polynomial scalings of n and d (at N = oo) or N
and d (at n = 00), the kernel matrix is near isometric. In contrast, here we study
a regime in which it is not true that the same matrix is a near isometry, and we
characterize its spectral distribution (alongside those properties of the eigenvectors
that determine the test error).

4 Notations

Let R denote the set of real numbers, C the set of complex numbers, and N =
{0,1,2,...} the set of natural numbers. For z € C, let Re z and Im z denote the
real part and the imaginary part of z, respectively. We denote by C = {z € C :
Im z > 0} the set of complex numbers with positive imaginary part. We denote by
i = +/—1 the imaginary unit. We denote by S¢~1(r) = {x € R? : ||x|» = r} the
set of d-dimensional vectors with radius r. For an integer &, let [k] denote the set
{1,2,...,k}.

Throughout the proofs, let Oy (-) denote the standard big-O notation, let 04 ()
denote the standard little-o notation, and let 24 (- ) denote the standard big-Omega
notation, where the subscript d emphasizes the asymptotic variable. We denote by
O, p(-) the big-O in probability notation: h1(d) = Oy p(ha(d)) if for any & > 0,
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there exists Ce > 0 and d¢ € Z~g, such that
P(lh1(d)/ h2(d)| > Ce) <& Vd > d.

We denote by o4 p( ) the little-o in probability notation: h1(d) = o4 p(h2(d)), if
h1(d)/ ha(d) converges to 0 in probability. We write A(d) = O, (Poly(logd)), if
there exists a constant k such that h(d) = Oz ((log d)¥).

Throughout the paper, we use bold lowercase letters {x, y, z, .. .} to denote vec-
tors and bold uppercase letters {4, B, C, ...} to denote matrices. We denote by
I, € R™" the identity matrix, by 1,x,; € R™" the all-ones matrix, and by
0,,5,n € R™™ the all-zero matrix.

For a matrix A € R™", we denote by |AlF = (O ;e[n].jepm] Aizj)l/2 the
Frobenius norm of A4, || A4 || the nuclear norm of A, ||4||op the operator norm of
A, and [|A||max = Max;e[p], je[m] |4ij| the maximum norm of A. Further, we
denote by AT € R™*" the Moore-Penrose inverse of matrix A € R"*™_ For a
measurable function 2 : R — R and a matrix A € R™"*™_ we denote h(A) =
(h(Aij))ien],je[m] € R"™. For a matrix A € R"*", we denote by Tr(4) =
Y7 Aji; the trace of A. For two integers a and b, we denote by Trpe p(A4) =

Zf;a Aj; the partial trace of A. For two matrices 4, B € R"™™ let A © B
denote the elementwise product of A and B.

Let ug denote the standard Gaussian measure (on the real line), and y; the
uniform probability distribution on sé _1(«/3 ). Let pgz denote the distribution
of (x1,x2)/+/d when x1,x2 ~iiq N(0,1), 74 the distribution of (x1,x2)/vd

when x 1, x5 ~iiq Unif(S?=1(v/d)), and T; the distribution of {x1, x») when

X1,X2 ~iid Unif(Sd_l (\/3))

5 Main Results

We begin by stating our assumptions and notations for the activation function
o. It is straightforward to check that these are satisfied by all commonly used
activations, including ReLU and sigmoid functions.

Assumption 1. Let o : R — R be weakly differentiable, with weak derivative o”.
Assume |o(u)], |o”(1)] < coe€ ™! for some constants ¢g, ¢; < 0o. Define

5.1 po =E{o(G)}, w =E{Ga(G)}, ui=E{o(G)*) —ug —ui,

where expectation is with respect to G ~ N(0, 1). Assuming 0 < /,L%, /,L%, U2 < oo,
define ¢ by

(5.2) ¢

lad3
Hox '
We will consider sequences of parameters (N, n, d) that diverge proportionally

to each other. When necessary, we can think such sequences to be indexed by d,
with N = N(d), n = n(d) functions of d.
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Assumption 2. Defining Y1 4 = N/d and ¥, 4 = n/d, we assume that the fol-
lowing limits exist in (0, 00):

(5.3) lim V14 =v1, lim ¥4 = Y.
d—o0 d—o0

Our last assumption concerns the distribution of the data (y, x), and, in particu-
lar, the regression function f;(x) = E[y|x]. As stated in the introduction, we take
f4 to be the sum of a deterministic linear component, and a nonlinear component
that we assume to be random and isotropic.

Assumption 3. We assume y; = f;z(x;) + &;, where (&;)i<n ~iid Pe are indepen-
dent of (x;);i<n, with Eg(g1) = 0, Eg(sf) =72, and Eg(s‘ll) < 00. In addition,

Ja(x) = Bao+ (Bay.x) + £ (x),

where B30 € Rand B, € R? are deterministic with limg_,, ,3‘21 0 = F02,
limg 00 1B 1 ||% =F 12 The nonlinear component fé‘”‘ (x) is a centered Gaussian
process indexed by x € S?=1(1/d), with covariance
(5.4) EnyL{f;L(xl)f;L(xz)} = Xs({x1.x2)/d)
satisfying
Ex"vUnif(Sd_l(«/E)){Ed (xl/ﬁ)} = 07

E, tnitd—1 (vay i Zd (x1/Vd)x1} = 0,
and limg_, o, X4 (1) = F2. We define the signal-to-noise ratio parameter p by
Ff
55 -1
(5-5) P= 2, 2

Remark 5.1. The last assumption covers, as a special case, deterministic linear
functions fy(x) = Bgo + (B4.1.X), but also a large class of random nonlinear
functions. As an example, let G = (Gi;); j<g, Where (Gjj); j<g ~iia N(O, 1),
and consider the random quadratic function

66 fa) = fag+ Bapx) + S llx. Gx) ~THG)]

for some fixed F, € R. It is easy to check that this f; satisfies Assumption 3,
where the covariance function gives

F2
Ya({x1,x2)/d) = d_z (x1.x2)% —d).

Higher-order polynomials can be constructed analogously (or using the expansion
of f; in spherical harmonics).

We also emphasize that that the nonlinear part f;L (x»), although being random,
is the same for all samples, and hence should not be confused with additive noise €.
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We finally introduce the formula for the asymptotic prediction error, denoted by
Z(p,C, ¥1,¥2,A) in Theorem 1.1.

DEFINITION 5.2 (Formula for the prediction error of random features regression).
Let the functions vy, vy : C1 — C4 be uniquely defined by the following condi-
tions: (i) vy, vy are analytic on C4. (ii) For Im(§) > 0, v{(£) and v, (§) satisfy the

equations
2, -1
v1=¢1(—§—v2—§+) :
1 —; 1% R %)
6.7 ) 4
Vn = w _é — Y1 — é‘#
2 2 L vz .

(iii) (v1 (&), v2(&)) is the unique solution of these equations with

i) = ¥1/Im(E).  [v2(§)] = ¥2/Im(§)  for Im(§) > C,

with C a sufficiently large constant.
Let

(5.8) X = (W) Y2 v (i ) /?),

and

S Y1 V2. h) = =2 +3)M ¢ + (WY — v — v + DPEC
=278 =370 + (Y1 + ¥2 — 3y + D
+ 2078 + 1 + 3y x s — Y.

E1C V1. Y2. 1) = Va0 — v x?0 + Yivaxd® — vy,

Y1 Y2, 1) = 080 =30 + (Y — D8
F 2300 43230 + (v — DX - 2078 - 1

5.9

We then define

= éal (é‘v w1v ’WQAX)
&, Vo, h)

S 52(55 w1v WZ» X)
5.11 V(¢ Y1, ¥, A) = ——————
G40 €y v2.2) 0(8. Y1, Y2, A)

_ _ 1 _
(5.12) R(p. L1, Y2 k) = ﬁ%@, Vv D)+ D).

(5.10) B V1,92, 1)

The formula for the asymptotic risk can be easily evaluated numerically. In
order to gain further insight, it can be simplified in some interesting special cases,
as shown in Section 5.2.
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5.1 Statement of the main result

We are now in position to state our main theorem, which generalizes Theorem
1.1 to the case in which f; has a nonlinear component f é‘”‘.

THEOREM 5.3. Let X = (x1,...,%,)T € R?™¥4 ywith
(%1)iepn] ~iia Unif(S?"1(V/d)) and © = (01,...05)" e RN

with (0 4)ge[N] ~iid Unif(S¢ 1 (v/d)) independently. Let the activation function o
satisfy Assumption 1, and consider proportional asymptotics N/d — Y1, n/d —
Y2, as per Assumption 2. Finally, let the regression function { f4}q4>1 and the
response variables (yi);e[n] Satisfy Assumption 3.

Then for any value of the regularization parameter A > 0, the asymptotic pre-
diction error of random features ridge regression satisfies

EX’Q,E’fCIJ\TL‘RRF(fdv X’ ®’ A)
(5.13) — [F2BE A1 Y2, M/ p2)
+ (@2 + FHV (Y, Y2, A 02 + FE| = 04 (1),

where E X.0. /N denotes expectation with respect to data covariates X, feature

vectors ©, data noise &, and f;’L the nonlinear part of the true regression function
(as a Gaussian process), as per Assumption 3. The functions % and ¥V are given
in Definition 5.2.

Remark 5.4. If the regression function f;(x) is linear (i.e., fgL(x) = 0), we
recover Theorem 1.1, where Z is defined as per equation (5.12). Numerical exper-
iments suggest that equation (5.13) holds for any deterministic nonlinear functions
fa as well, and that the convergence in equation (5.13) is uniform over A in com-
pacts. We defer the study of these stronger properties to future work.

Remark 5.5. Note that the formula for a nonlinear truth (cf. equation (5.13)) is
almost identical to the one for a linear truth in equation (1.4). In fact, the only
difference is that the the prediction error increases by a term F2, and the noise
level 72 is replaced by 2 + F2.

Recall that the parameter F? is the variance of the nonlinear part E( f ;L (x)?) >
F2. Hence, these changes can be interpreted by saying that random features regres-
sion (in the N, n, d proportional regime) only estimates the linear component of
f4, and the nonlinear component behaves similarly to random noise. This finding
is consistent with the results of [34] that imply, in particular, Rre(fy, X, O, 1) >
F? + 0g4,p(1) for any n and for N = o4 (d?*7%) for any § > 0.

Figure 5.1 illustrates the last remark. We report the simulated and predicted test
error as a function of v /1> = N/n for three different choices of the function f;
and noise level 72. In all the settings, the total power of nonlinearity and noise is
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FIGURE 5.1. Random features regression with ReLU activation (o =
max{x,0}). Data are generated according to one of three settings: (1)
fa(x) = x1 and E[¢?] = 0.5; (2) fa(x) = x1 + (x? — 1)/2 and
E[e2] = 0; (3) f1(x) = x1 + x1x2/+/2 and E[¢2] = 0. Within any of
these settings, the total power of nonlinearity and noise is F2+12 = 0.5,
while the power of the linear part is F2 = 1. Left frame: A = 1075,
Right frame: A = 1073, Here n = 300, d = 100. The continuous black
line is our theoretical prediction, and the colored symbols are numerical
results. Symbols are averages over 20 instances and the error bars report
the standard error of the means over these 20 instances.

F? 4+ 12 = 0.5, while the power of the linear component is F12 = 1. The test
errors in these three settings appear to be very close, as predicted by our theory.

Remark 5.6. The terms % and ¥ in equation (5.13) correspond to the limits of the
bias and variance of the estimated function f(x:a()), ®) when the ground truth
function fy is linear. That is, for f; to be a linear function, we have

_ 2
Ex{[ fa(x) — Ee f(x:@(2), ©)]} = B Y1, Y2, A/ 03 FT + 04 p(1),
Ey Vare (f(x:@(1), ©)) = ¥ (Y1, 92, A/ 13) 7> + 0 p(1).
5.2 Simplifying the asymptotic risk in special cases
In order to gain further insight into the formula for the asymptotic risk Z(p, ¢,
Y1, Y2, A), we consider here three special cases that are particularly interesting:
(1) the ridgeless limit A — 0+,
(2) the highly overparametrized regime ¥; — oo (recall that ¢y =
limg 00 N/d),
(3) the large sample limit ¥, — oo (recall that ¥, = limg_ oo 1/d).
Let us emphasize that these limits are taken after the limit N, n,d — oo with
N/d — oo and n/d — oo. Hence, the correct interpretation of the highly over-

parametrized regime is not that the width N is infinite, but rather much larger
than d (more precisely, larger than any constant times ). Analogously, the large
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sample limit does not coincide with infinite sample size #, but instead sample size
that is much larger than d.

Ridgeless limit
The ridgeless limit A — 0+ is important because it captures the asymptotic
behavior the min-norm interpolation predictor (see also Remark 1.2.)

THEOREM 5.7. Under the assumptions of Theorem 5.3, set ¥ = min{yy, W2} and
define
B S S e S A R U2 Sk Sl )

(5.14) X = 22 ,

and
Eomes(C V1 V2) = =200 + 3204 + (v — Y2 — ¥ + DXEC
—238% 31362 4 (Y1 + Vo — 3y + 1) 2
+ 2020 + 4 3y xl — vy,

(5.15)
Entess (V1. V2) = V200 = ¥ 028 + Y1va x 8 — Yy,
Eress (6 V1, ¥2) = 170 =334+ (Y — DE°
+ 230 370 + (v — D%t =278 = 1
and
(5.16) PBriess (G, U1, ¥2) = E1 1ess/ E0 s
(5.17) Phiess(§s Y1, V2) = E2 ttess/ 60 rtess-

Then the asymptotic prediction error of random features ridgeless regression is
given by

lim lim E[Rrr(fq.X,0,1)]
A—=>0d—o0

== Flzﬁrless(é-’ WI, wZ) + (7:2 + Ff)%less(é-’ WI, wZ) + FE

The proof of this result can be found in Section 12.

The next proposition establishes the main qualitative properties of the ridgeless
limit.
PROPOSITION 5.8. Recall the bias and variance functions PBhess and Viess defined
in equation (5.16) and (5.17). Then, for any ¢ € (0, o0) and fixed Y5 € (0, 00), we
have

(1) Small width limit Y1 — O:
(518) llm fggrless (é‘a w1a WZ) = 1’ hm /%Iess(é" WI ’ WZ) = O
¥1—0 Y1—>0

(2) Divergence at the interpolation threshold Y1 = »:
(519) t@rless(é‘v wZa wZ) = 00, %less(é-v wZ» wZ) = 00.
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(3) Large width limit 1 — oo (here y is defined as per equation (5.14)):

i Y2 x8% — Y
1 %ress ) s = ’
(5.20) R G002 (W2 — 1) 1386 + (1 — 39r2) x20% + 39Uy 82 — s

lim Vit )= 188 — Pt
i e G VL) = T e T = 392 28 + 39axl — v

(4) Above the interpolation threshold (i.e., for yr1 > ¥r2), the functions Bies (L,
W1, ¥2) and Vyess(E, W1, ¥r2) are strictly decreasing in the rescaled number
of neurons 1.

The proof of this proposition is presented in Section 13.1.

As anticipated, point 2 establishes an important difference with respect to the
random covariates linear regression model of [1, 14,35]. While in those models
the peak in prediction error is entirely due to a variance divergence, in the present
setting both variance and bias diverge.

Another important difference is established in point 4: both bias and variance are
monotonically decreasing above the interpolation threshold. This, again, contrasts
with the behavior of simpler models, in which bias increases after the interpola-
tion threshold or after a somewhat larger point in the number of parameters per
dimension (if misspecification is added).

This monotone decrease of the bias is crucial and is at the origin of the ob-
servation that highly overparametrized models outperform underparametrized or
moderately overparametrized ones. See Figure 5.2 for an illustration.

e Bias
9r s Variance |
— Risk

Test error

Y1/t2 = N/n
FIGURE 5.2. Analytical predictions of learning a linear function
Jfa(x) = (x, B) with ReLU activation (¢ = max{x, 0}) in the ridgeless
limit (A — 0). We take ||;]5 = 1 and E[¢?] = 1. We fix ¥, = 2 and
plot the bias, variance, and the test error as functions of ¥; /v,. Both
the bias and the variance term diverge when ¥ = v and decrease in

wl when wl > '(ﬂz.
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Highly overparametrized regime

As the number of neurons N diverges (for fixed dimension d), random features
ridge regression is known to approach kernel ridge regression with respect to the
kernel (3.1). Tt is therefore interesting what happens when N and d diverge to-
gether, but N is larger than any constant times d.

THEOREM 5.9. Under the assumptions of Theorem 5.3, define

_ (@ = =2 — D2 + 490 An + DIV + (28> - =M — 1)

2(11,02 +1)
and
—_ Vo — Y2
(5.21) PBiae(§, Y2, A) = (Y2 — Dw3 + (1 = 3y2)w? + 3vnw — ¥’
w? — w?

(5.22) Foiae(C Y2, X) =

(Y2 — Dw? + (1 = 3¥2)0? + 30 — Y2

Then the asymptotic prediction error of random features ridge regression in the
large width limit is given by

(523) lim lim E[Rre(fy, X, ©,1)] =

Yr1—00d—>00
FEBrae(C V2, A 12) + (12 + F2) Yoiae (L W2 A/ pu2) + F2.

The proof of this result can be found in Section 12. Note that, as expected,
the risk remains lower-bounded by F2, even in the limit ¥y — oco. Naively one
could have expected to recover kernel ridge regression in this limit, and hence
a method that can fit nonlinear functions. However, as shown in [34], random
features methods can only learn linear functions for N = 04 (d?~%).

As observed in Figures 2.1 to 2.3 (which have been obtained by applying The-
orem 5.3), the minimum prediction error is often achieved by highly overparame-
trized networks {1 — oo. It is natural to ask what is the effect of regularization on
such networks. Somewhat surprisingly (and as anticipated in Section 2), we find
that regularization does not always help. Namely, there exists a critical value p, of
the signal-to-noise ratio such that vanishing regularization is optimal for p > p.
and is not optimal for p < p..

In order to state formally this result, we define the quantities

_ _ 1 _
Rwiae(p.C. P2, A) = ﬁ wide (§. Y2, A) + m%ide@’ V2, A),

@8 == D)2+ 4l 2+ (a2 -2 1)
> :

(5:24) wo(8, ¥2)

2
6()0 —

(1 —y2)wo + V2

Px (é‘v V’2) =
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Notice in particular that Zyiqc (0, £, Y2, A/ 12) is the limiting value of the prediction
error (right-hand side of (5.23)) up to an additive constant and an multiplicative
constant.

PROPOSITION 5.10. Fix £,y € (0,00) and p € (0, 00). Then the function A —
Piae (0, C, W2, X) is either strictly increasing in A, or strictly decreasing first and
then strictly increasing.

Moreover, we have

(525)  p<pe(@) = argmin Rya(p, Y2, %) =0,
A>0

(526) P> Px (E’ wZ) = arg min %wide(p’ é‘a WQ’X) = X* (é" WZ’ ,O) > 0.
A>0

The proof of this proposition is presented in Section 13.2, which also provides
further information about this phase transition (and, in particular, an explicit ex-
pression for A, (¢, Y2, p)).

Large sample limit

As the number of sample 1 goes to infinity, both training error (minus t2) and
test error’ converge to the approximation error using random features class to fit
the true function f;. It is therefore interesting what happens when n and d diverge
together, but n is larger than any constant times d.

THEOREM 5.11. Under the assumptions of Theorem 5.3, define

_ @ -2 oy - 12+ 20y + DI+ -2 - Ay - )
291 + 1) ’

and
- (> =) /8% + Y10 — Y
f%lsamp(é" WI ) A) = 3 2 .
(V1 — Do + (1 =3y + 3Y10 — ¥
Then the asymptotic prediction error of random features ridge regression in the
large width limit is given by

(527 lim lim E[Rgr(fa, X, ©,0)] = F{ Bramp(8. Y2, 2/ 117) + F7.

li
Yro2—>00

The proof of this result can be found in Section 12.

6 Asymptotics of the Training Error

Theorem 5.3 establishes the exact asymptotics of the test error in the random
features model. However, the technical results obtained in the proofs allow us to
characterize several other quantities of interest. Here we consider the behavior of

2 The difference between training error and test error is due to the fact that we define the former
as En{(y — f(x))?} and the latter as E{( f(x) — f(x))?}.
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the training error and of the norm of the parameters. We define the regularized
training error by

(6.1) LRF(fd’XvaA) =

1 N 2 N

min %; > (yi - Zajff((f’j,xi)/\/z)) + 7||“||§}-
i=1 j=1

We also recall that @(A) denotes the minimizer in the last expression (cf. equa-

tion (1.2)). The next definition presents the asymptotic formulas for these quanti-
ties.

DEFINITION 6.1 (Asymptotic formula for training error of random features regres-
sion). Let the functions vy, vy : C4 — C4 be uniquely defined by the following
conditions: (i) v, vy are analytic on Cy; (ii) for Im(¢) > 0, vi(§) and va2(§)

satisfy the equations
20, !
e Tm)
t%vy _1_
()
(iii) (v1 (&), v2(&)) is the unique solution of these equations with
i) < ¥/ ImE),  [v2(§)] = Y2/ Im(§),

for Im(§) > C, with C a sufficiently large constant.

6.2)

Let
(6.3) x = viW1v2)Y?) - va(i(1y22)?)
and
— iua(i 1/2y . %1/2.[ p 1 1 }
L = ”)2('(%”1102/1) )(1//2) l+,0 17Xé-2+1+p’
o = l:%p[—xz(xé“ — X %+ 2 yyatt + 1))
(6.4) + ﬁ[xzuzz DA 2 1)

o = =0’ + 378+ (v — 2 =y + DO =200 3502
+ W1+ V2 =3y + D2+ 20707 + 1% 4 39yt — vy,
A = | H.
We next state our asymptotic characterization of Lrg(fz, X, @, 1) and ||a(X) ||§.
THEOREM 6.2. Let X = (x1,...,%,)T € R4 with

(x1)ie[n] ~iia Unif(S?1(Vd) and © = (01,....0N)" e RN
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with (0 4)ge[N] ~iid Unif(S¢~1(v/d)) independently. Let the activation function &
satisfy Assumption 1, and consider proportional asymptotics N/d — ¥, N/d —
Y2, as per Assumption 2. Finally, let the regression function { f4}4>1 and the
response variables (y;);c[n] satisfy Assumption 3.

Then for any value of the regularization parameter A > 0, the asymptotic regu-
larized training error and norm square of its minimizer satisfy

EX,Q,E,fyL‘LRF(.fd, X, 00— (Ff+ F? +1°).Z| = 04(1).

(6.5) R
Ex @, N 12 I@MN3 — (FE + F2 + 02)e/| = 04(1).

where E X.0.e /N denotes expectation with respect to data covariates X, feature

vectors ©, data noise &, and f;L the nonlinear part of the true regression function
(as a Gaussian process), as per Assumption 3. The functions £ and <f are given
in Definition 6.1.

The proof of Theorem 6.2 is similar to the proof of Theorem 5.3. We will give
a sketch of proof of Theorem 6.2 in Section E.

6.1 Numerical illustrations

In this section, we illustrate Theorem 6.2 through numerical simulations. Fig-
ure 6.1 reports the theoretical prediction and numerical results for the regularized
training error, the test error, and the norm of the coefficients @(1). We use a small

5 T T
= Predicted test error
45 = Predicted training error |4
—— Predicted ¢ z2[a(\)|3
4r o Simulated test error J
o Simulated training error
35 o Simulated ¥1p2|a(\)|3 |
3l 4
25 ]
2r 4
1.5 ]
1L 4
051 7
0
0 1 2 3 4 5

Y1/ = N/n

FIGURE 6.1. Analytical predictions and numerical simulations for the
test error and regularized training error. Data are generated according to
yi = (B1,xi) + & with ||B,]|3 = 1 and & ~ N(0,72), 2 = 0.5. We
fit a random features model with ReLU activations (o (x) = max{x, 0})
and ridge regularization parameter A = 1073, In simulations we use
d = 100 and n = 300. We add 72 = 0.5 to the test error to make it
comparable with training error. Symbols are averages over 20 instances.
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nonzero value of the regularization parameter A = 1073, fix the number of sam-
ples per dimension ¥» = n/d, and follow these quantities as a function of the
overparametrization ratio ¥y /v¥» = N/n.

As expected, the behavior of the training error is strikingly different from the one
of the test error. The training error is monotone decreasing in the overparametriza-
tion ratio N/n and is close to zero in the overparametrized regime N/n > 1 (it
is not exactly vanishing because we use a small A > 0). In other words, the fit-
ted model is nearly interpolating the data, and the peak in test error matches the
interpolation threshold.

On the other hand, the penalty term v/ ||a(A) ||% is nonmonotone: it increases up
to the interpolation threshold, then decreases for N/n > 1 and converges to a con-
stant as 1 — oo. If we take this as a proxy for the model complexity, the behavior
of Y1 ]|a(}) ||§ provides useful intuition about the descent of the generalization er-
ror. As the number of parameters increases beyond the interpolation threshold, the
model complexity decreases instead of increasing.

We can confirm the intuition that the double descent of the test error is driven by
the behavior of the model complexity ¥ [|@(4) ||% by selecting A in an optimal way.
Following [35], we expect that the optimal regularization should produce a smaller
value of v [|@(d) ||§, and hence eliminate or reduce the double descent phenome-
non. Indeed, this is illustrated in Figure 6.2, which demonstrates the prediction of

T
===Train A =0
—Test A\=0

== == Train A\ optimal

= Test A optimal

0.5

0
10 10 10° 10 10
Y1/ = N/n

FIGURE 6.2. Analytical predictions and numerical simulations results
for the test error and the regularized training error. Data are generated
according to y; = (Bq,x;) + & with |3 = 1 and &; ~ N(0,7?),
2 = 0.2. We fit a random features model with ReLU activations
(0(x) = max{x,0}). We fix ¥, = n/d = 10. We add 7> = 0.2 to
the test error to make it comparable with the training error. In the opti-
mal ridge setting, we choose A for each value of 1/, as to minimize the
asymptotic test error.
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the regularized training error and the test error for two choices of A: A = 0 and an
optimal A such that the test error is minimized. When we choose an optimal A, the
test error becomes strictly decreasing as 1 = N/d increases. We expect this to
be a generic phenomenon that also holds in other interesting models.

7 An Equivalent Gaussian Covariates Model

An examination of the proof of our main result (Theorem 5.3) reveals an interest-
ing phenomenon. The random features model has the same asymptotic prediction
error as a simpler model with Gaussian covariates and response that is linear in
these covariates, provided we use a special covariance and signal structure.

The construction of the Gaussian covariates model proceeds as follows. Fix
B € RY, ||.31||% = F12 and

© = (01.....0N)" with (0,);cn] ~ia Unif(S? ™! (V).

The joint distribution of (y, x, #) € R x R? x R¥ conditional on @ is defined by
the following procedure:
(1) Draw x ~ N(0,I;), ¢ ~ N(0,72%), and w ~ N(0,Ix) independently,
conditional on ©.
(2) Lety = (B;,x) + ¢
(3) Letu = (uy,....un)", uj = po + Ml(ﬂj,x)/«/g + pxwj, for some
0 < [rols [l [pa] < 00.
We will denote by Py, » ,j@ the probability distribution thus defined. As antic-
ipated, this is a Gaussian covariates model. Indeed, the covariates vector u ~
N(0, X) is Gaussian, with covariance X = M%IIT + /L%@ O"/d + u2Iy. Also
(y, u) are jointly Gaussian, and we can therefore write y = (ﬁl, u) + ¢ for some
new vector of coefficients Bl and noise ¢ that is independent of u.
Let [{(yi.Xi.u;i)}ie[n]|O] ~iia Py xuj@- By performing the ridge regression

1 ¢ N2
(7.1) @) = argmin{— Y "(y; — (u;.a))* + — la)3}.
acrN (7 i=1
we obtain a regression function ?(x; a,0) = {(u,a).
The prediction error is defined by

(7.2) Roc(fa, X, ©.1) = Ex jo[(fa(x) — (w.a@(M)))*].

Remarkably, in the proportional asymptotics N,.n,d — oo with N/d — 1,
n/d — 1, the behavior of this model is the same as the one of the nonlinear
random features model studied in the rest of the paper. In particular, the asymptotic
prediction error Z is given by the same formula as in Definition 5.2.

THEOREM 7.1 (Gaussian covariates prediction model)). Define ¢ and the signal-
to-noise ratio p € [0, 0] as

(7.3) t=pi/ui. p=FE/T
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3

i i i
m Prediction
$ Gaussian covariates simulations

25 B

Test error

0 0.5 1 1.5 2 25 3 35 4 45 5
1/1s = N/n

FIGURE 7.1. Predictions and numerical simulations for the test error
of the Gaussian covariates model. We fit y; = (B, x;) + & with
B3 = 1 and 2 = E[¢?] = 0.5, and parameters uq = 0.5,
Ux = +/(m—2)/(4m), and A = 1073, This choice of parameters

(1 and p, matches the corresponding parameters for ReLU activations.
Here n = 300, d = 100. The continuous black line is our theoretical
prediction, and the colored symbols are numerical results. Symbols are
averages over 20 instances and the error bars report the standard error of
the means over 20 instances.

and assume (Lo, L1, 4« Z 0. Then, in the Gaussian covariates model described
above, for any A > 0, we have

(74)  Rac(fa-X.©.2) = (Ff + ) 2(p.C.¥1. 92, 4/ 13) + 04 p(1).
where Z(p, £, W1, Wa, A) is explicitly given in Definition 5.2.

The proof of Theorem 7.1 is almost the same as the one of Theorem 5.3 (with
several simplifications, because of the greater amount of independence). To avoid
repetitions, we will not present a proof here.

Figure 7.1 illustrates the content of Theorem 7.1 via numerical simulations. We
report the simulated and predicted test error as a function of 1 /2 = N/n. The
theoretical prediction here is exactly the same as the one reported in Figure 5.1.
However, numerical simulations were carried out with the Gaussian covariates
model instead of random features. The agreement is excellent, as predicted by
Theorem 7.1.

Why do the RF and GC models result in the same asymptotic prediction er-
ror? It is useful to provide a heuristic explanation of this interesting phenomenon.
Consider an activation function 0 : R — R, with pu; = E[Her(G)o(G)] and
u? = E[6?(G)] — u% — M% for G ~ N(0, 1). Define the nonlinear component of
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the activation function by o1 (x) = o(x) — o — p1x. Note that we have
(xla /‘/_) Mo + p1{x;, 0 /\/_‘f‘ll*wz]a
- 1
T = —ot((xi.0;)/Vd),
Hx

j_/LO—i-/Ll x;, 0 /\/_+M*wl]a

where (wj;j)ie[n],je[N] ~iid N(0, 1) is independent of X and @. Note that the first
two moments of @;; match those of wj;, ie., Ey@wi; = 0, Ex|®(wi2j) = 1.
Further, for i # [, W;;, W;; are nearly uncorrelated:

Erj@{®ij Wi} = O(({0;.87)/d)?) = Op(1/d).

It is therefore not unreasonable to imagine that they should behave independently.
The same intuition also appears in the analysis of the spectrum of kernel random
matrices in [17, 56].

8 Proof of Theorem 5.3

This section presents the proof strategy of Theorem 5.3, deferring a detailed
proof of technical propositions to the later sections. Throughout the proof, we
let X = (x1,....xn)" € R with (x;)je[n) ~iia Unif(S?~1(Vd)), ©® =
01.....0,)7 € RV*? with (04)4e[n] ~ia Unif(S?1(v/d)) independently of
X . Furthermore, we let Assumptions 1, 2, and 3 hold, and A > 0 is kept fixed.

We begin by observing that the minimizer of the training error (1.2) is given by

_ 1 -1
a) = ﬁ(ZTZ + MW aVaaln) ZTy.
It is useful to introduce the resolvent matrix & € RV XV
_ -1
8.1 E=(Z"Z + 2W14V2.4IN)

Then @(1) can be written in a simpler form @() = EZ"y//d. After a simple

calculation, we obtain
52) Rrp(f2.X.©. 1) = Ex[fy(x)?] -2y ZEV /Vd
' +yTZEUEZ y/d.

Here
o(x) = (c({81.x)/Vd),....c((8.x)/Vd)T € RV,
y=01.....yn) = f +e€R",
f=fax)... faxa)T €R,

e=1(e1,....60) €R",
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andV = (Vi,....Vn)TeRN, U = (Uij)ije[n] € RN XN are defined by

Vi = Exlfa(x)o((8:,x)/Vd)],

(8.3)
Uij = Exlo((8;,x)/Vd)a((0;,x)/Vd)].

Our first step is to replace the exact expression (8.2) by a simpler one involving
traces of combinations of E and the following four random matrices:

1 1
0=-00", H=-XXT,

d d
(8.4) . | ) o
Z =—o—=X0O' ], Z{="—X0".

v (ﬁ ) T

PROPOSITION 8.1 (Decomposition). We have

Ex 0.7t Rre(fa. X.©.2)

®-> — [F{(1 =2W; + Wp) + (F2 + %) W3 + F2]| = 04(1).
where

U, = %Tr[ZIZ 2],
(8.6) W = STEGEQ + p2INELTHZ)

1
Vs = —Tr[E(piQ + uilw)EZ'Z].

The proof of this proposition is deferred to Section 9 and is based on the follow-
ing main steps:

e As apreliminary remark, we show that by invariance of the distributions of
(0)j<n and (x;); <, under rotations in R?, we can replace the determin-
istic vector B ; by a uniformly random vector on the sphere with radius
1Ballz2 = Fa,-

e Second, we compute the expectation Eg ¢ [Rrr( f7, X, ©, A)] and simplify
this expression, in particular by proving that a negligible error is incurred
by replacing the kernel matrix U by M%Q + 121y

e Finally, we show that Rrr(f;, X, ©®, 1) concentrates around its expecta-
tion with respect to f4 (i.e., the coefficients {8 x }x>1) and &.

In order to compute the traces W, appearing in the last proposition, we intro-
duce a block-structured matrix A € RM*M M = N + 5, as follows. For
q = (s1,52.11.12. p) € R®, we define

sily +$0 ZT+pZl
. A=A = .
®.7) (g) [ Z+pZy ul,+unH
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For £ € C, and ¢ € R>, we define the Stieltjes transform of A (denoted by m,)
and its log-determinant (denoted by G ) via

1 -
mq(§:q) =E[Mq(€:q)).  Ma(€:q) = —Trl(A —Ely) .
(8.8) | M
Ga(:q) = < ) Log(hi(A(g) —§).
i=1
Here Log is the complex logarithm with branch cut on the negative real axis, and

{4i(A)};e[m is the set of eigenvalues of A in nonincreasing order.
The next proposition connects the quantities W; to the transforms G4 and M.

PROPOSITION 8.2. For§ € C4 and q € R>, we have

M
(8.9) F0aE0) =~ Y () =0 = ~Mu i)
i=1

and
Wi = S8,Gality1val) /%:0),

B10) @, = —u2 85, 1, Ga(i(W1¥21)20) — 13 85, 1, G (1(W1¥21) /2, 0),
W3 = —u2 35,1, Ga ((U1922) 121 0) — 13 5,4, G4 (1(Yr1¥20)/2:0).

The proof of Proposition 8.2 follows by basic calculus and linear algebra, and
we defer its proof to Appendix B. Despite its simplicity, this statement provides the
basic scheme of our proof. We will determine the asymptotics of M4 (€; q) using a
leave-one-out argument; then extract the behavior of G4 (€; ¢) using equation (8.9);
finally we characterize the test error using equation (8.10) and Proposition 8.1.

Remark 8.3. The construction of the matrix A(q) is related to the linear pencil
method in free probability; see [38]. A significantly simpler construction was used
in [35, sec. 8] to calculate the variance part of the risk Rgp in the limit A — 0 (in
special cases). The approach of [35] amounts to computing the Stieltjes transform
of A for p = 11 = t» = 0 in the limit £ — 0: unfortunately, this quantity
is not sufficient to extract the prediction error. We overcome this difficulty by
considering a more complex block-structured matrix and expressing the risk in
terms of derivatives of the log determinant G4 (§; q).

In order to compute the Stieltjes transform of A, we derive a set of two nonlinear
equations for the partial transform m; 4(§;:q) = (N/d)E{[(A — §IM)_1]N,N},
my q(&;q) = (n/d)E{[(A —&Ipr) " a1}, corresponding to the two blocks in the
definition of A. The starting point is the Schur complement formula with respect
to entry (N, N) of matrix A — £Iyy,

N _ _
@11 myg = —E{(~€ + 51 +5200n3/d = Al (B —Elyr—1) "' 4. ) .
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An analogous formula for m; 4 is obtained by taking the complement of entry
(M, M). Here A.y € RM~1 is the N column of A, with the N entry re-
moved, and B € RM~DX(M—1) 5 the matrix obtained from A by removing the
N'™ column and N™ row. As usual in random matrix theory, we aim to express the
right-hand side as an explicit deterministic function of m; 4 and m, 4 plus a small
error. Unlike in more standard random matrix models, the matrix B is not inde-
pendent of the vector A. y: both are functions of (8 4)s<ny and (x;)i<n. In order
to overcome this difficulty, we decompose these vectors in the components along
0 x and the ones orthogonal to @ y: the first one carries most of the dependence
and can be treated explicitly, while for the second we can leverage independence.
Unfortunately, even conditional on 6 y, the projections of (8 ;)s<x and (x;); <n
along @ ; and orthogonal to it are not independent (because of the sphere con-
straint). To overcome this problem we replace these by Gaussian vectors (0 4)q<n
and (X;); <, and prove that the two distributions yield the same asymptotics of the
Stieltjes transform. The decomposition of these Gaussian vectors takes the form

5(1 ——+0a’ (aN,5a>:Oa aG[N—l],
10 Il2

- On = :

X; = U; X;, (0N,xi)=0, l E[I’l]
||0N||

Note that {ng}ze[n—1]- {4i}ie[n] ~iia N(O,1) are independent of 0 /(|6 n||2,
{0, Yae[N—1]> and {¥; },e[n] Further, the vector A. y (the equivalent of A. y for
the Gaussian model) B only depends on the 7,’s and u;’s. While the matrix B (the
equivalent of B) depends on all of the n,’s, u;’s, 0a s, and X;’s, we show it can be

approximated by B + A where B only depends on the @,’s and ¥;’s, and A is a
low-rank matrix depending only on the 1,’s and u;’s. We thus get

N o L
s "d = gBlE s = Aly(B A =gy )T AN
+ err(d).

At this point independence can be exploited to obtain concentration results on the
right-hand side. Let us emphasize that, while these paragraphs outline the main el-
ements of the leave-one-out argument, several technical subtleties make the actual
proof significantly longer; see Section 10 for details.

We next state the asymptotic characterization of the Stieltjes transform, which
is obtained by this argument. Define Q C R* via

(8.13) Q = {(s1.52.11. 2. p) : Isata| < (1 + p)?/2},
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and two functions Fy(-, -;&:q. Y1, Yo, 1, pw). F2 (-0 165 g, ¥, Yo, 1, pha)
CxC — Cvia

Fi(mi,ma:&:q, 91, %2, 41, fx)

(1 4 tama)sa — pi(1 + p)?my )_1
(1 + som)(1 + tamy) — M%(l + p)2myimy

Fa(mi,ma;§:q, V1, V2, L1, [hs)

=V (—5 + 51— pama +
(8.14)

(1 + som1)t2 — p3(1 + p)?my )_1

= l/fz(—é + 1t —pulmy + ;
(1 + t2ma)(1 + somy) — p3(1 + p)2mims

PROPOSITION 8.4 (Stieltjes transform). Let m1(-;q) ma(-;q) : Cx — C4 be
defined, for Im(§) > C a sufficiently large constant, as the unique solution of the
equations

my = Fi(my,m2;§,q, 91, V2, i1, fhs),
m2 — F2(m17 mZ; é; qs wla 1#27 Mla M*)a
subject to the condition |m1| < y1/Im(€), |m2| < ¥»/Im(§). Extend this def-
inition to Im(§) > 0 by requiring m1, ms to be analytic functions in C,.. Define

m(&;q) = mi(€;:q) + ma(&;q). Then for any € € C with Im& > 0, and any
compact set 2 C C4, we have

(8.15)

(8.16) dlime[lMd(E;q) —m(§:q)|] = 0.
(8.17) lim E[ sup [Mq(§:q) —m(&:9)]] = 0.
d—oo  “geQ

The proof of Proposition 8.4 is presented in Section 10. The fixed point equa-
tions (8.15) arise as a consequence of equation (8.11) (and the analogous equation
for m, 4). Indeed, the proof also shows that the solution (my,mp) of these equa-
tions gives the limit of (m 4,my 4) asn, N, d — oo.

Recall that, by Proposition 8.2, we have My (&;q) = —dGy4(€; q)/dé. We can
therefore derive an asymptotic formula for G4 (£; ¢) by integrating the expression
for m(€; q) in Proposition 8.4 over a path in the £-plane. Namely, we integrate
over a path in C between £ and iK, and let K — oo. A priori, one could expect
this integral not to have a closed form. Instead, we obtain a relatively explicit
expression given below.

PROPOSITION 8.5. Define
E(E.21,22:q) = log[(s221 + D(t2z2 + 1) — ui(1 + p)?z122]
(8.18) —p3z1z2 + 5121 + t1z2 — ¥ log(z1/v¥1)
— Y2 log(za/¥2) — (21 + 22) — Y1 — V2.

For& € C4 and q € Q (cf. equation (8.13)), let m1(§; q), ma2(§; q) be defined as
the analytic continuation of solution of equation (8.15) as defined in Proposition
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8.4. Define

(8.19) g¢.q) = BE(E.mi1(§:q).m2(§:q):q).

Consider proportional asymptotics N/d — W1 and N/d — », as per Assump-
tion 2. Then for any fixed § € C4 and q € O, we have

(8.20) dllme[lGd &.q9)—g&:q)]=0.

Moreover, for any fixed u € R4, we have

(8.21) lim E[[|94 G4 (iu;0) — dgg(iu:0)|2] = 0.
d—o0
(8.22) lim E[[|V2G 4 (iu:0) — Vg (iu;0)op] = 0.
d—o00

For a complete proof of this proposition we refer to Section 11.
We can now use equations (8.21), (8.22), and (8.10) in Proposition 8.1 to get

(8.23) Ex o /N RRe(fa. X.©.1) = Z] = 04(D),
where
(824) % =FlB+ (F}+1*)V +F}
825) B =1-0,g((1¥2)"/2:0) — 12 3y, 1,8 ((Y1¥21) /2 0)
— 13 05,18 (I(Y1Y20) /21 0),
826) ¥ = —pd 35,0, 8( (Y122 2:0) — T D5y .0, g ((Yr1922) % 0).

The last display provides the desired asymptotics of bias and variance. However,
these expressions involve derivatives of g that are very inconvenient to evaluate.
We conclude by proving more explicit expressions for these quantities. The key
remark here is that the expression g(&; ¢) in Proposition 8.5 has a special property:
the fixed point equations (8.15) imply that (m 1 (§; ¢), m2(&; ¢)) is a stationary point
of the function E(&,-,-;¢). This simplifies the calculation of derivatives with
respect to ¢. In particular, the first derivative is obtained by computing the partial
derivative of & with respect to ¢ and evaluating it at m, m».

LEMMA 8.6 (Formula for derivatives of g). For fixed £ € C4 and q € R, let
m1(&:q), my(&; q) be defined as the analytic continuation of the solution of equa-
tion (8.15) as defined in Proposition 8.4. Recall the definition of E and g given in
equation (8.18) and (8.19). Defining

(8.27) mo = mo(§) = m1(£:0) -m2(£:0),
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we have
0pg(£:0) = 2mou3/(mopt — 1).
2(E:0) = myuS s —3myui i + myut + 3muiug —mgui —mgu’
S1 51 - S )
e(E0) = (Y2 — Dmgut + mypipi + (Y2 — Dmgus — mgu?
51 2 S ’
2
(8.28) o(e 0y = Y= Dmopt + mppud + (= Dmiud — gl
S2 1 S )

02,.,8(E:0) = [-m{uS s + 2miuius + (W12 — 2 — Y1 + Dmgus
—moutnd —mguing + 2 — 291 v2)myud
+ (Y1 + V2 + Y1y + Dmdpd +miu]/[(mop? — 1)S1.

where
S =myuSpt —3mgutit + (Y1 + v2 — Y1y — Dmus
(8.29) +2moutps + 3mguipy + Gy — 2 — i — Dmgut

—2mIpipi — myus — 3y yamopt + Y.

The proof of this lemma follows by simple calculus and can be found in Appen-
dix D.
Define

(8.30) V1(8) = my(Epa;0) - pow,  v2(i8) = ma(i§pa; 0) - fiy.

By the definition of analytic functions m1 and my (satisfying equation (8.15) and
(8.14) with ¢ = 0 as defined in Proposition 8.4), the definition of v; and v, in
equation (8.30) above is equivalent to its definition in Definition 1.1 (as per equa-
tion (5.7)). Moreover, for y defined in equation (5.8) with A=A / /L% and myg
defined in equation (8.27), we have

x = v1(Wpad/ud) ey /n) ')
(8:31) = mi (1222 0ma (1921210 -
= mo(i(y1v22)"?) - 1.
Plugging in equation (8.28) and (8.29) into equation (8.25) and (8.26) and using
equation (8.31), we can see that the expressions for # and ¥ defined in equations
(8.25) and (8.26) coincide with equations (5.10) and (5.11) where &, &1, and &>

are provided in equation (5.9). Combining this with equation (8.23) and (8.24)
proves the theorem.

9 Proof of Proposition 8.1

Throughout the proof of Proposition 8.1, we write that Yy = Y14 = N/d
and Y2 = ¥, 4 = n/d for notation simplicity. Throughout this section, we will
denote by B(d, k) the dimension of the space of spherical harmonics of degree k
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on S¢~1(v/d), and by (Yk(ld))lsB(d,k) a basis for this space. We refer to Appendix
A for further background.

As a useful preliminary remark, we note that the Gaussian process f;’L defined
in Assumption 3 can be explicitly represented as a sum of spherical harmonics with
Gaussian coefficients. The following lemma is standard (see, e.g., [46, prop. 6.11]).
For the reader’s convenience, we present a simple proof in Appendix C.

LEMMA 9.1. For any kernel function X4 satisfying Assumption 3, we can al-
ways find a sequence (Fik € Ry)gso satisfying: (1) D p>» F;,k = X4(1),
limg a0 Zkzz Fj,k = F2; (2) there exists a sequence of independent random
vectors B 4 x ~ N(0, [Fj,k/B(d, K)B(a k)) such that

©.1) M@= Y B .
k>21€[B(d k)]

By exploiting the symmetry in the problem, the next lemma shows that, to show
equation (8.5), instead of considering a fixed sequence of {84 ; }4>2, we can con-
sider taking {841 ~ Unif(S4—! (Fg,1))}a>2. We defer the proof of this lemma to
Section C.

LEMMA 9.2. Let us write the random variable in the left-hand side of equation
(8.5) as a function of B4 1 and de-emphasize its dependence on other variables,
ie.,

EPBa1) = |Rre(f4. X.© 1) — [FE(1 =20y + W) + (F2 + 33 + F7]|.

Let X, ©, &, and f;L be distributed as in the statement of Proposition 8.1. Then,
for any fixed B4 1 € Sd_l(Fd,l), we have

EX’(-)’E,]"‘?IL [E(Bd,l)] = Eﬁd_lvanif(Sd—l(Fd.l))]EX,("),e,ffL[g(ﬁd’l)]‘

By Lemma 9.1, we can represent the Gaussian process f;L as per equation (9.1).
By Lemma 9.2, we can replace the expectation over f;L by expectation over

Bai~ Unif(S9-1 (F4,1)) and the Gaussian vectors

Bax ~N(O.[F]/Bd. k)@ sn:

In the remainder of this section, we write [Eg as a shorthand for this expectation.
To simplify our expressions, we sometimes write Bz = B4 . It is furthermore
useful to introduce two resolvent matrices £ € RV*N and I € R™" (E is the
same as defined in equation (8.1) except that we are keeping ¥; 4 and ¥, 4 fixed

here)
9.2) E=(Z"Z+yiyodly), M =(ZZ" + y1yail,) L.

Next, we state three lemmas that are used in the proof of Proposition 8.1.
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LEMMA 9.3 (Decomposition). Let Ay i (0) be the Gegenbauer coefficients of the
function o, i.e., we have

9.3) o(x) =Y g i(0)B(d. k) Q(Vd - x).

k=0

Under the assumptions of Proposition 8.1, for any A > 0, we have

[o.¢]
O4)  EpelRer(fa. X.©.2)] = ) F,(1 =281 + Sa) + 1283,

k=0
where
1
Six = — Ay 1 (0)Tr 0XxXHZzZE]
1k NZi d k(0)Tr[Qk ( )ZE]
1
9.5) Sor = gTr[EUEZTQk(XXT)Z],

1
S3=-Tr[EUEZ"Z],
d
where U = (Ujj)i je[N] € RNXN is 4 matrix whose elements are as defined in
equation (8.3), Z is given by equation (8.4), and E is given by equation (9.2).

LEMMA 9.4. Under the same definitions and assumptions of Proposition 8.1 and
Lemma 9.3, for any A > 0, we have (I is the expectation taken with respect to the
randomness in X and ©)

(9.6) E[1 —2S10 + S20| = 04(1).
9.7) E[ sup [S1k|] = 04(1),
k>2
9.8) E[ sup [Sax — S3]] = 04(1),
k>2
9.9) E|[S11 — W] = 04(1),
(9.10) ElS21 — Wa| = 04(1),
9.11) E|S3 — W3] = 04(1),

where S1j, Sox, S3 are given by equation (9.5), and V1, W, , W3 are given by equa-
tion (8.6).

LEMMA 9.5. Under the assumptions of Proposition 8.1, we have

9.12) Ex o[ Varg o (Rer(fy, X, ©,1)| X, ©)"?] = 04(1).
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We defer the proofs of these three lemmas to the following subsections and show
here that they imply Proposition 8.1. We have

Es,ﬂ [RRF(fd’ Xv @, A')]

x o
_ |:Fd2,1(1 —2\111 =+ \Pz) + <7:2 + Z F3,k>W3 =+ Z Fd2,k:|

k=2 k=2

Ex.e

(@)
< Fj,-E[1—=2S10+ S20l + Fj ;- [E[S11 — W] + E[S2; — ¥y ]

(Z kg k) sup [2E|S1k| + E[Sax — W3|] + t°E|S3 — W3

®
= 0g (l) .
where (a) follows by Lemma 9.3 and the triangular inequality, and (b) from Lemma
9.4.

Combining this with Lemma 9.5 (and E[W¥ ], E[W;], E[¥3] = O4(1)) and Lem-
ma 9.2 concludes the proof of Proposition 8.1. In the remainder of this section, we
will prove Lemma 9.3, 9.4, and 9.5.

9.1 Proof of Lemma 9.3

Recall the expression (8.2) for the risk. Taking expectation with respect to 8
and &, we get

Ege[Rre(fa. X, ©. )] =) Fj, —2T1 + T+ Ts,
k>0

where

1 1
T, = —FEg[fTZEV], To,=—-Eg[f'ZEUEZ"f],
1 NZi glf ] 2= slf f]

1
Ty = EEe[st EUZZ el

The proof of the lemma follows by evaluating each of these three terms. It is
useful to introduce the matrices Y , and Y g, which denotes the evaluations of
spherical harmonics of degree k at the points {x;};<, and {0 ,},<n (cf. Appendix
A):

©.13) Yix = (Ve (xi)iem s k) € RVBEH,

Yk,0 = (Ykl(0a))ae[N],le[B(d,k)] € RNXB(d’k).

With these notations we have
o0

x
9.14) f=) YiaBr €R". V=3 2gu(0)YigB €RY

k=0 k=0
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Since B ~ N(0, F2 , Ig(yk)/B(d.k)) for k > 2 and B, ~ Unif(S?~!(Fz,1))
independently, we have

o0 oo
EglV fT1 =) FjAax(@)0r(@OXT), Eg[ffTl= Z FjQr(XXT).

k=0 k=0
Using these expressions, we can evaluate terms 77 and 75:

1 o0
Ti=—) Fjihax(0) Tr[Qr(@OXNZE],
ﬁ];) d,k [ ]

= Y Fl.-T[EUEZTQ0x(XX"Z].
k=0
We proceed analogously for term 73. By the assumption &; ~iig P with Ez(¢) = 0
and E, (8%) = 72, we have

1 2
Ty = S Ee[Tr(es EUEZ2)] = % TI[EUEZ"Z].

Combining the above formulas for 77, 7>, and 73 proves Lemma 9.3.

9.2 Proof of Lemma 9.4

The next two lemmas will be used in the proofs of Lemma 9.4 and Lemma 9.5,
and hold under the same assumptions. The first of these lemmas will be used to
establish equation (9.6) (but notice that its statement does not coincide with that
equation), and the second will be used to control several terms in those proofs. The
proofs of these lemmas are given in Section C.2.

LEMMA 9.6. Define

Ad,0(0) T
(9.15) A = = =—Ti[Iy1,ZE],
Vd §
A 2
(9.16) Ay = d’OT(O)Tr[E INIYEZT1,1] 2]

Then for any A > 0, we have

E[1 —24;1 + A2] = 04(1).
LEMMA 9.7. Leti]\_la)aeA € R™" pe a collection of symmetric random matrices
with E[supge | Mall3,]1/> = Oq(1). Define

Ad0(0)?

9.17) B, ;

Tr[EININEZ "M Z].
Then for any A > 0, we have

IE[ sup |Ba|] =o0g4(1).
acA
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We will now use these lemmas to prove Lemma 9.4. We begin by recalling a few
facts that are used several times in the proof. Since A > 0, there exists a constant
C < oo depending on (A, Y1, ¥») such that deterministically

1ZEllop = | Z(Z7Z + ¥192A1n) ' llop < €,

1Ellop = [(Z7Z + y1v2Aly) ™ lop = €.

By operator norm bounds on Wishart matrices [5], we have (the definition of these
matrices are given in equation (8.4))

2 2 2
(919) E[H H Hop]’ E[H Q Hop]’ E[” Zl Hop] = Od(l)
Finally, we need some simple operator norm bounds on the matrices
Qk(XXT)—T,, Qr(®OT) —Iy, Qr(@X").
Notice that Qz (X X T);; = 1 (by the normalization condition of Gegenbauer poly-
nomials) and the out-of-diagonal entries of Qp (X X ™) have zero mean and typical

size of order 1/d*/? (see Appendix A). This suggests the following estimates,
which are formalized in Lemma C.6,

E| sup |0k (X XT) = T3, | = 0a (),
k>2 -

(9.18)

(9.20) E[SUP 10+(©@OT) —INII?,p_ = 04(1),
k>2 -

E| sup | 0« (@ XT3,

= o0y4(1).
k>2 -

As a consequence of these estimates, we obtain a useful approximation result for
the matrix U € R¥ as defined in equation (8.3). In words, U is well approximated
by a term that is linear in the weights covariance matrix @ ® " plus a term that is
proportional to the identity. To see this, by the decomposition of ¢ into Gegenbauer
polynomials as in equation (9.3) and the properties of Gegenbauer polynomials as
in Appendix A, we have

U= ) 2ak(@)ra1(0)B(d.k)B(d DEx[Qx(©®XT)Q/(XOT)]
k=0

=Y 2ax(0)’B(d.k) 0x(®O").
k=0

Since Ad,k(a)zB(d, k)k! — pg(0)? as d — oo (see equation (A.14)), we have
©21) U =27,vly +p1Q + ui(dy +A), E[IA[3] = 0a(D).

(This estimate is stated formally in the appendices as Lemma C.7.) It is also useful
to introduce the matrix

M =pi0 + 12y + A),
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for which the above implies U = )Lfi’OlNIIV + M and E[||M||§p] = 0y4(1).
Having presented our preliminary estimates, we can now prove Lemma 9.4.
We begin by considering equation (9.6), where S;¢ and S»¢ are defined in equa-
tion (9.5). By the approximate linearization of U in equation (9.21), we have

A
Sio = %?Tr(lNllZE),
A 2 1
Sho = ‘Z’OT(O)Tr(E ININEZT1,10Z) + zTr(ZEMEZTlnll).

Now recall the definitions of A; and A5 in equations (9.15) and (9.16), and the
definitions of E and IT as in equation (9.2). We define

= éTr(Z EMEZ1,1)) = éTr(ZMZTHInIZH).
Then we have S19 = A} and S29 = A, + B, and by Lemma 9.6 we have
E[[1 —2S10 + S20[] = E[|1 — 241 + A2 + B]
(9.22) < E[|[l =24, + A2[] + E[|B]]
< E[|B[] + 04(1).
By Lemma 9.7 and the fact that E[||M||(2)p] = 04(1) as in equation (9.21),> we
have

E[|B[] = 0q(1).
Plugging these bounds into equation (9.22), we get E[|1 — 2510 + S20|] = 04(1)
as claimed.

We next consider equation (9.7), which requires controlling S, defined in
equation (9.5)). By equation (9.18), we have

sup [S1x| < sup [[VdAgx(@)] - Ok (@ X )Z E||op]
k>2 k=2

< sup [C - 1VdAg1(@)]- 0k (@ X T)lop]-

Further note that ||0||22(”) = D k>0 )Ld,k(a)zB(d,k) = 04(1), Bld.k) =
O(d¥), and for fixed d, B(d. k) is nondecreasing in k [34, lemma 1]. Therefore

sup [Ag,(0)| < Zug[llaﬂm(w)/vB(d,k)] = 04(1/d).

k>2

(9.23)

Combining this with equations (9.20) and (9.23), we get E[supg >, [S1x[] = 04(1).
We next consider equation (9.8), whereby S,x and S3 are defined as per equa-
tion (9.5). Recall that, by equation (9.21), we have U = )Lfi oln IR, + M, where

3 When applying Lemma 9.7 we change the roles of N and n, the roles of E and II, and the roles
of ® and X; this can be done because the roles of @ and X are symmetric.
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E[||M||§p] = 0y4(1). We have therefore

9.24) sup |Sox — S3| < 11 + Iz,
k>2
where
A2
I, = sup %Tr[ElNlR,EZT(Qk(XXT) ~1,)Z]|.
k>2
1
L =sup|-TH{EMEZT(Qx(XXT) —In)Z]‘.
k>2 d
By Lemma 9.7 (with M r=0r( XX T) —I,) and equation (9.20), we get

E[1] = 04(1).
Moreover, by equations (9.18) and (9.19), we have

El12) = B sup A% 012 2 lop M lopl1 2 7 op| Q4 (X XT) — Tl |
>

1/2
< 04(1) - EIIM 1G] 2 B sup 106X XD = Lali5 | = ea(h).
>2

Plugging these bounds into equation (9.24), we get the desired bound
Efsup | Sz — S]] = 0a(1).
k>2

We next consider equation (9.9), where we recall the definition of S;; in equa-
tion (9.5) and the definition of W; in equation (8.6). By observing that

lim «/gx\l,d(a) = U1
d—o0

(see equation (A.14)) and that 1, 01 (XO®") = 1 X0O"/d = Z, we immedi-
ately get
E[S11 —W1i] = 04(1) - E[|W1]] = 04(1).
In order to prove equation (9.10), recall the definition of S»; in equation (9.5)

and the definition of W5 in equation (8.6). By the decomposition of U in equation
(9.21) and recalling that Q1 (X X ") = H, we have

(9.25) |S21 — Wa| <15 + 14,
where
A 2
I = ‘“T(U)Tr[slNﬂVEZTHZ] ,
%
L = jTr[EAEZTHZ]‘.

By Lemma 9.7 and equation (9.19), we get
E[13] = 0q(1).
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Moreover, by equation (9.18) and (9.19), we have
Ells] < E[12 1 Z E lopll Allop | E Z T llopl| H [1op]
< 04 (1) -E[|A 5] E[IH 3] = 04 (1).
Plugging these bounds into equation (9.25), we get the desired bound
E|S21 — Wa| = 04(1).
Finally, equation (9.11) is proved analogously to equation (9.10): this completes

the proof of the lemma.

9.3 Proof of Lemma 9.5

Instead of taking 87 ; ~ Unif(S9—1 (Fg,1)), in the proof we will assume B ; | ~
N(0, [Fd2 ,/d11g). Note for B4 1 ~ N(0, [Fj /d1g), we have

Fg1Ba1/Balla ~ Unif(S9™ (Fz 1))

Moreover, in high dimensions, |8, |2 concentrates tightly around Fy ;. Using
these properties, it is not hard to translate the proof from Gaussian 8 ; ; to spherical

Ba-
To prove Lemma 9.5, we begin by rewriting the prediction risk—cf. equation
(8.2)—-as (note that y = f + &)

Rep(fg.X. @, 1) =Y F3, =20 + Iy + I's — 2Ty + 2Ts,
k>0
where
= fTZEV/Vd, To=fZEUEZ f)d, Ts=¢ZEUEZ ¢/d,
Ts=¢ ZEV/Vd, Ts=¢"ZEUEZ f/d,
and V e RY and U € RV*N given in equation (8.3). We will regard I'y,..., s

as quadratic forms in the vectors 8 and &, and bound their variances individually.
Namely, we claim that

Ex e[Varge(I'x)] = 04(1) Vk <5.

This obviously implies the claims of the lemma. In the rest of this proof, we show
the variance bound for I'y, as the other bounds are very similar.

Recall the definition of Y ,» and Y ¢ in equation (9.13), the definition of
Gegenbauer coefficients A4 ; = A4,(0) in equation (9.3), and the expansion of
f and V vectors in equation (9.14). We rewrite 'y as

I (& ! S
r, = _(Z Yk,xﬁd’k) ZE (Z Ad,zYz,oﬂd,l)-
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Calculating the variance of I'; with respect to B4 5 ~ N(0, (F j o/ B(d, k)
for k > 1 using Lemma C.8 (which follows from direct calculation), we get
2

A
d,l —
Varg(I'y) = Z 7Var,g (ﬂ;,ky;xz EY,0B4.)

1#k
Mok
+ = Varp(Ba Y i< ZEY kpBak)
k>1
)LZ
:ZFledk 7 TH(EZTOW(XX)ZEQ(©OT))
l#k
Zde EZT0k(XX)ZE 0 (@O)
k>1

+ Tr(Z EQ(O®XNZEQr(OX))].

Notice that we have ||Z E o, < C almost surely for some constant C, and recall
the bounds (9.20), which imply

E{zuli 10k (XX )2} = 04(1), E{zur; 10k (©@X )|} = 0a(1),

E{iuli 10k (@077} = 04(1)

(the case k = 1 corresponds to standard Wishart matrices).
By taking the expectation in the above expression, using d ~'Tr(A) < C || A llop
for A € R or A € RV*N and using Cauchy-Schwarz, we obtain

Ex,e[Varg(I'1)]
2

A
d,0 _ =
<> Fj’OF;’kTEX,@Tr(:.ZTQk(XXT)Z Elyly)
k>1

+Y Fj le 0 d IEX OTr(EZ1,1]Z20,(007))
I>1
2 2 42 4 42
+C Y FFira +C Y Fldg
I#£k>1 k>1
Further note that
loll 2,y = D AaxB(d.k) = 04(1), B(d.k)=0(d"),
k>0
and for fixed d, B(d, k) is nondecreasing in k [34, lemma 1]. Therefore

sup [Agk(0)] < sup o2/ VB(d. k)] = 04(1//d).



44 S. MEI AND A. MONTANARI

Substituting above we obtain, and using the fact that ) ;- F(% ¢ = Oa(1) by
construction, we have
Ex.e [Var/g (Fl)]
A
,0 p— p—
<> FiOFikTEX’gTr(:.ZTQk(XXT)Z Elyly)
(9.26) =1
2 2 A 51 ! =Ty 1T 7= T
+> Fd,le’OT’IEX,gTr(:.Z L1 ZEQ;(©8")) +o4(1).
I>1

To bound the remaining two terms in this expression, note that

sup ]EX,@)

1
s gTr(EZTl,,lZZEQk(G)QT))
>1

1
= sup EX’@‘ETr(HlnIZHZQk(G)@T)ZT) = o04(1),

k>1

where the bound is implied by Lemma 9.7 (when applying Lemma 9.7, we change
the roles of N and n, the roles of & and II, and the roles of ® and X; this can
be done because the role of @ and X is symmetric), and by equation (9.19) and
Ado(0) = ©4(1) (by Assumption 1 and note that o(0) = limy_, A4,0(0) by
equation (A.14)). This proves that
2,

> File’OT’EX,@Tr(E Z'1,1JZEQ(®07)) = 0,4(1).

I>1
The bound on the first term in equation (9.26) is obtained analogously, and we omit
it for brevity.

10 Proof of Proposition 8.4

This section is organized as follows. We collect the elements to prove Proposi-
tion 8.4 in Sections 10.1, 10.2, 10.3, and 10.4, and prove the proposition in Section
10.5.

More specifically, in Section 10.1 we state the key Lemma 10.1: the partial
Stieltjes transforms of A approximately satisfy the fixed point equation, when x;
and @, are Gaussian vectors and the activation function ¢ is a polynomial with
Eg-n,1)[¢(G)] = 0. In Section 10.2 and Section 10.3, we first establish some
useful properties of the fixed point equations and then prove Lemma 10.1. Finally,
in Section 10.4, we show that the Stieltjes transform does not change significantly
when changing the distribution of x;, #, from uniform on the sphere to Gaussian.

10.1 The key lemma: partial Stieltjes transforms are approximate fixed point

In this subsection, we state Lemma 10.1, which is the key lemma that is used
to prove Proposition 8.4. Lemma 10.1 studies 727 4 and m, 4, the partial Stieltjes
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transforms of the Gaussian counterparts of the matrix A as defined in equation
(8.7). This lemma shows that these partial Stieltjes transforms 77, 4 and 715 4
approximately satisfy the fixed point equation that involves functions F; and F; as
defined in equation (8.14). We will prove Lemma 10.1 in Section 10.3. Later in
Section 10.4, we will show that the Gaussian counterpart of the Stieltjes transform
shares the same asymptotics with its spherical version.

First let us define the Gaussian counterparts of the partial Stieltjes transforms.
Let (5a)ae[N] ~iid N(0,I;) and (Ei)ie[n] ~iid N(0,1;). We denote by @ c RN
the matrix whose a'™ row is given by 84, and by X € R”*4 the matrix whose i ™
row is given by X;. We consider a polynomial activation functions ¢ : R — R.
Denote pp = E[p(G)Her(G)] and u2 = D k>2 ;L]%/k!. We define the following
matrices:

— " — 1 T
10.1 - _006 H=-XX
(10.1) 0 p , ] ,
7 1 I a7 7 M1 52T
(10.2) J=—— (—X@ ) J.=21xa8",
7 '\Va ‘T

as well as the block matrix A € RM*M , M = N 4+ n, defined by

|:s11N t50 T+ ij:|

10.3) A= _
J+pJ1 uly+i0H

The matrix A is in parallel with its spherical version matrix 4 defined as in equa-
tion (8.7).

In what follows, we will write ¢ = (s1, 52, 11, 2, p). We would like to calculate
the asymptotic behavior of the following partial Stieltjes transforms:

a6 g) = SE(A ~ )il) = B a6 )

(10.4) @ B
M€ q) = SE{(A - EON N1 = EMs 4 (:9)],
where
_ 1 _
My q4:.q) = ETr[l,N][(A — &)1,
(10.5)

_ 1 _
My 4. q) = ETr[N+1,N+n][(A — &) ']

Here, the partial trace notation Try. .} is defined as follows: for a matrix K €
CM*M and 1 <a < b < M, define

b
Triap)(K) = ) Kij.

i=a
The crucial step is showing that the expected Stieltjes transforms 7721 4,75 4 are
approximate solutions of the fixed point equations (8.15).
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LEMMA 10.1. Assume that ¢ is a polynomial with E[p(G)] = 0 and u1 =
Elp(G)G] # 0. Consider the linear regime Assumption 2. Then for any ¢ € Q and
for any &y > 0, there exists a C = C(&g,q, V1, V2, ) that is uniformly bounded
when (q,¥1,V¥2) is in a compact set, and a function err(d) with limg _, o, err(d) —
0 such that for all £ € C1 with Im(§) > &y, we have

(10.6) M1, —F1(fy,q.M2a:6:q.91. V2, 1. pix) | < C -err(d),
(10.7) |y, q — Fa(ify g. Mo q: 4. 91, Y2, k1. 1a)| < C -err(d).

The proof of Lemma 10.1 uses a leave-one-out argument in deriving the fixed
point equation for Stieltjes transform of random matrices, e.g., [11, chap. 3.3] and
[17]. We will prove Lemma 10.1 in Section 10.3. In the next subsection, we will
collect some lemmas that are used in this proof.

10.2 Preliminaries of the proof of Lemma 10.1: Stieltjes transforms and the
fixed point equation

First we establish some useful properties of the fixed point characterization
(8.15), where F; and F» are defined via equation (8.14). For the sake of simplicity,
we will write m = (m1, m») and introduce the function F(-; &; ¢, Y1, ¥, i1, thy) :
CxC—CxCvia

e _|Fimy,maiE:q, %1, Y2, f1, fx)
(108)  Fm:§iq.v1.¥2. p1. i) = [Fz(ml,mz;&‘I»Wl,lﬁz,ltl,ll*)]'
In the following lemma, we fix a ¢ € Q (as defined in equation (8.13)) and fix
0 < Y1, ¥, i1, v < 00. Since the parameters ¢q, V1, Vo, (1, 1« are fixed, we
will drop them from the argument of F unless they are necessary. In these notations,
equation (8.15) reads

(10.9) m = F(m;§).
The following lemma shows that there exists a unique fixed point of the equation

above in a certain domain provided Im £ is large enough.

LEMMA 10.2. Let D(r) = {z : |z| < r} be the disk of radius r in the complex
plane. There exists §&g = Eo(q, V1, Va2, 1, x) > O such that, for any & € Cy
with Im(§) > &g, F(-:£&) maps domain D(2yr1 /&) x D(2yr2 /&) into itself and is
1/2-Lipschitz continuous. As a result, equation (8.15) admits a unique solution in
D(2y1/80) x D(2yr2/60).

PROOF OF LEMMA 10.2. We rewrite the first equation in equation (8.14) as

V1

10.10 Filmy,my:§) = ’
( ) 1(m1,ma; §) —& 451+ Hi(my,mp)

1

14tomo
s2+(t252— 3 (14 p)2)my
It is easy to see that, for ro = ro(q, (11, it+) small enough, |H{(m)| < 2+ 2]sy| for
any m € D(rg) xD(ro). Therefore |Fy(m;§)| < y1/(Im(§) —2—2|s2]) < 2¢1 /6o

(10.11) Hi(mi, ma) = —pu2ma +

miy +
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provided Im & > &y > 4+4|s»|. Similarly, we have |Fa(m; )| < 25 /&p provided
Imé& > & > 4 + 4|t2|. We enlarge &y so that 2 max{yr1, ¥2}/Eo < ro. This shows
that F maps domain D21 /&) x D(2¥2/&p) into itself.

In order to prove the Lipschitz continuity of F in this domain, notice that F; is
differentiable and
(10.12) VmF1(m: €) = 4

(=& + 51+ Hi(m))?

VmHi(m).

By enlarging &y, we can ensure
IVmH1(m)|l2 < C(g. 1. pus)  forallm € D(2y1 /o) x D(2¢r2/%0).

whence in the same domain

IVmF1(m:§)ll2 < Cg. p1. ) V1 /(Im(€) — 2 — 2|55 ).
This result similarly holds for F,. Therefore, by enlarging &, we get F is %—
Lipschitz on D(2v1/&0) x D(2v2/&p).
As a consequence, we have that F is a contraction on domain D(2vyr /&p) X
D(2yr2/&0). The existence of a unique fixed point follows by the Banach fixed
point theorem. U

Next, we establish some properties of the Stieltjes transforms as in equation
(10.4). Notice that the functions § +— m; 4(§;q)/V; 4,1 € {1, 2}, can be shown to
be Stieltjes transforms of certain probability measures on the real line R [35]. As
such, they enjoy several useful properties (see, e.g., [5]). The next three lemmas
are standard and have already been stated in [35]. For the reader’s convenience, we
reproduce them here without proof: although the present definition of the matrix
A is slightly more general, the proofs are unchanged.

LEMMA 10.3 (Lemma 7 in [35]). The functions & v+ my 4(§) and § — iy 4(§)
have the following properties:
(a) For§ € C4, we have m; g(§) < i/ Im(§) fori € {1,2}.
(b) my g4, My 4 are analytic on Cy and map C into C.
(c) Let @ C Cy be a set with an accumulation point. If m; g(§) — m;(§)
for all & € Q, then m;(§) has a unique analytic continuation to C+ and
m; g(§) — m;(§) for all§ € C1. Moreover, the convergence is uniform
over compact sets 2 C C.

LEMMA 10.4 (Lemma 8 in [35]). Let W € RM*M pe g symmetric matrix, and
denote by w; its i'™ column, with the i entry set t0 0. Let W = W — wie] —
e,-wiT, where e; is the i element of the canonical basis (in other words, w®
is obtained from W by zeroing all elements in the i"" row and column except on
the diagonal). Finally, let ¢ € Cy with Im(§) > & > 0. Then for any subset

S C [M], we have

(10.13) [ Trs[(W — Elpy) 1] — Trs[(W D — gLy) 71| < éio
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The next lemma establishes the concentration of Stieltjes transforms to its mean,
whose proof is the same as the proof of lemma 9 in [35].

LEMMA 10.5 (Concentration). Let Im(§) > &g > 0 and consider the partial Stielt-

jes transforms Mi,d (&:q) as per equation (10.5). Then there exists co = co(€o)
such that, fori € {1,2},

(10.14) P(|M; 4 (:9) — EM; g (6:q)| = u) < 2700,

In particular, if Im(§) > O, then |1\7,-,d &:.q) — E]VII-’d (&;9)| — 0 almost surely
and in L.

LEMMA 10.6 (Lemma 5 in [34]). Assume o is an activation function with o (u)? <
co exp(cy u?/2) for some constants co > 0 and ¢y < 1 (this is implied by Assump-
tion 1). Then
@ Egno,nlo(G)?] < .
(b) Let ||wllp = 1. Then there exists dgy = do(c1) such that, for x ~
Unif(S4~1(Vd)),
(10.15) sup Ex[o((w, x))?] < oo.
dzdo
(¢) Let |w|l2 = 1. Then there exists a coupling of G ~ N(0, 1) and x ~
Unif(S¢~Y(v/d)) such that

(10.16) dlim Ex.gl(c((w, x)) —0(G))*] = 0.

10.3 Proof of Lemma 10.1: Leave-one-out argument

Throughout the proof, we write F(d) = O4(G(d)) if there exists a constant
C = C(p.q.¥1. V2, @) that is uniformly bounded when (&p, ¢, V1, ¥»2) is in a
compact set such that |F(d)| < C - |G(d)|. We write F(d) = 04(G(d)) if for
any ¢ > 0, there exists a constant C = C(¢, &g, g, V1, V2, ¢) that is uniformly
bounded when (&g, ¢, ¥1, ¥2) is in a compact set such that | F(d)| < ¢-|G(d)| for
any d > C. We use C to denote generically such a constant that can change from
line to line.

We write F(d) = Oy p(G(d)) if for any § > 0, there exist constants

K = K(,50,q9.V1,.¥2,¢) and do = do(8.%0.q,V1.V2.9)

that are uniformly bounded when (&g, ¢, %1, ¥2) is in a compact set such that
P(|F(d)| > K|G(d)]) < 6 for any d > do. We write F(d) = o4 p(G(d)) if
for any ¢, > 0, there exists a constant dy = do(e, 8, £0, 4, V1, W2, @) that is uni-
formly bounded when (&g, g, %1, ¥2) is in a compact set such that P(|F(d)| >
g|G(d)]) < 6 forany d > dj.

We will assume p = 0 throughout the proof. For p # 0, the lemma holds by
viewing J + pJ1 = ¢.(XOT/ Vd )/ Vd as a new kernel inner product matrix
with . (x) = @(x) + pu1x.
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Step 1. Calculate the Schur complement and define some notations.

Let A. y € RM~1 be the N column of A, with the N™ entry removed. We
further denote by B € RM—1)x(M=1) the matrix obtained from A by removing
the N'" column and N row. Applying the Schur complement formula with respect
to element (N, N), we get

_ — -T = g —
Mg =V1aB{(—§ + 51+ s200n135/d — A y(B — EIy—1) "4 N) 1}-

We decompose the vectors 0 4, X; in the components along @ 5 and the orthogonal
component:

_ 0 - o~

00 =ta—2— +0,. (Ony.04)=0. ac[N-1]
10512

_ 0N . = - .

X;i=ui——+Xx;, (Ony.X;) =0, i €ln].
10~

Note that {14 }ge[N—1]- Ui }ie[n] ~iia N(O. 1) are independent of all the other ran-
dom variables, and {'éa}ae[N_l], {Xi}ie[n) are conditionally independent given
0 y, with 5,1, %; ~ N(0,P_), where P is the projector orthogonal to @ .

With this decomposition we have

(1007 Q= 7 (nams + [Fa. T5)). a.beN 1]
1018)  Tig= %w(%(k}ﬁa) " %uma), aeIN—1].i e,
(10.19)  Hjj = é(uiuj + (%1, %)), i,j € nl.
In addition, we have A. y = (A N,..., Ap—1.n)" € R¥Y 71 with
(10.20) F %Szm ||5N||2_ ifi <N -1,
’ Z=o(uilbnll2) ifi = N.
We next write B as the sum of three terms:
(10.21) B=B+A+ Eyc RM-DxM-1)
where

B |:S11N_1~+ Szé .7T ~i|’

(10.22)

B>
Il
—

afF s
===

-~
= s,
RS
=

- 4
| I |
tn
[=

Il
1
o =
_

b
o 7
| I |
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and 77 = (nlv---anN—l)T,u = (Mls---sun)T9 and
~ 1 ~ ~
(10.23) Oup = 3(0a,0b), a,be[N—1],
- 1 1 - o~ )
(102’4) Ji,ll = ﬁw(ﬁ(xlv 061))7 ae [N - l]’ I € [n]v
~ I ..
(10.25) Hij = g(xi,xj>, i,j € [nl.

In addition, we have E| = (E1,ia)ie[n],ac[N—1] € R™N | where
1 | 1 |
Eiia = ﬁ[w(ﬁ(xiﬁa) + ﬁuina) —§0(ﬁ(xi,0a)) - %Mﬂ]a]
1 | 1 1 . ~
= ﬁ[‘ﬂl(ﬁ(xi,aa) + ﬁ“i’?a) —¢L(ﬁ(xi, 0a))],

where ¢ (x) = ¢(x) — p1x.

Step 2. Perturbation bound for the Schur complement.

Denote
(1026) o1 = (=& + 51 +5200w13/d — ALy (B —Ely—) T A.n) ",
(1027)  wr = (~E+s1+52—A y(B+ A -y A.n) "

Note that we have m; 4 = ¥ 4E[w;]. Combining Lemmas 10.7, 10.8, and 10.9
below, we have

o1 —w2| < 04 (1) - [10n15/d = 1]+ 04 (1) - |A. N3 | Etllop = 0a,2(1).

Moreover, by Lemma 10.7, |1 — w>| is deterministically bounded by 2/&g. This
gives

(10.28) m1,q — V1,aElw2]| < Y1 aE[lor — w2]] = 04(1).

LEMMA 10.7. Using the definitions of w1 and w; as in equation (10.26) and
(10.27), for Im & > &y we have

w1 — wa| < [s2/10N113/d — 11/E5 + 21 A. N IZIE 1llop/Eo | A [2/60]-
PrROOF OF LEMMA 10.7. Note that
Im(—07") > Imé + Im(A] (B — ely—1) "' 4. y) = Im§ > &o.

Hence we have |w1| < 1/&p, and, using a similar argument, |w;| < 1/&y. Hence
we get the bound w1 — wa| < 2/&.
Denote

— — = —1
w15 = (—§+S1+S2—A.,N(B—§IM_1) 1A.J\/) ,
we get

o1 — w15 = 2|1 (108 115/d — Dors| < s2|10n115/d —1]/53.
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Moreover, we have
lw1.5 — w2
= 015024 N[(B+ A~y — (B + A+ Eo—ly_1) |4 x|
= |o15024 N (B+ A —Ely_) " Eo(B+ A+ Eo—§ly—_1) ' A. v
< (1/6) - 14 N 1530/ED 1 Eollop < 2 Ellopl A - ¥ 113/55-
This proves the lemma. U
LEMMA 10.8. Under the assumptions of Lemma 10.1, we have

(10.29) IEt]lop = Oy p(Poly(logd)/d/?).

PROOF. Define z; = @, fori € [N —1],zi = Xij—nyy1for N <i <M —1,
(i =mnifori € [N —1],and ¢; = uj_ny4+1 for N <i < M — 1. Consider the
symmetric matrix E € RWM-Dx(M—1) with E;; = 0, and

(10.30) E;j = %[(PJ_(%(Zi,Zj) + % §ié’j) _(pl(%<Zist>):|'

Since E; is a submatrix of E, we have |E1|op < || E|op. By the intermediate
value theorem

E = diag(81.....Em—1),
, 1
Frj = T ﬁ(ziazj> 1z,
1 - - 1 1 1
P = ﬁ‘ﬂl(zzj) Lizj, Zij€ [ﬁ(zz',z]'), ﬁ(ZiaZj> + ﬁ@i@}-

Hence we get

IE lop < (IF 1lop/ VDIE 3, + (IF 2llop/DIEN,.

Note that ¢/ (x) = ¢”(x) is a polynomial with some fixed degree k. Therefore we
have

E{|F2ll%} = [M(M = 1D)/d] - Elp] (12)%] < Oq(d) - E[(1 + [212)*]
< Oa(d) - {B[(1 + (25, 2;)/Vd )]
+ B[+ I(zi.27) + &8 /VADF]} = 04(@).

Moreover, by the fact that ¢’ is a polynomial with E[¢’ (G)] = 0, and by theorem
1.7 in [31], we have ||[F|lop = Ogp(1). By the concentration bound for the
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x-squared random variable, we get || E||op = Od,p(\/@ ). Therefore, we have
IE llop < Oqp(d™"/?)Oq p(Poly(logd)) + O4.p(d /%) Og p(Poly(log d))
= 04 p(Poly(logd)/d~'/?).
This proves the lemma. g
LEMMA 10.9. Under the assumptions of Lemma 10.1, we have
(10.31) 14,5 ll2 = Oap(1).

PROOF. Recall the definition of /_1., ~ as in equation (10.20). Denote a; =
s2ml0nll2/d € R¥™" and @ =_¢(|0n|l2/v/d)/Vd € R", where  ~
N(0,Ixy_1) and u ~ N(0,1,;). Then Z.,N = (a;;a;) e RPN,

For a1, note we have ||ai||> = |s2| - |7]|2]|0 n'||2/d where  ~ N(0,Iy_1) and
6 4 ~ N(0,1,) are independent. Hence we have

E[lla1113] = s3E[InlI510 n 131/d* = Og(1).

For a5, note that ¢ is a polynomial with some fixed degree k; hence we have
E[llaz[3] = Elp(u: 10 x1l2/~d)*] = 04(1).

This proves the lemma. O

Step 3. Simplification using Sherman-Morrison-Woodbury.
Notice that A is a matrix with rank at most 2. Indeed

A=UMUT e RM-DXM-D 7 _ L[’? 0] e RM-Dx2

0 u
(10.32) ﬁ
M = [Sz M1:| c R2X2.
H1 Iz

Since we assumed ¢ € Q so that [saf2| < u% /2, the matrix M is invertible with
1M~ op < C.

Recall the definition of w; in equation (10.27). By the Sherman-Morrison-
Woodbury formula, we get
(10.33) = (—E+51+50—v1 +v3(M "+ V3)luy) 7,
where

_T ~ _ a— ~ 1=
(10.34) vi=A. y(B—Ely_1) "A. N, v2=U"(B—¢€Iy_1) "4y,
Vi=U"(B —£Iy_1)"'U.

‘We define
(10.35)
myd

= 2 2 2\ = = $2M1 4 % g 0
V] = Ssmqi g + + My g, Vp = Y, V3= ’ _ ,
1 amy g + (U7 + w)ma g 2 [Mlmz,d] 3 [ 0 mz,d]
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and
(10.36) w3 = (=6 +51+520—T1 +04(M~ +V3)'m)
By auxiliary Lemmas 10.10, 10.11, and 10.12 below, we get
Ellwz — ws]] = 04(1),
Combining with equation (10.28) we get
imy,a — VY1,aws| = 04(1).
Elementary algebra simplifying equation (10.36) gives

Viaws = F1(myq.m2 4,64, V1,0, V2,a, 1, Ps)-

This proves equation (10.6) in Lemma 10.1. Equation (10.7) follows by the same
argument (exchanging N and n). In the rest of this section, we prove auxiliary
Lemmas 10.10, 10.11, and 10.12.

LEMMA 10.10. Using the formulas for wy and w3 as in equation (10.33) and
(10.36) for Im & > &gy, we have

lwz — w3 < Og(1) - {[lvy — 71
+ D050+ V) oM™+ V3) ol V3 = V3llop
+ (Jv2ll2 + [[T22) 1M~ + V3) opllva — Ball2] A 1}
PROOF. Denote
_ _ _ -1
w25 = (—ég- +s51+s2—v1 + v;(M 4 V3) 1v2) .
We have
w2 — w2 5] = |wa(v1 — V1)w2 5] < |v1 — V1]/&3.
Moreover, we have
_ -1 _ _ = \—1_
w25 —w3| < (/)03 (M~ +V3) v — vy (M~' +V3) vy
— _ -1 _
< (1/&) {2l + (02D (M~ + V3) ™ [lopllva — 92,
_ _ -1 _ = \—1 =
+ BB IH(M "+ V3) lop| (M~ +V3) Hoplle — V3llop}-
Combining this with |wy — w3| < |wa| + |w3| < O4(1) proves the lemma. d

LEMMA 10.11. Under the assumptions of Lemma 10.1, we have (following the
notations of equation (10.34) and (10.35))

[v2]l2 = O4(1),
(10.37) lvr — 1| = 0og p(1),
(10.38) [va —v2ll2 = 04,p(1),

(10.39) 1V3—Vilop = 0gp(1).
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PROOF OF LEMMA 10.11. The first bound is because (see Lemma 10.3 for the
boundedness of 71 4 and m, 4)

[02ll2 < Is2| - [y al + [l - 1mz,al < (1 + Y2)(s2] + (1D /o = Ou(1).

In the following, we limit ourselves to proving equation (10.37), since equations
(10.38) and (10.39) follow by similar arguments.

Recall the definition of B as in equation (10.22). Let R = (E — £y L.
Then we have || R||op < 1/&p. Define a and h as

- 1 - 1 | T

a= A= | g lnla o Tt |
= [ - (,,T)]T
\/3 2N, ﬁ¢ .

Then by the definition of v; in equation (10.34), we have v; = a"Ra. Note we
have

Ik —all2 < (sallmlla + @' @ E)2) - 10w ll2/Vd —1]/vd
for some & = (1, ...,&,)T with & between |0 v |2/~/d and 1. Since

0w 12/Vd — 1] = Ogp(Viogd /Vd), nlla = O4p(Vd),
and ¢/ (u - &)ll2 = Ogp(Poly(logd) - Vd),
we have
lh —al2 = 04x(1).

By Lemma 10.9 we have ||la|2 = O4 p(1) and hence ||2]|2 = Oy p(1). Combining
all these bounds, we have

lvy —h"Rh| =|a"Ra—h"Rh|
< (lallz + kl2)[Ih — all2| Rllop = 0g,p(1).

Denote by D the covariance matrix of &. Since & has independent elements, D
is a diagonal matrix with max; D;; = max; Var(h;) < C/d. Since E[h] = 0, we
have

(10.41) E{h"Rh|R} = Tr(DR).

(10.40)

We next compute Var(h" Rk|R). By a similar calculation of Lemma C.8, we have
(for a complex matrix, denote by R the transpose of R, and R* the conjugate
transpose of R)

Var(h"Rh|R)

M—1
= Y |Rii*(E[h}] - 3E[h2]*) + T(DRTDR*) + Te(D RD R*).

i=1
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Note that we have max; [E[hf] — 3E[hi2]2] = 04(1/d?), so that
M—1
> IR P(Eh{] = 3E[RIT) < 0q(1/d?) - | R||F
i=1
< Og(1/d)||R||5, = Oa(1/d).
Moreover, we have
ITe(DR'DR*) + Te(DRDR*)| < |DRI||% + |DR| 7| DR*||F
<2|D|3,IR|% = Oa(1/d),
which gives
Var(h"RR|R) = 04(1/d).
and therefore
(10.42) \Ihf"Rh —Tr(DR)| = Ogp(d~'/?).
Combining equations (10.42) and (10.40), we obtain
(10.43) |vy —Tr(DR)| < |a"Ra—h"Rh| + |h"Rh — Te(DR)| = 04 5(1).

Finally, notice that

2

2 2
s ~ 1wt u?
Tr(DR) = zzTr[l,N—l]((B — &y )+ L

Ty (B — £l ) ™).

By Lemma 10.4, partial Stieltjes transforms are stable with respect to deleting one
row and one column of the same index. By Lemma 10.13 (which will be stated and
proved later), partial Stieltjes transforms are stable with respect to small changes
of the dimension d. Moreover, by Lemma 10.5, partial Stieltjes transforms con-
centrate tightly around their mean. As a consequence of all these lemmas (Lemma
10.4, 10.13, and 10.5), we have

Try w1 (B — Eag—1) )/d — ity a| = 0qp(1),

[ Trinpe—13((B = §Ty—1) " )/d = iz, a| = 0ap(D),
so that
ITr(DR) — 01| = 0g,p(1).
Combining these with equation (10.43) proves equation (10.37). U

The following lemma is the analogue of lemmas B.7 and B.8 in [17].

LEMMA 10.12. Under the assumptions of Lemma 10.1, we have (using the defini-
tions in equation (10.32), (10.34) and (10.35))

(M +V3) 7|, = Oap(),
(10.45) [(M~'+V3) 7| = 04(1).

(10.44)

op
PROOF.
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Step 1. Bounding ||(M ™' + V3)~
By the Sherman-Morrison-Woodbury formula, we have

M4V =M+ UT(B - gly_)'U)
=M-MU"(B—¢Iy_,+UMU)Y'UM.

Note that we have |M ||op = Og(1) and

= —1
|(B —€Iy—1 + UMUT) Hop <1/& = 04(1).

IH()p'

Therefore, by the concentration of ||5]|2/~/d and ||u||2/~/d, we have
(M7 4 V3) " = 0q(1)- (1 +1UIIZ,)
= 0q(D( + llnll2/Vd + llul2/Vd) = O (D).

Step 2. Bounding ||(M_1 + V3! llop-

Define G = M1/2V3M1/2 and G = M1/273M1/2. By Lemma 10.11, we
have

(10.46) IG =G llop = 0ap(1).
By the bound ||[(M ™' + V3)71|op = Oy p(1), we get

(10.47) |02+ G|, = [M 2t V) M
< [(M~ V)T IMTY2)2, = 0gp(D).

Note that we have

L+G) ' —L+6)'=0L+G6G) "6 -G+ G)",
so that )

L+G) =L-(G-G)L+G6) '} L+G)"
Combining this with equation (10.46) and (10.47), we get
—\—1 — _
[ +G) ", < -G -6)@+6)7'|
= O0q.p(1) = 04(1).

The last equality holds because ||(I, + G)~! llop is deterministic. Hence we have

M=+ V)7, = M2 + G M2
< @+ &7 M2, = 0a(D).

opH (12 + G)_l Hop

"oy

This proves the lemma. O

The following lemma shows that the partial resolvents are stable with respect to
small changes to the dimension d.
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LEMMA 10.13. Under the assumptions of Lemma 10.1, let .7, .71, Q I_J, and A
be defined as in equations (10.1) and (10.2). Denote by J, J , Q, H, and A the
same matrices, with dimension d replaced by d — 1. Then for any & € Cy with
Imé > &y > 0, we have

1 — _
(10.48) EE‘TY[LN][(A —£ly) 1] — T v [(A = §1y) ]| = 04 (D),

1 _
(10.49) EE\Tr[NH,M][(A — &)t = Ty 1, [(A — EL) 7| = 04 (1).

PROOF.

Step 1. The Schur complement.
We denote by A;; and A;; fori, j € [2] the following:

Z:[lzlll zzllzi|: sily + 520 7' B
Az A2 J 1l, + H |
A = A Ap|_ [sidly + 50 JT
= [An Ay J nlp, +6H |
Define
_ 1 - —1 1 _
o = ngll,N][(A —fly) ] e= gTr[l,N][@—SIM) ',
and
— - - = 1o -1
Q= (A1 — &Iy — A1a(A2 —EL) 1 A21) ",
_ -1
Q= (Au _SIN —Alz(ézz _SIn) 1421) :

Then we have
1 — 1
w = ETr(Sl), w= ETr(Q)-

Define
Q= (A, — Iy —Ap(Ap — éln)_l;izl)_l,
Q= (A, —£Iy —A (A — fln)_l;izl)_l,
Q3= (A, —§ly — A ,(Ax — Eln)_lézl)_lv
Then it’s easy to see that || 2]|op, |21 op: 22 /lop: |23 /lop: £ ]lop < 1/£0-

Calculating the differences between Q, 92, R, N3, and . we have

| — 1 1 — _
ETT(SZ) - gTr(ﬂl) = ETT(Q (4, -A41)2)

1 —
= 0a(D)- Ay, — Anlls,

1 1 1 - o
‘ETf(ﬂl) - ETr(ﬂz) < 04(1)- g”(élz — A12)(Aax — EL) 1A |4,

57



58 S. MEI AND A. MONTANARI

1 1 1 _ _
‘ETf(ﬂz) - ETT(SZ3) < 04(1)- 5”@12 — A12) (A2 — EL)  Au s,

‘éTr(sm - gn@\

1 - 1,4 _
= Od(l) . g”én(z‘izz - éln) 1(1‘122 _Azz)@n - Sln) 1A21 ||*

Step 2. Bounding the differences.

First, we have
A —Ay =200 — Q) = 52(6adOpa /d)apern) = 20m/d.
where 7 = (814, ...,0n4)" ~ N(0,Iy). This gives
|A11— Ay, /d = s2lnl3/d* = oqp(1).

and therefore

éTr(ﬁ) — %Tr(ﬂ | = Od,IP’(l)'

By theorem 1.7 in [31] and by the fact that ¢ is a polynomial with E[p(G)] = 0,
we have

1A12llop = 1 llop = Oap(1), A 12llop = Oa p(1).
It is also easy to see that
[(A22 1)
Moreover, we have
Axp— Ay =t(H — H) = 62(XiqX;q/d)i jein) = taun/d,
where u = (X14.....Xpnq)" ~ N(0,1,). This gives
|412(A22 = £10) 7 (A22 — Ao)(Apy —§10) " Ay |, /d
< 6| A1y (A2 — £1) ], A1y (A5, — EL) " u,/d?
< )| A2 | (A2 — 1) "2 lu3/d?
= O04p(1) - ||ull3/d* = 0qp(1).

and therefore

o (Ao —EL) T < 1/60 = 04(D).

1 1
7 Tr(3) — 5 Tr(R)] = 0q p(1).

By Lemma 10.8, defining
E=Ap —A, - ,lel”TT/d,
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we have || E||op = O4(Poly(log d)/~/d). Therefore, we get
(A, — A12)(A22 — Sln)_l;lzl |,/d
< | (1un"/d) (A2 - fln)_lz‘_lzl |,/d + | E(Ax - fln)_l;lzl |,/d
< wllmla ][ (a2 — £1,) 7|, 1 A2t lopllaefl2/d
+1E lop] (22 = £12) [ | 421 |, = 02D,
and therefore
TRy — TR ()| S TH(®R2) — S T(@3)] = 04 2(1)

s

Combining all these bounds establishes equation (10.48). Finally, equation (10.49)
can be shown using the same argument. U

10.4 Equivalence between Gaussian and sphere version of Stieltjes trans-
forms

In this subsection, we show that the Stieltjes transform of matrix A as defined
in equation (8.7) and that of matrix A as defined in equation (10.3) share the same
asymptotics. For the reader’s convenience, we restate the definitions of these two
matrices here. _

Let (0a)aern ~iid N(0.Lz), (X:)icn] ~iia N(0,I7). We denote by @ € RV*4
the matrix whose a™ row is given by 6, and by ¥X € R**4 the matrix whose
i row is given by ¥;. We denote by @ € RV*4 the matrix whose a row is
given by 0, = /d -0,/]|04l2, and by X € R"*¢ the matrix whose i row is
given by x; = +/d -X;/|¥;||2. Then we have (xi)ie[n] ~iid Unif(S?~1(+/d)) and
(0 2)ae[N] ~iid Unif(S¢ ' (v/d)) independently.

We consider activation functions o, ¢ : R — R with

p(x) = 0(x) = Eg~ne,1[o(G)]-
We define the following matrices where (1 is the first Hermite coefficient of ¢:

J = %@(%¥X (:)T), Z = %0(%X@T),
Ji= %X@T, Z= %X@T,

0= %(?)(?)T, 0= %@@T,

H= é)‘( x" _ %XXT,

as well as the block matrices A, A € RM*M pr — N + 5, defined by

1= S1_IN+S_2Q 7T+P7_I
J+pJi L, +0H|
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4 = |51y +520 Z'+pZ]
Z+pzZy ul,+nH]|
and the Stieltjes transforms M (£;¢q) and My (& q), defined by

(1050) W€ q) = T ~E) ™), My(Eq) = S T(A — )]

The readers could keep in mind: a quantity with an overline corresponds to the
case when features and data are Gaussian, while a quantity without overline usually
corresponds to the case when features and data are on the sphere.

LEMMA 10.14. Let o be a fixed polynomial. Let p(x) = o (x) —Eg.n,1)[0(G)].
Consider the linear regime of Assumption 2. For any fixed ¢ € Q and for any
£o > 0, we have

E[ sup [Ma(§:q) ~ Ma(&: )l ] = 0a().
Im&>£o

PROOF.

Step 1. Show that the resolvent is stable with respect to nuclear norm perturba-
tion.
We define

A(A,A.8) = My(E:q)— My (§:q).
Then we have deterministically
A4, A, 6)| < Mg (&) + 1My(€:q)] < 41 + y2)/ Imé.
Moreover, we have
|A(A,A,8)| = [Tr((A —ED™' (A — A)(A —€ED7H)|/d
< (A -§DH (A =D opllA — A|./d
<[4 —A]./(d(m§)?).
Therefore, if we can show |4 — A ||, /d = 04,p(1), then
E[ sup |A(A,4,8)[] = oq(D).
Imé&>&o
Step 2. Show that | A — A||./d = o4 p(1).

Denote Zy = EGNN(O’l)[U(G)]lnIIV/\/E and Z, = @(XOT/Vd)/Vd.
Thenwehave Z = Zo + Z 4, and

- _Jo-0 0 0 0 0o zI-7]

oo zi-Tt +[0 Z(T)]'
Z,—J 0 Z 0
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Since g = (51, 52,1, t2, p) is fixed, we have

1 - | R 1 — | G
EHA_A”*§C|:_||Q_Q||F+_d”H_H”F+_d||J1—Z1||F

Vd vd Vd

| 1ro =zt
— T -Z - 0 .
-z gl 9|

f
1 = -
—=I|H - H|F +—d||11—lelF

i vd
+ %”y ~Z.lr + %H [zoo Zog] }

The nuclear norm of the term involving Z ¢ can be easily bounded by

1o zj Iy1)
dlIlZo 0

1 0
= m|EG~N(0,1)[U(G)]| : H |:1n1;v 0
For the term H — H , denoting Dy = diag(v/d /||X1 2. ... d /|| %nll2), we have

1 - |
A=Al <c| 10~ 0lr +

= 0g4(1).

*

*

\H—H|r/vd <||H=Hllop < L = Dxllopl H llop(1 + | Dx lop) = 04,6(1),

where we used the fact that | Dy — I|lop = 04 p(1) and [[H|op = Ogp(1).
A similar argument shows that

10— Qllr/Vd = o0ap(l), |J1—=Z1llr/Vd = 0qp(1).

Step 3. Bound for |J — Z . ||F/~/d.

Define Z, = ¢(D X @T/ﬁ)/ﬁ_ Define r; = +/d/||¥i|2. We have (for
Ciq between r; and 1)

Z,—J = (p(ri(X:,04)/Vd)/Vd — p((Xi,0,)/Vd)/Vd)
= ((ri = D(%i,04)/Vd)g' GialXi,04)/Nd)/Nd)
— (Dx —1)(E 0 (X O'/Vd))/Vd,

i€[n],ae[N]

i€[n],ac[N]

where E = ({ia)ieln],ac[n] and @(x) = x¢'(x) (so ¢ is a polynomial). It is easy
to see that

IDx —Tullop = max |ri — 1| = Og p(vlogd/Vd), || Z llmax = Oa (D),
s aT
1X 8"/ V| = Oap(v/10g d).
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Therefore, we have (denoting deg(¢) to be the degree of the polynomial ¢, and
C(¢) to be a constant that only depends on ¢)

1Z.—T|r/vVd = |(Dx —T)FE 0 (X O /Vd))|F/d
< IDx —Lllopl@(E © (X8 /Vd))|F/d
< C@)  I1Dx —Tnllop(1 + | E lmax|X O /|| ma) €@

= 04.p((logd)* DT 1 /d) = 04 5(1).

This proves the lemma. O

10.5 Proof of Proposition 8.4
Step 1. Polynomial activation function o.

First we consider the case when ¢ is a fixed polynomial with

Eg~new,nlo(G)G] # 0.

Let o(u) = o(u) — E[o(G)], and let ing = (i g4,/ q) (Whose definition is
given by equation (10.4) and (10.5)), and recall that ¥y ;4 — V1 and ¥ g — V2
as d — oo. By Lemma 10.1, together with the continuity of Fy, F» with respect
to Y1, VY2, we have, for any & > 0, that there exists C = C(&9,¢q, V1, Y2, @) and
err(d) — O such that for all £ € C; withIm§& > &,

(10.51) |mg —F(mg:§)|2 < C -err(d).

By Lemma 10.2, there exists & = &o(q, ¥1, ¥2, @) > 0 such that for any £ €
C4+ withIm & > &g, F(-; &) is a continuous mapping from D(2vr1 /&) xD(2v2 /o)
to itself and has a unique fixed point m (£) in the same domain. By Lemma 10.3(a),
we have m 4 (§) € D(Yr1/£0) xID(¥2/&p). Combining the above facts with equation
(10.51), we have

lmg(§) —m(E)ll2 =o0q4(1) VE€Cy.Img > &.
By the property of Stieltjes transform as in Lemma 10.3(c), we have
lmg(§) —m&)ll2 = 0q(1) V& eCy.

By the concentration result of Lemma 10.5, for My (£) = d 7' Tr[(A — Ely) "]
we also have

(10.52) E|Mg(§) —m(§)| = 04(1) VE € Cy.

Then we use Lemma 10.14 to transfer this property from M, to M. Recall
the definition of the resolvent M, (§; ¢) in the case of a sphere in equation (8.8).
Combining Lemma 10.14 with equation (10.52), we have

(10.53) E[Mg(§) —m()| = 0q(1) V& €Cy.
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Step 2. General activation function o satisfying Assumption 1.

Next consider the case of a general function o as in the theorem statement
satisfying Assumption 1. Fix ¢ > 0 and let & be a polynomial such that |jo —
0ll12(z,) < & where 74 is the marginal distribution of (x, 0)/d for x,0 ~iig
Unif(S¢~1(v/d)). In order to construct such a polynomial, consider the expansion
of ¢ in the orthogonal basis of Hermite polynomials

o

(10.54) o(x) = Hek (x).

!
k=0 k
Since this series converges in L?(ug), we can choose k < oo such that, letting
o(x) = Zﬁzo(uk/k!)Hek(x), we have |0 — 5”22(Mc) < g/2. By Lemma 10.6

(cf. equation (10.16)) we therefore have |0 — & ||i2 @) € for all d large enough.

Write 1y (6) = E[6(G)Her (G)] and 4 (5)? = Z£=2 /,Li/k!. Notice that, by
construction we have (to(5) = po(0), n1(3) = p1(0) and |4 (3)% — pux(0)?] <
e. Letm, 4,1, g be the Stieltjes transforms associated to activation &, and 7711, 7712
be the solution of the corresponding fixed point equation (8.15) (with px = U« (5)
and ; = p1(6)), and m = m; + my. Denoting by A the matrix obtained by
replacing the o in A by &, and My (§) = (1/d)Tr[(A — €1)~]. Step 1 of this
proof implies
(10.55) E[M(§) —i(§)| = 0a(1) V& e Cy.

Furthermore, by continuity of the solution of the fixed point equation with respect
to fx, 41 When Im & > &y for some large &y (as stated in Lemma 10.2), we have
forImé§& > &,

(10.56) im(§) —m(§)| < C(§.q)e:

equation (10.56) also holds for any £ € C by the property of the Stieltjes trans-
form as in Lemma 10.3 (¢).

Moreover, we have (for C independent of d, o, &, and ¢ but dependent on §
and q)

E[|M4(§) = Ma ()] < [\Tr(A ED7'(A - A)(4 - DT[]

< ZE[I(A - 51)—1(A 0 op1 A — AL ]

< [1/(83d)]-EllA — All.] < [1/(E3Vd)] - E{|A — A|3}"/?

<C¢.q) - llo —5llr2,)-
Therefore
(10.57) lim sup E[| My (§) — My (§)]] < C(§.9)e V& € Cy.

d—o0
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Combining equation (10.55), (10.56), and (10.57), we obtain
limsupE[My(§) —m(§)| < C(§.q)e VE € Cy.
d—oo

Taking ¢ — 0 proves equation (8.16).

Step 3. Uniform convergence in compact sets (equation (8.17)).

Note my(&;:q) = E[M;(&;¢q)] is an analytic function on C4. By Lemma
10.3(c), for any compact set 2 € C4, we have

(10.58) im | sup B, €5)] ~ m(Eia) | = 0.
d—o00 £eQ

In the following, we show the concentration of M, (§; ¢) around its expectation
uniformly in the compact set Q2 C C4. Define L = supgeq(1/(Im £)?). Since
Q C C. is a compact set, we have L. < oo, and M, (§; ¢q) (as a function of £) is
L-Lipschitz on . Moreover, for any & > 0, there exists a finite set N'(g, Q) € C4
that is an &/ L-covering of Q. That is, for any § € Q, there exists £, € N (e, Q)
such that |§ —&,| < ¢/L. Since M4 (§; ¢) (as a function of £) is L-Lipschitz on €2,
we have

su inf My q)— M 1q)| <e,
gegi’*EN(S»Q)| di:q d(Exiq)]

su inf E[M;(&; —E[M; (& <e.
sup ot BIMa 6:)] ~ ElMa i)

(10.59)

By the concentration of M; (&, ¢) to its expectation (which is the spherical version
of Lemma 10.5), we have

|Mg(§x:q) —E[Mg(§x: @]l = 0q.p(1),
and since NV (g, Q) is a finite set, we have

(10.60) sup  [Mg(§x:q) — E[Mg(§x:q)]| = 0q p(D).
£, N (,22)

This high probability bound will become an expectation bound by the uniform
boundedness of M, (&; ¢) for £ in any compact domain. That is, we have

(10.61) B s M) - BIMa i 0| = 04
£.eN(&,Q)
Combining equations (10.58), (10.59), and (10.61), we have
E[ sup My (§:q) —m(E; q)q <e+o4(l).
£eQ
Letting &¢ — O proves equation (8.17). This concludes the proof of Proposition 8.4.

11 Proof of Proposition 8.5

In Section 11.1 we state and prove some lemmas that are used in the proof of
Proposition 8.5. We prove Proposition 8.5 in Section 11.2.
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11.1 Properties of the Stieltjes transforms and the log determinant
The first lemma concerns the behavior of the partial Stieltjes transforms »1; and
mo when Im§ — oc.

LEMMA 11.1. For & € C1 and q € Q (cf. equation (8.13), let m1(€;q), m2(€;q)
be defined as the analytic continuation of a solution to equation (8.15) as defined
in Proposition 8.4. Denote € = &, + iK for some fixed & € R. Then we have

Kli_r)noo lmi(&;:9)€ + 1| =0, Klgnoo Im2(&:q)€ + 2| = 0.

PROOF. Define im| = —y1 /€, my = —Yn/E, m = (my,m>)", and m =
(mq, mz)T. Let Fy, F» be defined as in equation (8.14), F be defined as in equation
(10.8), and H; defined as in equation (10.11). By simple calculus we can see that

lim Hj(m) = s5.
Kl_lgo 1(m) = 52
This gives
H (77
5["_11—F1(171;§)]=W1L1(m)_—>0 as K — oo.
£ —s1—Hi(m)

As a result, we have §||lm — F(in; §)||2 — 0 as K — oo. Moreover, by Lemma
10.2, there exists sufficiently large &y so that for any Im§ = K > &g, F(m;§) is
%—Lipschitz on domain m € D2y /&) x D(2yr»/&p). Therefore, forImé = K >
€0, we have (note we have m = F(m; £))

|m —m| = ||F(m:§) —F(m:§) +m — F(m:§)|2
< [F(m:§) —F(m:£)|2 + [[m — F(m: §)||2
<|lm—ml2/2+ ||m —F(m:§)|2.
so that
Elm —ml2 < 2§|lm —F(m:§)[2 >0 as K — oo.

This proves the lemma. 0

The next lemma concerns the behavior of the log-determinants when Im § — oo.

LEMMA 11.2. Follow the notations and settings of Proposition 8.5. For any fixed q,
we have

lim sup E[G,4(iK:q) — (1 + ¥2)Log(—iK)| = 0,
(11'1) K—ocod>1

Jim |g(K:q) — (Y1 + ¥2)Log(—iK)[ = 0.

PROOF.
Step 1. Asymptotics of G;(iK; ¢). First we look at the real part. We have
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M
‘ Re [% 3 Log(ki(4) — iK) - Log(—iK)} ‘

i=1

1 - T 4%
= m;log(l + Ai(A)?/K?) < ZMKzi;)L,-(A) = e
For the imaginary part, we have
1 M
‘ Im [H ;Log(ki(A) —iK)— Log(—lK):H
M M
= |7 st (4)/K)| = i Y A =

i=1 i=1

Combining the bound of the real part and the imaginary part, we have
E[|A[%] | E[A4[%]"/?
2MK?2 M12K

M
E‘ % ZZZI Log(A;(A) —iK) — Log(—iK)‘ <

Note that
1 2 1 2 2
SENAIF] < 2 (Elsily +$:01F +Elal, + 2H [}
+2E(1Z + pZ1lF]) = Oa(D).
This proves equation (11.1).
Step 2. Asymptotics of g(iK; q).
Recall the definition of E as given in equation (8.18). Define
E1(z1,22;:9) = log[(s221 + D222 + 1) — 3 (1 + p)*2122]
— /J,%ZIZZ + 5121 + 1122,

E2(5.21.22) = —Y1log(z1/v1) — Yalog(z2/¥2) — §(21 + 22)
— Y1 — V.

(11.2)

Then we have

(11.3) B, 21,22:9) = E1(z1,22;:9) + E2(8, 21, 22).
It is easy to see that for any fixed ¢, we have

lim E1(z1,22,9) =0.
Z1312_>O

By Lemma 11.1, we have limg oo m1(iK) = 0 and limg_ o m2(iK) = 0 (for
notational simplicity, here and below, we suppressed the argument ¢ in m; and
m»), which gives

(11.4) Jim 81 (m (iK). m2(K). q) = 0.
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Moreover, we have
|E2(iK,m1(iK), m2(iK)) — E2(K, i1/ K. iy2/K)|
< Y| log(—iKmy(iK)/¥1)| + w2l log(—iKmz(iK)/v2)|
+ [iIKm1(iK) + ¥1| + [iIKma(iK) + 2.
By Lemma 11.1 again, we have

lim [iKm(iK)+ 1| = lim |[iKma(iK) + ya| =0,
K—oo K—o0

and hence
(115 Jm 820K, mi(K), ma(iK)) — E2(K. i1/ K. 2/ K)| = 0.

Combining equation (11.3), (11.4), and (11.5), we get
lim [E(§, m1(iK),m2(iK): q) — E2(K.iy1/K,iy2/K)| = 0.
K—o00

Finally, by the definition of g as in equation (8.19) and noting that we have
Esr(iK,iv /K, iy /K) = (Y1 + ¥2)Log(—iK), this proves the lemma. O

Next, we give some uniform upper bounds on the difference of derivatives of
G, and g.

LEMMA 11.3. Follow the notations and settings of Proposition 8.5. For fixed u €
Ry, we have

limsup sup E||VyGg(iu:q) — Vegliv:q)l2 < oo,

d—oo geR>

limsup sup E| V7G4 (iu;q) — Vig(iu; q)llop < o0,

d—o0 geR>

lim sup sup E||V;’Gd(iu;q) — V;’g(iu;q)HOp < 00,

d—o00 geR>

PROOF. Define ¢ = (s1,52,11,%2, p) = (q1.92,93,qa.q5), and

_{Iv 0 (o o )
Sl_[o 0}’ Sz_[o 0}’ S3_[0 In}
~[o o o Zz]
S4_[0 H} SS—[zl 0]‘
Then by the bound on the operator norm of Wishart matrix [5], for any fixed k£ € N,
we have
lim sup sup E[||Si||§;]f] < 00.
d—oo i€[5]

Moreover, define R = (A — iulps)~!. Then we have almost surely supg | R|[op <
1/u.
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Therefore

. 1 1
sup E[dg; G (iu: ¢)| = sup SE|Tr(RS )| < sup —E[|S lop] = Oa (1),
q q qg U
) 1
supIE|8§[,qj G,(iu;q)| = sup EE|Tr(RS,~RSj)|
q q
1
< sup — EIISZIEIS 15" = 04 (1),
1
supE|82i’qj,qud(iu;q)\ = sup E[E|Tr(RSiRSjRSl)| + E|Tr(RS,-RSlRSj)\]
q q
1 1/4
< 2sup S [BI S 15,1808 IGENS 1]] ' = 0a1),

Similarly, we can show that for fixed u > 0, we have sup, ¢gs ||V; giu; q)| < o0
for j = 1,2, 3. The lemma holds by the following inequality:

limsup sup E[|Vj G (iu:q) — Vg (u:q)|

d—o00 geR>

< limsup sup [E|Vy G4 (iu; @)l + Vg g(iu: g)||] < oo

d—o00 g€R>
for j =1,2,3. [l
Finally, we show that the derivatives of a function in a region can be upper-

bounded by the function value and the second derivatives of the function in the

region.

LEMMA 11.4. Let f € C%([a,b]). Then we have

fla)—fb)| 1

——— |+ sup [f"(x)|-la—Dbl
a—>b 2

x€la,b]

sup | f/(x)] <

x€la,b]

As a consequence, letting f € C2(B%(0,2r)) where B4(0,r) = {x € R? :
lxl|l2 < r}, we have

sup [[V/@)la<r™" sup |f@)|+2r sup [[VZF(x)]op-
xe€B(0,r) x€B(0,2r) x€B(0,2r)

The proof of Lemma 11.4 is elementary and simply follows from Taylor expan-
sion.

11.2 Proof of Proposition 8.5
By the expression of & in equation (8.18), we have
s2(t2z2 + 1) — pd(1 + p)?z2
(5221 + D(t2z2 + 1) — ud(1 + p)?z122
—piza 451 —¥1/z1 — &,

07, 8(8.21,22:9) =
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t(s2z1 + 1) — p2(1 + p)2z
(5221 + D(t2z2 + 1) — ui(1 + p)?z122
— piz1 452 —Y2/z0 — &
By fixed point equation (8.15) with Fy, F» defined in (8.14), we obtain that

aZZE(éaZI’ZZ;q) =

Viz1,22) 8¢ 21, 22: @) (2, ,20)=(m1 (E:9).m2 (8:9)) = 0

As a result, by the definition of g given in equation (8.19), and by formula for
implicit differentiation, we have

d
Hence, for any § € C4 and K € R and compact continuous path ¢ (£,iK) that
connects £ and iK, we have

(11.6) g(5:q) —g(iK:q) = / m(n; q)d.
P (E.IK
By Proposition 8.2, for any £ € C4 and K € R, we have
(11.7) Galgia) ~ Galikiq) = [ MaCrayan
i

Combining equation (11.7) with equation (11.6), we get
E[lGa(§:9) —g(§:9)l]

(11.8) | |
- f¢(§ iK) E[M4(n;q) —m(n; q)|dn + E|G4(iK: q) — g(iK;q)|.
)

By Proposition 8.4, we have

(11.9) lim E|Mg(n:q) —m(n: g)|dn = 0.
d—00 Jo(£,iK)

By Lemma 11.2, we have

(11.10) lim sup E|G4(iK;q)—g(iK;q)| =0.

K—ood=>dy

Combining equations (11.8), (11.9), and (11.10), we get equation (8.20).
For fixed £ € C4, define Ey(q) = G4(&,q) — g(&;q). By Lemma 11.4, we

have

sup [|[VEg(q)l2

q<B(0,8)

(11.11) 1 5

<& sup [Eg(g)|+2¢ sup [[VTEg(q)]op-

g<€B(0,2¢) q€<€B(0,2¢)

By equation (8.20), Lemma 11.3, and the covering number argument (similar to
Step 3 in Section 10.5), we get that for any compact region Q. there is

lim E[ sup |Ed(q)|] = 0.

d—oo Lgeo,
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Taking Q, = B(0, 2¢), by equation (11.11) and Lemma 11.3 again, there exists
some constant C such that

limsupE[ sup ||VEd(q)||2]§C8.
d—o00 q<B(0,8)

Sending ¢ — 0 gives equation (8.21). By a similar argument we get equation
(8.22). This finishes the proof of Proposition 8.5.

12 Proof of Theorem 5.7, 5.9, and 5.11
12.1 Proof of Theorem 5.7

To prove this theorem, we just need to show that

_hm '%(é‘v WIa WZ’ X) = r%rless (é_v Wl, Wz),

A—0

_hm V(é‘s WIa WZ’ x) = 41/rless (é_v Wl, WZ)

A—0

More specifically, we just need to show that the formula for y defined in equation
(5.8) as A — 0 coincides with the formula for x defined in equation (5.14). By
the relationship of y and m1m, as per equation (8.31), we just need to show the
lemma below.

LEMMA 12.1. Let Assumptions 1 and 2 hold. For fixed § € Cy, let m1(§; 1, ¥2)
and m»(§: Y1, Y2) be defined by

m1(§:; Y1, ¥2)
_ : 1 T. B ~1
_d—>oo,N/dli>nl/lfl,n/d—>1//2dE{Tr[l’N][([O’Z vaO] SIM) ]}’
(12.1)
ma(€: Y1, v2)

1

= li E{T 0.Z7:Z.0] — £1,) 1.
d—)OO,N/dl)nl}fl,n/d—)wzd { r[N‘H,M][([ | —&Iy) 71}

By Proposition 8.4 this is equivalent to m1(&; VY1, W2) and m»(€; V1, V) being the
analytic continuation of the solution to equation (8.15) as defined in Proposition
8.4, when ¢ = 0. Defining v = min(y1, ¥»), we have

lim [my (iu; Y1, Y2)ma (iv; Y1, ¥2)]
u—0
(122 _ @2 -2 -1 +42y]' 2+ w2 -2 - 1)
2u3g?
PROOF. In the following, we consider the case y¥» > 1. The proof for the

case ¥p < Y is the same, and the case {1 = ¥, is simpler. By Proposition 8.4,
my = my(iu) = my(iu; Y1, ¥2) and my = ma(in) = ma(iu; ¥y, ¥2) must satisfy
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equation (8.15) for § = iu and ¢ = 0. A reformulation for equation (8.15) for
q = 0yields

2
—Mymimyz .
(12.3) ——— —uimimz — Y1 —iu-my =0,
1l —puyimims
2
—usmim
(12.4) Hymima —M%mlmz—wz—iu-mz =0.

1— u%mlmz
Defining mo(iu) = mq(iu)mo(iuv). Then my must satisfy the equation
2 2
—pimo —pimo
o= () ()

1 —pymo I —pymo
Note that we must have |mq(iu)| < |mq(iu)| - |ma(in)| < Y1¥2/u?, and hence
lu?mg| = Oy(1) (as u — 0). This implies that

—M%mo
1— puimo

and hence my = O, (1). Taking the difference between equation (12.3) and (12.4),
we get
(12.5) my —my = —(Y2 — Y1)/ (iu).

This implies one of m; and m» should be of order 1/u and the other one should be
of order u as u — 0.
By definition of m; and m5 in equation (12.1), we have

— u2mo = 0,(1),

1
my(iu) = iu lim —E{TI(ZTZ + u?In) "1
1 () d—oo,N/d—yri .n/d—y d {Trl( Aot
1
mo (i) = iu lim —E{Tr ZZT+u21 —In.
2(iu) d—)oo,N/dia/fl,n/del/fzd {Trl( Aot

When ¥5 > ¥ (e, n > N), (ZZ" + u?Iy) has (n — N) eigenvalues that are
u?, and therefore we must have m»(iu) = ,(1/u). Hence m(iu) = Oy(u).
Moreover, when u > 0, m1(iu) and m»(iu) are purely imaginary, and
Imm (iu), Imm,(in) > 0.

This implies that m (iz) must be a real number that is nonpositive.

By equation (12.3) and limy, ¢ iu - mj (iu) = 0, all the accumulation points of
m1 (iu)my(in) as u — 0 should satisfy the quadratic equation

2
12 . —uim*—wl =0.
I — pimy

Note that the above equation has only one nonpositive solution, and m1¢(iu) for any
# > 0 must be nonpositive. Therefore limy_q 71 (i)m2 (iv) must exist and be
the nonpositive solution of the above quadratic equation. The right-hand side of
equation (12.2) gives the nonpositive solution of the above quadratic equation. []
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12.2 Proof of Theorem 5.9

To prove this theorem, we just need to show that
lim Q@(é" WI’ Wz, X) = ’@Wide(é" WZ’I)’
Y1—>00
lim (Y192, 0) = KaeC 2. ).
Y1—>00

This follows by simple calculus and the lemma below.
LEMMA 12.2. Under the same condition of Lemma 12.1, we have
m i (@i )2y vma (v mi) 29 y2))
1—>

_ @28 =2 = W2 + D) + 482G + DI + @t — 2 — A2 + 1)
2028202 + 1) '

The proof of this lemma is similar to the proof of Lemma 12.1.

12.3 Proof of Theorem 5.11

To prove this theorem, we just need to show that

Wllllloo %(é‘v wl s wZa I) = <%lsamp(é-’ WI s X)’

lim ¥(¢, Y1, %2, ) = 0.
Yr—>00

This follows by simple calculus and the lemma below (the statement of this lemma
is almost the same as that of Lemma 12.2, except that the roles of ¥r; and y, are
exchanged).

LEMMA 12.3. Under the same condition of Lemma 12.1, we have
wlimoo[ml(i(wl Va2 )2y Y2)ma (U122 D) 20 )]
2>

_ W =8 = Gy + D + 4829109 + DI + 182 =2 — Gy + 1)
2u382 Ay + 1) '

13 Proofs of Propositions 5.8 and 5.10

13.1 Proof of Proposition 5.8

Point (1). When 1 — 0, we have y = O(¥1), so that & yess = —V1¥2 +
O(Y?), G2 piess = O(W?) and Ep iess = —Y1¥2 + O(YP).

Point (2). When Y1 = 1, substituting the expression for y into &g ess, We
can see that &9 yes (8, Y2, ¥2) = 0. We also see that &7 ess (8, V2, ¥2) # 0 and
62 niess (8 W2, ¥2) # 0.
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Point (3). When 1 > {2, we have
S GGy y2) /Y1 = W2 = D0 + (1= 392)°8" + 3218 — .
M Eraes Gy, v2) /1 = Y228 = Yo,

1//11111100 @@Z,rless(é‘v V1, 1/12)/1”1 = X3§6 - X2§4‘

Point (4). For 1 > yra, taking the derivative of % and e With respect to
Y1, we have

a1//1 %rless (é‘a wl s wZ) = (81//1 éal ,rless * @@O,rless - al/f] gO,rless : @ﬁl ,r]eSS)/éDOZ’rlesss
a1//1 %less (é‘a wl s wZ) = (a$1 éDZ,rless : gﬂ,rless - al/f] éa(),rless * gZ,rless)/éa()z,r]ess-

When 11//1 > WZ, the functions alﬂl éol,rless ' éaO,rless - 81//1 é()O,rless . éol Jrless and al//] éaZ,rless .
B0,riess — Oy S0 11ess * 62 ness are functions of ¢ and ¥ and are independent of
Y1 (note when ¥; > v, x is a function of ¥, and doesn’t depend on 1).
Therefore, PBess(C, -, W2) and Y. (€, -, ¥2) as functions of ¥ must be strictly
increasing, strictly decreasing, or constant on the interval ¥y € (Y2, 00). How-

ever, we know Biess (8, 2, ¥2) = Yiess (8, Y2, ¥2) = 00, and Hyess(§, 00, ¥2) and
Yess (€, 00, Yr2) are finite. Therefore we must have that %, and ¥ are strictly

decreasing on ¥r; € (Y3, 00).

13.2 Proof of Proposition 5.10

In Proposition 13.1 below, we give a more precise description of the behavior of
P iae, Which is stronger than Proposition 5.10.

PROPOSITION 13.1. Denote

Vap + u?
(14 p) (Y2 — 2urpz + uyp —u?)’

UL Y2, 0) = Yal® =2 — Ay — 1,

Qwide(ua /Oa WZ) =

2 Y2) = AP + 1,
Y2, 0% + PG Y]V + u (v, D)

Cl)(k, é‘v wZ) = 2L2(I’ wz)
2_2_1)2 211/2 2 2
wo (6. ) = — 28" =87 = 1) +4w22§] W -1
01 (0.2 W —p— D) +[(2p—p—1)*+ 442p]"/?
1{p,V2) = > ,
2
pull ) = —0 0

(1—¥2)wo + ¥
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2 — Wi —
e ) = w1 — Ypw1 + Y2
An(C P2, p) = 2o — Por1yn + oy + o —a)f'

(07 — 01)¥2

Fix £, yr2 € (0,00) and p € (0, 00). Then the function A > Roiae(p. C. W2 X) is
either strictly increasing in A or strictly decreasing first and then strictly increas-
ing.

Moreover, For any p < p,(C, ¥2), we have

arg min %Wide(,(), C, x, 1,”2) =0,
A>0

f_lnll(‘)l %wide(pv é‘v Iv WZ) = '%Twide(a)o (é_’ WZ)v P, Wz)

For any p > p« (¢, ¥2), we have

arg min Zuiae(0, &, A, ¥2) = A+ (&, V2, 0),
A0

linin ‘%Wide(lo’ Z’ x’ WZ) = ’@Wide(wl (105 wZ)’ P, ’(//2)
>0

Minimizing over A and ¢, we have

gn}%in Riae(ps €, X, Vo) = gwide(a)l (p, ¥2). p. V2).
A0

The minimizer is achieved for any &% > £2(p, ¥2), and A = A, (E, V2, p).

In the following, we prove Proposition 13.1. It is easy to see that

%wide (/05 é‘a Xa Wz) == ‘@Wide(w(xv é‘v w2)a /Oa WZ)

Hence we study the properties of Zyqe first.

Step 1. Properties of the function gwide.

Calculating the derivative of @mde with respect to u#, we have

u? + (Y2p — p— Du — ¥ap

(14 p) (Y2 — 2uvps + w2y —u?)?

Oy Riae (U, p. Y2) = =22

Note the equation
u? + (Y2p —p— Du —v2p =0
has one negative and one positive solution, and w; is the negative solution of the

above equation. Therefore, when u < wy, Roige Will be strictly decreasing in u;
when 0 > u > w1, Zyiqe Will be strictly increasing in u. Therefore, we have

arg min Ryige (U, p, ¥2) = w1(p, ¥2).

ue(—00,0]
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Step 2. Properties of the function Zy;q..
For fixed (£, p, ¥2), we look at the minimizer over A of the function

Roiae(0: 8, A, 92) = Boiae(@ (X, &, ¥2), p, ¥2).

The minimum min 350 Priae (0, L, )_L, Y¥») could differ from

min  Pyicc(U, p, ¥2),
u€(—00,0]
since

arg min Ryige (U, p, ¥2) = w1(p, V2)

u€(—00,0]
may not be achievable by w(X, £, ¥») when A > 0.

One observation is that (-, Y, ) as a function of A is always negative and
increasing.

LEMMA 13.2. Let
UG Y2.8) = Y28 =2 =M — 1. w@.y2) =AYz + 1,
oty = 0 V2 O+ 420G Y2 + 0@y D)
202X, ¥2)
Then for any Y, € (0, 00), £ € (0, 00), and A > 0, we have

oA ¥2.0) <0, 04, 92,0 > 0.

Let us for now assume that this lEmmE holds. When p is such thai w1 > wo
(i.e., p < p« (&, ¥r2)), we can choose A = A, (¢, Y2, p) > O such that w(A, {, ¥2) =
CI)(A*, é" WZ) = w1 (p’ WZ), and then

Riae (P, €, Au (C,¥2,p),¥2) = _wide(wl(p V2). p, ¥2)

gives the minimum of %4 optimizing over 1€ [0,00). When p is such that
w1 < wo (i.e., p > px(C, V), there is not a A such that w(A, &, V) = w1 (p. V)
holds. Therefore, the best we can do is to take A = 0, and then Zyiqe (08,0, 92) =
Rriae(@0(p, V2). p. ¥2) gives the minimum of % optimizing over A € [0, 00).
Finally, when we minimize Zyi¢e (0, §, A, ¥2) jointly over ¢ and A, note that as
long as £2 > £2, we can choose A = A, (&, Y2, p) > 0 such that w(A, &, ¥p) =

w(hy, L, ) = w1(p, V), and then
f%wide(p’ Z’ I* (é" WZ’ 10)’ WZ) = '%Twide(a)l (/O, wz), P wz)

gives the minimum of % optimizing over A € [0, 00) and ¢ € (0, 00). This
proves Proposition 13.1.
In the following, we prove Lemma 13.2.

PROOF OF LEMMA 13.2. It is easy to see that oA, ¥2, ) < 0. In the follow-
ing, we show d5w(4, ¥2,¢) > 0.
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Step 1. When ¢ > 1.

We have

(V2= DG+ 428%0]Y2 + Avd 4+ Ao + (Y2 — D22+ Yo + 1)
B 2Y2A[A2Y23 + 4A2Y3E20)122 '

aia)

It is easy to see that when A > 0 and v/, > 1, both the denominator and numerator
are positive, so that d5w > 0.

Step 2. When yp < 1.

Note w is the negative solution of the quadratic equation

(AY2 + Do? + (Y28 = % = 22 — Do — ¥20? = 0.
Differentiating the quadratic equation with respect to A, we have
Yo0? + 2(AY2 + Dwdzo — Yoo + (Y20* — 2 — Ay — 1)d30 = 0,

which gives
330 = (Y20 — Y207) /22 + Do + Y28 — > — Ay, — 1]
= (Y20 — Y20°)/[(AY2 + DQ2w — 1) + (Y2 — D]

We can see that, since w < 0 when Y, < 1, both the denominator and numerator
are negative. This proves djw > 0 when ¥ < 1. O

Appendix A Technical Background

In this section we introduce the technical background that will be useful for the
proofs in the sections below. In particular, we will use decompositions in (hyper-
)spherical harmonics on the S4=1(y/d) and in orthogonal polynomials on the real
line. All of the properties listed below are classical: we will, however, prove a few
facts that are slightly less standard. We refer the reader to [18,29, 34,63] for more
information on these topics. Expansions in spherical harmonics have been used in
the past in the statistics literature, for instance in [9, 25].

A.1 Functional spaces over the sphere

Ford > 1, welet S?~1(r) = {x € R? : ||x||» = r} denote the sphere with
radius 7 in R? . We will mostly work with the sphere of radius v/d, S¢~1(+/d), and
will denote by y,4 the uniform probability measure on S?~1(+/d). All functions

in the following are assumed to be elements of L2(S?~1(v/d), y4), with scalar
product and norm denoted as (-, - );2 and ||-||2:

(A1) Mmuz/

sd

D f(x) g(x)ya(dx).

For £ € N>, let Vd’g be the space of homogeneous harmonic polynomials of
degree £ on R? (ie., homogeneous polynomials ¢ (x) satisfying Ag(x) = 0), and
denote by V4 4 the linear space of functions obtained by restricting the polynomials
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in Vd’g to S4~1(+/d). With these definitions, we have the orthogonal decomposi-
tion

o0

(A2) L2STNVd). va) = P Vare.
£=0

The dimension of each subspace is given by

20+d—-2(£+d -3
(A3) dim(Vy ¢) = B(d.,{) = thdz ot .
’ L £—1
For each £ € N, the spherical harmonics {Y }1< j<B(d,¢) form an orthonormal

basis of V 4:

y@d y@)
( ki ’YS_] )L2=8ij5ks'

Note that our convention is different from the more standard one, which defines
the spherical harmonics as functions on s4-1 (1). It is immediate to pass from one
convention to the other by a simple scaling. We will drop the superscript d and

write Yy ; = Ye(‘j.) whenever clear from the context.

We denote by P the orthogonal projections to Vy; x in L2(S4=Y(V/d), v4). This
can be written in terms of spherical harmonics as

B(d k)
(A4 Prfx) = Y (£ Yer) 2V (x).
I=1
Then for a function f € L2(S~1(v/d)), we have
oo B(d.k)
f(x) = Z Pef) =" > (/i Yi)2Yer(x).
k=0 [=1

A.2 Gegenbauer polynomlals

The £ Gegenbauer polynomial di) is a polynomial of degree £. Consistent
with our convention for spherical harmonics, we view de) as a function de) :
[—d,d] — R. The set {di)}gzo forms an orthogonal basis on L?([—d, d],%;)
(where T, is the distribution of {x1,x,) when x1,Xx2 ~jid Unif(Sd_l(\/g ),
satisfying the normalization condition

@) ) _ 1
(A.5) (Q Qj )LZ(;d) = mgjlv
In particular, these polynomials are normalized so that di)(d ) = 1. As above,
we will omit the superscript d when clear from the context and write it as Qy for
notational simplicity.

Gegenbauer polynomials are directly related to spherical harmonics as follows.
Fix v € S4~! (\/E ) and consider the subspace of V; formed by all functions that
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are invariant under rotations in R that keep v unchanged. It is not hard to see
that this subspace has dimension 1, and coincides with the span of the function

0 (v, ).

We will use the following properties of Gegenbauer polynomials
(1) Forx,y € S4~1(J/d)

1
A6 {0 (. ). Oy Maga (i) = Jra kO (9
(2) Forx,y € S4~1(/d)
) T = d
(A7) 0 () = g 2 Y @Y ).
’ i=1

Note in particular that property 2 implies that, up to a constant, Q,(cd)( (x,y))isa

representation of the projector onto the subspace of degree-k spherical harmonics
d
A8 EN@=BE@R [ 0D S0 vy
s4=1(V/d)

For a function 0 € L2([—+/d,/d],t;) (where 74 is the law of (x1,x2)/~d
when x 1, X2 ~iiq Unif(S¢~1(+/d))), denoting its spherical harmonics coefficients
Ad k(o) by

(A9) hal) = [ (00 (VX (x),
dk VA k d
we have that the following equation holds in the L2([—v/d ., ~/d], 1) sense:
o0
(A.10) o(x) = Y 244 (0)B(d. k)0 (Vdx).
k=0

A.3 Hermite polynomials
The Hermite polynomials {Hey }x>¢ form an orthogonal basis of L*(R, ug),

where g (dx) = e /2dx /~/2m is the standard Gaussian measure, and Hey has
degree k. We will follow the classical normalization (here and below, expectation
is with respect to G ~ N(0, 1)):

(A.11) E{He;(G)Hex (G)} = k!§y.

As a consequence, for any function o € L%(R, i), we have the decomposition

(A.12) o(x)=3" ’“";c(f’) Her(x). i (0) = E{o(G) Her (G)}.
k=1 )
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The Hermite polynomials can be obtained as high-dimensional limits of the
Gegenbauer polynomials introduced in the previous section. Indeed, the Gegen-
bauer polynomials (up to a Vd scaling in domain) are constructed by Gram-
Schmidt orthogonalization of the monomials {xk k>0 With respect to the measure
74, while Hermite polynomials are obtained by Gram-Schmidt orthogonalization
with respect to pg. Since t; = g (here = denotes weak convergence), it is
immediate to show that, for any fixed integer &,

(A13)  lim Coeff{ 0\ (Vdx) B(d. k) :COeff% Hek(x)}

(k)17

Here and below, for P a polynomial, Coeff{ P(x)} is the vector of the coefficients
of P. As a consequence, for any fixed integer k, we have

(A.14) pi(0) = lim 244 (0)(B(d. k)kH'/2,
d—co
where (g (o) and A4 i (0) are given in equations (A.12) and (A.9).

Appendix B Proof of Proposition 8.2

We can see equation (8.9) is trivially implied by the definition of G4z and M,
as in equation (8.8). To prove equation (8.10), it is enough to prove the following
equations: for u € R, we have

2
3pGq(iu;0) = —Tr((u21N+ZTZ) '217),

32,1, Galiu:0) = %Tr((ule +2'2)7%7272),

B.1) 0 ,,G4(iu;0) = —%Tr( wly +Z2'Z)*Z'HZ),
92,1, Ga(iu:0) = % r(wIy +Z'Z) ' QIy + Z7Z2)'27Z),
92,.1,Ga(iu:0) = %Tr((ule +Z'Z)'Qw Iy + ZTZ) ' ZTH Z).

Now we prove equation (B.1). For any fixed ¢ € R>, £ € C4, and a fixed
instance A (q), the determinant can be represented as

det(A(q) — &lp) = r(q.§) exp(if(q.§)) for 6(q.§) € (—m. x].

Without loss of generality, we assume for this fixed ¢ and £ that 8(q, £) # =, and

then Log(det(A(q) — £Ipr)) = logr(q, &) +i6(q, E) (when 6(q,£) = m, we use
another definition of Log notation, and the proof is the same). For this ¢, &, and
A (q), there exists some integer kK = k(q, £) € N such that

M
Y Log(Ai(A(g)) — &) = Logdet(A(q) — £lar) + 27ik(g. £).
i=1
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Moreover, the set of eigenvalues of 4 (q) — &I and det(A (q) — £Ip7) are contin-
uous with respect to ¢. Therefore, for any perturbation Ag with |Ag|l» < ¢ and ¢
small enough, we have k(q + Aq, &) = k(q.&). As aresult, we have

M

9a; [ > Log(Ai(A(q)) - s>} = 9, Logldet(A (g) — §Tp7)]

i=1
= Tr[(A(¢) — EIm) ™' 04, A(@)].

Moreover, A(q) (defined as in equation (8.7)) is a linear matrix function of ¢,
which gives d4; 4, A(q) = 0. Hence we have

M
2. [ZLogw(A @) - s>}

i=1
= 93, 4, Logldet(A4 (q) — §Im)] = 9g, Tr[(A(q) — ETar) " 0g; A (g)]
= —Tr[(A(g) — EIm) " 0q, A(q)(A(q) — EXa) 134, A(q)].

Note that

mam =" o] seam=[3 0]

)
leA(0)=[g I‘ﬂ, B,ZA(O):[g I‘H E),,A(O)z[z"1 Zol]’

and using the formula for block matrix inversion, we have

: o [uly —iZTZ /)™ WPy +Z7Z)71 2T
(A —iuly)™" = [ ZWAn+27Z)"  (—iul, —iZZT/u)_l]

With simple algebra, we can show that equation (B.1) holds.

Appendix C Additional Proofs in Section 9

C.1 Proofs of Lemmas 9.1 and 9.2

PROOF OF LEMMA 9.1. We define the sequence (Fj k=2 to be the coeffi-
cients of Gegenbauer expansion of X ;:

Sa(x/Vd) =Y F}, 00 (dx).
k=2

In the expansion, the zeroth- and first-order coefficients are 0, because, according
to Assumption 3,

E, umitsd—1 (van|Zd G/ VD =By caryay[Zat1/vd)x1] = 0.
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To check point (1) in the statement of Lemma 9.1 we have
oo d o0

Se() =Y F},.08(d) =Y F3,.
k=2 k=2

and by Assumption 3 we have limy_,o, (1) = F2, so that (1) holds.
To check point (2) in the statement of Lemma 9.1, defining (84 x)k>2 and
g}~ (x) accordingly, we have

Eplgh (x1)g)" (x2)]

:Eﬂ[(z 3 (ﬂd,kwg”(xn)(z ) (ﬂd,kw,if)(xz))]

k>21€[B(d,k)] k>21€[B(d,k)]
d d

=3 P20y (x2)/Bd. k)

k>2
_ 2 () _
=Y F7.0:7((x1.x2) = B4 ((x1.x2)/d).

k>2

This proves Lemma 9.1. g

PRrROOF OF LEMMA 9.2. With a little abuse of notations, let us define

g(ﬂd,l, fNL’X7®7€)
= |Rre(f2. X. @, 1) — [FE(1 — 21 + W2) + (F2 4+ 12)W3 + F2]|.

For any orthogonal matrix O € R4*4 it is easy to see that there exists a transfor-

mation 7o that acts on f with f}" 4 Tol f}"] such that for any fixed 84 ;, X,

0O, e, and £, we have

EBar. [1-X.0,e) =E(0By1. Tol /], XOT,. @0  ¢).

Moreover, note that X, @, &, and f)" are mutually independent, X 4 x o,
© 200", ad - 4 Tolf}"]. Then, for any fixed B, 1, we have
E(OB41 To[ £)M]. XOT, 007, e) £ £(0B,1, /). X.©.¢)

where the randomness is given by (X, 0, e, f ;L). As a result, for any B, €
sd-1 (Fg,1) and O orthogonal matrix, we have

EX,(a,e,fgL[g(ﬂd,l)] = EX,@,S,fyL[g(Oﬂd,l)}

This immediately proves the lemma. U
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C.2 Proofs of Lemmas 9.6 and 9.7

To prove Lemmas 9.6 and 9.7, first we state a lemma that reformulates A1, A;
and By, using the Sherman-Morrison-Woodbury formula.

LEMMA C.1 (Simplifications using the Sherman-Morrison-Woodbury formula).
Use the same definitions and assumptions as in Proposition 8.1 and Lemma 9.3.
For M € RV*N, define

1
(C.1) Ly = —=Ag,0(0)Tr[lx1,Z E],

Ja

1
(C.2) L,(M) = ETr[EMEZTl,J;Z].

We then have

Kip+1
(C3) Ly=1- .
Ki1(1 — K23) + (K12 + 1)
(C4)
G11(1 — K22)? 4+ G2a(K12 + 1)? + 2G12(K12 + 1)(1 — K22)
La(M) = ¥ 22 ’
(K11(1 — K22) + (K12 + 1)?)
where
Ky =T]E,'T,, K12 =T]E{'T,, Ky = TYE,'T,,

G =T{E{'MEG'T,, Gu=T{E{J'ME'Ty, Gy =T3E;'MEG'T,,
and
@d(x) = 0(x) —Aq,0(0),
J=_ (1X®T) Eo=J"J + ¢yl
= =9\ —F— > 0= 1Y2A1N,
vat'\Va
1

T, = WZl/Z/\d,O(O)lNa T, = WJTln

PROOF OF LEMMA C.1.
Step 1. Term L. Note we have (denoting A5 9 = A4,0(0))

Z =hgolaly/Vd +J.
Hence we have (denoting T, = J Tln /\/n)
L1 = Ti[Aaoln 1) (Aaolally /Vd + DI(Aaolally/Vd + D)7
x (Aaolally/Vd + 1) + Y1922y ]/Vd
= Ti[(¥222 ) In 1Yy + V3 * A 01N TY)
x Y223 o ININ + V3 PAa oINS + 3 *AaoT 21y + J T + y1yadIy] 1.
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Define
E=Z"Z + YoMy =Eo+ FF), Eo=J"J+y1yaily,
Fi=(T1.T1.T»), Fr=(T1.T>Ty),
Ty =9, 2a0ly. Ty =J"1,/Vn.

By the Sherman-Morrison-Woodbury formula, we have
E'=Ey'—Ey'F1(s+ FYE ' 'F) ' FLE, .
Then we have
Li =T[(T:T] + T\ T)(Ey' —Eg'Fi(ls + FYEG'F1) " FIEGY)]
= (TTE;'T\—TIE;'F,(Is + FIE;'F ) 'F1E;'T))
+(TYES'T\—TYEG'F (s + FYE;'F 1) FIE;'T))
= (K11 — [K11, K11, K12](I3 + K)_I[Ku,Klz,Ku]T)
+ (K12 — [K12. K12, K22](I3 + K) "' [K11. K12, K11]')
= [K11. K11, K12](I3 + K)7'{1,0,0]"
+ [K12. K12, K2o](I3 + K)7'[1,0,0]"
= (K122 + Ki2 + K11 — K11K22)/(K%2 +2K12+ K11 — K11K22 + 1)
=1— (K12 + /[K11(1 — K22) + (K12 + 1],
where
Kit = TIEGIT1 = y222 g1y (JTT + y1v2dy) 1y,
Kia=TIEG'Ta = Agoly (JTT + v1v0Aly) ' T T1,/V4d,
Koy = TYEG ' To = 1J(JTJ + y1yndly) I 1, /n,
Ki1 K1 Kz

K =|Ki2 Ki2 K
Ki1 Ku Kz

This proves equation (C.3).

Step 2. Term L, (M).
‘We have

Z5Z /d = (haolally/Vd + ) 1,15 (g oludly/Vd + J)/d
= Y325 0In1y + V2T 2- V¥araoly

+ Yo Y2rg oINT 5 + Y2 T 2Ty = Yo(T1 + T2)(T1 + T2)".
As a result, we have

Lo(M) =, (T1 + T2)"TET'ME™Y(T1+T»)
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=y (T1+T2) (Iy— Eg'F (I + FIE;'F 1) F})
(Eg'MEG")(Iy — Fo(ls + FIEG'Fo) ' FIEG )(T1 + T2).

Simplifying this formula using simple algebra proves equation (C.4). U

PROOF OF LEMMA 9.6.

Step 1. Term A;.
By Lemma C.1, we get

(C.5) Ar=1—(Kiz + 1)/(Ki1(1 = K22) + (K12 + 1)%),
where
Ki=TEG'T1 = y2)d g1} (JTJ + y1vaAly) 1y,
Kia=TIEG'Ta = Ag ol (JTT + y1v0Aly) U T1,/V4d,
Koo = TYEG ' To = 15J(JT + y1ydly) I 1,/n.
Step 2. Term A».
Note that we have
Ay =Te((Z7Z + yivaMy) " Uo(ZTZ + yivdly) ' 271,10 Z)/d,
where
(C6) Uo = 24,00 Inl}y = T1T{/¥>.
By Lemma C.1, we have
€7 Az = ¥2[G11(1 — K22)* + Ga2(Ky2 + 1)?
+2G12(K12 + D(1 = K22)1/(K11(1 — K22) + (K12 + 1)?)?,
where
Gu = T1Ey'UoEy' Ty = Ky /v,
G2 =T1Ey'UoEy' Ty = K11 K12/,
Go2 = T3Eq'UoEy' T2 = Ky /Y.
We can simplify S»¢ in equation (C.7) further, and get
(C8) Az = (K11(1 — K22) + K7, + K12)2/(K11(1 — K22) + (K12 + 1)2)2-
Step 3. Combining A; and A».
By equation (C.5) and (C.8), we have

A=1-241+ A4, = (K12 + 1)2/(K11(1 — K») + (K12 + 1)2)2 > 0.
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For term K5, we have
Ki2] < 2ao| (4T + viv2rln) " I Tllopl 11y /Vd lop = 0a (V).
For term K1, we have
K11 = 9223 oNawin(J T + y192ALy) ) = Qu(@)/ (17T op + Y1124,
For term K55, we have
1> 1= Koy = 10(Ly = J(J 7T + Y19rly) " I ), /n

> 1= A (J (T + 192 Ay) I

> Y12/ (V1vad + |17 [lop) > 0.
As a result, we have

/(K11 (1= K22) + (K12 + D3 = 0g(d ) - (1 + | T]I3).
and hence
A=0q(1/d)- (1 +IIT13).

Lemma C.5 in Section C.4 provides an upper bound on the operator norm of || J [|op,

which gives ||/ |lop = Og p(exp{C(log d)'/2}) (note that J can be regarded as a
submatrix of K in Lemma C.5, so that ||J ||op < || K |lop). Using this bound, we get

A= Od,]p(l).
It is easy to see that 0 < A < 1. Hence the high probability bound translates to an
expectation bound. This proves the lemma. O

PROOF OF LEMMA 9.7. For notation simplicity, we prove this lemma under the
case when A = {«} which is a singleton. We denote B = B,. The proof can be
directly generalized to the case for arbitrary set A.

By Lemma C.1 (when applying Lemma C.1, we change the role of N and n, and
the role of ® and X ; this can be done because the role of ® and X is symmetric),
we have

G11(1 — K22)? + Ga(K12 + 1)? + 2G12(K12 + 1)(1 — K22)

C9) B=
(C9) V2 (K11(1 — K22) + (K12 + 1)2)2

where

_ pTp-1 _ 24T (4T -1
Kiin=TEy T1=1Y24q00) 15" J +Y1y2Aly) 1y,
Kiz=T1Ey' T2 = Ag o)1y (J T + Y1yadly) " 1,/ Vd,
Koy =THEG Ty = 1, J(JTT + Y1y dly) " I 1/n,
G =TIEy,'ME,'T,

= Y224,0(0) 1y (JTT + Y192 dIy) " M(JTT + Yiyily) "y,
G2 =T]Ey'ME,'T,
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= 4a.0) Iy (J T + Y19220n) " M + y192ddy) " I L, /Vd,
Gy =TyE;'ME,'T,
= 1, J(JTT + Y1y dIn) T M + Yiyoddy) " T 1, /.
Note we have shown in the proof of Lemma 9.6 that
Ki = Qu(d)/ (1 + 11I5).  Kiz = 04(Vd),
1>1— Ko > Y1ynd/(Y1v24 + ||J||§p),
1/(Ki1(1 = K22) + (K12 + 1)?)? = 04(d7%) - (1 v [ [15,).

Lemma C.5 provides an upper bound on the operator norm of ||J||op, Which gives
| lop = Og p(expiC(log d)1/2}). Using this bound, we get for any & > 0

(1-— K22)2/(K11(l — K2) + (K12 + 1)2)2 _ Od,IP’(d_2+8),
(K12 + D)?/(K11(1 — K22) + (K12 + 1)?)? = Oy p(d ™' 7%),
(K12 + D(1 — K22)|/(K11(1 — K22) + (K12 + 1)?)? = Od,IP’(d_3/2+8)-

Since all the quantities above are deterministically bounded by a constant, these
high probability bounds translate to expectation bounds.
Moreover, we have

E[G}]"? < ¥ahao(@)2(Wival) 2E[IM 2] ? [In 1] |, = Oa(@).
E[G2,]"? < 04(1) -E[IM|2,]"? 1,15 /n], = Oa(D).
E[GL]"? < 04(1) - 2a 0@ E[IM %] ? 1,15, /V/d |, = 04(d'?).
Plugging the above bounds into Equation (C.9), we have
E[|B]] = 04(1).

This proves the lemma. O

1/2

1/2

C.3 Some auxiliary lemmas

We denote the probability law of {x1,x2)}/ Vd when x1,x5 ~ig N(0,1;) by
iq. Note that py is symmetric, and f x2114(dx) = 1. By the central limit theo-
rem, [ty converges weakly to (g as d — oo, where pg is the standard Gaussian
measure. In fact, we have the following stronger convergence result.

LEMMA C.2. Forany A € [—~/d /2, d /2], we have

(C.10) /e“ud (dx) < e*?

Furthermore, let f : R — R be a continuous function such that | f(x)| <
co exp(c1|x|) for some constants co, c1 < 0o. Then

€11 Jim. / F(pa(dx) = / F(ne ).
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PROOF. In order to prove equation (C.10), we note that the left-hand side is
given by

E{el(xl,xz)/ﬁ}
1 1 1 3
- o /exp§—5||x1||% sl + ﬁ(xl,xz)}dxldxz

ol O] (R e

where the last inequality holds for [A| < +/d /2 using the fact that (1 —x)~! < ¢2¥
for x € [0, %].

In order to prove (C.11), let X; ~ g and G ~ N(0, 1). Since g converges
weakly to N(0, 1), we can construct such random variables so that X; — G
almost surely. Hence f(X;) — f(G) almost surely. However, |f(X;)| <
co exp(c1]|X4|), which is a uniformly integrable family by the previous point, im-
plying E f(X4) — E f(G) as claimed. 0

The next several lemmas establish general bounds on the operator norm of ran-
dom kernel matrices, which is of independent interest.

LEMMA C.3. Let 0 : R — R be an activation function satisfying Assumption 1,
ie, lo@)]|, |0’ Wm)| < coe ™! for some constants co, 1 € (0, 00). Let

(Zi)ie[m] ~iia N(0,1).
Assume 0 < 1/co < M/d < c¢3 < o0 for some constant ¢3 € (0,00). Consider
the random matrix R € RM*M defined by

(C.12) Rij =12, -0((Zi.Z;)/Vd)/Vd.

Then there exists a constant C depending uniquely on cy, c1, cp and a sequence of
numbers (Ng)g>1 with |4| < C exp{C(log d)Y/2} such that

(C13) R ~Taly 1} /Vd|,, = Oap(expiClogd)"/?}).

PROOF. By Lemma C.2 and the Markov inequality, we have, for any i # j and

all0 <t < V/d,

(C.14) P((Zi.Zj)/d > 1) <e /4,
Hence
P 7Y > 164/log M
(1| 750 2 0view)
(C.15) M?
: < 7 > 164/log M
- 2 1<z<]<M (‘f ZI ZJ o8 )

1
< Mzexp{—4(10g M)} < TER
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We define ¢ : R — R as follows: for |[u| < ¥ = 16,/logd, define o(u) =
ow)e ¥ /co: for u > X, define &(u) = &(X); for u < —X, define 5(u) =
6 (—X). Then & is a 1-bounded-Lipschitz function on R. Define

fla = Ex 5n0.51) [0 (. 3)/Vd)] and 74 = Facoe™.

Since we have |7j| < max, |6(u)| < 1, we have
(C.16) 74l = Oq(exp{C(logd)'/}).
Moreover, we define K, K € RM*M py

Kij = Vi - GUZi.Z7)/Vd) —Ta)/Vd,

Kij = Lizj - (0((zi.2;)/Vd) —=712)/Vd.
By [23, lemma 20], there exists a constant C such that

P(|K [lop = C) < Ce™¥/€.

(C.17

Note that [23, lemma 20] considers one specific choice of &, but the proof applies
unchanged to any 1-Lipschitz function with zero expectation under the measure
g, where 14 is the distribution of (¥, 3)/v/d for ¥, 7 ~ N(0,1;).

Defining the event G = {|(Z;,Z;)/vd| < 164/logd,V1 <i < j < M}, we
have

P(||K |op > Ccoet*)

(C.18) < B(|K lop = Ceoe® ) + B(G) < P(IK lop = C) + s

M2
= o04(1).
By equation (C.12) and (C.17), we have
R =K —7aly/vVd + 71y}, /Vd.
By equation (C.18) and (C.16), we have
IR —Talag g/ Vdllop = | K ~Talag /' |op
< K llop + 7a/~'d = O4p(exp{Clogd)'/?}).
This completes the proof. O

LEMMA C.4. Let 0 : R — R be an activation function satisfying Assumption 1,
ie, o), |0’ w)| < coe ™ for some constants cg, c1 € (0, 00). Let

(Ti)iepm] ~iia N(0,1).
Assume 0 < 1/c; < M/d < ¢ < 00 for some constant ¢ € (0,00). Define
zi = ~d -Zi/|Zill2. Consider two random matrices R, R € RM*M defined by

Rij = Ligj -0((zi,2))/Vd)/Vd,  Rij = lizj-0((zi,2j)/Vd)/Vd.
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Then there exists a constant C depending uniquely on cg, c1, ¢ such that
IR — Rllop = Oa p(exp{Clogd)"/?}).

PROOF. In this proof, we assume o has continuous derivatives. In the case when
o is only weakly differentiable, the proof is the same except that we need to express
the mean value theorem in its integral form.

Define r; = v/d /||Zi||2, and
Rij = 1izj - 0(ri(zi.Z;)/Vd)/Vd.
By the concentration of the y-squared distribution, it is easy to see that

max_|r; — 1| = Oy p((logd)"/2/d*/?).
ie[M]

Moreover, we have (for ¢; between r; and 1)
|Rij — Rij| < |0"(6i(zi. 7))/ V)| - (T, ) /Vd ] - Iy = 1]/ Vd.
By equation (C.15), we have
max [(Z;,Z;)/Vd] = Ogp((logd)"/?),

i#je[M]
max [ (Zi.%)) }/NVd] = 04 p((logd)"?).
i£j€

Moreover, by the assumption that |o”(u)| < coe€!l*!, we have

max o' (6i(25. %)V (@, Z)/Vd | = Oup(expiClogd) ).

i#jeM

This gives

z#l}lgﬁﬂ‘R” ~ Ry

= Oy p(exp{C(logd)/?}/d).

Using a similar argument, we can show that

Rii —Rij| =0 {C(logd)"/?}/d
1751?2[);4” ij 1]| dIP’(expl (logd)™'*}/d).

which gives

Rij — Rij| = O C(logd)'/?}/d).
o |Rij = Rij| = Oqp(exp{Cllogd) 773 /d)

This gives
IR = Rlop = IR = Rllp <d - mas, 1Rj = Rij| = Oup(expiCllog )2,
JE

This proves the lemma. U
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LEMMA C.5. Let 0 : R — R be an activation function satisfying Assumption 1,
ie., o), |0’ w)| < coe ™ for some constants cg, ¢1 € (0, 00). Let

(Zi)iepp) ~iia Unif(S?~ 1 (Vd)).

Assume 0 < 1/cy < M/d < c¢a < o0 for some constant ¢ca € (0,00). De-
fine hao = B ieimtan (1. 22)/ V)l and gau) = o) = Ago.
Consider the random matrix K € RM>*M yyjspy

1 1
o=t (L),
ij i#j ﬁ \/3 11 4]
Then there exists a constant C depending uniquely on cg, 1, ¢2, such that
| K llop < Oap(exp{Cllogd)"/?}).

PROOF OF LEMMA C.5. We construct (z;);e[a] by normalizing a collection of
independent Gaussian random vectors. Let (Z;);e[m] ~iia N(0.I;) and denote

zi = Nd -7 /||Zi |2 fori € [M]. Then we have (z;);e[am] ~iia Unif(S4 =" (v/d)).
Consider two random matrices R, R € RM*M defined by

Rij = Liz;-0((Zi,2;)/Vd)/Vd,
Rij = Liz;-0((zi,2;)/Vd)/Vd.

By Lemma C.3, there exists a sequence (74 )40 With [4| < C exp{C(logd) /2y,
such that

|R =413y /Vd||,, = O plexptCllogd)"/?}).
Moreover, by Lemma C.4, we have
IR — Rllop < Ogp(exp{C(logd)'/?}),
which gives,
IR — g1}, /Vdllop = Ogpexp{C(logd)/?}).

Note we have
R=K + /\d,olMlTM/\/E—kd’OIM/«/E.

Moreover, note that limg_,o Ag,0 = Eg~n(0,1)[0(G)] so that sup, [A40] < C.
Therefore, denoting kg = Ag4,0 — 14, We have

| K + kgl /| = | R =g lma iy /N + g olaa /Vd ||,
(C.19) < |R = 7alm 3/ V|, + hao/vd
= 04 p(exp{C(logd)"/?}).
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Notice that

15, K15 /M| < M3/2‘

de(z,,z, /@)

S—Z‘ZW(Z:,ZJ /fw_\——Zm,
i=1 j:j#i

where

Vi = > wa((zi.zj)/Vd).
\/_J J#
Note that E[pg ({2, z;)/~/d)] = 0 fori # j so that

Eloa(zi. 2, )/ Nd)pa({zi, 2j,)/Vd)] = 0

for i, ji, j» distinct. Calculating the second moment, we have

sup B[] = sup E[( 3 vuller.zj)/ V) Vi) ]

ie[M] ie[M] iji

= .Sup % Z E[@d(ZZ,ZJ /\/_) Od(l)

1eIM] ™ i
Therefore, we have
2 cz Y
E[(13 K1y /M)7] < - D" ElVil- V]
i,j=1

A

c2 X
- E[(V? 4 V7)/2] <C? sup E 0,4(1).
M2 i’jzzl [ ] ie[M] [ ]

This gives
113, K1p /M| = 043(1).
Combining this equation with equation (C.19), we get

lcalp 1}, /fH = |(1ar. (ka1pa 1}, /)1y )/ M |
< |(Ap, (K + kgl U3y /Nd) 1y )/ M| + |13, K1y /M |
< }\K+Kd1M1}4/f}\op+\1MK1M/M\
= 04 .p(exp{C(logd)"/?}),

and hence
1K lop < | K + kalaa 3y /Vd |, + [alaaly/Vd |,

= Ogp(expiCllogd)"/?}).
This proves the lemma. U
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C.4 The decomposition of kernel inner product matrices

The next lemma is a reformulation of proposition 3 in [34]. We present it in a
stronger form, but it can be easily derived from the proof of proposition 3 in [34].
This lemma was first proved in [30] in the Gaussian case. (Notice that the second
estimate, on Qx(®X "), follows by applying the first one, whereby @ is replaced
by W =[0@T|X".
LEMMA C.6. Let

O =01.....0n) e RV with (8,4)ae[n] ~iia Unif(S?~1(Vd))
and
X = (x1,....%2)" € R with (x;)ie[n] ~ia Unif(S?~1(Vd)).

Assume 1/c <n/d and N/d < c for some constant ¢ € (0, 00). Then

(C20) E[ sup | 0x(©O") ~ I |2 ] = 04 (D).
k>2
(€21 E| sup [0k (@X N2, | = 0a().
k>2

Notice that the second estimate, on Qx(®X "), follows by applying the first
one, equation (C.20), whereby @ is replaced by W = [@T|X']", and we use

10k (©@XN)lop < 1Ok (WWT) —In-snlop-
The next lemma can be easily derived from Lemma C.6. Again, this lemma was

first proved in [30] in the Gaussian case.
LEMMA C.7. Let
©=(01,....0N) € RV with (84)aern] ~ia Unif(S?1(Vd)).

Let the activation function o satisfy Assumption 1. Assume 1/c < N/d < ¢ for
some constant ¢ € (0, 00). Denote

U = (B, _ymirsi—1 (Janlo(0a, ¥)/Vd)o (85, )/ VD)), pepny € RV
Then we can rewrite the matrix U to be
U=2400)1Inly +piQ + p3(y + A),
with Q = @@"/d and E[||A||§p] =04(1).
C.5 A lemma on the variance of the quadratic form

LEMMA C8. Let A € R™N and B € R™". Let g = (gi1.....gn)" with
gi ~iid Pg, Eg[g] =0, and E4 [g2] = 1. Leth = (hy,...,hn)T" with i ~iq Py,
Elh] = 0, and Ey[h?] = 1. We also assume that h is independent of g. Then we
have

Var(g'4h) = | 4|7,

Var(g"Bg) = > B7(E[g*]—3) + | B||% + Tr(B?).

i=1
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PROOF.

Step 1. Term g " Ah.
Calculating the expectation, we have

E[g'Ah] = 0.
Hence we have
Var(gTAh) = E[g"Ahh"ATg] = E[Tr(gg " AhhTAT)] = Tr(4 A7) = | A]%.
Step2. Term g " Bg.
Calculating the expectation, we have
Elg"Bg] = E[Tr(Bgg")] = Tr(B).

Hence we have

Var(g"Bg)
:{ > E[gilBilizgizgi33i3i4gi4]}_Tr(B)z
i1,02,03,i4
:{< Z + Z + Z + Z )E[gilBi|izgizgi33i3i4gi4]}
i1=ix=i3=i4 i1=ix#iz=is I1=i3Fi2=ia4 11=laFir=i3
— Tr(B)?

n
= > BAE[*1+ ) BiiBjj + Y _(BijBij + BijBji) — Tr(B)?
i=1 i#] i#]

n
= Z B?(E[g*] - 3) + Tr(B"B) + Tr(B?).
i=1
This proves the lemma. O

Appendix D Proof of Lemma 8.6

PROOF OF LEMMA 8.6. For fixed £ € C4 and ¢ € R>, by the fixed point
equation satisfied by m1, m» (cf. equation (8.15)), we see that (m1(§; q), m2(; q))
is a stationary point of the function E(&,-,-;¢). Using the formula for implicit
differentiation, we have

0pg(§:q) = 9pB(E. 21 22: Dl (21,22 =(m1 (E:0).m2(E50))
05,08E:q)=His—Hys6H[ 5.6 H 5603
5,8 q) = Hia— Hy s 61 H'e 1s.60H [5.61.4
05 8E:q) = Ha3 — Hy [5 1 H 56 15,61 H [5.61,3+
92, ,8E q) = Hoq— H2,[5,6]H[_5}6],[5,6]H[5a6],4’
where we have, for u = (s, 52, 11,12, 21.22)",

H = V3E(5.21.22:O(z1,20)=(m1 (E:9)ma E50))
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Basic algebra completes the proof. O

Appendix E Sketch of Proof for Theorem 6.2

In this section, we sketch the calculations of Theorem 6.2. We assume ¥y 4 =
N/d = 1 and ¥, 4 = n/d = v are constants independent of d. Recall that
the definitions of two useful resolvent matrices & and II are

E=(ZTZ +Mnvaly) . M= (ZZT + Ayval) .

Step 1. The expectation of regularized training error.

By equation (6.1), the regularized training error of random features regression
gives

n N
Lre(fg. X, ©.2) = ngn[% > i = > ajo((8;.x:)/Vd)* + Ay ||a||%]
i=1 j=1

|1
= ngn[,;ny —dZa|? + iy ||a||%]
1
=y = ZEZTy|? + W |EZTy]3/d
1
=-[IyI3-y'2227y]

Its expectation with respect to f ;’L (that satisfies Assumption 3), €, and B8, ~
Unif(Sd_l(Fd,l)) gives

Eg.e[Lrr(fg. X, 0O, 1)]
1
= —[Epe[lyl3] - Epely'2EZ7y]]

1 1
= Ep[| falz2] + 7~ ~Ep[fTZEZT ]~ Ee[e'ZEZe]

x T 0
~sall )+ Lo (3 vaam) 2227(3 v
k=0 k=0

_ﬁT (':ZTZ)
. (=

= l;) B+t - l;) FRTH(E2T k(X X"Z) — S Tr(2272).
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It can be shown that the coefficients before FO2 are asymptotically vanishing, and
by Lemma C.6, we have E[supg~, || Qk(XXT) -1, ||§p] = 04(1). Hence we get

1
EpelLrr(fa. X.©.1)] = Ff{l BLE zTHz)}

1
+ (F2 +1%)- {1 — —Tr(E ZTZ)} + 0a,p(1).
n
Using the fact that
EZ"=27"0,
we have

Eg.e[Lrr(fa. X .0, 4)]

=z D) + (F2 + 1) VA + oy 0(0)

Step 2. The norm square of minimizers.
We have

lal3=Ily'ZE|3/d =y ' ZE*Z"y/d,
so that
Egellal3]l = EglfTZE?ZT f1/d + y1Eele' ZE*Z €] /d

o0 T x0
=g {(Z Yx,kﬂk) ZEZZT<Z Yx,kﬁk)}/d
k=0 k=0

+°Te(E*Z27Z)/d

x

Y FZ-Tr(E*ZTQr(XXNZ)/d + *T(E*Z7Z)/d

k=0

= F{T(E*ZTHZ)/d + (F? + %) - Te(E*Z"Z)/d + 04 p(1).

Step 3. The derivatives of the log determinant.

Define ¢ = (s1,52.%1.%2. p) € R> and introduce a block matrix A4 € RMxM
with M = N + n, defined by

ED) A= [y +520 ZT+pZ]
’ Z+pZy Hl+nHY|

For any £ € C_, we consider the quantity

M
Ga(E:q) = - Y loa(hi(4(@) ~ &)

i=1
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With simple algebra, we can show that
iu
3¢, G g (iu; 0) = ETr((uzln +zZHh),

31, G (iu; 0) = IguTr((uzln L 227 'm),
(E.2) 1
agl,th(i“;O) = —ETr((uZIN + ZTZ)_ZZTZ),

82

S1,82

1
Gy (iu;0) = —ETr((ule +Z2'Z)*Z'HZ).
Hence we have

E[Lre(fa.X. 0. 1)]

1/2
~ -F2. n(‘”w—f) DL EGa (01 2) /2 0)]

1/2
—(F} +1%)- .(‘”w_lj‘) 0, E[G 4 (A 192)'/2:0)] + 04(1)
and
Eflal3] = —F202, ,E[G4 (i(Ay192)'/2: 0)]
— (F2 + 1) 82, EIGa (1 v2) 200 + 04 (1).
By Lemma 11.3, we get
E[Lrr(fy.X.©, )]

1/2
= —Ff'i(ww—lj) 3, g (AU 192)1/?: 0)

2 2\ s V1A 12 ; 1/2.
—(FZ+17)-i U 91, (I{(AY1Y2) ' 750) + 04(1)

and
Egelllal3] = —F292, ., g((Ay1v2)'/2:0)
—(F2+ 1982, g((Ap192)/%:0) + 04 p(1),

where g is given in equation (8.19). The derivatives of g can be obtained by differ-
entiating equation (8.18) and using Daskin’s theorem. The theorem then follows
by simple calculus.
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